]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_pageout.c
Update to ELF Tool Chain r3668
[FreeBSD/FreeBSD.git] / sys / vm / vm_pageout.c
1 /*-
2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  * Copyright (c) 2005 Yahoo! Technologies Norway AS
11  * All rights reserved.
12  *
13  * This code is derived from software contributed to Berkeley by
14  * The Mach Operating System project at Carnegie-Mellon University.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. All advertising materials mentioning features or use of this software
25  *    must display the following acknowledgement:
26  *      This product includes software developed by the University of
27  *      California, Berkeley and its contributors.
28  * 4. Neither the name of the University nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  *
44  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
45  *
46  *
47  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
48  * All rights reserved.
49  *
50  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
51  *
52  * Permission to use, copy, modify and distribute this software and
53  * its documentation is hereby granted, provided that both the copyright
54  * notice and this permission notice appear in all copies of the
55  * software, derivative works or modified versions, and any portions
56  * thereof, and that both notices appear in supporting documentation.
57  *
58  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
59  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
60  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
61  *
62  * Carnegie Mellon requests users of this software to return to
63  *
64  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
65  *  School of Computer Science
66  *  Carnegie Mellon University
67  *  Pittsburgh PA 15213-3890
68  *
69  * any improvements or extensions that they make and grant Carnegie the
70  * rights to redistribute these changes.
71  */
72
73 /*
74  *      The proverbial page-out daemon.
75  */
76
77 #include <sys/cdefs.h>
78 __FBSDID("$FreeBSD$");
79
80 #include "opt_vm.h"
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/eventhandler.h>
86 #include <sys/lock.h>
87 #include <sys/mutex.h>
88 #include <sys/proc.h>
89 #include <sys/kthread.h>
90 #include <sys/ktr.h>
91 #include <sys/mount.h>
92 #include <sys/racct.h>
93 #include <sys/resourcevar.h>
94 #include <sys/sched.h>
95 #include <sys/sdt.h>
96 #include <sys/signalvar.h>
97 #include <sys/smp.h>
98 #include <sys/time.h>
99 #include <sys/vnode.h>
100 #include <sys/vmmeter.h>
101 #include <sys/rwlock.h>
102 #include <sys/sx.h>
103 #include <sys/sysctl.h>
104
105 #include <vm/vm.h>
106 #include <vm/vm_param.h>
107 #include <vm/vm_object.h>
108 #include <vm/vm_page.h>
109 #include <vm/vm_map.h>
110 #include <vm/vm_pageout.h>
111 #include <vm/vm_pager.h>
112 #include <vm/vm_phys.h>
113 #include <vm/vm_pagequeue.h>
114 #include <vm/swap_pager.h>
115 #include <vm/vm_extern.h>
116 #include <vm/uma.h>
117
118 /*
119  * System initialization
120  */
121
122 /* the kernel process "vm_pageout"*/
123 static void vm_pageout(void);
124 static void vm_pageout_init(void);
125 static int vm_pageout_clean(vm_page_t m, int *numpagedout);
126 static int vm_pageout_cluster(vm_page_t m);
127 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
128     int starting_page_shortage);
129
130 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init,
131     NULL);
132
133 struct proc *pageproc;
134
135 static struct kproc_desc page_kp = {
136         "pagedaemon",
137         vm_pageout,
138         &pageproc
139 };
140 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start,
141     &page_kp);
142
143 SDT_PROVIDER_DEFINE(vm);
144 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan);
145
146 /* Pagedaemon activity rates, in subdivisions of one second. */
147 #define VM_LAUNDER_RATE         10
148 #define VM_INACT_SCAN_RATE      10
149
150 static int vm_pageout_oom_seq = 12;
151
152 static int vm_pageout_update_period;
153 static int disable_swap_pageouts;
154 static int lowmem_period = 10;
155 static int swapdev_enabled;
156
157 static int vm_panic_on_oom = 0;
158
159 SYSCTL_INT(_vm, OID_AUTO, panic_on_oom,
160         CTLFLAG_RWTUN, &vm_panic_on_oom, 0,
161         "panic on out of memory instead of killing the largest process");
162
163 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period,
164         CTLFLAG_RWTUN, &vm_pageout_update_period, 0,
165         "Maximum active LRU update period");
166   
167 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RWTUN, &lowmem_period, 0,
168         "Low memory callback period");
169
170 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
171         CTLFLAG_RWTUN, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
172
173 static int pageout_lock_miss;
174 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
175         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
176
177 SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq,
178         CTLFLAG_RWTUN, &vm_pageout_oom_seq, 0,
179         "back-to-back calls to oom detector to start OOM");
180
181 static int act_scan_laundry_weight = 3;
182 SYSCTL_INT(_vm, OID_AUTO, act_scan_laundry_weight, CTLFLAG_RWTUN,
183     &act_scan_laundry_weight, 0,
184     "weight given to clean vs. dirty pages in active queue scans");
185
186 static u_int vm_background_launder_rate = 4096;
187 SYSCTL_UINT(_vm, OID_AUTO, background_launder_rate, CTLFLAG_RWTUN,
188     &vm_background_launder_rate, 0,
189     "background laundering rate, in kilobytes per second");
190
191 static u_int vm_background_launder_max = 20 * 1024;
192 SYSCTL_UINT(_vm, OID_AUTO, background_launder_max, CTLFLAG_RWTUN,
193     &vm_background_launder_max, 0, "background laundering cap, in kilobytes");
194
195 int vm_pageout_page_count = 32;
196
197 int vm_page_max_wired;          /* XXX max # of wired pages system-wide */
198 SYSCTL_INT(_vm, OID_AUTO, max_wired,
199         CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
200
201 static u_int isqrt(u_int num);
202 static int vm_pageout_launder(struct vm_domain *vmd, int launder,
203     bool in_shortfall);
204 static void vm_pageout_laundry_worker(void *arg);
205
206 struct scan_state {
207         struct vm_batchqueue bq;
208         struct vm_pagequeue *pq;
209         vm_page_t       marker;
210         int             maxscan;
211         int             scanned;
212 };
213
214 static void
215 vm_pageout_init_scan(struct scan_state *ss, struct vm_pagequeue *pq,
216     vm_page_t marker, vm_page_t after, int maxscan)
217 {
218
219         vm_pagequeue_assert_locked(pq);
220         KASSERT((marker->aflags & PGA_ENQUEUED) == 0,
221             ("marker %p already enqueued", marker));
222
223         if (after == NULL)
224                 TAILQ_INSERT_HEAD(&pq->pq_pl, marker, plinks.q);
225         else
226                 TAILQ_INSERT_AFTER(&pq->pq_pl, after, marker, plinks.q);
227         vm_page_aflag_set(marker, PGA_ENQUEUED);
228
229         vm_batchqueue_init(&ss->bq);
230         ss->pq = pq;
231         ss->marker = marker;
232         ss->maxscan = maxscan;
233         ss->scanned = 0;
234         vm_pagequeue_unlock(pq);
235 }
236
237 static void
238 vm_pageout_end_scan(struct scan_state *ss)
239 {
240         struct vm_pagequeue *pq;
241
242         pq = ss->pq;
243         vm_pagequeue_assert_locked(pq);
244         KASSERT((ss->marker->aflags & PGA_ENQUEUED) != 0,
245             ("marker %p not enqueued", ss->marker));
246
247         TAILQ_REMOVE(&pq->pq_pl, ss->marker, plinks.q);
248         vm_page_aflag_clear(ss->marker, PGA_ENQUEUED);
249         pq->pq_pdpages += ss->scanned;
250 }
251
252 /*
253  * Add a small number of queued pages to a batch queue for later processing
254  * without the corresponding queue lock held.  The caller must have enqueued a
255  * marker page at the desired start point for the scan.  Pages will be
256  * physically dequeued if the caller so requests.  Otherwise, the returned
257  * batch may contain marker pages, and it is up to the caller to handle them.
258  *
259  * When processing the batch queue, vm_page_queue() must be used to
260  * determine whether the page has been logically dequeued by another thread.
261  * Once this check is performed, the page lock guarantees that the page will
262  * not be disassociated from the queue.
263  */
264 static __always_inline void
265 vm_pageout_collect_batch(struct scan_state *ss, const bool dequeue)
266 {
267         struct vm_pagequeue *pq;
268         vm_page_t m, marker;
269
270         marker = ss->marker;
271         pq = ss->pq;
272
273         KASSERT((marker->aflags & PGA_ENQUEUED) != 0,
274             ("marker %p not enqueued", ss->marker));
275
276         vm_pagequeue_lock(pq);
277         for (m = TAILQ_NEXT(marker, plinks.q); m != NULL &&
278             ss->scanned < ss->maxscan && ss->bq.bq_cnt < VM_BATCHQUEUE_SIZE;
279             m = TAILQ_NEXT(m, plinks.q), ss->scanned++) {
280                 if ((m->flags & PG_MARKER) == 0) {
281                         KASSERT((m->aflags & PGA_ENQUEUED) != 0,
282                             ("page %p not enqueued", m));
283                         KASSERT((m->flags & PG_FICTITIOUS) == 0,
284                             ("Fictitious page %p cannot be in page queue", m));
285                         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
286                             ("Unmanaged page %p cannot be in page queue", m));
287                 } else if (dequeue)
288                         continue;
289
290                 (void)vm_batchqueue_insert(&ss->bq, m);
291                 if (dequeue) {
292                         TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
293                         vm_page_aflag_clear(m, PGA_ENQUEUED);
294                 }
295         }
296         TAILQ_REMOVE(&pq->pq_pl, marker, plinks.q);
297         if (__predict_true(m != NULL))
298                 TAILQ_INSERT_BEFORE(m, marker, plinks.q);
299         else
300                 TAILQ_INSERT_TAIL(&pq->pq_pl, marker, plinks.q);
301         if (dequeue)
302                 vm_pagequeue_cnt_add(pq, -ss->bq.bq_cnt);
303         vm_pagequeue_unlock(pq);
304 }
305
306 /* Return the next page to be scanned, or NULL if the scan is complete. */
307 static __always_inline vm_page_t
308 vm_pageout_next(struct scan_state *ss, const bool dequeue)
309 {
310
311         if (ss->bq.bq_cnt == 0)
312                 vm_pageout_collect_batch(ss, dequeue);
313         return (vm_batchqueue_pop(&ss->bq));
314 }
315
316 /*
317  * Scan for pages at adjacent offsets within the given page's object that are
318  * eligible for laundering, form a cluster of these pages and the given page,
319  * and launder that cluster.
