]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_pageout.c
oce(4): potential out of bounds access before vector validation
[FreeBSD/FreeBSD.git] / sys / vm / vm_pageout.c
1 /*-
2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  * Copyright (c) 2005 Yahoo! Technologies Norway AS
11  * All rights reserved.
12  *
13  * This code is derived from software contributed to Berkeley by
14  * The Mach Operating System project at Carnegie-Mellon University.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. All advertising materials mentioning features or use of this software
25  *    must display the following acknowledgement:
26  *      This product includes software developed by the University of
27  *      California, Berkeley and its contributors.
28  * 4. Neither the name of the University nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  *
44  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
45  *
46  *
47  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
48  * All rights reserved.
49  *
50  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
51  *
52  * Permission to use, copy, modify and distribute this software and
53  * its documentation is hereby granted, provided that both the copyright
54  * notice and this permission notice appear in all copies of the
55  * software, derivative works or modified versions, and any portions
56  * thereof, and that both notices appear in supporting documentation.
57  *
58  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
59  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
60  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
61  *
62  * Carnegie Mellon requests users of this software to return to
63  *
64  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
65  *  School of Computer Science
66  *  Carnegie Mellon University
67  *  Pittsburgh PA 15213-3890
68  *
69  * any improvements or extensions that they make and grant Carnegie the
70  * rights to redistribute these changes.
71  */
72
73 /*
74  *      The proverbial page-out daemon.
75  */
76
77 #include <sys/cdefs.h>
78 __FBSDID("$FreeBSD$");
79
80 #include "opt_vm.h"
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/eventhandler.h>
86 #include <sys/lock.h>
87 #include <sys/mutex.h>
88 #include <sys/proc.h>
89 #include <sys/kthread.h>
90 #include <sys/ktr.h>
91 #include <sys/mount.h>
92 #include <sys/racct.h>
93 #include <sys/resourcevar.h>
94 #include <sys/sched.h>
95 #include <sys/sdt.h>
96 #include <sys/signalvar.h>
97 #include <sys/smp.h>
98 #include <sys/time.h>
99 #include <sys/vnode.h>
100 #include <sys/vmmeter.h>
101 #include <sys/rwlock.h>
102 #include <sys/sx.h>
103 #include <sys/sysctl.h>
104
105 #include <vm/vm.h>
106 #include <vm/vm_param.h>
107 #include <vm/vm_object.h>
108 #include <vm/vm_page.h>
109 #include <vm/vm_map.h>
110 #include <vm/vm_pageout.h>
111 #include <vm/vm_pager.h>
112 #include <vm/vm_phys.h>
113 #include <vm/vm_pagequeue.h>
114 #include <vm/swap_pager.h>
115 #include <vm/vm_extern.h>
116 #include <vm/uma.h>
117
118 /*
119  * System initialization
120  */
121
122 /* the kernel process "vm_pageout"*/
123 static void vm_pageout(void);
124 static void vm_pageout_init(void);
125 static int vm_pageout_clean(vm_page_t m, int *numpagedout);
126 static int vm_pageout_cluster(vm_page_t m);
127 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
128     int starting_page_shortage);
129
130 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init,
131     NULL);
132
133 struct proc *pageproc;
134
135 static struct kproc_desc page_kp = {
136         "pagedaemon",
137         vm_pageout,
138         &pageproc
139 };
140 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start,
141     &page_kp);
142
143 SDT_PROVIDER_DEFINE(vm);
144 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan);
145
146 /* Pagedaemon activity rates, in subdivisions of one second. */
147 #define VM_LAUNDER_RATE         10
148 #define VM_INACT_SCAN_RATE      10
149
150 static int vm_pageout_oom_seq = 12;
151
152 static int vm_pageout_update_period;
153 static int disable_swap_pageouts;
154 static int lowmem_period = 10;
155 static int swapdev_enabled;
156
157 static int vm_panic_on_oom = 0;
158
159 SYSCTL_INT(_vm, OID_AUTO, panic_on_oom,
160         CTLFLAG_RWTUN, &vm_panic_on_oom, 0,
161         "panic on out of memory instead of killing the largest process");
162
163 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period,
164         CTLFLAG_RWTUN, &vm_pageout_update_period, 0,
165         "Maximum active LRU update period");
166   
167 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RWTUN, &lowmem_period, 0,
168         "Low memory callback period");
169
170 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
171         CTLFLAG_RWTUN, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
172
173 static int pageout_lock_miss;
174 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
175         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
176
177 SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq,
178         CTLFLAG_RWTUN, &vm_pageout_oom_seq, 0,
179         "back-to-back calls to oom detector to start OOM");
180
181 static int act_scan_laundry_weight = 3;
182 SYSCTL_INT(_vm, OID_AUTO, act_scan_laundry_weight, CTLFLAG_RWTUN,
183     &act_scan_laundry_weight, 0,
184     "weight given to clean vs. dirty pages in active queue scans");
185
186 static u_int vm_background_launder_rate = 4096;
187 SYSCTL_UINT(_vm, OID_AUTO, background_launder_rate, CTLFLAG_RWTUN,
188     &vm_background_launder_rate, 0,
189     "background laundering rate, in kilobytes per second");
190
191 static u_int vm_background_launder_max = 20 * 1024;
192 SYSCTL_UINT(_vm, OID_AUTO, background_launder_max, CTLFLAG_RWTUN,
193     &vm_background_launder_max, 0, "background laundering cap, in kilobytes");
194
195 int vm_pageout_page_count = 32;
196
197 u_long vm_page_max_user_wired;
198 SYSCTL_ULONG(_vm, OID_AUTO, max_user_wired, CTLFLAG_RW,
199     &vm_page_max_user_wired, 0,
200     "system-wide limit to user-wired page count");
201
202 static u_int isqrt(u_int num);
203 static int vm_pageout_launder(struct vm_domain *vmd, int launder,
204     bool in_shortfall);
205 static void vm_pageout_laundry_worker(void *arg);
206
207 struct scan_state {
208         struct vm_batchqueue bq;
209         struct vm_pagequeue *pq;
210         vm_page_t       marker;
211         int             maxscan;
212         int             scanned;
213 };
214
215 static void
216 vm_pageout_init_scan(struct scan_state *ss, struct vm_pagequeue *pq,
217     vm_page_t marker, vm_page_t after, int maxscan)
218 {
219
220         vm_pagequeue_assert_locked(pq);
221         KASSERT((marker->aflags & PGA_ENQUEUED) == 0,
222             ("marker %p already enqueued", marker));
223
224         if (after == NULL)
225                 TAILQ_INSERT_HEAD(&pq->pq_pl, marker, plinks.q);
226         else
227                 TAILQ_INSERT_AFTER(&pq->pq_pl, after, marker, plinks.q);
228         vm_page_aflag_set(marker, PGA_ENQUEUED);
229
230         vm_batchqueue_init(&ss->bq);
231         ss->pq = pq;
232         ss->marker = marker;
233         ss->maxscan = maxscan;
234         ss->scanned = 0;
235         vm_pagequeue_unlock(pq);
236 }
237
238 static void
239 vm_pageout_end_scan(struct scan_state *ss)
240 {
241         struct vm_pagequeue *pq;
242
243         pq = ss->pq;
244         vm_pagequeue_assert_locked(pq);
245         KASSERT((ss->marker->aflags & PGA_ENQUEUED) != 0,
246             ("marker %p not enqueued", ss->marker));
247
248         TAILQ_REMOVE(&pq->pq_pl, ss->marker, plinks.q);
249         vm_page_aflag_clear(ss->marker, PGA_ENQUEUED);
250         pq->pq_pdpages += ss->scanned;
251 }
252
253 /*
254  * Add a small number of queued pages to a batch queue for later processing
255  * without the corresponding queue lock held.  The caller must have enqueued a
256  * marker page at the desired start point for the scan.  Pages will be
257  * physically dequeued if the caller so requests.  Otherwise, the returned
258  * batch may contain marker pages, and it is up to the caller to handle them.
259  *
260  * When processing the batch queue, vm_page_queue() must be used to
261  * determine whether the page has been logically dequeued by another thread.
262  * Once this check is performed, the page lock guarantees that the page will
263  * not be disassociated from the queue.
264  */
265 static __always_inline void
266 vm_pageout_collect_batch(struct scan_state *ss, const bool dequeue)
267 {
268         struct vm_pagequeue *pq;
269         vm_page_t m, marker, n;
270
271         marker = ss->marker;
272         pq = ss->pq;
273
274         KASSERT((marker->aflags & PGA_ENQUEUED) != 0,
275             ("marker %p not enqueued", ss->marker));
276
277         vm_pagequeue_lock(pq);
278         for (m = TAILQ_NEXT(marker, plinks.q); m != NULL &&
279             ss->scanned < ss->maxscan && ss->bq.bq_cnt < VM_BATCHQUEUE_SIZE;
280             m = n, ss->scanned++) {
281                 n = TAILQ_NEXT(m, plinks.q);
282                 if ((m->flags & PG_MARKER) == 0) {
283                         KASSERT((m->aflags & PGA_ENQUEUED) != 0,
284                             ("page %p not enqueued", m));
285                         KASSERT((m->flags & PG_FICTITIOUS) == 0,
286                             ("Fictitious page %p cannot be in page queue", m));
287                         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
288                             ("Unmanaged page %p cannot be in page queue", m));
289                 } else if (dequeue)
290                         continue;
291
292                 (void)vm_batchqueue_insert(&ss->bq, m);
293                 if (dequeue) {
294                         TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
295                         vm_page_aflag_clear(m, PGA_ENQUEUED);
296                 }
297         }
298         TAILQ_REMOVE(&pq->pq_pl, marker, plinks.q);
299         if (__predict_true(m != NULL))
300                 TAILQ_INSERT_BEFORE(m, marker, plinks.q);
301         else
302                 TAILQ_INSERT_TAIL(&pq->pq_pl, marker, plinks.q);
303         if (dequeue)
304                 vm_pagequeue_cnt_add(pq, -ss->bq.bq_cnt);
305         vm_pagequeue_unlock(pq);
306 }
307
308 /* Return the next page to be scanned, or NULL if the scan is complete. */
309 static __always_inline vm_page_t
310 vm_pageout_next(struct scan_state *ss, const bool dequeue)
311 {
312
313         if (ss->bq.bq_cnt == 0)
314                 vm_pageout_collect_batch(ss, dequeue);
315         return (vm_batchqueue_pop(&ss->bq));
316 }
317
318 /*
319  * Scan for pages at adjacent offsets within the given page's object that are
320  * eligible for laundering, form a cluster of these pages and the given page,
321  * and launder that cluster.
