]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_pageout.c
Add UPDATING entries and bump version.
[FreeBSD/FreeBSD.git] / sys / vm / vm_pageout.c
1 /*-
2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  * Copyright (c) 2005 Yahoo! Technologies Norway AS
11  * All rights reserved.
12  *
13  * This code is derived from software contributed to Berkeley by
14  * The Mach Operating System project at Carnegie-Mellon University.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. All advertising materials mentioning features or use of this software
25  *    must display the following acknowledgement:
26  *      This product includes software developed by the University of
27  *      California, Berkeley and its contributors.
28  * 4. Neither the name of the University nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  *
44  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
45  *
46  *
47  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
48  * All rights reserved.
49  *
50  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
51  *
52  * Permission to use, copy, modify and distribute this software and
53  * its documentation is hereby granted, provided that both the copyright
54  * notice and this permission notice appear in all copies of the
55  * software, derivative works or modified versions, and any portions
56  * thereof, and that both notices appear in supporting documentation.
57  *
58  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
59  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
60  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
61  *
62  * Carnegie Mellon requests users of this software to return to
63  *
64  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
65  *  School of Computer Science
66  *  Carnegie Mellon University
67  *  Pittsburgh PA 15213-3890
68  *
69  * any improvements or extensions that they make and grant Carnegie the
70  * rights to redistribute these changes.
71  */
72
73 /*
74  *      The proverbial page-out daemon.
75  */
76
77 #include <sys/cdefs.h>
78 __FBSDID("$FreeBSD$");
79
80 #include "opt_vm.h"
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/eventhandler.h>
86 #include <sys/lock.h>
87 #include <sys/mutex.h>
88 #include <sys/proc.h>
89 #include <sys/kthread.h>
90 #include <sys/ktr.h>
91 #include <sys/mount.h>
92 #include <sys/racct.h>
93 #include <sys/resourcevar.h>
94 #include <sys/sched.h>
95 #include <sys/sdt.h>
96 #include <sys/signalvar.h>
97 #include <sys/smp.h>
98 #include <sys/time.h>
99 #include <sys/vnode.h>
100 #include <sys/vmmeter.h>
101 #include <sys/rwlock.h>
102 #include <sys/sx.h>
103 #include <sys/sysctl.h>
104
105 #include <vm/vm.h>
106 #include <vm/vm_param.h>
107 #include <vm/vm_object.h>
108 #include <vm/vm_page.h>
109 #include <vm/vm_map.h>
110 #include <vm/vm_pageout.h>
111 #include <vm/vm_pager.h>
112 #include <vm/vm_phys.h>
113 #include <vm/vm_pagequeue.h>
114 #include <vm/swap_pager.h>
115 #include <vm/vm_extern.h>
116 #include <vm/uma.h>
117
118 /*
119  * System initialization
120  */
121
122 /* the kernel process "vm_pageout"*/
123 static void vm_pageout(void);
124 static void vm_pageout_init(void);
125 static int vm_pageout_clean(vm_page_t m, int *numpagedout);
126 static int vm_pageout_cluster(vm_page_t m);
127 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
128     int starting_page_shortage);
129
130 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init,
131     NULL);
132
133 struct proc *pageproc;
134
135 static struct kproc_desc page_kp = {
136         "pagedaemon",
137         vm_pageout,
138         &pageproc
139 };
140 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start,
141     &page_kp);
142
143 SDT_PROVIDER_DEFINE(vm);
144 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan);
145
146 /* Pagedaemon activity rates, in subdivisions of one second. */
147 #define VM_LAUNDER_RATE         10
148 #define VM_INACT_SCAN_RATE      10
149
150 static int vm_pageout_oom_seq = 12;
151
152 static int vm_pageout_update_period;
153 static int disable_swap_pageouts;
154 static int lowmem_period = 10;
155 static int swapdev_enabled;
156
157 static int vm_panic_on_oom = 0;
158