320  */
321 static int
322 vm_pageout_cluster(vm_page_t m)
323 {
324         vm_object_t object;
325         vm_page_t mc[2 * vm_pageout_page_count], p, pb, ps;
326         vm_pindex_t pindex;
327         int ib, is, page_base, pageout_count;
328
329         vm_page_assert_locked(m);
330         object = m->object;
331         VM_OBJECT_ASSERT_WLOCKED(object);
332         pindex = m->pindex;
333
334         vm_page_assert_unbusied(m);
335         KASSERT(!vm_page_held(m), ("page %p is held", m));
336
337         pmap_remove_write(m);
338         vm_page_unlock(m);
339
340         mc[vm_pageout_page_count] = pb = ps = m;
341         pageout_count = 1;
342         page_base = vm_pageout_page_count;
343         ib = 1;
344         is = 1;
345
346         /*
347          * We can cluster only if the page is not clean, busy, or held, and
348          * the page is in the laundry queue.
349          *
350          * During heavy mmap/modification loads the pageout
351          * daemon can really fragment the underlying file
352          * due to flushing pages out of order and not trying to
353          * align the clusters (which leaves sporadic out-of-order
354          * holes).  To solve this problem we do the reverse scan
355          * first and attempt to align our cluster, then do a 
356          * forward scan if room remains.
357          */
358 more:
359         while (ib != 0 && pageout_count < vm_pageout_page_count) {
360                 if (ib > pindex) {
361                         ib = 0;
362                         break;
363                 }
364                 if ((p = vm_page_prev(pb)) == NULL || vm_page_busied(p)) {
365                         ib = 0;
366                         break;
367                 }
368                 vm_page_test_dirty(p);
369                 if (p->dirty == 0) {
370                         ib = 0;
371                         break;
372                 }
373                 vm_page_lock(p);
374                 if (vm_page_held(p) || !vm_page_in_laundry(p)) {
375                         vm_page_unlock(p);
376                         ib = 0;
377                         break;
378                 }
379                 pmap_remove_write(p);
380                 vm_page_unlock(p);
381                 mc[--page_base] = pb = p;
382                 ++pageout_count;
383                 ++ib;
384
385                 /*
386                  * We are at an alignment boundary.  Stop here, and switch
387                  * directions.  Do not clear ib.
388                  */
389                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
390                         break;
391         }
392         while (pageout_count < vm_pageout_page_count && 
393             pindex + is < object->size) {
394                 if ((p = vm_page_next(ps)) == NULL || vm_page_busied(p))
395                         break;
396                 vm_page_test_dirty(p);
397                 if (p->dirty == 0)
398                         break;
399                 vm_page_lock(p);
400                 if (vm_page_held(p) || !vm_page_in_laundry(p)) {
401                         vm_page_unlock(p);
402                         break;
403                 }
404                 pmap_remove_write(p);
405                 vm_page_unlock(p);
406                 mc[page_base + pageout_count] = ps = p;
407                 ++pageout_count;
408                 ++is;
409         }
410
411         /*
412          * If we exhausted our forward scan, continue with the reverse scan
413          * when possible, even past an alignment boundary.  This catches
414          * boundary conditions.
415          */
416         if (ib != 0 && pageout_count < vm_pageout_page_count)
417                 goto more;
418
419         return (vm_pageout_flush(&mc[page_base], pageout_count,
420             VM_PAGER_PUT_NOREUSE, 0, NULL, NULL));
421 }
422
423 /*
424  * vm_pageout_flush() - launder the given pages
425  *
426  *      The given pages are laundered.  Note that we setup for the start of
427  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
428  *      reference count all in here rather then in the parent.  If we want
429  *      the parent to do more sophisticated things we may have to change
430  *      the ordering.
431  *
432  *      Returned runlen is the count of pages between mreq and first
433  *      page after mreq with status VM_PAGER_AGAIN.
434  *      *eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
435  *      for any page in runlen set.
436  */
437 int
438 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
439     boolean_t *eio)
440 {
441         vm_object_t object = mc[0]->object;
442         int pageout_status[count];
443         int numpagedout = 0;
444         int i, runlen;
445
446         VM_OBJECT_ASSERT_WLOCKED(object);
447
448         /*
449          * Initiate I/O.  Mark the pages busy and verify that they're valid
450          * and read-only.
451          *
452          * We do not have to fixup the clean/dirty bits here... we can
453          * allow the pager to do it after the I/O completes.
454          *
455          * NOTE! mc[i]->dirty may be partial or fragmented due to an
456          * edge case with file fragments.
457          */
458         for (i = 0; i < count; i++) {
459                 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
460                     ("vm_pageout_flush: partially invalid page %p index %d/%d",
461                         mc[i], i, count));
462                 KASSERT((mc[i]->aflags & PGA_WRITEABLE) == 0,
463                     ("vm_pageout_flush: writeable page %p", mc[i]));
464                 vm_page_sbusy(mc[i]);
465         }
466         vm_object_pip_add(object, count);
467
468         vm_pager_put_pages(object, mc, count, flags, pageout_status);
469
470         runlen = count - mreq;
471         if (eio != NULL)
472                 *eio = FALSE;
473         for (i = 0; i < count; i++) {
474                 vm_page_t mt = mc[i];
475
476                 KASSERT(pageout_status[i] == VM_PAGER_PEND ||
477                     !pmap_page_is_write_mapped(mt),
478                     ("vm_pageout_flush: page %p is not write protected", mt));
479                 switch (pageout_status[i]) {
480                 case VM_PAGER_OK:
481                         vm_page_lock(mt);
482                         if (vm_page_in_laundry(mt))
483                                 vm_page_deactivate_noreuse(mt);
484                         vm_page_unlock(mt);
485                         /* FALLTHROUGH */
486                 case VM_PAGER_PEND:
487                         numpagedout++;
488                         break;
489                 case VM_PAGER_BAD:
490                         /*
491                          * The page is outside the object's range.  We pretend
492                          * that the page out worked and clean the page, so the
493                          * changes will be lost if the page is reclaimed by
494                          * the page daemon.
495                          */
496                         vm_page_undirty(mt);
497                         vm_page_lock(mt);
498                         if (vm_page_in_laundry(mt))
499                                 vm_page_deactivate_noreuse(mt);
500                         vm_page_unlock(mt);
501                         break;
502                 case VM_PAGER_ERROR:
503                 case VM_PAGER_FAIL:
504                         /*
505                          * If the page couldn't be paged out to swap because the
506                          * pager wasn't able to find space, place the page in
507                          * the PQ_UNSWAPPABLE holding queue.  This is an
508                          * optimization that prevents the page daemon from
509                          * wasting CPU cycles on pages that cannot be reclaimed
510                          * becase no swap device is configured.
511                          *
512                          * Otherwise, reactivate the page so that it doesn't
513                          * clog the laundry and inactive queues.  (We will try
514                          * paging it out again later.)
515                          */
516                         vm_page_lock(mt);
517                         if (object->type == OBJT_SWAP &&
518                             pageout_status[i] == VM_PAGER_FAIL) {
519                                 vm_page_unswappable(mt);
520                                 numpagedout++;
521                         } else
522                                 vm_page_activate(mt);
523                         vm_page_unlock(mt);
524                         if (eio != NULL && i >= mreq && i - mreq < runlen)
525                                 *eio = TRUE;
526                         break;
527                 case VM_PAGER_AGAIN:
528                         if (i >= mreq && i - mreq < runlen)
529                                 runlen = i - mreq;
530                         break;
531                 }
532
533                 /*
534                  * If the operation is still going, leave the page busy to
535                  * block all other accesses. Also, leave the paging in
536                  * progress indicator set so that we don't attempt an object
537                  * collapse.
538                  */
539                 if (pageout_status[i] != VM_PAGER_PEND) {
540                         vm_object_pip_wakeup(object);
541                         vm_page_sunbusy(mt);
542                 }
543         }
544         if (prunlen != NULL)
545                 *prunlen = runlen;
546         return (numpagedout);
547 }
548
549 static void
550 vm_pageout_swapon(void *arg __unused, struct swdevt *sp __unused)
551 {
552
553         atomic_store_rel_int(&swapdev_enabled, 1);
554 }
555
556 static void
557 vm_pageout_swapoff(void *arg __unused, struct swdevt *sp __unused)
558 {
559
560         if (swap_pager_nswapdev() == 1)
561                 atomic_store_rel_int(&swapdev_enabled, 0);
562 }
563
564 /*
565  * Attempt to acquire all of the necessary locks to launder a page and
566  * then call through the clustering layer to PUTPAGES.  Wait a short
567  * time for a vnode lock.
568  *
569  * Requires the page and object lock on entry, releases both before return.
570  * Returns 0 on success and an errno otherwise.