322  */
323 static int
324 vm_pageout_cluster(vm_page_t m)
325 {
326         vm_object_t object;
327         vm_page_t mc[2 * vm_pageout_page_count], p, pb, ps;
328         vm_pindex_t pindex;
329         int ib, is, page_base, pageout_count;
330
331         vm_page_assert_locked(m);
332         object = m->object;
333         VM_OBJECT_ASSERT_WLOCKED(object);
334         pindex = m->pindex;
335
336         vm_page_assert_unbusied(m);
337         KASSERT(!vm_page_wired(m), ("page %p is wired", m));
338
339         pmap_remove_write(m);
340         vm_page_unlock(m);
341
342         mc[vm_pageout_page_count] = pb = ps = m;
343         pageout_count = 1;
344         page_base = vm_pageout_page_count;
345         ib = 1;
346         is = 1;
347
348         /*
349          * We can cluster only if the page is not clean, busy, or held, and
350          * the page is in the laundry queue.
351          *
352          * During heavy mmap/modification loads the pageout
353          * daemon can really fragment the underlying file
354          * due to flushing pages out of order and not trying to
355          * align the clusters (which leaves sporadic out-of-order
356          * holes).  To solve this problem we do the reverse scan
357          * first and attempt to align our cluster, then do a 
358          * forward scan if room remains.
359          */
360 more:
361         while (ib != 0 && pageout_count < vm_pageout_page_count) {
362                 if (ib > pindex) {
363                         ib = 0;
364                         break;
365                 }
366                 if ((p = vm_page_prev(pb)) == NULL || vm_page_busied(p)) {
367                         ib = 0;
368                         break;
369                 }
370                 vm_page_test_dirty(p);
371                 if (p->dirty == 0) {
372                         ib = 0;
373                         break;
374                 }
375                 vm_page_lock(p);
376                 if (vm_page_wired(p) || !vm_page_in_laundry(p)) {
377                         vm_page_unlock(p);
378                         ib = 0;
379                         break;
380                 }
381                 pmap_remove_write(p);
382                 vm_page_unlock(p);
383                 mc[--page_base] = pb = p;
384                 ++pageout_count;
385                 ++ib;
386
387                 /*
388                  * We are at an alignment boundary.  Stop here, and switch
389                  * directions.  Do not clear ib.
390                  */
391                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
392                         break;
393         }
394         while (pageout_count < vm_pageout_page_count && 
395             pindex + is < object->size) {
396                 if ((p = vm_page_next(ps)) == NULL || vm_page_busied(p))
397                         break;
398                 vm_page_test_dirty(p);
399                 if (p->dirty == 0)
400                         break;
401                 vm_page_lock(p);
402                 if (vm_page_wired(p) || !vm_page_in_laundry(p)) {
403                         vm_page_unlock(p);
404                         break;
405                 }
406                 pmap_remove_write(p);
407                 vm_page_unlock(p);
408                 mc[page_base + pageout_count] = ps = p;
409                 ++pageout_count;
410                 ++is;
411         }
412
413         /*
414          * If we exhausted our forward scan, continue with the reverse scan
415          * when possible, even past an alignment boundary.  This catches
416          * boundary conditions.
417          */
418         if (ib != 0 && pageout_count < vm_pageout_page_count)
419                 goto more;
420
421         return (vm_pageout_flush(&mc[page_base], pageout_count,
422             VM_PAGER_PUT_NOREUSE, 0, NULL, NULL));
423 }
424
425 /*
426  * vm_pageout_flush() - launder the given pages
427  *
428  *      The given pages are laundered.  Note that we setup for the start of
429  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
430  *      reference count all in here rather then in the parent.  If we want
431  *      the parent to do more sophisticated things we may have to change
432  *      the ordering.
433  *
434  *      Returned runlen is the count of pages between mreq and first
435  *      page after mreq with status VM_PAGER_AGAIN.
436  *      *eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
437  *      for any page in runlen set.
438  */
439 int
440 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
441     boolean_t *eio)
442 {
443         vm_object_t object = mc[0]->object;
444         int pageout_status[count];
445         int numpagedout = 0;
446         int i, runlen;
447
448         VM_OBJECT_ASSERT_WLOCKED(object);
449
450         /*
451          * Initiate I/O.  Mark the pages busy and verify that they're valid
452          * and read-only.
453          *
454          * We do not have to fixup the clean/dirty bits here... we can
455          * allow the pager to do it after the I/O completes.
456          *
457          * NOTE! mc[i]->dirty may be partial or fragmented due to an
458          * edge case with file fragments.
459          */
460         for (i = 0; i < count; i++) {
461                 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
462                     ("vm_pageout_flush: partially invalid page %p index %d/%d",
463                         mc[i], i, count));
464                 KASSERT((mc[i]->aflags & PGA_WRITEABLE) == 0,
465                     ("vm_pageout_flush: writeable page %p", mc[i]));
466                 vm_page_sbusy(mc[i]);
467         }
468         vm_object_pip_add(object, count);
469
470         vm_pager_put_pages(object, mc, count, flags, pageout_status);
471
472         runlen = count - mreq;
473         if (eio != NULL)
474                 *eio = FALSE;
475         for (i = 0; i < count; i++) {
476                 vm_page_t mt = mc[i];
477
478                 KASSERT(pageout_status[i] == VM_PAGER_PEND ||
479                     !pmap_page_is_write_mapped(mt),
480                     ("vm_pageout_flush: page %p is not write protected", mt));
481                 switch (pageout_status[i]) {
482                 case VM_PAGER_OK:
483                         vm_page_lock(mt);
484                         if (vm_page_in_laundry(mt))
485                                 vm_page_deactivate_noreuse(mt);
486                         vm_page_unlock(mt);
487                         /* FALLTHROUGH */
488                 case VM_PAGER_PEND:
489                         numpagedout++;
490                         break;
491                 case VM_PAGER_BAD:
492                         /*
493                          * The page is outside the object's range.  We pretend
494                          * that the page out worked and clean the page, so the
495                          * changes will be lost if the page is reclaimed by
496                          * the page daemon.
497                          */
498                         vm_page_undirty(mt);
499                         vm_page_lock(mt);
500                         if (vm_page_in_laundry(mt))
501                                 vm_page_deactivate_noreuse(mt);
502                         vm_page_unlock(mt);
503                         break;
504                 case VM_PAGER_ERROR:
505                 case VM_PAGER_FAIL:
506                         /*
507                          * If the page couldn't be paged out to swap because the
508                          * pager wasn't able to find space, place the page in
509                          * the PQ_UNSWAPPABLE holding queue.  This is an
510                          * optimization that prevents the page daemon from
511                          * wasting CPU cycles on pages that cannot be reclaimed
512                          * becase no swap device is configured.
513                          *
514                          * Otherwise, reactivate the page so that it doesn't
515                          * clog the laundry and inactive queues.  (We will try
516                          * paging it out again later.)
517                          */
518                         vm_page_lock(mt);
519                         if (object->type == OBJT_SWAP &&
520                             pageout_status[i] == VM_PAGER_FAIL) {
521                                 vm_page_unswappable(mt);
522                                 numpagedout++;
523                         } else
524                                 vm_page_activate(mt);
525                         vm_page_unlock(mt);
526                         if (eio != NULL && i >= mreq && i - mreq < runlen)
527                                 *eio = TRUE;
528                         break;
529                 case VM_PAGER_AGAIN:
530                         if (i >= mreq && i - mreq < runlen)
531                                 runlen = i - mreq;
532                         break;
533                 }
534
535                 /*
536                  * If the operation is still going, leave the page busy to
537                  * block all other accesses. Also, leave the paging in
538                  * progress indicator set so that we don't attempt an object
539                  * collapse.
540                  */
541                 if (pageout_status[i] != VM_PAGER_PEND) {
542                         vm_object_pip_wakeup(object);
543                         vm_page_sunbusy(mt);
544                 }
545         }
546         if (prunlen != NULL)
547                 *prunlen = runlen;
548         return (numpagedout);
549 }
550
551 static void
552 vm_pageout_swapon(void *arg __unused, struct swdevt *sp __unused)
553 {
554
555         atomic_store_rel_int(&swapdev_enabled, 1);
556 }
557
558 static void
559 vm_pageout_swapoff(void *arg __unused, struct swdevt *sp __unused)
560 {
561
562         if (swap_pager_nswapdev() == 1)
563                 atomic_store_rel_int(&swapdev_enabled, 0);
564 }
565
566 /*
567  * Attempt to acquire all of the necessary locks to launder a page and
568  * then call through the clustering layer to PUTPAGES.  Wait a short
569  * time for a vnode lock.