159 SYSCTL_INT(_vm, OID_AUTO, panic_on_oom,
160         CTLFLAG_RWTUN, &vm_panic_on_oom, 0,
161         "panic on out of memory instead of killing the largest process");
162
163 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period,
164         CTLFLAG_RWTUN, &vm_pageout_update_period, 0,
165         "Maximum active LRU update period");
166   
167 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RWTUN, &lowmem_period, 0,
168         "Low memory callback period");
169
170 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
171         CTLFLAG_RWTUN, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
172
173 static int pageout_lock_miss;
174 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
175         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
176
177 SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq,
178         CTLFLAG_RWTUN, &vm_pageout_oom_seq, 0,
179         "back-to-back calls to oom detector to start OOM");
180
181 static int act_scan_laundry_weight = 3;
182 SYSCTL_INT(_vm, OID_AUTO, act_scan_laundry_weight, CTLFLAG_RWTUN,
183     &act_scan_laundry_weight, 0,
184     "weight given to clean vs. dirty pages in active queue scans");
185
186 static u_int vm_background_launder_rate = 4096;
187 SYSCTL_UINT(_vm, OID_AUTO, background_launder_rate, CTLFLAG_RWTUN,
188     &vm_background_launder_rate, 0,
189     "background laundering rate, in kilobytes per second");
190
191 static u_int vm_background_launder_max = 20 * 1024;
192 SYSCTL_UINT(_vm, OID_AUTO, background_launder_max, CTLFLAG_RWTUN,
193     &vm_background_launder_max, 0, "background laundering cap, in kilobytes");
194
195 int vm_pageout_page_count = 32;
196
197 int vm_page_max_wired;          /* XXX max # of wired pages system-wide */
198 SYSCTL_INT(_vm, OID_AUTO, max_wired,
199         CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
200
201 static u_int isqrt(u_int num);
202 static int vm_pageout_launder(struct vm_domain *vmd, int launder,
203     bool in_shortfall);
204 static void vm_pageout_laundry_worker(void *arg);
205
206 struct scan_state {
207         struct vm_batchqueue bq;
208         struct vm_pagequeue *pq;
209         vm_page_t       marker;
210         int             maxscan;
211         int             scanned;
212 };
213
214 static void
215 vm_pageout_init_scan(struct scan_state *ss, struct vm_pagequeue *pq,
216     vm_page_t marker, vm_page_t after, int maxscan)
217 {
218
219         vm_pagequeue_assert_locked(pq);
220         KASSERT((marker->aflags & PGA_ENQUEUED) == 0,
221             ("marker %p already enqueued", marker));
222
223         if (after == NULL)
224                 TAILQ_INSERT_HEAD(&pq->pq_pl, marker, plinks.q);
225         else
226                 TAILQ_INSERT_AFTER(&pq->pq_pl, after, marker, plinks.q);
227         vm_page_aflag_set(marker, PGA_ENQUEUED);
228
229         vm_batchqueue_init(&ss->bq);
230         ss->pq = pq;
231         ss->marker = marker;
232         ss->maxscan = maxscan;
233         ss->scanned = 0;
234         vm_pagequeue_unlock(pq);
235 }
236
237 static void
238 vm_pageout_end_scan(struct scan_state *ss)
239 {
240         struct vm_pagequeue *pq;
241
242         pq = ss->pq;
243         vm_pagequeue_assert_locked(pq);
244         KASSERT((ss->marker->aflags & PGA_ENQUEUED) != 0,
245             ("marker %p not enqueued", ss->marker));
246
247         TAILQ_REMOVE(&pq->pq_pl, ss->marker, plinks.q);
248         vm_page_aflag_clear(ss->marker, PGA_ENQUEUED);
249         pq->pq_pdpages += ss->scanned;
250 }
251
252 /*
253  * Add a small number of queued pages to a batch queue for later processing
254  * without the corresponding queue lock held.  The caller must have enqueued a
255  * marker page at the desired start point for the scan.  Pages will be
256  * physically dequeued if the caller so requests.  Otherwise, the returned
257  * batch may contain marker pages, and it is up to the caller to handle them.
258  *
259  * When processing the batch queue, vm_page_queue() must be used to
260  * determine whether the page has been logically dequeued by another thread.
261  * Once this check is performed, the page lock guarantees that the page will
262  * not be disassociated from the queue.