571  */
572 static int
573 vm_pageout_clean(vm_page_t m, int *numpagedout)
574 {
575         struct vnode *vp;
576         struct mount *mp;
577         vm_object_t object;
578         vm_pindex_t pindex;
579         int error, lockmode;
580
581         vm_page_assert_locked(m);
582         object = m->object;
583         VM_OBJECT_ASSERT_WLOCKED(object);
584         error = 0;
585         vp = NULL;
586         mp = NULL;
587
588         /*
589          * The object is already known NOT to be dead.   It
590          * is possible for the vget() to block the whole
591          * pageout daemon, but the new low-memory handling
592          * code should prevent it.
593          *
594          * We can't wait forever for the vnode lock, we might
595          * deadlock due to a vn_read() getting stuck in
596          * vm_wait while holding this vnode.  We skip the 
597          * vnode if we can't get it in a reasonable amount
598          * of time.
599          */
600         if (object->type == OBJT_VNODE) {
601                 vm_page_unlock(m);
602                 vp = object->handle;
603                 if (vp->v_type == VREG &&
604                     vn_start_write(vp, &mp, V_NOWAIT) != 0) {
605                         mp = NULL;
606                         error = EDEADLK;
607                         goto unlock_all;
608                 }
609                 KASSERT(mp != NULL,
610                     ("vp %p with NULL v_mount", vp));
611                 vm_object_reference_locked(object);
612                 pindex = m->pindex;
613                 VM_OBJECT_WUNLOCK(object);
614                 lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
615                     LK_SHARED : LK_EXCLUSIVE;
616                 if (vget(vp, lockmode | LK_TIMELOCK, curthread)) {
617                         vp = NULL;
618                         error = EDEADLK;
619                         goto unlock_mp;
620                 }
621                 VM_OBJECT_WLOCK(object);
622
623                 /*
624                  * Ensure that the object and vnode were not disassociated
625                  * while locks were dropped.
626                  */
627                 if (vp->v_object != object) {
628                         error = ENOENT;
629                         goto unlock_all;
630                 }
631                 vm_page_lock(m);
632
633                 /*
634                  * While the object and page were unlocked, the page
635                  * may have been:
636                  * (1) moved to a different queue,
637                  * (2) reallocated to a different object,
638                  * (3) reallocated to a different offset, or
639                  * (4) cleaned.
640                  */
641                 if (!vm_page_in_laundry(m) || m->object != object ||
642                     m->pindex != pindex || m->dirty == 0) {
643                         vm_page_unlock(m);
644                         error = ENXIO;
645                         goto unlock_all;
646                 }
647
648                 /*
649                  * The page may have been busied or referenced while the object
650                  * and page locks were released.
651                  */
652                 if (vm_page_busied(m) || vm_page_held(m)) {
653                         vm_page_unlock(m);
654                         error = EBUSY;
655                         goto unlock_all;
656                 }
657         }
658
659         /*
660          * If a page is dirty, then it is either being washed
661          * (but not yet cleaned) or it is still in the
662          * laundry.  If it is still in the laundry, then we
663          * start the cleaning operation. 
664          */
665         if ((*numpagedout = vm_pageout_cluster(m)) == 0)
666                 error = EIO;
667
668 unlock_all:
669         VM_OBJECT_WUNLOCK(object);
670
671 unlock_mp:
672         vm_page_lock_assert(m, MA_NOTOWNED);
673         if (mp != NULL) {
674                 if (vp != NULL)
675                         vput(vp);
676                 vm_object_deallocate(object);
677                 vn_finished_write(mp);
678         }
679
680         return (error);
681 }
682
683 /*
684  * Attempt to launder the specified number of pages.
685  *
686  * Returns the number of pages successfully laundered.
687  */
688 static int
689 vm_pageout_launder(struct vm_domain *vmd, int launder, bool in_shortfall)
690 {
691         struct scan_state ss;
692         struct vm_pagequeue *pq;
693         struct mtx *mtx;
694         vm_object_t object;
695         vm_page_t m, marker;
696         int act_delta, error, numpagedout, queue, starting_target;
697         int vnodes_skipped;
698         bool obj_locked, pageout_ok;
699
700         mtx = NULL;
701         obj_locked = false;
702         object = NULL;
703         starting_target = launder;
704         vnodes_skipped = 0;
705
706         /*
707          * Scan the laundry queues for pages eligible to be laundered.  We stop
708          * once the target number of dirty pages have been laundered, or once
709          * we've reached the end of the queue.  A single iteration of this loop
710          * may cause more than one page to be laundered because of clustering.
711          *
712          * As an optimization, we avoid laundering from PQ_UNSWAPPABLE when no
713          * swap devices are configured.
714          */
715         if (atomic_load_acq_int(&swapdev_enabled))
716                 queue = PQ_UNSWAPPABLE;
717         else
718                 queue = PQ_LAUNDRY;
719
720 scan:
721         marker = &vmd->vmd_markers[queue];
722         pq = &vmd->vmd_pagequeues[queue];
723         vm_pagequeue_lock(pq);
724         vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
725         while (launder > 0 && (m = vm_pageout_next(&ss, false)) != NULL) {
726                 if (__predict_false((m->flags & PG_MARKER) != 0))
727                         continue;
728
729                 vm_page_change_lock(m, &mtx);
730
731 recheck:
732                 /*
733                  * The page may have been disassociated from the queue
734                  * while locks were dropped.
735                  */
736                 if (vm_page_queue(m) != queue)
737                         continue;
738
739                 /*
740                  * A requeue was requested, so this page gets a second
741                  * chance.
742                  */
743                 if ((m->aflags & PGA_REQUEUE) != 0) {
744                         vm_page_requeue(m);
745                         continue;
746                 }
747
748                 /*
749                  * Held pages are essentially stuck in the queue.
750                  *
751                  * Wired pages may not be freed.  Complete their removal
752                  * from the queue now to avoid needless revisits during
753                  * future scans.
754                  */
755                 if (m->hold_count != 0)
756                         continue;
757                 if (m->wire_count != 0) {
758                         vm_page_dequeue_deferred(m);
759                         continue;
760                 }
761
762                 if (object != m->object) {
763                         if (obj_locked) {
764                                 VM_OBJECT_WUNLOCK(object);
765                                 obj_locked = false;
766                         }
767                         object = m->object;
768                 }
769                 if (!obj_locked) {
770                         if (!VM_OBJECT_TRYWLOCK(object)) {
771                                 mtx_unlock(mtx);
772                                 /* Depends on type-stability. */
773                                 VM_OBJECT_WLOCK(object);
774                                 obj_locked = true;
775                                 mtx_lock(mtx);
776                                 goto recheck;
777                         } else
778                                 obj_locked = true;
779                 }
780
781                 if (vm_page_busied(m))
782                         continue;
783
784                 /*
785                  * Invalid pages can be easily freed.  They cannot be
786                  * mapped; vm_page_free() asserts this.
787                  */
788                 if (m->valid == 0)
789                         goto free_page;
790
791                 /*
792                  * If the page has been referenced and the object is not dead,
793                  * reactivate or requeue the page depending on whether the
794                  * object is mapped.
795                  *
796                  * Test PGA_REFERENCED after calling pmap_ts_referenced() so
797                  * that a reference from a concurrently destroyed mapping is
798                  * observed here and now.
799                  */
800                 if (object->ref_count != 0)
801                         act_delta = pmap_ts_referenced(m);
802                 else {
803                         KASSERT(!pmap_page_is_mapped(m),
804                             ("page %p is mapped", m));
805                         act_delta = 0;
806                 }
807                 if ((m->aflags & PGA_REFERENCED) != 0) {
808                         vm_page_aflag_clear(m, PGA_REFERENCED);
809                         act_delta++;
810                 }
811                 if (act_delta != 0) {
812                         if (object->ref_count != 0) {
813                                 VM_CNT_INC(v_reactivated);
814                                 vm_page_activate(m);
815
816                                 /*
817                                  * Increase the activation count if the page
818                                  * was referenced while in the laundry queue.
819                                  * This makes it less likely that the page will
820                                  * be returned prematurely to the inactive
821                                  * queue.
822                                  */
823                                 m->act_count += act_delta + ACT_ADVANCE;
824
825                                 /*
826                                  * If this was a background laundering, count
827                                  * activated pages towards our target.  The
828                                  * purpose of background laundering is to ensure
829                                  * that pages are eventually cycled through the
830                                  * laundry queue, and an activation is a valid
831                                  * way out.
832                                  */
833                                 if (!in_shortfall)
834                                         launder--;
835                                 continue;
836                         } else if ((object->flags & OBJ_DEAD) == 0) {
837                                 vm_page_requeue(m);
838                                 continue;
839                         }
840                 }
841
842                 /*
843                  * If the page appears to be clean at the machine-independent
844                  * layer, then remove all of its mappings from the pmap in
845                  * anticipation of freeing it.  If, however, any of the page's
846                  * mappings allow write access, then the page may still be
847                  * modified until the last of those mappings are removed.
848                  */
849                 if (object->ref_count != 0) {
850                         vm_page_test_dirty(m);
851                         if (m->dirty == 0)
852                                 pmap_remove_all(m);
853                 }
854
855                 /*
856                  * Clean pages are freed, and dirty pages are paged out unless
857                  * they belong to a dead object.  Requeueing dirty pages from
858                  * dead objects is pointless, as they are being paged out and
859                  * freed by the thread that destroyed the object.
860                  */
861                 if (m->dirty == 0) {
862 free_page:
863                         vm_page_free(m);
864                         VM_CNT_INC(v_dfree);
865                 } else if ((object->flags & OBJ_DEAD) == 0) {
866                         if (object->type != OBJT_SWAP &&
867                             object->type != OBJT_DEFAULT)
868                                 pageout_ok = true;
869                         else if (disable_swap_pageouts)
870                                 pageout_ok = false;
871                         else
872                                 pageout_ok = true;
873                         if (!pageout_ok) {
874                                 vm_page_requeue(m);
875                                 continue;
876                         }
877
878                         /*
879                          * Form a cluster with adjacent, dirty pages from the
880                          * same object, and page out that entire cluster.