570  *
571  * Requires the page and object lock on entry, releases both before return.
572  * Returns 0 on success and an errno otherwise.
573  */
574 static int
575 vm_pageout_clean(vm_page_t m, int *numpagedout)
576 {
577         struct vnode *vp;
578         struct mount *mp;
579         vm_object_t object;
580         vm_pindex_t pindex;
581         int error, lockmode;
582
583         vm_page_assert_locked(m);
584         object = m->object;
585         VM_OBJECT_ASSERT_WLOCKED(object);
586         error = 0;
587         vp = NULL;
588         mp = NULL;
589
590         /*
591          * The object is already known NOT to be dead.   It
592          * is possible for the vget() to block the whole
593          * pageout daemon, but the new low-memory handling
594          * code should prevent it.
595          *
596          * We can't wait forever for the vnode lock, we might
597          * deadlock due to a vn_read() getting stuck in
598          * vm_wait while holding this vnode.  We skip the 
599          * vnode if we can't get it in a reasonable amount
600          * of time.
601          */
602         if (object->type == OBJT_VNODE) {
603                 vm_page_unlock(m);
604                 vp = object->handle;
605                 if (vp->v_type == VREG &&
606                     vn_start_write(vp, &mp, V_NOWAIT) != 0) {
607                         mp = NULL;
608                         error = EDEADLK;
609                         goto unlock_all;
610                 }
611                 KASSERT(mp != NULL,
612                     ("vp %p with NULL v_mount", vp));
613                 vm_object_reference_locked(object);
614                 pindex = m->pindex;
615                 VM_OBJECT_WUNLOCK(object);
616                 lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
617                     LK_SHARED : LK_EXCLUSIVE;
618                 if (vget(vp, lockmode | LK_TIMELOCK, curthread)) {
619                         vp = NULL;
620                         error = EDEADLK;
621                         goto unlock_mp;
622                 }
623                 VM_OBJECT_WLOCK(object);
624
625                 /*
626                  * Ensure that the object and vnode were not disassociated
627                  * while locks were dropped.
628                  */
629                 if (vp->v_object != object) {
630                         error = ENOENT;
631                         goto unlock_all;
632                 }
633                 vm_page_lock(m);
634
635                 /*
636                  * While the object and page were unlocked, the page
637                  * may have been:
638                  * (1) moved to a different queue,
639                  * (2) reallocated to a different object,
640                  * (3) reallocated to a different offset, or
641                  * (4) cleaned.
642                  */
643                 if (!vm_page_in_laundry(m) || m->object != object ||
644                     m->pindex != pindex || m->dirty == 0) {
645                         vm_page_unlock(m);
646                         error = ENXIO;
647                         goto unlock_all;
648                 }
649
650                 /*
651                  * The page may have been busied or referenced while the object
652                  * and page locks were released.
653                  */
654                 if (vm_page_busied(m) || vm_page_wired(m)) {
655                         vm_page_unlock(m);
656                         error = EBUSY;
657                         goto unlock_all;
658                 }
659         }
660
661         /*
662          * If a page is dirty, then it is either being washed
663          * (but not yet cleaned) or it is still in the
664          * laundry.  If it is still in the laundry, then we
665          * start the cleaning operation. 
666          */
667         if ((*numpagedout = vm_pageout_cluster(m)) == 0)
668                 error = EIO;
669
670 unlock_all:
671         VM_OBJECT_WUNLOCK(object);
672
673 unlock_mp:
674         vm_page_lock_assert(m, MA_NOTOWNED);
675         if (mp != NULL) {
676                 if (vp != NULL)
677                         vput(vp);
678                 vm_object_deallocate(object);
679                 vn_finished_write(mp);
680         }
681
682         return (error);
683 }
684
685 /*
686  * Attempt to launder the specified number of pages.
687  *
688  * Returns the number of pages successfully laundered.
689  */
690 static int
691 vm_pageout_launder(struct vm_domain *vmd, int launder, bool in_shortfall)
692 {
693         struct scan_state ss;
694         struct vm_pagequeue *pq;
695         struct mtx *mtx;
696         vm_object_t object;
697         vm_page_t m, marker;
698         int act_delta, error, numpagedout, queue, starting_target;
699         int vnodes_skipped;
700         bool pageout_ok;
701
702         mtx = NULL;
703         object = NULL;
704         starting_target = launder;
705         vnodes_skipped = 0;
706
707         /*
708          * Scan the laundry queues for pages eligible to be laundered.  We stop
709          * once the target number of dirty pages have been laundered, or once
710          * we've reached the end of the queue.  A single iteration of this loop
711          * may cause more than one page to be laundered because of clustering.
712          *
713          * As an optimization, we avoid laundering from PQ_UNSWAPPABLE when no
714          * swap devices are configured.
715          */
716         if (atomic_load_acq_int(&swapdev_enabled))
717                 queue = PQ_UNSWAPPABLE;
718         else
719                 queue = PQ_LAUNDRY;
720
721 scan:
722         marker = &vmd->vmd_markers[queue];
723         pq = &vmd->vmd_pagequeues[queue];
724         vm_pagequeue_lock(pq);
725         vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
726         while (launder > 0 && (m = vm_pageout_next(&ss, false)) != NULL) {
727                 if (__predict_false((m->flags & PG_MARKER) != 0))
728                         continue;
729
730                 vm_page_change_lock(m, &mtx);
731
732 recheck:
733                 /*
734                  * The page may have been disassociated from the queue
735                  * while locks were dropped.
736                  */
737                 if (vm_page_queue(m) != queue)
738                         continue;
739
740                 /*
741                  * A requeue was requested, so this page gets a second
742                  * chance.
743                  */
744                 if ((m->aflags & PGA_REQUEUE) != 0) {
745                         vm_page_requeue(m);
746                         continue;
747                 }
748
749                 /*
750                  * Wired pages may not be freed.  Complete their removal
751                  * from the queue now to avoid needless revisits during
752                  * future scans.
753                  */
754                 if (vm_page_wired(m)) {
755                         vm_page_dequeue_deferred(m);
756                         continue;
757                 }
758
759                 if (object != m->object) {
760                         if (object != NULL)
761                                 VM_OBJECT_WUNLOCK(object);
762                         object = m->object;
763                         if (!VM_OBJECT_TRYWLOCK(object)) {
764                                 mtx_unlock(mtx);
765                                 /* Depends on type-stability. */
766                                 VM_OBJECT_WLOCK(object);
767                                 mtx_lock(mtx);
768                                 goto recheck;
769                         }
770                 }
771
772                 if (vm_page_busied(m))
773                         continue;
774
775                 /*
776                  * Invalid pages can be easily freed.  They cannot be
777                  * mapped; vm_page_free() asserts this.
778                  */
779                 if (m->valid == 0)
780                         goto free_page;
781
782                 /*
783                  * If the page has been referenced and the object is not dead,
784                  * reactivate or requeue the page depending on whether the
785                  * object is mapped.
786                  *
787                  * Test PGA_REFERENCED after calling pmap_ts_referenced() so
788                  * that a reference from a concurrently destroyed mapping is
789                  * observed here and now.
790                  */
791                 if (object->ref_count != 0)
792                         act_delta = pmap_ts_referenced(m);
793                 else {
794                         KASSERT(!pmap_page_is_mapped(m),
795                             ("page %p is mapped", m));
796                         act_delta = 0;
797                 }
798                 if ((m->aflags & PGA_REFERENCED) != 0) {
799                         vm_page_aflag_clear(m, PGA_REFERENCED);
800                         act_delta++;
801                 }
802                 if (act_delta != 0) {
803                         if (object->ref_count != 0) {
804                                 VM_CNT_INC(v_reactivated);
805                                 vm_page_activate(m);
806
807                                 /*
808                                  * Increase the activation count if the page
809                                  * was referenced while in the laundry queue.
810                                  * This makes it less likely that the page will
811                                  * be returned prematurely to the inactive
812                                  * queue.
813                                  */
814                                 m->act_count += act_delta + ACT_ADVANCE;
815
816                                 /*
817                                  * If this was a background laundering, count
818                                  * activated pages towards our target.  The
819                                  * purpose of background laundering is to ensure
820                                  * that pages are eventually cycled through the
821                                  * laundry queue, and an activation is a valid
822                                  * way out.
823                                  */
824                                 if (!in_shortfall)
825                                         launder--;
826                                 continue;
827                         } else if ((object->flags & OBJ_DEAD) == 0) {
828                                 vm_page_requeue(m);
829                                 continue;
830                         }
831                 }
832
833                 /*
834                  * If the page appears to be clean at the machine-independent
835                  * layer, then remove all of its mappings from the pmap in
836                  * anticipation of freeing it.  If, however, any of the page's
837                  * mappings allow write access, then the page may still be
838                  * modified until the last of those mappings are removed.
839                  */
840                 if (object->ref_count != 0) {
841                         vm_page_test_dirty(m);
842                         if (m->dirty == 0)
843                                 pmap_remove_all(m);
844                 }
845
846                 /*
847                  * Clean pages are freed, and dirty pages are paged out unless
848                  * they belong to a dead object.  Requeueing dirty pages from
849                  * dead objects is pointless, as they are being paged out and
850                  * freed by the thread that destroyed the object.
851                  */
852                 if (m->dirty == 0) {
853 free_page:
854                         vm_page_free(m);
855                         VM_CNT_INC(v_dfree);
856                 } else if ((object->flags & OBJ_DEAD) == 0) {
857                         if (object->type != OBJT_SWAP &&
858                             object->type != OBJT_DEFAULT)
859                                 pageout_ok = true;
860                         else if (disable_swap_pageouts)
861                                 pageout_ok = false;
862                         else
863                                 pageout_ok = true;
864                         if (!pageout_ok) {
865                                 vm_page_requeue(m);
866                                 continue;
867                         }
868
869                         /*
870                          * Form a cluster with adjacent, dirty pages from the
871                          * same object, and page out that entire cluster.