263  */
264 static __always_inline void
265 vm_pageout_collect_batch(struct scan_state *ss, const bool dequeue)
266 {
267         struct vm_pagequeue *pq;
268         vm_page_t m, marker, n;
269
270         marker = ss->marker;
271         pq = ss->pq;
272
273         KASSERT((marker->aflags & PGA_ENQUEUED) != 0,
274             ("marker %p not enqueued", ss->marker));
275
276         vm_pagequeue_lock(pq);
277         for (m = TAILQ_NEXT(marker, plinks.q); m != NULL &&
278             ss->scanned < ss->maxscan && ss->bq.bq_cnt < VM_BATCHQUEUE_SIZE;
279             m = n, ss->scanned++) {
280                 n = TAILQ_NEXT(m, plinks.q);
281                 if ((m->flags & PG_MARKER) == 0) {
282                         KASSERT((m->aflags & PGA_ENQUEUED) != 0,
283                             ("page %p not enqueued", m));
284                         KASSERT((m->flags & PG_FICTITIOUS) == 0,
285                             ("Fictitious page %p cannot be in page queue", m));
286                         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
287                             ("Unmanaged page %p cannot be in page queue", m));
288                 } else if (dequeue)
289                         continue;
290
291                 (void)vm_batchqueue_insert(&ss->bq, m);
292                 if (dequeue) {
293                         TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
294                         vm_page_aflag_clear(m, PGA_ENQUEUED);
295                 }
296         }
297         TAILQ_REMOVE(&pq->pq_pl, marker, plinks.q);
298         if (__predict_true(m != NULL))
299                 TAILQ_INSERT_BEFORE(m, marker, plinks.q);
300         else
301                 TAILQ_INSERT_TAIL(&pq->pq_pl, marker, plinks.q);
302         if (dequeue)
303                 vm_pagequeue_cnt_add(pq, -ss->bq.bq_cnt);
304         vm_pagequeue_unlock(pq);
305 }
306
307 /* Return the next page to be scanned, or NULL if the scan is complete. */
308 static __always_inline vm_page_t
309 vm_pageout_next(struct scan_state *ss, const bool dequeue)
310 {
311
312         if (ss->bq.bq_cnt == 0)
313                 vm_pageout_collect_batch(ss, dequeue);
314         return (vm_batchqueue_pop(&ss->bq));
315 }
316
317 /*
318  * Scan for pages at adjacent offsets within the given page's object that are
319  * eligible for laundering, form a cluster of these pages and the given page,
320  * and launder that cluster.
321  */
322 static int
323 vm_pageout_cluster(vm_page_t m)
324 {
325         vm_object_t object;
326         vm_page_t mc[2 * vm_pageout_page_count], p, pb, ps;
327         vm_pindex_t pindex;
328         int ib, is, page_base, pageout_count;
329
330         vm_page_assert_locked(m);
331         object = m->object;
332         VM_OBJECT_ASSERT_WLOCKED(object);
333         pindex = m->pindex;
334
335         vm_page_assert_unbusied(m);
336         KASSERT(!vm_page_held(m), ("page %p is held", m));
337
338         pmap_remove_write(m);
339         vm_page_unlock(m);
340
341         mc[vm_pageout_page_count] = pb = ps = m;
342         pageout_count = 1;
343         page_base = vm_pageout_page_count;
344         ib = 1;
345         is = 1;
346
347         /*
348          * We can cluster only if the page is not clean, busy, or held, and
349          * the page is in the laundry queue.
350          *
351          * During heavy mmap/modification loads the pageout
352          * daemon can really fragment the underlying file
353          * due to flushing pages out of order and not trying to
354          * align the clusters (which leaves sporadic out-of-order
355          * holes).  To solve this problem we do the reverse scan
356          * first and attempt to align our cluster, then do a 
357          * forward scan if room remains.
358          */
359 more:
360         while (ib != 0 && pageout_count < vm_pageout_page_count) {
361                 if (ib > pindex) {
362                         ib = 0;
363                         break;
364                 }
365                 if ((p = vm_page_prev(pb)) == NULL || vm_page_busied(p)) {
366                         ib = 0;
367                         break;
368                 }
369                 vm_page_test_dirty(p);
370                 if (p->dirty == 0) {
371                         ib = 0;
372                         break;
373                 }
374                 vm_page_lock(p);
375                 if (vm_page_held(p) || !vm_page_in_laundry(p)) {
376                         vm_page_unlock(p);
377                         ib = 0;
378                         break;
379                 }
380                 pmap_remove_write(p);
381                 vm_page_unlock(p);
382                 mc[--page_base] = pb = p;
383                 ++pageout_count;
384                 ++ib;
385
386                 /*
387                  * We are at an alignment boundary.  Stop here, and switch
388                  * directions.  Do not clear ib.
389                  */
390                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
391                         break;
392         }
393         while (pageout_count < vm_pageout_page_count && 
394             pindex + is < object->size) {
395                 if ((p = vm_page_next(ps)) == NULL || vm_page_busied(p))
396                         break;
397                 vm_page_test_dirty(p);
398                 if (p->dirty == 0)
399                         break;
400                 vm_page_lock(p);
401                 if (vm_page_held(p) || !vm_page_in_laundry(p)) {
402                         vm_page_unlock(p);
403                         break;
404                 }
405                 pmap_remove_write(p);
406                 vm_page_unlock(p);
407                 mc[page_base + pageout_count] = ps = p;
408                 ++pageout_count;
409                 ++is;
410         }
411
412         /*
413          * If we exhausted our forward scan, continue with the reverse scan
414          * when possible, even past an alignment boundary.  This catches
415          * boundary conditions.