881                          *
882                          * The adjacent, dirty pages must also be in the
883                          * laundry.  However, their mappings are not checked
884                          * for new references.  Consequently, a recently
885                          * referenced page may be paged out.  However, that
886                          * page will not be prematurely reclaimed.  After page
887                          * out, the page will be placed in the inactive queue,
888                          * where any new references will be detected and the
889                          * page reactivated.
890                          */
891                         error = vm_pageout_clean(m, &numpagedout);
892                         if (error == 0) {
893                                 launder -= numpagedout;
894                                 ss.scanned += numpagedout;
895                         } else if (error == EDEADLK) {
896                                 pageout_lock_miss++;
897                                 vnodes_skipped++;
898                         }
899                         mtx = NULL;
900                         obj_locked = false;
901                 }
902         }
903         if (mtx != NULL) {
904                 mtx_unlock(mtx);
905                 mtx = NULL;
906         }
907         if (obj_locked) {
908                 VM_OBJECT_WUNLOCK(object);
909                 obj_locked = false;
910         }
911         vm_pagequeue_lock(pq);
912         vm_pageout_end_scan(&ss);
913         vm_pagequeue_unlock(pq);
914
915         if (launder > 0 && queue == PQ_UNSWAPPABLE) {
916                 queue = PQ_LAUNDRY;
917                 goto scan;
918         }
919
920         /*
921          * Wakeup the sync daemon if we skipped a vnode in a writeable object
922          * and we didn't launder enough pages.
923          */
924         if (vnodes_skipped > 0 && launder > 0)
925                 (void)speedup_syncer();
926
927         return (starting_target - launder);
928 }
929
930 /*
931  * Compute the integer square root.
932  */
933 static u_int
934 isqrt(u_int num)
935 {
936         u_int bit, root, tmp;
937
938         bit = 1u << ((NBBY * sizeof(u_int)) - 2);
939         while (bit > num)
940                 bit >>= 2;
941         root = 0;
942         while (bit != 0) {
943                 tmp = root + bit;
944                 root >>= 1;
945                 if (num >= tmp) {
946                         num -= tmp;
947                         root += bit;
948                 }
949                 bit >>= 2;
950         }
951         return (root);
952 }
953
954 /*
955  * Perform the work of the laundry thread: periodically wake up and determine
956  * whether any pages need to be laundered.  If so, determine the number of pages
957  * that need to be laundered, and launder them.
958  */
959 static void
960 vm_pageout_laundry_worker(void *arg)
961 {
962         struct vm_domain *vmd;
963         struct vm_pagequeue *pq;
964         uint64_t nclean, ndirty, nfreed;
965         int domain, last_target, launder, shortfall, shortfall_cycle, target;
966         bool in_shortfall;
967
968         domain = (uintptr_t)arg;
969         vmd = VM_DOMAIN(domain);
970         pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
971         KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
972
973         shortfall = 0;
974         in_shortfall = false;
975         shortfall_cycle = 0;
976         last_target = target = 0;
977         nfreed = 0;
978
979         /*
980          * Calls to these handlers are serialized by the swap syscall lock.
981          */
982         (void)EVENTHANDLER_REGISTER(swapon, vm_pageout_swapon, vmd,
983             EVENTHANDLER_PRI_ANY);
984         (void)EVENTHANDLER_REGISTER(swapoff, vm_pageout_swapoff, vmd,
985             EVENTHANDLER_PRI_ANY);
986
987         /*
988          * The pageout laundry worker is never done, so loop forever.
989          */
990         for (;;) {
991                 KASSERT(target >= 0, ("negative target %d", target));
992                 KASSERT(shortfall_cycle >= 0,
993                     ("negative cycle %d", shortfall_cycle));
994                 launder = 0;
995
996                 /*
997                  * First determine whether we need to launder pages to meet a
998                  * shortage of free pages.
999                  */
1000                 if (shortfall > 0) {
1001                         in_shortfall = true;
1002                         shortfall_cycle = VM_LAUNDER_RATE / VM_INACT_SCAN_RATE;
1003                         target = shortfall;
1004                 } else if (!in_shortfall)
1005                         goto trybackground;
1006                 else if (shortfall_cycle == 0 || vm_laundry_target(vmd) <= 0) {
1007                         /*
1008                          * We recently entered shortfall and began laundering
1009                          * pages.  If we have completed that laundering run
1010                          * (and we are no longer in shortfall) or we have met
1011                          * our laundry target through other activity, then we
1012                          * can stop laundering pages.
1013                          */
1014                         in_shortfall = false;
1015                         target = 0;
1016                         goto trybackground;
1017                 }
1018                 launder = target / shortfall_cycle--;
1019                 goto dolaundry;
1020
1021                 /*
1022                  * There's no immediate need to launder any pages; see if we
1023                  * meet the conditions to perform background laundering:
1024                  *
1025                  * 1. The ratio of dirty to clean inactive pages exceeds the
1026                  *    background laundering threshold, or
1027                  * 2. we haven't yet reached the target of the current
1028                  *    background laundering run.
1029                  *
1030                  * The background laundering threshold is not a constant.
1031                  * Instead, it is a slowly growing function of the number of
1032                  * clean pages freed by the page daemon since the last
1033                  * background laundering.  Thus, as the ratio of dirty to
1034                  * clean inactive pages grows, the amount of memory pressure
1035                  * required to trigger laundering decreases.  We ensure
1036                  * that the threshold is non-zero after an inactive queue
1037                  * scan, even if that scan failed to free a single clean page.
1038                  */
1039 trybackground:
1040                 nclean = vmd->vmd_free_count +
1041                     vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt;
1042                 ndirty = vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt;
1043                 if (target == 0 && ndirty * isqrt(howmany(nfreed + 1,
1044                     vmd->vmd_free_target - vmd->vmd_free_min)) >= nclean) {
1045                         target = vmd->vmd_background_launder_target;
1046                 }
1047
1048                 /*
1049                  * We have a non-zero background laundering target.  If we've
1050                  * laundered up to our maximum without observing a page daemon
1051                  * request, just stop.  This is a safety belt that ensures we
1052                  * don't launder an excessive amount if memory pressure is low
1053                  * and the ratio of dirty to clean pages is large.  Otherwise,
1054                  * proceed at the background laundering rate.
1055                  */
1056                 if (target > 0) {
1057                         if (nfreed > 0) {
1058                                 nfreed = 0;
1059                                 last_target = target;
1060                         } else if (last_target - target >=
1061                             vm_background_launder_max * PAGE_SIZE / 1024) {
1062                                 target = 0;
1063                         }
1064                         launder = vm_background_launder_rate * PAGE_SIZE / 1024;
1065                         launder /= VM_LAUNDER_RATE;
1066                         if (launder > target)
1067                                 launder = target;
1068                 }
1069
1070 dolaundry:
1071                 if (launder > 0) {
1072                         /*
1073                          * Because of I/O clustering, the number of laundered
1074                          * pages could exceed "target" by the maximum size of
1075                          * a cluster minus one. 
1076                          */
1077                         target -= min(vm_pageout_launder(vmd, launder,
1078                             in_shortfall), target);
1079                         pause("laundp", hz / VM_LAUNDER_RATE);
1080                 }
1081
1082                 /*
1083                  * If we're not currently laundering pages and the page daemon
1084                  * hasn't posted a new request, sleep until the page daemon
1085                  * kicks us.
1086                  */
1087                 vm_pagequeue_lock(pq);
1088                 if (target == 0 && vmd->vmd_laundry_request == VM_LAUNDRY_IDLE)
1089                         (void)mtx_sleep(&vmd->vmd_laundry_request,
1090                             vm_pagequeue_lockptr(pq), PVM, "launds", 0);
1091
1092                 /*
1093                  * If the pagedaemon has indicated that it's in shortfall, start
1094                  * a shortfall laundering unless we're already in the middle of
1095                  * one.  This may preempt a background laundering.
1096                  */
1097                 if (vmd->vmd_laundry_request == VM_LAUNDRY_SHORTFALL &&
1098                     (!in_shortfall || shortfall_cycle == 0)) {
1099                         shortfall = vm_laundry_target(vmd) +
1100                             vmd->vmd_pageout_deficit;
1101                         target = 0;
1102                 } else
1103                         shortfall = 0;
1104
1105                 if (target == 0)
1106                         vmd->vmd_laundry_request = VM_LAUNDRY_IDLE;
1107                 nfreed += vmd->vmd_clean_pages_freed;
1108                 vmd->vmd_clean_pages_freed = 0;
1109                 vm_pagequeue_unlock(pq);
1110         }
1111 }
1112
1113 /*
1114  * Compute the number of pages we want to try to move from the
1115  * active queue to either the inactive or laundry queue.
1116  *
1117  * When scanning active pages during a shortage, we make clean pages
1118  * count more heavily towards the page shortage than dirty pages.
1119  * This is because dirty pages must be laundered before they can be
1120  * reused and thus have less utility when attempting to quickly
1121  * alleviate a free page shortage.  However, this weighting also
1122  * causes the scan to deactivate dirty pages more aggressively,
1123  * improving the effectiveness of clustering.
1124  */
1125 static int
1126 vm_pageout_active_target(struct vm_domain *vmd)
1127 {
1128         int shortage;
1129
1130         shortage = vmd->vmd_inactive_target + vm_paging_target(vmd) -
1131             (vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt +
1132             vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt / act_scan_laundry_weight);
1133         shortage *= act_scan_laundry_weight;
1134         return (shortage);
1135 }
1136
1137 /*
1138  * Scan the active queue.  If there is no shortage of inactive pages, scan a
1139  * small portion of the queue in order to maintain quasi-LRU.