872                          *
873                          * The adjacent, dirty pages must also be in the
874                          * laundry.  However, their mappings are not checked
875                          * for new references.  Consequently, a recently
876                          * referenced page may be paged out.  However, that
877                          * page will not be prematurely reclaimed.  After page
878                          * out, the page will be placed in the inactive queue,
879                          * where any new references will be detected and the
880                          * page reactivated.
881                          */
882                         error = vm_pageout_clean(m, &numpagedout);
883                         if (error == 0) {
884                                 launder -= numpagedout;
885                                 ss.scanned += numpagedout;
886                         } else if (error == EDEADLK) {
887                                 pageout_lock_miss++;
888                                 vnodes_skipped++;
889                         }
890                         mtx = NULL;
891                         object = NULL;
892                 }
893         }
894         if (mtx != NULL) {
895                 mtx_unlock(mtx);
896                 mtx = NULL;
897         }
898         if (object != NULL) {
899                 VM_OBJECT_WUNLOCK(object);
900                 object = NULL;
901         }
902         vm_pagequeue_lock(pq);
903         vm_pageout_end_scan(&ss);
904         vm_pagequeue_unlock(pq);
905
906         if (launder > 0 && queue == PQ_UNSWAPPABLE) {
907                 queue = PQ_LAUNDRY;
908                 goto scan;
909         }
910
911         /*
912          * Wakeup the sync daemon if we skipped a vnode in a writeable object
913          * and we didn't launder enough pages.
914          */
915         if (vnodes_skipped > 0 && launder > 0)
916                 (void)speedup_syncer();
917
918         return (starting_target - launder);
919 }
920
921 /*
922  * Compute the integer square root.
923  */
924 static u_int
925 isqrt(u_int num)
926 {
927         u_int bit, root, tmp;
928
929         bit = num != 0 ? (1u << ((fls(num) - 1) & ~1)) : 0;
930         root = 0;
931         while (bit != 0) {
932                 tmp = root + bit;
933                 root >>= 1;
934                 if (num >= tmp) {
935                         num -= tmp;
936                         root += bit;
937                 }
938                 bit >>= 2;
939         }
940         return (root);
941 }
942
943 /*
944  * Perform the work of the laundry thread: periodically wake up and determine
945  * whether any pages need to be laundered.  If so, determine the number of pages
946  * that need to be laundered, and launder them.
947  */
948 static void
949 vm_pageout_laundry_worker(void *arg)
950 {
951         struct vm_domain *vmd;
952         struct vm_pagequeue *pq;
953         uint64_t nclean, ndirty, nfreed;
954         int domain, last_target, launder, shortfall, shortfall_cycle, target;
955         bool in_shortfall;
956
957         domain = (uintptr_t)arg;
958         vmd = VM_DOMAIN(domain);
959         pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
960         KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
961
962         shortfall = 0;
963         in_shortfall = false;
964         shortfall_cycle = 0;
965         last_target = target = 0;
966         nfreed = 0;
967
968         /*
969          * Calls to these handlers are serialized by the swap syscall lock.
970          */
971         (void)EVENTHANDLER_REGISTER(swapon, vm_pageout_swapon, vmd,
972             EVENTHANDLER_PRI_ANY);
973         (void)EVENTHANDLER_REGISTER(swapoff, vm_pageout_swapoff, vmd,
974             EVENTHANDLER_PRI_ANY);
975
976         /*
977          * The pageout laundry worker is never done, so loop forever.
978          */
979         for (;;) {
980                 KASSERT(target >= 0, ("negative target %d", target));
981                 KASSERT(shortfall_cycle >= 0,
982                     ("negative cycle %d", shortfall_cycle));
983                 launder = 0;
984
985                 /*
986                  * First determine whether we need to launder pages to meet a
987                  * shortage of free pages.
988                  */
989                 if (shortfall > 0) {
990                         in_shortfall = true;
991                         shortfall_cycle = VM_LAUNDER_RATE / VM_INACT_SCAN_RATE;
992                         target = shortfall;
993                 } else if (!in_shortfall)
994                         goto trybackground;
995                 else if (shortfall_cycle == 0 || vm_laundry_target(vmd) <= 0) {
996                         /*
997                          * We recently entered shortfall and began laundering
998                          * pages.  If we have completed that laundering run
999                          * (and we are no longer in shortfall) or we have met
1000                          * our laundry target through other activity, then we
1001                          * can stop laundering pages.
1002                          */
1003                         in_shortfall = false;
1004                         target = 0;
1005                         goto trybackground;
1006                 }
1007                 launder = target / shortfall_cycle--;
1008                 goto dolaundry;
1009
1010                 /*
1011                  * There's no immediate need to launder any pages; see if we
1012                  * meet the conditions to perform background laundering:
1013                  *
1014                  * 1. The ratio of dirty to clean inactive pages exceeds the
1015                  *    background laundering threshold, or
1016                  * 2. we haven't yet reached the target of the current
1017                  *    background laundering run.
1018                  *
1019                  * The background laundering threshold is not a constant.
1020                  * Instead, it is a slowly growing function of the number of
1021                  * clean pages freed by the page daemon since the last
1022                  * background laundering.  Thus, as the ratio of dirty to
1023                  * clean inactive pages grows, the amount of memory pressure
1024                  * required to trigger laundering decreases.  We ensure
1025                  * that the threshold is non-zero after an inactive queue
1026                  * scan, even if that scan failed to free a single clean page.
1027                  */
1028 trybackground:
1029                 nclean = vmd->vmd_free_count +
1030                     vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt;
1031                 ndirty = vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt;
1032                 if (target == 0 && ndirty * isqrt(howmany(nfreed + 1,
1033                     vmd->vmd_free_target - vmd->vmd_free_min)) >= nclean) {
1034                         target = vmd->vmd_background_launder_target;
1035                 }
1036
1037                 /*
1038                  * We have a non-zero background laundering target.  If we've
1039                  * laundered up to our maximum without observing a page daemon
1040                  * request, just stop.  This is a safety belt that ensures we
1041                  * don't launder an excessive amount if memory pressure is low
1042                  * and the ratio of dirty to clean pages is large.  Otherwise,
1043                  * proceed at the background laundering rate.
1044                  */
1045                 if (target > 0) {
1046                         if (nfreed > 0) {
1047                                 nfreed = 0;
1048                                 last_target = target;
1049                         } else if (last_target - target >=
1050                             vm_background_launder_max * PAGE_SIZE / 1024) {
1051                                 target = 0;
1052                         }
1053                         launder = vm_background_launder_rate * PAGE_SIZE / 1024;
1054                         launder /= VM_LAUNDER_RATE;
1055                         if (launder > target)
1056                                 launder = target;
1057                 }
1058
1059 dolaundry:
1060                 if (launder > 0) {
1061                         /*
1062                          * Because of I/O clustering, the number of laundered
1063                          * pages could exceed "target" by the maximum size of
1064                          * a cluster minus one. 
1065                          */
1066                         target -= min(vm_pageout_launder(vmd, launder,
1067                             in_shortfall), target);
1068                         pause("laundp", hz / VM_LAUNDER_RATE);
1069                 }
1070
1071                 /*
1072                  * If we're not currently laundering pages and the page daemon
1073                  * hasn't posted a new request, sleep until the page daemon
1074                  * kicks us.
1075                  */
1076                 vm_pagequeue_lock(pq);
1077                 if (target == 0 && vmd->vmd_laundry_request == VM_LAUNDRY_IDLE)
1078                         (void)mtx_sleep(&vmd->vmd_laundry_request,
1079                             vm_pagequeue_lockptr(pq), PVM, "launds", 0);
1080
1081                 /*
1082                  * If the pagedaemon has indicated that it's in shortfall, start
1083                  * a shortfall laundering unless we're already in the middle of
1084                  * one.  This may preempt a background laundering.
1085                  */
1086                 if (vmd->vmd_laundry_request == VM_LAUNDRY_SHORTFALL &&
1087                     (!in_shortfall || shortfall_cycle == 0)) {
1088                         shortfall = vm_laundry_target(vmd) +
1089                             vmd->vmd_pageout_deficit;
1090                         target = 0;
1091                 } else
1092                         shortfall = 0;
1093
1094                 if (target == 0)
1095                         vmd->vmd_laundry_request = VM_LAUNDRY_IDLE;
1096                 nfreed += vmd->vmd_clean_pages_freed;
1097                 vmd->vmd_clean_pages_freed = 0;
1098                 vm_pagequeue_unlock(pq);
1099         }
1100 }
1101
1102 /*
1103  * Compute the number of pages we want to try to move from the
1104  * active queue to either the inactive or laundry queue.
1105  *
1106  * When scanning active pages during a shortage, we make clean pages
1107  * count more heavily towards the page shortage than dirty pages.
1108  * This is because dirty pages must be laundered before they can be
1109  * reused and thus have less utility when attempting to quickly
1110  * alleviate a free page shortage.  However, this weighting also
1111  * causes the scan to deactivate dirty pages more aggressively,
1112  * improving the effectiveness of clustering.
1113  */
1114 static int
1115 vm_pageout_active_target(struct vm_domain *vmd)
1116 {
1117         int shortage;
1118
1119         shortage = vmd->vmd_inactive_target + vm_paging_target(vmd) -
1120             (vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt +
1121             vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt / act_scan_laundry_weight);
1122         shortage *= act_scan_laundry_weight;
1123         return (shortage);
1124 }
1125
1126 /*
1127  * Scan the active queue.  If there is no shortage of inactive pages, scan a
1128  * small portion of the queue in order to maintain quasi-LRU.