1140  */
1141 static void
1142 vm_pageout_scan_active(struct vm_domain *vmd, int page_shortage)
1143 {
1144         struct scan_state ss;
1145         struct mtx *mtx;
1146         vm_page_t m, marker;
1147         struct vm_pagequeue *pq;
1148         long min_scan;
1149         int act_delta, max_scan, scan_tick;
1150
1151         marker = &vmd->vmd_markers[PQ_ACTIVE];
1152         pq = &vmd->vmd_pagequeues[PQ_ACTIVE];
1153         vm_pagequeue_lock(pq);
1154
1155         /*
1156          * If we're just idle polling attempt to visit every
1157          * active page within 'update_period' seconds.
1158          */
1159         scan_tick = ticks;
1160         if (vm_pageout_update_period != 0) {
1161                 min_scan = pq->pq_cnt;
1162                 min_scan *= scan_tick - vmd->vmd_last_active_scan;
1163                 min_scan /= hz * vm_pageout_update_period;
1164         } else
1165                 min_scan = 0;
1166         if (min_scan > 0 || (page_shortage > 0 && pq->pq_cnt > 0))
1167                 vmd->vmd_last_active_scan = scan_tick;
1168
1169         /*
1170          * Scan the active queue for pages that can be deactivated.  Update
1171          * the per-page activity counter and use it to identify deactivation
1172          * candidates.  Held pages may be deactivated.
1173          *
1174          * To avoid requeuing each page that remains in the active queue, we
1175          * implement the CLOCK algorithm.  To keep the implementation of the
1176          * enqueue operation consistent for all page queues, we use two hands,
1177          * represented by marker pages. Scans begin at the first hand, which
1178          * precedes the second hand in the queue.  When the two hands meet,
1179          * they are moved back to the head and tail of the queue, respectively,
1180          * and scanning resumes.
1181          */
1182         max_scan = page_shortage > 0 ? pq->pq_cnt : min_scan;
1183         mtx = NULL;
1184 act_scan:
1185         vm_pageout_init_scan(&ss, pq, marker, &vmd->vmd_clock[0], max_scan);
1186         while ((m = vm_pageout_next(&ss, false)) != NULL) {
1187                 if (__predict_false(m == &vmd->vmd_clock[1])) {
1188                         vm_pagequeue_lock(pq);
1189                         TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
1190                         TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[1], plinks.q);
1191                         TAILQ_INSERT_HEAD(&pq->pq_pl, &vmd->vmd_clock[0],
1192                             plinks.q);
1193                         TAILQ_INSERT_TAIL(&pq->pq_pl, &vmd->vmd_clock[1],
1194                             plinks.q);
1195                         max_scan -= ss.scanned;
1196                         vm_pageout_end_scan(&ss);
1197                         goto act_scan;
1198                 }
1199                 if (__predict_false((m->flags & PG_MARKER) != 0))
1200                         continue;
1201
1202                 vm_page_change_lock(m, &mtx);
1203
1204                 /*
1205                  * The page may have been disassociated from the queue
1206                  * while locks were dropped.
1207                  */
1208                 if (vm_page_queue(m) != PQ_ACTIVE)
1209                         continue;
1210
1211                 /*
1212                  * Wired pages are dequeued lazily.
1213                  */
1214                 if (m->wire_count != 0) {
1215                         vm_page_dequeue_deferred(m);
1216                         continue;
1217                 }
1218
1219                 /*
1220                  * Check to see "how much" the page has been used.
1221                  *
1222                  * Test PGA_REFERENCED after calling pmap_ts_referenced() so
1223                  * that a reference from a concurrently destroyed mapping is
1224                  * observed here and now.
1225                  *
1226                  * Perform an unsynchronized object ref count check.  While
1227                  * the page lock ensures that the page is not reallocated to
1228                  * another object, in particular, one with unmanaged mappings
1229                  * that cannot support pmap_ts_referenced(), two races are,
1230                  * nonetheless, possible:
1231                  * 1) The count was transitioning to zero, but we saw a non-
1232                  *    zero value.  pmap_ts_referenced() will return zero
1233                  *    because the page is not mapped.
1234                  * 2) The count was transitioning to one, but we saw zero.
1235                  *    This race delays the detection of a new reference.  At
1236                  *    worst, we will deactivate and reactivate the page.
1237                  */
1238                 if (m->object->ref_count != 0)
1239                         act_delta = pmap_ts_referenced(m);
1240                 else
1241                         act_delta = 0;
1242                 if ((m->aflags & PGA_REFERENCED) != 0) {
1243                         vm_page_aflag_clear(m, PGA_REFERENCED);
1244                         act_delta++;
1245                 }
1246
1247                 /*
1248                  * Advance or decay the act_count based on recent usage.
1249                  */
1250                 if (act_delta != 0) {
1251                         m->act_count += ACT_ADVANCE + act_delta;
1252                         if (m->act_count > ACT_MAX)
1253                                 m->act_count = ACT_MAX;
1254                 } else
1255                         m->act_count -= min(m->act_count, ACT_DECLINE);
1256
1257                 if (m->act_count == 0) {
1258                         /*
1259                          * When not short for inactive pages, let dirty pages go
1260                          * through the inactive queue before moving to the
1261                          * laundry queues.  This gives them some extra time to
1262                          * be reactivated, potentially avoiding an expensive
1263                          * pageout.  However, during a page shortage, the
1264                          * inactive queue is necessarily small, and so dirty
1265                          * pages would only spend a trivial amount of time in
1266                          * the inactive queue.  Therefore, we might as well
1267                          * place them directly in the laundry queue to reduce
1268                          * queuing overhead.
1269                          */
1270                         if (page_shortage <= 0)
1271                                 vm_page_deactivate(m);
1272                         else {
1273                                 /*
1274                                  * Calling vm_page_test_dirty() here would
1275                                  * require acquisition of the object's write
1276                                  * lock.  However, during a page shortage,
1277                                  * directing dirty pages into the laundry
1278                                  * queue is only an optimization and not a
1279                                  * requirement.  Therefore, we simply rely on
1280                                  * the opportunistic updates to the page's
1281                                  * dirty field by the pmap.
1282                                  */
1283                                 if (m->dirty == 0) {
1284                                         vm_page_deactivate(m);
1285                                         page_shortage -=
1286                                             act_scan_laundry_weight;
1287                                 } else {
1288                                         vm_page_launder(m);
1289                                         page_shortage--;
1290                                 }
1291                         }
1292                 }
1293         }
1294         if (mtx != NULL) {
1295                 mtx_unlock(mtx);
1296                 mtx = NULL;
1297         }
1298         vm_pagequeue_lock(pq);
1299         TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
1300         TAILQ_INSERT_AFTER(&pq->pq_pl, marker, &vmd->vmd_clock[0], plinks.q);
1301         vm_pageout_end_scan(&ss);
1302         vm_pagequeue_unlock(pq);
1303 }
1304
1305 static int
1306 vm_pageout_reinsert_inactive_page(struct scan_state *ss, vm_page_t m)
1307 {
1308         struct vm_domain *vmd;
1309
1310         if (m->queue != PQ_INACTIVE || (m->aflags & PGA_ENQUEUED) != 0)
1311                 return (0);
1312         vm_page_aflag_set(m, PGA_ENQUEUED);
1313         if ((m->aflags & PGA_REQUEUE_HEAD) != 0) {
1314                 vmd = vm_pagequeue_domain(m);
1315                 TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q);
1316                 vm_page_aflag_clear(m, PGA_REQUEUE | PGA_REQUEUE_HEAD);
1317         } else if ((m->aflags & PGA_REQUEUE) != 0) {
1318                 TAILQ_INSERT_TAIL(&ss->pq->pq_pl, m, plinks.q);
1319                 vm_page_aflag_clear(m, PGA_REQUEUE | PGA_REQUEUE_HEAD);
1320         } else
1321                 TAILQ_INSERT_BEFORE(ss->marker, m, plinks.q);
1322         return (1);
1323 }
1324
1325 /*
1326  * Re-add stuck pages to the inactive queue.  We will examine them again
1327  * during the next scan.  If the queue state of a page has changed since
1328  * it was physically removed from the page queue in
1329  * vm_pageout_collect_batch(), don't do anything with that page.
1330  */
1331 static void
1332 vm_pageout_reinsert_inactive(struct scan_state *ss, struct vm_batchqueue *bq,
1333     vm_page_t m)
1334 {
1335         struct vm_pagequeue *pq;
1336         int delta;
1337
1338         delta = 0;
1339         pq = ss->pq;
1340
1341         if (m != NULL) {
1342                 if (vm_batchqueue_insert(bq, m))
1343                         return;
1344                 vm_pagequeue_lock(pq);
1345                 delta += vm_pageout_reinsert_inactive_page(ss, m);
1346         } else
1347                 vm_pagequeue_lock(pq);
1348         while ((m = vm_batchqueue_pop(bq)) != NULL)
1349                 delta += vm_pageout_reinsert_inactive_page(ss, m);
1350         vm_pagequeue_cnt_add(pq, delta);
1351         vm_pagequeue_unlock(pq);
1352         vm_batchqueue_init(bq);
1353 }
1354
1355 /*
1356  * Attempt to reclaim the requested number of pages from the inactive queue.
1357  * Returns true if the shortage was addressed.
1358  */
1359 static int
1360 vm_pageout_scan_inactive(struct vm_domain *vmd, int shortage,
1361     int *addl_shortage)
1362 {
1363         struct scan_state ss;
1364         struct vm_batchqueue rq;
1365         struct mtx *mtx;
1366         vm_page_t m, marker;
1367         struct vm_pagequeue *pq;
1368         vm_object_t object;
1369         int act_delta, addl_page_shortage, deficit, page_shortage;
1370         int starting_page_shortage;
1371         bool obj_locked;
1372
1373         /*
1374          * The addl_page_shortage is an estimate of the number of temporarily
1375          * stuck pages in the inactive queue.  In other words, the
1376          * number of pages from the inactive count that should be
1377          * discounted in setting the target for the active queue scan.
1378          */
1379         addl_page_shortage = 0;
1380
1381         /*
1382          * vmd_pageout_deficit counts the number of pages requested in
1383          * allocations that failed because of a free page shortage.  We assume
1384          * that the allocations will be reattempted and thus include the deficit
1385          * in our scan target.
1386          */
1387         deficit = atomic_readandclear_int(&vmd->vmd_pageout_deficit);
1388         starting_page_shortage = page_shortage = shortage + deficit;
1389
1390         mtx = NULL;
1391         obj_locked = false;
1392         object = NULL;
1393         vm_batchqueue_init(&rq);
1394
1395         /*
1396          * Start scanning the inactive queue for pages that we can free.  The
1397          * scan will stop when we reach the target or we have scanned the
1398          * entire queue.  (Note that m->act_count is not used to make
1399          * decisions for the inactive queue, only for the active queue.)
1400          */
1401         marker = &vmd->vmd_markers[PQ_INACTIVE];
1402         pq = &vmd->vmd_pagequeues[PQ_INACTIVE];
1403         vm_pagequeue_lock(pq);
1404         vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
1405         while (page_shortage > 0 && (m = vm_pageout_next(&ss, true)) != NULL) {
1406                 KASSERT((m->flags & PG_MARKER) == 0,
1407                     ("marker page %p was dequeued", m));
1408
1409                 vm_page_change_lock(m, &mtx);
1410
1411 recheck:
1412                 /*
1413                  * The page may have been disassociated from the queue
1414                  * while locks were dropped.
1415                  */
1416                 if (vm_page_queue(m) != PQ_INACTIVE) {
1417                         addl_page_shortage++;
1418                         continue;
1419                 }
1420
1421                 /*
1422                  * The page was re-enqueued after the page queue lock was
1423                  * dropped, or a requeue was requested.  This page gets a second
1424                  * chance.
1425                  */
1426                 if ((m->aflags & (PGA_ENQUEUED | PGA_REQUEUE |
1427                     PGA_REQUEUE_HEAD)) != 0)
1428                         goto reinsert;
1429
1430                 /*
1431                  * Held pages are essentially stuck in the queue.  So,
1432                  * they ought to be discounted from the inactive count.
1433                  * See the description of addl_page_shortage above.
1434                  *
1435                  * Wired pages may not be freed.  Complete their removal
1436                  * from the queue now to avoid needless revisits during
1437                  * future scans.
1438                  */
1439                 if (m->hold_count != 0) {
1440                         addl_page_shortage++;
1441                         goto reinsert;
1442                 }
1443                 if (m->wire_count != 0) {
1444                         vm_page_dequeue_deferred(m);
1445                         continue;
1446                 }
1447
1448                 if (object != m->object) {
1449                         if (obj_locked) {
1450                                 VM_OBJECT_WUNLOCK(object);
1451                                 obj_locked = false;
1452                         }
1453                         object = m->object;
1454                 }
1455                 if (!obj_locked) {
1456                         if (!VM_OBJECT_TRYWLOCK(object)) {
1457                                 mtx_unlock(mtx);
1458                                 /* Depends on type-stability. */
1459                                 VM_OBJECT_WLOCK(object);
1460                                 obj_locked = true;
1461                                 mtx_lock(mtx);
1462                                 goto recheck;
1463                         } else
1464                                 obj_locked = true;
1465                 }
1466
1467                 if (vm_page_busied(m)) {
1468                         /*
1469                          * Don't mess with busy pages.  Leave them at
1470                          * the front of the queue.  Most likely, they
1471                          * are being paged out and will leave the
1472                          * queue shortly after the scan finishes.  So,
1473                          * they ought to be discounted from the
1474                          * inactive count.
1475                          */
1476                         addl_page_shortage++;
1477                         goto reinsert;
1478                 }
1479
1480                 /*
1481                  * Invalid pages can be easily freed. They cannot be
1482                  * mapped, vm_page_free() asserts this.
1483                  */
1484                 if (m->valid == 0)
1485                         goto free_page;
1486
1487                 /*
1488                  * If the page has been referenced and the object is not dead,
1489                  * reactivate or requeue the page depending on whether the
1490                  * object is mapped.
1491                  *
1492                  * Test PGA_REFERENCED after calling pmap_ts_referenced() so
1493                  * that a reference from a concurrently destroyed mapping is
1494                  * observed here and now.
1495                  */
1496                 if (object->ref_count != 0)
1497                         act_delta = pmap_ts_referenced(m);
1498                 else {
1499                         KASSERT(!pmap_page_is_mapped(m),
1500                             ("page %p is mapped", m));
1501                         act_delta = 0;
1502                 }
1503                 if ((m->aflags & PGA_REFERENCED) != 0) {
1504                         vm_page_aflag_clear(m, PGA_REFERENCED);
1505                         act_delta++;
1506                 }
1507                 if (act_delta != 0) {
1508                         if (object->ref_count != 0) {
1509                                 VM_CNT_INC(v_reactivated);
1510                                 vm_page_activate(m);
1511
1512                                 /*
1513                                  * Increase the activation count if the page
1514                                  * was referenced while in the inactive queue.
1515                                  * This makes it less likely that the page will
1516                                  * be returned prematurely to the inactive
1517                                  * queue.
1518                                  */
1519                                 m->act_count += act_delta + ACT_ADVANCE;
1520                                 continue;
1521                         } else if ((object->flags & OBJ_DEAD) == 0) {
1522                                 vm_page_aflag_set(m, PGA_REQUEUE);
1523                                 goto reinsert;
1524                         }
1525                 }
1526
1527                 /*
1528                  * If the page appears to be clean at the machine-independent
1529                  * layer, then remove all of its mappings from the pmap in
1530                  * anticipation of freeing it.  If, however, any of the page's
1531                  * mappings allow write access, then the page may still be
1532                  * modified until the last of those mappings are removed.
1533                  */
1534                 if (object->ref_count != 0) {
1535                         vm_page_test_dirty(m);
1536                         if (m->dirty == 0)
1537                                 pmap_remove_all(m);
1538                 }
1539
1540                 /*
1541                  * Clean pages can be freed, but dirty pages must be sent back
1542                  * to the laundry, unless they belong to a dead object.
1543                  * Requeueing dirty pages from dead objects is pointless, as
1544                  * they are being paged out and freed by the thread that
1545                  * destroyed the object.
1546                  */
1547                 if (m->dirty == 0) {
1548 free_page:
1549                         /*
1550                          * Because we dequeued the page and have already
1551                          * checked for concurrent dequeue and enqueue
1552                          * requests, we can safely disassociate the page
1553                          * from the inactive queue.
1554                          */
1555                         KASSERT((m->aflags & PGA_QUEUE_STATE_MASK) == 0,
1556                             ("page %p has queue state", m));
1557                         m->queue = PQ_NONE;
1558                         vm_page_free(m);
1559                         page_shortage--;
1560                 } else if ((object->flags & OBJ_DEAD) == 0)
1561                         vm_page_launder(m);
1562                 continue;
1563 reinsert:
1564                 vm_pageout_reinsert_inactive(&ss, &rq, m);
1565         }
1566         if (mtx != NULL) {
1567                 mtx_unlock(mtx);
1568                 mtx = NULL;
1569         }
1570         if (obj_locked) {
1571                 VM_OBJECT_WUNLOCK(object);
1572                 obj_locked = false;
1573         }
1574         vm_pageout_reinsert_inactive(&ss, &rq, NULL);
1575         vm_pageout_reinsert_inactive(&ss, &ss.bq, NULL);
1576         vm_pagequeue_lock(pq);
1577         vm_pageout_end_scan(&ss);
1578         vm_pagequeue_unlock(pq);
1579
1580         VM_CNT_ADD(v_dfree, starting_page_shortage - page_shortage);
1581
1582         /*
1583          * Wake up the laundry thread so that it can perform any needed
1584          * laundering.  If we didn't meet our target, we're in shortfall and
1585          * need to launder more aggressively.  If PQ_LAUNDRY is empty and no
1586          * swap devices are configured, the laundry thread has no work to do, so
1587          * don't bother waking it up.
1588          *
1589          * The laundry thread uses the number of inactive queue scans elapsed
1590          * since the last laundering to determine whether to launder again, so
1591          * keep count.
1592          */
1593         if (starting_page_shortage > 0) {
1594                 pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
1595                 vm_pagequeue_lock(pq);
1596                 if (vmd->vmd_laundry_request == VM_LAUNDRY_IDLE &&
1597                     (pq->pq_cnt > 0 || atomic_load_acq_int(&swapdev_enabled))) {
1598                         if (page_shortage > 0) {
1599                                 vmd->vmd_laundry_request = VM_LAUNDRY_SHORTFALL;
1600                                 VM_CNT_INC(v_pdshortfalls);
1601                         } else if (vmd->vmd_laundry_request !=
1602                             VM_LAUNDRY_SHORTFALL)
1603                                 vmd->vmd_laundry_request =
1604                                     VM_LAUNDRY_BACKGROUND;
1605                         wakeup(&vmd->vmd_laundry_request);
1606                 }
1607                 vmd->vmd_clean_pages_freed +=
1608                     starting_page_shortage - page_shortage;
1609                 vm_pagequeue_unlock(pq);
1610         }
1611
1612         /*
1613          * Wakeup the swapout daemon if we didn't free the targeted number of
1614          * pages.