1129  */
1130 static void
1131 vm_pageout_scan_active(struct vm_domain *vmd, int page_shortage)
1132 {
1133         struct scan_state ss;
1134         struct mtx *mtx;
1135         vm_page_t m, marker;
1136         struct vm_pagequeue *pq;
1137         long min_scan;
1138         int act_delta, max_scan, scan_tick;
1139
1140         marker = &vmd->vmd_markers[PQ_ACTIVE];
1141         pq = &vmd->vmd_pagequeues[PQ_ACTIVE];
1142         vm_pagequeue_lock(pq);
1143
1144         /*
1145          * If we're just idle polling attempt to visit every
1146          * active page within 'update_period' seconds.
1147          */
1148         scan_tick = ticks;
1149         if (vm_pageout_update_period != 0) {
1150                 min_scan = pq->pq_cnt;
1151                 min_scan *= scan_tick - vmd->vmd_last_active_scan;
1152                 min_scan /= hz * vm_pageout_update_period;
1153         } else
1154                 min_scan = 0;
1155         if (min_scan > 0 || (page_shortage > 0 && pq->pq_cnt > 0))
1156                 vmd->vmd_last_active_scan = scan_tick;
1157
1158         /*
1159          * Scan the active queue for pages that can be deactivated.  Update
1160          * the per-page activity counter and use it to identify deactivation
1161          * candidates.  Held pages may be deactivated.
1162          *
1163          * To avoid requeuing each page that remains in the active queue, we
1164          * implement the CLOCK algorithm.  To keep the implementation of the
1165          * enqueue operation consistent for all page queues, we use two hands,
1166          * represented by marker pages. Scans begin at the first hand, which
1167          * precedes the second hand in the queue.  When the two hands meet,
1168          * they are moved back to the head and tail of the queue, respectively,
1169          * and scanning resumes.
1170          */
1171         max_scan = page_shortage > 0 ? pq->pq_cnt : min_scan;
1172         mtx = NULL;
1173 act_scan:
1174         vm_pageout_init_scan(&ss, pq, marker, &vmd->vmd_clock[0], max_scan);
1175         while ((m = vm_pageout_next(&ss, false)) != NULL) {
1176                 if (__predict_false(m == &vmd->vmd_clock[1])) {
1177                         vm_pagequeue_lock(pq);
1178                         TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
1179                         TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[1], plinks.q);
1180                         TAILQ_INSERT_HEAD(&pq->pq_pl, &vmd->vmd_clock[0],
1181                             plinks.q);
1182                         TAILQ_INSERT_TAIL(&pq->pq_pl, &vmd->vmd_clock[1],
1183                             plinks.q);
1184                         max_scan -= ss.scanned;
1185                         vm_pageout_end_scan(&ss);
1186                         goto act_scan;
1187                 }
1188                 if (__predict_false((m->flags & PG_MARKER) != 0))
1189                         continue;
1190
1191                 vm_page_change_lock(m, &mtx);
1192
1193                 /*
1194                  * The page may have been disassociated from the queue
1195                  * while locks were dropped.
1196                  */
1197                 if (vm_page_queue(m) != PQ_ACTIVE)
1198                         continue;
1199
1200                 /*
1201                  * Wired pages are dequeued lazily.
1202                  */
1203                 if (vm_page_wired(m)) {
1204                         vm_page_dequeue_deferred(m);
1205                         continue;
1206                 }
1207
1208                 /*
1209                  * Check to see "how much" the page has been used.
1210                  *
1211                  * Test PGA_REFERENCED after calling pmap_ts_referenced() so
1212                  * that a reference from a concurrently destroyed mapping is
1213                  * observed here and now.
1214                  *
1215                  * Perform an unsynchronized object ref count check.  While
1216                  * the page lock ensures that the page is not reallocated to
1217                  * another object, in particular, one with unmanaged mappings
1218                  * that cannot support pmap_ts_referenced(), two races are,
1219                  * nonetheless, possible:
1220                  * 1) The count was transitioning to zero, but we saw a non-
1221                  *    zero value.  pmap_ts_referenced() will return zero
1222                  *    because the page is not mapped.
1223                  * 2) The count was transitioning to one, but we saw zero.
1224                  *    This race delays the detection of a new reference.  At
1225                  *    worst, we will deactivate and reactivate the page.
1226                  */
1227                 if (m->object->ref_count != 0)
1228                         act_delta = pmap_ts_referenced(m);
1229                 else
1230                         act_delta = 0;
1231                 if ((m->aflags & PGA_REFERENCED) != 0) {
1232                         vm_page_aflag_clear(m, PGA_REFERENCED);
1233                         act_delta++;
1234                 }
1235
1236                 /*
1237                  * Advance or decay the act_count based on recent usage.
1238                  */
1239                 if (act_delta != 0) {
1240                         m->act_count += ACT_ADVANCE + act_delta;
1241                         if (m->act_count > ACT_MAX)
1242                                 m->act_count = ACT_MAX;
1243                 } else
1244                         m->act_count -= min(m->act_count, ACT_DECLINE);
1245
1246                 if (m->act_count == 0) {
1247                         /*
1248                          * When not short for inactive pages, let dirty pages go
1249                          * through the inactive queue before moving to the
1250                          * laundry queues.  This gives them some extra time to
1251                          * be reactivated, potentially avoiding an expensive
1252                          * pageout.  However, during a page shortage, the
1253                          * inactive queue is necessarily small, and so dirty
1254                          * pages would only spend a trivial amount of time in
1255                          * the inactive queue.  Therefore, we might as well
1256                          * place them directly in the laundry queue to reduce
1257                          * queuing overhead.
1258                          */
1259                         if (page_shortage <= 0)
1260                                 vm_page_deactivate(m);
1261                         else {
1262                                 /*
1263                                  * Calling vm_page_test_dirty() here would
1264                                  * require acquisition of the object's write
1265                                  * lock.  However, during a page shortage,
1266                                  * directing dirty pages into the laundry
1267                                  * queue is only an optimization and not a
1268                                  * requirement.  Therefore, we simply rely on
1269                                  * the opportunistic updates to the page's
1270                                  * dirty field by the pmap.
1271                                  */
1272                                 if (m->dirty == 0) {
1273                                         vm_page_deactivate(m);
1274                                         page_shortage -=
1275                                             act_scan_laundry_weight;
1276                                 } else {
1277                                         vm_page_launder(m);
1278                                         page_shortage--;
1279                                 }
1280                         }
1281                 }
1282         }
1283         if (mtx != NULL) {
1284                 mtx_unlock(mtx);
1285                 mtx = NULL;
1286         }
1287         vm_pagequeue_lock(pq);
1288         TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
1289         TAILQ_INSERT_AFTER(&pq->pq_pl, marker, &vmd->vmd_clock[0], plinks.q);
1290         vm_pageout_end_scan(&ss);
1291         vm_pagequeue_unlock(pq);
1292 }
1293
1294 static int
1295 vm_pageout_reinsert_inactive_page(struct scan_state *ss, vm_page_t m)
1296 {
1297         struct vm_domain *vmd;
1298
1299         if (m->queue != PQ_INACTIVE || (m->aflags & PGA_ENQUEUED) != 0)
1300                 return (0);
1301         vm_page_aflag_set(m, PGA_ENQUEUED);
1302         if ((m->aflags & PGA_REQUEUE_HEAD) != 0) {
1303                 vmd = vm_pagequeue_domain(m);
1304                 TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q);
1305                 vm_page_aflag_clear(m, PGA_REQUEUE | PGA_REQUEUE_HEAD);
1306         } else if ((m->aflags & PGA_REQUEUE) != 0) {
1307                 TAILQ_INSERT_TAIL(&ss->pq->pq_pl, m, plinks.q);
1308                 vm_page_aflag_clear(m, PGA_REQUEUE | PGA_REQUEUE_HEAD);
1309         } else
1310                 TAILQ_INSERT_BEFORE(ss->marker, m, plinks.q);
1311         return (1);
1312 }
1313
1314 /*
1315  * Re-add stuck pages to the inactive queue.  We will examine them again
1316  * during the next scan.  If the queue state of a page has changed since
1317  * it was physically removed from the page queue in
1318  * vm_pageout_collect_batch(), don't do anything with that page.
1319  */
1320 static void
1321 vm_pageout_reinsert_inactive(struct scan_state *ss, struct vm_batchqueue *bq,
1322     vm_page_t m)
1323 {
1324         struct vm_pagequeue *pq;
1325         int delta;
1326
1327         delta = 0;
1328         pq = ss->pq;
1329
1330         if (m != NULL) {
1331                 if (vm_batchqueue_insert(bq, m))
1332                         return;
1333                 vm_pagequeue_lock(pq);
1334                 delta += vm_pageout_reinsert_inactive_page(ss, m);
1335         } else
1336                 vm_pagequeue_lock(pq);
1337         while ((m = vm_batchqueue_pop(bq)) != NULL)
1338                 delta += vm_pageout_reinsert_inactive_page(ss, m);
1339         vm_pagequeue_cnt_add(pq, delta);
1340         vm_pagequeue_unlock(pq);
1341         vm_batchqueue_init(bq);
1342 }
1343
1344 /*
1345  * Attempt to reclaim the requested number of pages from the inactive queue.
1346  * Returns true if the shortage was addressed.