1615          */
1616         if (page_shortage > 0)
1617                 vm_swapout_run();
1618
1619         /*
1620          * If the inactive queue scan fails repeatedly to meet its
1621          * target, kill the largest process.
1622          */
1623         vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage);
1624
1625         /*
1626          * Reclaim pages by swapping out idle processes, if configured to do so.
1627          */
1628         vm_swapout_run_idle();
1629
1630         /*
1631          * See the description of addl_page_shortage above.
1632          */
1633         *addl_shortage = addl_page_shortage + deficit;
1634
1635         return (page_shortage <= 0);
1636 }
1637
1638 static int vm_pageout_oom_vote;
1639
1640 /*
1641  * The pagedaemon threads randlomly select one to perform the
1642  * OOM.  Trying to kill processes before all pagedaemons
1643  * failed to reach free target is premature.
1644  */
1645 static void
1646 vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
1647     int starting_page_shortage)
1648 {
1649         int old_vote;
1650
1651         if (starting_page_shortage <= 0 || starting_page_shortage !=
1652             page_shortage)
1653                 vmd->vmd_oom_seq = 0;
1654         else
1655                 vmd->vmd_oom_seq++;
1656         if (vmd->vmd_oom_seq < vm_pageout_oom_seq) {
1657                 if (vmd->vmd_oom) {
1658                         vmd->vmd_oom = FALSE;
1659                         atomic_subtract_int(&vm_pageout_oom_vote, 1);
1660                 }
1661                 return;
1662         }
1663
1664         /*
1665          * Do not follow the call sequence until OOM condition is
1666          * cleared.
1667          */
1668         vmd->vmd_oom_seq = 0;
1669
1670         if (vmd->vmd_oom)
1671                 return;
1672
1673         vmd->vmd_oom = TRUE;
1674         old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1);
1675         if (old_vote != vm_ndomains - 1)
1676                 return;
1677
1678         /*
1679          * The current pagedaemon thread is the last in the quorum to
1680          * start OOM.  Initiate the selection and signaling of the
1681          * victim.
1682          */
1683         vm_pageout_oom(VM_OOM_MEM);
1684
1685         /*
1686          * After one round of OOM terror, recall our vote.  On the
1687          * next pass, current pagedaemon would vote again if the low
1688          * memory condition is still there, due to vmd_oom being
1689          * false.
1690          */
1691         vmd->vmd_oom = FALSE;
1692         atomic_subtract_int(&vm_pageout_oom_vote, 1);
1693 }
1694
1695 /*
1696  * The OOM killer is the page daemon's action of last resort when
1697  * memory allocation requests have been stalled for a prolonged period
1698  * of time because it cannot reclaim memory.  This function computes
1699  * the approximate number of physical pages that could be reclaimed if
1700  * the specified address space is destroyed.
1701  *
1702  * Private, anonymous memory owned by the address space is the
1703  * principal resource that we expect to recover after an OOM kill.
1704  * Since the physical pages mapped by the address space's COW entries
1705  * are typically shared pages, they are unlikely to be released and so
1706  * they are not counted.
1707  *
1708  * To get to the point where the page daemon runs the OOM killer, its
1709  * efforts to write-back vnode-backed pages may have stalled.  This
1710  * could be caused by a memory allocation deadlock in the write path
1711  * that might be resolved by an OOM kill.  Therefore, physical pages
1712  * belonging to vnode-backed objects are counted, because they might
1713  * be freed without being written out first if the address space holds
1714  * the last reference to an unlinked vnode.
1715  *
1716  * Similarly, physical pages belonging to OBJT_PHYS objects are
1717  * counted because the address space might hold the last reference to
1718  * the object.
1719  */
1720 static long
1721 vm_pageout_oom_pagecount(struct vmspace *vmspace)
1722 {
1723         vm_map_t map;
1724         vm_map_entry_t entry;
1725         vm_object_t obj;
1726         long res;
1727
1728         map = &vmspace->vm_map;
1729         KASSERT(!map->system_map, ("system map"));
1730         sx_assert(&map->lock, SA_LOCKED);
1731         res = 0;
1732         for (entry = map->header.next; entry != &map->header;
1733             entry = entry->next) {
1734                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
1735                         continue;
1736                 obj = entry->object.vm_object;
1737                 if (obj == NULL)
1738                         continue;
1739                 if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 &&
1740                     obj->ref_count != 1)
1741                         continue;
1742                 switch (obj->type) {
1743                 case OBJT_DEFAULT:
1744                 case OBJT_SWAP:
1745                 case OBJT_PHYS:
1746                 case OBJT_VNODE:
1747                         res += obj->resident_page_count;
1748                         break;
1749                 }
1750         }
1751         return (res);
1752 }
1753
1754 void
1755 vm_pageout_oom(int shortage)
1756 {
1757         struct proc *p, *bigproc;
1758         vm_offset_t size, bigsize;
1759         struct thread *td;
1760         struct vmspace *vm;
1761         bool breakout;
1762
1763         /*
1764          * We keep the process bigproc locked once we find it to keep anyone
1765          * from messing with it; however, there is a possibility of
1766          * deadlock if process B is bigproc and one of its child processes
1767          * attempts to propagate a signal to B while we are waiting for A's
1768          * lock while walking this list.  To avoid this, we don't block on
1769          * the process lock but just skip a process if it is already locked.
1770          */
1771         bigproc = NULL;
1772         bigsize = 0;
1773         sx_slock(&allproc_lock);
1774         FOREACH_PROC_IN_SYSTEM(p) {
1775                 PROC_LOCK(p);
1776
1777                 /*
1778                  * If this is a system, protected or killed process, skip it.
1779                  */
1780                 if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC |
1781                     P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 ||
1782                     p->p_pid == 1 || P_KILLED(p) ||
1783                     (p->p_pid < 48 && swap_pager_avail != 0)) {
1784                         PROC_UNLOCK(p);
1785                         continue;
1786                 }
1787                 /*
1788                  * If the process is in a non-running type state,
1789                  * don't touch it.  Check all the threads individually.
1790                  */
1791                 breakout = false;
1792                 FOREACH_THREAD_IN_PROC(p, td) {
1793                         thread_lock(td);
1794                         if (!TD_ON_RUNQ(td) &&
1795                             !TD_IS_RUNNING(td) &&
1796                             !TD_IS_SLEEPING(td) &&
1797                             !TD_IS_SUSPENDED(td) &&
1798                             !TD_IS_SWAPPED(td)) {
1799                                 thread_unlock(td);
1800                                 breakout = true;
1801                                 break;
1802                         }
1803                         thread_unlock(td);
1804                 }
1805                 if (breakout) {
1806                         PROC_UNLOCK(p);
1807                         continue;
1808                 }
1809                 /*
1810                  * get the process size
1811                  */
1812                 vm = vmspace_acquire_ref(p);
1813                 if (vm == NULL) {
1814                         PROC_UNLOCK(p);
1815                         continue;
1816                 }
1817                 _PHOLD_LITE(p);
1818                 PROC_UNLOCK(p);
1819                 sx_sunlock(&allproc_lock);
1820                 if (!vm_map_trylock_read(&vm->vm_map)) {
1821                         vmspace_free(vm);
1822                         sx_slock(&allproc_lock);
1823                         PRELE(p);
1824                         continue;
1825                 }
1826                 size = vmspace_swap_count(vm);
1827                 if (shortage == VM_OOM_MEM)
1828                         size += vm_pageout_oom_pagecount(vm);
1829                 vm_map_unlock_read(&vm->vm_map);
1830                 vmspace_free(vm);
1831                 sx_slock(&allproc_lock);
1832
1833                 /*
1834                  * If this process is bigger than the biggest one,
1835                  * remember it.
1836                  */
1837                 if (size > bigsize) {
1838                         if (bigproc != NULL)
1839                                 PRELE(bigproc);
1840                         bigproc = p;
1841                         bigsize = size;
1842                 } else {
1843                         PRELE(p);
1844                 }
1845         }
1846         sx_sunlock(&allproc_lock);
1847         if (bigproc != NULL) {
1848                 if (vm_panic_on_oom != 0)
1849                         panic("out of swap space");
1850                 PROC_LOCK(bigproc);
1851                 killproc(bigproc, "out of swap space");
1852                 sched_nice(bigproc, PRIO_MIN);
1853                 _PRELE(bigproc);
1854                 PROC_UNLOCK(bigproc);
1855         }
1856 }
1857
1858 static bool
1859 vm_pageout_lowmem(void)
1860 {
1861         static int lowmem_ticks = 0;
1862         int last;
1863
1864         last = atomic_load_int(&lowmem_ticks);
1865         while ((u_int)(ticks - last) / hz >= lowmem_period) {
1866                 if (atomic_fcmpset_int(&lowmem_ticks, &last, ticks) == 0)
1867                         continue;
1868
1869                 /*
1870                  * Decrease registered cache sizes.
1871                  */
1872                 SDT_PROBE0(vm, , , vm__lowmem_scan);
1873                 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_PAGES);
1874
1875                 /*
1876                  * We do this explicitly after the caches have been
1877                  * drained above.
1878                  */
1879                 uma_reclaim();
1880                 return (true);
1881         }
1882         return (false);
1883 }
1884
1885 static void
1886 vm_pageout_worker(void *arg)
1887 {
1888         struct vm_domain *vmd;
1889         u_int ofree;
1890         int addl_shortage, domain, shortage;
1891         bool target_met;
1892
1893         domain = (uintptr_t)arg;
1894         vmd = VM_DOMAIN(domain);
1895         shortage = 0;
1896         target_met = true;
1897
1898         /*
1899          * XXXKIB It could be useful to bind pageout daemon threads to
1900          * the cores belonging to the domain, from which vm_page_array
1901          * is allocated.