1347  */
1348 static int
1349 vm_pageout_scan_inactive(struct vm_domain *vmd, int shortage,
1350     int *addl_shortage)
1351 {
1352         struct scan_state ss;
1353         struct vm_batchqueue rq;
1354         struct mtx *mtx;
1355         vm_page_t m, marker;
1356         struct vm_pagequeue *pq;
1357         vm_object_t object;
1358         int act_delta, addl_page_shortage, deficit, page_shortage;
1359         int starting_page_shortage;
1360
1361         /*
1362          * The addl_page_shortage is an estimate of the number of temporarily
1363          * stuck pages in the inactive queue.  In other words, the
1364          * number of pages from the inactive count that should be
1365          * discounted in setting the target for the active queue scan.
1366          */
1367         addl_page_shortage = 0;
1368
1369         /*
1370          * vmd_pageout_deficit counts the number of pages requested in
1371          * allocations that failed because of a free page shortage.  We assume
1372          * that the allocations will be reattempted and thus include the deficit
1373          * in our scan target.
1374          */
1375         deficit = atomic_readandclear_int(&vmd->vmd_pageout_deficit);
1376         starting_page_shortage = page_shortage = shortage + deficit;
1377
1378         mtx = NULL;
1379         object = NULL;
1380         vm_batchqueue_init(&rq);
1381
1382         /*
1383          * Start scanning the inactive queue for pages that we can free.  The
1384          * scan will stop when we reach the target or we have scanned the
1385          * entire queue.  (Note that m->act_count is not used to make
1386          * decisions for the inactive queue, only for the active queue.)
1387          */
1388         marker = &vmd->vmd_markers[PQ_INACTIVE];
1389         pq = &vmd->vmd_pagequeues[PQ_INACTIVE];
1390         vm_pagequeue_lock(pq);
1391         vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
1392         while (page_shortage > 0 && (m = vm_pageout_next(&ss, true)) != NULL) {
1393                 KASSERT((m->flags & PG_MARKER) == 0,
1394                     ("marker page %p was dequeued", m));
1395
1396                 vm_page_change_lock(m, &mtx);
1397
1398 recheck:
1399                 /*
1400                  * The page may have been disassociated from the queue
1401                  * while locks were dropped.
1402                  */
1403                 if (vm_page_queue(m) != PQ_INACTIVE) {
1404                         addl_page_shortage++;
1405                         continue;
1406                 }
1407
1408                 /*
1409                  * The page was re-enqueued after the page queue lock was
1410                  * dropped, or a requeue was requested.  This page gets a second
1411                  * chance.
1412                  */
1413                 if ((m->aflags & (PGA_ENQUEUED | PGA_REQUEUE |
1414                     PGA_REQUEUE_HEAD)) != 0)
1415                         goto reinsert;
1416
1417                 /*
1418                  * Wired pages may not be freed.  Complete their removal
1419                  * from the queue now to avoid needless revisits during
1420                  * future scans.
1421                  */
1422                 if (vm_page_wired(m)) {
1423                         vm_page_dequeue_deferred(m);
1424                         continue;
1425                 }
1426
1427                 if (object != m->object) {
1428                         if (object != NULL)
1429                                 VM_OBJECT_WUNLOCK(object);
1430                         object = m->object;
1431                         if (!VM_OBJECT_TRYWLOCK(object)) {
1432                                 mtx_unlock(mtx);
1433                                 /* Depends on type-stability. */
1434                                 VM_OBJECT_WLOCK(object);
1435                                 mtx_lock(mtx);
1436                                 goto recheck;
1437                         }
1438                 }
1439
1440                 if (vm_page_busied(m)) {
1441                         /*
1442                          * Don't mess with busy pages.  Leave them at
1443                          * the front of the queue.  Most likely, they
1444                          * are being paged out and will leave the
1445                          * queue shortly after the scan finishes.  So,
1446                          * they ought to be discounted from the
1447                          * inactive count.
1448                          */
1449                         addl_page_shortage++;
1450                         goto reinsert;
1451                 }
1452
1453                 /*
1454                  * Invalid pages can be easily freed. They cannot be
1455                  * mapped, vm_page_free() asserts this.
1456                  */
1457                 if (m->valid == 0)
1458                         goto free_page;
1459
1460                 /*
1461                  * If the page has been referenced and the object is not dead,
1462                  * reactivate or requeue the page depending on whether the
1463                  * object is mapped.
1464                  *
1465                  * Test PGA_REFERENCED after calling pmap_ts_referenced() so
1466                  * that a reference from a concurrently destroyed mapping is
1467                  * observed here and now.
1468                  */
1469                 if (object->ref_count != 0)
1470                         act_delta = pmap_ts_referenced(m);
1471                 else {
1472                         KASSERT(!pmap_page_is_mapped(m),
1473                             ("page %p is mapped", m));
1474                         act_delta = 0;
1475                 }
1476                 if ((m->aflags & PGA_REFERENCED) != 0) {
1477                         vm_page_aflag_clear(m, PGA_REFERENCED);
1478                         act_delta++;
1479                 }
1480                 if (act_delta != 0) {
1481                         if (object->ref_count != 0) {
1482                                 VM_CNT_INC(v_reactivated);
1483                                 vm_page_activate(m);
1484
1485                                 /*
1486                                  * Increase the activation count if the page
1487                                  * was referenced while in the inactive queue.
1488                                  * This makes it less likely that the page will
1489                                  * be returned prematurely to the inactive
1490                                  * queue.
1491                                  */
1492                                 m->act_count += act_delta + ACT_ADVANCE;
1493                                 continue;
1494                         } else if ((object->flags & OBJ_DEAD) == 0) {
1495                                 vm_page_aflag_set(m, PGA_REQUEUE);
1496                                 goto reinsert;
1497                         }
1498                 }
1499
1500                 /*
1501                  * If the page appears to be clean at the machine-independent
1502                  * layer, then remove all of its mappings from the pmap in
1503                  * anticipation of freeing it.  If, however, any of the page's
1504                  * mappings allow write access, then the page may still be
1505                  * modified until the last of those mappings are removed.
1506                  */
1507                 if (object->ref_count != 0) {
1508                         vm_page_test_dirty(m);
1509                         if (m->dirty == 0)
1510                                 pmap_remove_all(m);
1511                 }
1512
1513                 /*
1514                  * Clean pages can be freed, but dirty pages must be sent back
1515                  * to the laundry, unless they belong to a dead object.
1516                  * Requeueing dirty pages from dead objects is pointless, as
1517                  * they are being paged out and freed by the thread that
1518                  * destroyed the object.
1519                  */
1520                 if (m->dirty == 0) {
1521 free_page:
1522                         /*
1523                          * Because we dequeued the page and have already
1524                          * checked for concurrent dequeue and enqueue
1525                          * requests, we can safely disassociate the page
1526                          * from the inactive queue.
1527                          */
1528                         KASSERT((m->aflags & PGA_QUEUE_STATE_MASK) == 0,
1529                             ("page %p has queue state", m));
1530                         m->queue = PQ_NONE;
1531                         vm_page_free(m);
1532                         page_shortage--;
1533                 } else if ((object->flags & OBJ_DEAD) == 0)
1534                         vm_page_launder(m);
1535                 continue;
1536 reinsert:
1537                 vm_pageout_reinsert_inactive(&ss, &rq, m);
1538         }
1539         if (mtx != NULL)
1540                 mtx_unlock(mtx);
1541         if (object != NULL)
1542                 VM_OBJECT_WUNLOCK(object);
1543         vm_pageout_reinsert_inactive(&ss, &rq, NULL);
1544         vm_pageout_reinsert_inactive(&ss, &ss.bq, NULL);
1545         vm_pagequeue_lock(pq);
1546         vm_pageout_end_scan(&ss);
1547         vm_pagequeue_unlock(pq);
1548
1549         VM_CNT_ADD(v_dfree, starting_page_shortage - page_shortage);
1550
1551         /*
1552          * Wake up the laundry thread so that it can perform any needed
1553          * laundering.  If we didn't meet our target, we're in shortfall and
1554          * need to launder more aggressively.  If PQ_LAUNDRY is empty and no
1555          * swap devices are configured, the laundry thread has no work to do, so
1556          * don't bother waking it up.
1557          *
1558          * The laundry thread uses the number of inactive queue scans elapsed
1559          * since the last laundering to determine whether to launder again, so
1560          * keep count.
1561          */
1562         if (starting_page_shortage > 0) {
1563                 pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
1564                 vm_pagequeue_lock(pq);
1565                 if (vmd->vmd_laundry_request == VM_LAUNDRY_IDLE &&
1566                     (pq->pq_cnt > 0 || atomic_load_acq_int(&swapdev_enabled))) {
1567                         if (page_shortage > 0) {
1568                                 vmd->vmd_laundry_request = VM_LAUNDRY_SHORTFALL;
1569                                 VM_CNT_INC(v_pdshortfalls);
1570                         } else if (vmd->vmd_laundry_request !=
1571                             VM_LAUNDRY_SHORTFALL)
1572                                 vmd->vmd_laundry_request =
1573                                     VM_LAUNDRY_BACKGROUND;
1574                         wakeup(&vmd->vmd_laundry_request);
1575                 }
1576                 vmd->vmd_clean_pages_freed +=
1577                     starting_page_shortage - page_shortage;
1578                 vm_pagequeue_unlock(pq);
1579         }
1580
1581         /*
1582          * Wakeup the swapout daemon if we didn't free the targeted number of
1583          * pages.
1584          */
1585         if (page_shortage > 0)
1586                 vm_swapout_run();
1587
1588         /*
1589          * If the inactive queue scan fails repeatedly to meet its
1590          * target, kill the largest process.
1591          */
1592         vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage);
1593
1594         /*
1595          * Reclaim pages by swapping out idle processes, if configured to do so.
1596          */
1597         vm_swapout_run_idle();
1598
1599         /*
1600          * See the description of addl_page_shortage above.
1601          */
1602         *addl_shortage = addl_page_shortage + deficit;
1603
1604         return (page_shortage <= 0);
1605 }
1606
1607 static int vm_pageout_oom_vote;
1608
1609 /*
1610  * The pagedaemon threads randlomly select one to perform the
1611  * OOM.  Trying to kill processes before all pagedaemons
1612  * failed to reach free target is premature.
1613  */
1614 static void
1615 vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
1616     int starting_page_shortage)
1617 {
1618         int old_vote;
1619
1620         if (starting_page_shortage <= 0 || starting_page_shortage !=
1621             page_shortage)
1622                 vmd->vmd_oom_seq = 0;
1623         else
1624                 vmd->vmd_oom_seq++;
1625         if (vmd->vmd_oom_seq < vm_pageout_oom_seq) {
1626                 if (vmd->vmd_oom) {
1627                         vmd->vmd_oom = FALSE;
1628                         atomic_subtract_int(&vm_pageout_oom_vote, 1);
1629                 }
1630                 return;
1631         }
1632
1633         /*
1634          * Do not follow the call sequence until OOM condition is
1635          * cleared.
1636          */
1637         vmd->vmd_oom_seq = 0;
1638
1639         if (vmd->vmd_oom)
1640                 return;
1641
1642         vmd->vmd_oom = TRUE;
1643         old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1);
1644         if (old_vote != vm_ndomains - 1)
1645                 return;
1646
1647         /*
1648          * The current pagedaemon thread is the last in the quorum to
1649          * start OOM.  Initiate the selection and signaling of the
1650          * victim.
1651          */
1652         vm_pageout_oom(VM_OOM_MEM);
1653
1654         /*
1655          * After one round of OOM terror, recall our vote.  On the
1656          * next pass, current pagedaemon would vote again if the low
1657          * memory condition is still there, due to vmd_oom being
1658          * false.
1659          */
1660         vmd->vmd_oom = FALSE;
1661         atomic_subtract_int(&vm_pageout_oom_vote, 1);
1662 }
1663
1664 /*
1665  * The OOM killer is the page daemon's action of last resort when
1666  * memory allocation requests have been stalled for a prolonged period
1667  * of time because it cannot reclaim memory.  This function computes
1668  * the approximate number of physical pages that could be reclaimed if
1669  * the specified address space is destroyed.
1670  *
1671  * Private, anonymous memory owned by the address space is the
1672  * principal resource that we expect to recover after an OOM kill.
1673  * Since the physical pages mapped by the address space's COW entries
1674  * are typically shared pages, they are unlikely to be released and so
1675  * they are not counted.
1676  *
1677  * To get to the point where the page daemon runs the OOM killer, its
1678  * efforts to write-back vnode-backed pages may have stalled.  This
1679  * could be caused by a memory allocation deadlock in the write path
1680  * that might be resolved by an OOM kill.  Therefore, physical pages
1681  * belonging to vnode-backed objects are counted, because they might
1682  * be freed without being written out first if the address space holds
1683  * the last reference to an unlinked vnode.
1684  *
1685  * Similarly, physical pages belonging to OBJT_PHYS objects are
1686  * counted because the address space might hold the last reference to
1687  * the object.
1688  */
1689 static long
1690 vm_pageout_oom_pagecount(struct vmspace *vmspace)
1691 {
1692         vm_map_t map;
1693         vm_map_entry_t entry;
1694         vm_object_t obj;
1695         long res;
1696
1697         map = &vmspace->vm_map;
1698         KASSERT(!map->system_map, ("system map"));
1699         sx_assert(&map->lock, SA_LOCKED);
1700         res = 0;
1701         for (entry = map->header.next; entry != &map->header;
1702             entry = entry->next) {
1703                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
1704                         continue;
1705                 obj = entry->object.vm_object;
1706                 if (obj == NULL)
1707                         continue;
1708                 if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 &&
1709                     obj->ref_count != 1)
1710                         continue;
1711                 switch (obj->type) {
1712                 case OBJT_DEFAULT:
1713                 case OBJT_SWAP:
1714                 case OBJT_PHYS:
1715                 case OBJT_VNODE:
1716                         res += obj->resident_page_count;
1717                         break;
1718                 }
1719         }
1720         return (res);
1721 }
1722
1723 void
1724 vm_pageout_oom(int shortage)
1725 {
1726         struct proc *p, *bigproc;
1727         vm_offset_t size, bigsize;
1728         struct thread *td;
1729         struct vmspace *vm;
1730         bool breakout;
1731
1732         /*
1733          * We keep the process bigproc locked once we find it to keep anyone
1734          * from messing with it; however, there is a possibility of
1735          * deadlock if process B is bigproc and one of its child processes
1736          * attempts to propagate a signal to B while we are waiting for A's
1737          * lock while walking this list.  To avoid this, we don't block on
1738          * the process lock but just skip a process if it is already locked.
1739          */
1740         bigproc = NULL;
1741         bigsize = 0;
1742         sx_slock(&allproc_lock);
1743         FOREACH_PROC_IN_SYSTEM(p) {
1744                 PROC_LOCK(p);
1745
1746                 /*
1747                  * If this is a system, protected or killed process, skip it.
1748                  */
1749                 if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC |
1750                     P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 ||
1751                     p->p_pid == 1 || P_KILLED(p) ||
1752                     (p->p_pid < 48 && swap_pager_avail != 0)) {
1753                         PROC_UNLOCK(p);
1754                         continue;
1755                 }
1756                 /*
1757                  * If the process is in a non-running type state,
1758                  * don't touch it.  Check all the threads individually.
1759                  */
1760                 breakout = false;
1761                 FOREACH_THREAD_IN_PROC(p, td) {
1762                         thread_lock(td);
1763                         if (!TD_ON_RUNQ(td) &&
1764                             !TD_IS_RUNNING(td) &&
1765                             !TD_IS_SLEEPING(td) &&
1766                             !TD_IS_SUSPENDED(td) &&
1767                             !TD_IS_SWAPPED(td)) {
1768                                 thread_unlock(td);
1769                                 breakout = true;
1770                                 break;
1771                         }
1772                         thread_unlock(td);
1773                 }
1774                 if (breakout) {
1775                         PROC_UNLOCK(p);
1776                         continue;
1777                 }
1778                 /*
1779                  * get the process size
1780                  */
1781                 vm = vmspace_acquire_ref(p);
1782                 if (vm == NULL) {
1783                         PROC_UNLOCK(p);
1784                         continue;
1785                 }
1786                 _PHOLD_LITE(p);
1787                 PROC_UNLOCK(p);
1788                 sx_sunlock(&allproc_lock);
1789                 if (!vm_map_trylock_read(&vm->vm_map)) {
1790                         vmspace_free(vm);
1791                         sx_slock(&allproc_lock);
1792                         PRELE(p);
1793                         continue;
1794                 }
1795                 size = vmspace_swap_count(vm);
1796                 if (shortage == VM_OOM_MEM)
1797                         size += vm_pageout_oom_pagecount(vm);
1798                 vm_map_unlock_read(&vm->vm_map);
1799                 vmspace_free(vm);
1800                 sx_slock(&allproc_lock);
1801
1802                 /*
1803                  * If this process is bigger than the biggest one,
1804                  * remember it.
1805                  */
1806                 if (size > bigsize) {
1807                         if (bigproc != NULL)
1808                                 PRELE(bigproc);
1809                         bigproc = p;
1810                         bigsize = size;
1811                 } else {
1812                         PRELE(p);
1813                 }
1814         }
1815         sx_sunlock(&allproc_lock);
1816         if (bigproc != NULL) {
1817                 if (vm_panic_on_oom != 0)
1818                         panic("out of swap space");
1819                 PROC_LOCK(bigproc);
1820                 killproc(bigproc, "out of swap space");
1821                 sched_nice(bigproc, PRIO_MIN);
1822                 _PRELE(bigproc);
1823                 PROC_UNLOCK(bigproc);
1824         }
1825 }
1826
1827 static bool
1828 vm_pageout_lowmem(void)
1829 {
1830         static int lowmem_ticks = 0;
1831         int last;
1832
1833         last = atomic_load_int(&lowmem_ticks);
1834         while ((u_int)(ticks - last) / hz >= lowmem_period) {
1835                 if (atomic_fcmpset_int(&lowmem_ticks, &last, ticks) == 0)
1836                         continue;
1837
1838                 /*
1839                  * Decrease registered cache sizes.
1840                  */
1841                 SDT_PROBE0(vm, , , vm__lowmem_scan);
1842                 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_PAGES);
1843
1844                 /*
1845                  * We do this explicitly after the caches have been
1846                  * drained above.
1847                  */
1848                 uma_reclaim();
1849                 return (true);
1850         }
1851         return (false);
1852 }
1853
1854 static void
1855 vm_pageout_worker(void *arg)
1856 {
1857         struct vm_domain *vmd;
1858         u_int ofree;
1859         int addl_shortage, domain, shortage;
1860         bool target_met;
1861
1862         domain = (uintptr_t)arg;
1863         vmd = VM_DOMAIN(domain);
1864         shortage = 0;
1865         target_met = true;
1866
1867         /*
1868          * XXXKIB It could be useful to bind pageout daemon threads to
1869          * the cores belonging to the domain, from which vm_page_array
1870          * is allocated.
1871          */
1872
1873         KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
1874         vmd->vmd_last_active_scan = ticks;
1875
1876         /*
1877          * The pageout daemon worker is never done, so loop forever.