1902          */
1903
1904         KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
1905         vmd->vmd_last_active_scan = ticks;
1906
1907         /*
1908          * The pageout daemon worker is never done, so loop forever.
1909          */
1910         while (TRUE) {
1911                 vm_domain_pageout_lock(vmd);
1912
1913                 /*
1914                  * We need to clear wanted before we check the limits.  This
1915                  * prevents races with wakers who will check wanted after they
1916                  * reach the limit.
1917                  */
1918                 atomic_store_int(&vmd->vmd_pageout_wanted, 0);
1919
1920                 /*
1921                  * Might the page daemon need to run again?
1922                  */
1923                 if (vm_paging_needed(vmd, vmd->vmd_free_count)) {
1924                         /*
1925                          * Yes.  If the scan failed to produce enough free
1926                          * pages, sleep uninterruptibly for some time in the
1927                          * hope that the laundry thread will clean some pages.
1928                          */
1929                         vm_domain_pageout_unlock(vmd);
1930                         if (!target_met)
1931                                 pause("pwait", hz / VM_INACT_SCAN_RATE);
1932                 } else {
1933                         /*
1934                          * No, sleep until the next wakeup or until pages
1935                          * need to have their reference stats updated.
1936                          */
1937                         if (mtx_sleep(&vmd->vmd_pageout_wanted,
1938                             vm_domain_pageout_lockptr(vmd), PDROP | PVM,
1939                             "psleep", hz / VM_INACT_SCAN_RATE) == 0)
1940                                 VM_CNT_INC(v_pdwakeups);
1941                 }
1942
1943                 /* Prevent spurious wakeups by ensuring that wanted is set. */
1944                 atomic_store_int(&vmd->vmd_pageout_wanted, 1);
1945
1946                 /*
1947                  * Use the controller to calculate how many pages to free in
1948                  * this interval, and scan the inactive queue.  If the lowmem
1949                  * handlers appear to have freed up some pages, subtract the
1950                  * difference from the inactive queue scan target.
1951                  */
1952                 shortage = pidctrl_daemon(&vmd->vmd_pid, vmd->vmd_free_count);
1953                 if (shortage > 0) {
1954                         ofree = vmd->vmd_free_count;
1955                         if (vm_pageout_lowmem() && vmd->vmd_free_count > ofree)
1956                                 shortage -= min(vmd->vmd_free_count - ofree,
1957                                     (u_int)shortage);
1958                         target_met = vm_pageout_scan_inactive(vmd, shortage,
1959                             &addl_shortage);
1960                 } else
1961                         addl_shortage = 0;
1962
1963                 /*
1964                  * Scan the active queue.  A positive value for shortage
1965                  * indicates that we must aggressively deactivate pages to avoid
1966                  * a shortfall.
1967                  */
1968                 shortage = vm_pageout_active_target(vmd) + addl_shortage;
1969                 vm_pageout_scan_active(vmd, shortage);
1970         }
1971 }
1972
1973 /*
1974  *      vm_pageout_init initialises basic pageout daemon settings.
1975  */
1976 static void
1977 vm_pageout_init_domain(int domain)
1978 {
1979         struct vm_domain *vmd;
1980         struct sysctl_oid *oid;
1981
1982         vmd = VM_DOMAIN(domain);
1983         vmd->vmd_interrupt_free_min = 2;
1984
1985         /*
1986          * v_free_reserved needs to include enough for the largest
1987          * swap pager structures plus enough for any pv_entry structs
1988          * when paging. 
1989          */
1990         if (vmd->vmd_page_count > 1024)
1991                 vmd->vmd_free_min = 4 + (vmd->vmd_page_count - 1024) / 200;
1992         else
1993                 vmd->vmd_free_min = 4;
1994         vmd->vmd_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1995             vmd->vmd_interrupt_free_min;
1996         vmd->vmd_free_reserved = vm_pageout_page_count +
1997             vmd->vmd_pageout_free_min + (vmd->vmd_page_count / 768);
1998         vmd->vmd_free_severe = vmd->vmd_free_min / 2;
1999         vmd->vmd_free_target = 4 * vmd->vmd_free_min + vmd->vmd_free_reserved;
2000         vmd->vmd_free_min += vmd->vmd_free_reserved;
2001         vmd->vmd_free_severe += vmd->vmd_free_reserved;
2002         vmd->vmd_inactive_target = (3 * vmd->vmd_free_target) / 2;
2003         if (vmd->vmd_inactive_target > vmd->vmd_free_count / 3)
2004                 vmd->vmd_inactive_target = vmd->vmd_free_count / 3;
2005
2006         /*
2007          * Set the default wakeup threshold to be 10% below the paging
2008          * target.  This keeps the steady state out of shortfall.
2009          */
2010         vmd->vmd_pageout_wakeup_thresh = (vmd->vmd_free_target / 10) * 9;
2011
2012         /*
2013          * Target amount of memory to move out of the laundry queue during a
2014          * background laundering.  This is proportional to the amount of system
2015          * memory.
2016          */
2017         vmd->vmd_background_launder_target = (vmd->vmd_free_target -
2018             vmd->vmd_free_min) / 10;
2019
2020         /* Initialize the pageout daemon pid controller. */
2021         pidctrl_init(&vmd->vmd_pid, hz / VM_INACT_SCAN_RATE,
2022             vmd->vmd_free_target, PIDCTRL_BOUND,
2023             PIDCTRL_KPD, PIDCTRL_KID, PIDCTRL_KDD);
2024         oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(vmd->vmd_oid), OID_AUTO,
2025             "pidctrl", CTLFLAG_RD, NULL, "");
2026         pidctrl_init_sysctl(&vmd->vmd_pid, SYSCTL_CHILDREN(oid));
2027 }
2028
2029 static void
2030 vm_pageout_init(void)
2031 {
2032         u_int freecount;
2033         int i;
2034
2035         /*
2036          * Initialize some paging parameters.
2037          */
2038         if (vm_cnt.v_page_count < 2000)
2039                 vm_pageout_page_count = 8;
2040
2041         freecount = 0;
2042         for (i = 0; i < vm_ndomains; i++) {
2043                 struct vm_domain *vmd;
2044
2045                 vm_pageout_init_domain(i);
2046                 vmd = VM_DOMAIN(i);
2047                 vm_cnt.v_free_reserved += vmd->vmd_free_reserved;
2048                 vm_cnt.v_free_target += vmd->vmd_free_target;
2049                 vm_cnt.v_free_min += vmd->vmd_free_min;
2050                 vm_cnt.v_inactive_target += vmd->vmd_inactive_target;
2051                 vm_cnt.v_pageout_free_min += vmd->vmd_pageout_free_min;
2052                 vm_cnt.v_interrupt_free_min += vmd->vmd_interrupt_free_min;
2053                 vm_cnt.v_free_severe += vmd->vmd_free_severe;
2054                 freecount += vmd->vmd_free_count;
2055         }
2056
2057         /*
2058          * Set interval in seconds for active scan.  We want to visit each
2059          * page at least once every ten minutes.  This is to prevent worst
2060          * case paging behaviors with stale active LRU.
2061          */
2062         if (vm_pageout_update_period == 0)
2063                 vm_pageout_update_period = 600;
2064
2065         if (vm_page_max_wired == 0)
2066                 vm_page_max_wired = freecount / 3;
2067 }
2068
2069 /*
2070  *     vm_pageout is the high level pageout daemon.
2071  */
2072 static void
2073 vm_pageout(void)
2074 {
2075         struct proc *p;
2076         struct thread *td;
2077         int error, first, i;
2078
2079         p = curproc;
2080         td = curthread;
2081
2082         swap_pager_swap_init();
2083         for (first = -1, i = 0; i < vm_ndomains; i++) {
2084                 if (VM_DOMAIN_EMPTY(i)) {
2085                         if (bootverbose)
2086                                 printf("domain %d empty; skipping pageout\n",
2087                                     i);
2088                         continue;
2089                 }
2090                 if (first == -1)
2091                         first = i;
2092                 else {
2093                         error = kthread_add(vm_pageout_worker,
2094                             (void *)(uintptr_t)i, p, NULL, 0, 0, "dom%d", i);
2095                         if (error != 0)
2096                                 panic("starting pageout for domain %d: %d\n",
2097                                     i, error);
2098                 }
2099                 error = kthread_add(vm_pageout_laundry_worker,
2100                     (void *)(uintptr_t)i, p, NULL, 0, 0, "laundry: dom%d", i);
2101                 if (error != 0)
2102                         panic("starting laundry for domain %d: %d", i, error);
2103         }
2104         error = kthread_add(uma_reclaim_worker, NULL, p, NULL, 0, 0, "uma");
2105         if (error != 0)
2106                 panic("starting uma_reclaim helper, error %d\n", error);
2107
2108         snprintf(td->td_name, sizeof(td->td_name), "dom%d", first);
2109         vm_pageout_worker((void *)(uintptr_t)first);
2110 }
2111
2112 /*
2113  * Perform an advisory wakeup of the page daemon.
2114  */
2115 void
2116 pagedaemon_wakeup(int domain)
2117 {
2118         struct vm_domain *vmd;
2119
2120         vmd = VM_DOMAIN(domain);
2121         vm_domain_pageout_assert_unlocked(vmd);
2122         if (curproc == pageproc)
2123                 return;
2124
2125         if (atomic_fetchadd_int(&vmd->vmd_pageout_wanted, 1) == 0) {
2126                 vm_domain_pageout_lock(vmd);
2127                 atomic_store_int(&vmd->vmd_pageout_wanted, 1);
2128                 wakeup(&vmd->vmd_pageout_wanted);
2129                 vm_domain_pageout_unlock(vmd);
2130         }
2131 }