1878          */
1879         while (TRUE) {
1880                 vm_domain_pageout_lock(vmd);
1881
1882                 /*
1883                  * We need to clear wanted before we check the limits.  This
1884                  * prevents races with wakers who will check wanted after they
1885                  * reach the limit.
1886                  */
1887                 atomic_store_int(&vmd->vmd_pageout_wanted, 0);
1888
1889                 /*
1890                  * Might the page daemon need to run again?
1891                  */
1892                 if (vm_paging_needed(vmd, vmd->vmd_free_count)) {
1893                         /*
1894                          * Yes.  If the scan failed to produce enough free
1895                          * pages, sleep uninterruptibly for some time in the
1896                          * hope that the laundry thread will clean some pages.
1897                          */
1898                         vm_domain_pageout_unlock(vmd);
1899                         if (!target_met)
1900                                 pause("pwait", hz / VM_INACT_SCAN_RATE);
1901                 } else {
1902                         /*
1903                          * No, sleep until the next wakeup or until pages
1904                          * need to have their reference stats updated.
1905                          */
1906                         if (mtx_sleep(&vmd->vmd_pageout_wanted,
1907                             vm_domain_pageout_lockptr(vmd), PDROP | PVM,
1908                             "psleep", hz / VM_INACT_SCAN_RATE) == 0)
1909                                 VM_CNT_INC(v_pdwakeups);
1910                 }
1911
1912                 /* Prevent spurious wakeups by ensuring that wanted is set. */
1913                 atomic_store_int(&vmd->vmd_pageout_wanted, 1);
1914
1915                 /*
1916                  * Use the controller to calculate how many pages to free in
1917                  * this interval, and scan the inactive queue.  If the lowmem
1918                  * handlers appear to have freed up some pages, subtract the
1919                  * difference from the inactive queue scan target.
1920                  */
1921                 shortage = pidctrl_daemon(&vmd->vmd_pid, vmd->vmd_free_count);
1922                 if (shortage > 0) {
1923                         ofree = vmd->vmd_free_count;
1924                         if (vm_pageout_lowmem() && vmd->vmd_free_count > ofree)
1925                                 shortage -= min(vmd->vmd_free_count - ofree,
1926                                     (u_int)shortage);
1927                         target_met = vm_pageout_scan_inactive(vmd, shortage,
1928                             &addl_shortage);
1929                 } else
1930                         addl_shortage = 0;
1931
1932                 /*
1933                  * Scan the active queue.  A positive value for shortage
1934                  * indicates that we must aggressively deactivate pages to avoid
1935                  * a shortfall.
1936                  */
1937                 shortage = vm_pageout_active_target(vmd) + addl_shortage;
1938                 vm_pageout_scan_active(vmd, shortage);
1939         }
1940 }
1941
1942 /*
1943  *      vm_pageout_init initialises basic pageout daemon settings.
1944  */
1945 static void
1946 vm_pageout_init_domain(int domain)
1947 {
1948         struct vm_domain *vmd;
1949         struct sysctl_oid *oid;
1950
1951         vmd = VM_DOMAIN(domain);
1952         vmd->vmd_interrupt_free_min = 2;
1953
1954         /*
1955          * v_free_reserved needs to include enough for the largest
1956          * swap pager structures plus enough for any pv_entry structs
1957          * when paging. 
1958          */
1959         if (vmd->vmd_page_count > 1024)
1960                 vmd->vmd_free_min = 4 + (vmd->vmd_page_count - 1024) / 200;
1961         else
1962                 vmd->vmd_free_min = 4;
1963         vmd->vmd_pageout_free_min = 2 * MAXBSIZE / PAGE_SIZE +
1964             vmd->vmd_interrupt_free_min;
1965         vmd->vmd_free_reserved = vm_pageout_page_count +
1966             vmd->vmd_pageout_free_min + (vmd->vmd_page_count / 768);
1967         vmd->vmd_free_severe = vmd->vmd_free_min / 2;
1968         vmd->vmd_free_target = 4 * vmd->vmd_free_min + vmd->vmd_free_reserved;
1969         vmd->vmd_free_min += vmd->vmd_free_reserved;
1970         vmd->vmd_free_severe += vmd->vmd_free_reserved;
1971         vmd->vmd_inactive_target = (3 * vmd->vmd_free_target) / 2;
1972         if (vmd->vmd_inactive_target > vmd->vmd_free_count / 3)
1973                 vmd->vmd_inactive_target = vmd->vmd_free_count / 3;
1974
1975         /*
1976          * Set the default wakeup threshold to be 10% below the paging
1977          * target.  This keeps the steady state out of shortfall.
1978          */
1979         vmd->vmd_pageout_wakeup_thresh = (vmd->vmd_free_target / 10) * 9;
1980
1981         /*
1982          * Target amount of memory to move out of the laundry queue during a
1983          * background laundering.  This is proportional to the amount of system
1984          * memory.
1985          */
1986         vmd->vmd_background_launder_target = (vmd->vmd_free_target -
1987             vmd->vmd_free_min) / 10;
1988
1989         /* Initialize the pageout daemon pid controller. */
1990         pidctrl_init(&vmd->vmd_pid, hz / VM_INACT_SCAN_RATE,
1991             vmd->vmd_free_target, PIDCTRL_BOUND,
1992             PIDCTRL_KPD, PIDCTRL_KID, PIDCTRL_KDD);
1993         oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(vmd->vmd_oid), OID_AUTO,
1994             "pidctrl", CTLFLAG_RD, NULL, "");
1995         pidctrl_init_sysctl(&vmd->vmd_pid, SYSCTL_CHILDREN(oid));
1996 }
1997
1998 static void
1999 vm_pageout_init(void)
2000 {
2001         u_int freecount;
2002         int i;
2003
2004         /*
2005          * Initialize some paging parameters.
2006          */
2007         if (vm_cnt.v_page_count < 2000)
2008                 vm_pageout_page_count = 8;
2009
2010         freecount = 0;
2011         for (i = 0; i < vm_ndomains; i++) {
2012                 struct vm_domain *vmd;
2013
2014                 vm_pageout_init_domain(i);
2015                 vmd = VM_DOMAIN(i);
2016                 vm_cnt.v_free_reserved += vmd->vmd_free_reserved;
2017                 vm_cnt.v_free_target += vmd->vmd_free_target;
2018                 vm_cnt.v_free_min += vmd->vmd_free_min;
2019                 vm_cnt.v_inactive_target += vmd->vmd_inactive_target;
2020                 vm_cnt.v_pageout_free_min += vmd->vmd_pageout_free_min;
2021                 vm_cnt.v_interrupt_free_min += vmd->vmd_interrupt_free_min;
2022                 vm_cnt.v_free_severe += vmd->vmd_free_severe;
2023                 freecount += vmd->vmd_free_count;
2024         }
2025
2026         /*
2027          * Set interval in seconds for active scan.  We want to visit each
2028          * page at least once every ten minutes.  This is to prevent worst
2029          * case paging behaviors with stale active LRU.
2030          */
2031         if (vm_pageout_update_period == 0)
2032                 vm_pageout_update_period = 600;
2033
2034         if (vm_page_max_user_wired == 0)
2035                 vm_page_max_user_wired = freecount / 3;
2036 }
2037
2038 /*
2039  *     vm_pageout is the high level pageout daemon.
2040  */
2041 static void
2042 vm_pageout(void)
2043 {
2044         struct proc *p;
2045         struct thread *td;
2046         int error, first, i;
2047
2048         p = curproc;
2049         td = curthread;
2050
2051         swap_pager_swap_init();
2052         for (first = -1, i = 0; i < vm_ndomains; i++) {
2053                 if (VM_DOMAIN_EMPTY(i)) {
2054                         if (bootverbose)
2055                                 printf("domain %d empty; skipping pageout\n",
2056                                     i);
2057                         continue;
2058                 }
2059                 if (first == -1)
2060                         first = i;
2061                 else {
2062                         error = kthread_add(vm_pageout_worker,
2063                             (void *)(uintptr_t)i, p, NULL, 0, 0, "dom%d", i);
2064                         if (error != 0)
2065                                 panic("starting pageout for domain %d: %d\n",
2066                                     i, error);
2067                 }
2068                 error = kthread_add(vm_pageout_laundry_worker,
2069                     (void *)(uintptr_t)i, p, NULL, 0, 0, "laundry: dom%d", i);
2070                 if (error != 0)
2071                         panic("starting laundry for domain %d: %d", i, error);
2072         }
2073         error = kthread_add(uma_reclaim_worker, NULL, p, NULL, 0, 0, "uma");
2074         if (error != 0)
2075                 panic("starting uma_reclaim helper, error %d\n", error);
2076
2077         snprintf(td->td_name, sizeof(td->td_name), "dom%d", first);
2078         vm_pageout_worker((void *)(uintptr_t)first);
2079 }
2080
2081 /*
2082  * Perform an advisory wakeup of the page daemon.
2083  */
2084 void
2085 pagedaemon_wakeup(int domain)
2086 {
2087         struct vm_domain *vmd;
2088
2089         vmd = VM_DOMAIN(domain);
2090         vm_domain_pageout_assert_unlocked(vmd);
2091         if (curproc == pageproc)
2092                 return;
2093
2094         if (atomic_fetchadd_int(&vmd->vmd_pageout_wanted, 1) == 0) {
2095                 vm_domain_pageout_lock(vmd);
2096                 atomic_store_int(&vmd->vmd_pageout_wanted, 1);
2097                 wakeup(&vmd->vmd_pageout_wanted);
2098                 vm_domain_pageout_unlock(vmd);
2099         }
2100 }