416          */
417         if (ib != 0 && pageout_count < vm_pageout_page_count)
418                 goto more;
419
420         return (vm_pageout_flush(&mc[page_base], pageout_count,
421             VM_PAGER_PUT_NOREUSE, 0, NULL, NULL));
422 }
423
424 /*
425  * vm_pageout_flush() - launder the given pages
426  *
427  *      The given pages are laundered.  Note that we setup for the start of
428  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
429  *      reference count all in here rather then in the parent.  If we want
430  *      the parent to do more sophisticated things we may have to change
431  *      the ordering.
432  *
433  *      Returned runlen is the count of pages between mreq and first
434  *      page after mreq with status VM_PAGER_AGAIN.
435  *      *eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
436  *      for any page in runlen set.
437  */
438 int
439 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
440     boolean_t *eio)
441 {
442         vm_object_t object = mc[0]->object;
443         int pageout_status[count];
444         int numpagedout = 0;
445         int i, runlen;
446
447         VM_OBJECT_ASSERT_WLOCKED(object);
448
449         /*
450          * Initiate I/O.  Mark the pages busy and verify that they're valid
451          * and read-only.
452          *
453          * We do not have to fixup the clean/dirty bits here... we can
454          * allow the pager to do it after the I/O completes.
455          *
456          * NOTE! mc[i]->dirty may be partial or fragmented due to an
457          * edge case with file fragments.
458          */
459         for (i = 0; i < count; i++) {
460                 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
461                     ("vm_pageout_flush: partially invalid page %p index %d/%d",
462                         mc[i], i, count));
463                 KASSERT((mc[i]->aflags & PGA_WRITEABLE) == 0,
464                     ("vm_pageout_flush: writeable page %p", mc[i]));
465                 vm_page_sbusy(mc[i]);
466         }
467         vm_object_pip_add(object, count);
468
469         vm_pager_put_pages(object, mc, count, flags, pageout_status);
470
471         runlen = count - mreq;
472         if (eio != NULL)
473                 *eio = FALSE;
474         for (i = 0; i < count; i++) {
475                 vm_page_t mt = mc[i];
476
477                 KASSERT(pageout_status[i] == VM_PAGER_PEND ||
478                     !pmap_page_is_write_mapped(mt),
479                     ("vm_pageout_flush: page %p is not write protected", mt));
480                 switch (pageout_status[i]) {
481                 case VM_PAGER_OK:
482                         vm_page_lock(mt);
483                         if (vm_page_in_laundry(mt))
484                                 vm_page_deactivate_noreuse(mt);
485                         vm_page_unlock(mt);
486                         /* FALLTHROUGH */
487                 case VM_PAGER_PEND:
488                         numpagedout++;
489                         break;
490                 case VM_PAGER_BAD:
491                         /*
492                          * The page is outside the object's range.  We pretend
493                          * that the page out worked and clean the page, so the
494                          * changes will be lost if the page is reclaimed by
495                          * the page daemon.
496                          */
497                         vm_page_undirty(mt);
498                         vm_page_lock(mt);
499                         if (vm_page_in_laundry(mt))
500                                 vm_page_deactivate_noreuse(mt);
501                         vm_page_unlock(mt);
502                         break;
503                 case VM_PAGER_ERROR:
504                 case VM_PAGER_FAIL:
505                         /*
506                          * If the page couldn't be paged out to swap because the
507                          * pager wasn't able to find space, place the page in
508                          * the PQ_UNSWAPPABLE holding queue.  This is an
509                          * optimization that prevents the page daemon from
510                          * wasting CPU cycles on pages that cannot be reclaimed
511                          * becase no swap device is configured.
512                          *
513                          * Otherwise, reactivate the page so that it doesn't
514                          * clog the laundry and inactive queues.  (We will try
515                          * paging it out again later.)
516                          */
517                         vm_page_lock(mt);
518                         if (object->type == OBJT_SWAP &&
519                             pageout_status[i] == VM_PAGER_FAIL) {
520                                 vm_page_unswappable(mt);
521                                 numpagedout++;
522                         } else
523                                 vm_page_activate(mt);
524                         vm_page_unlock(mt);
525                         if (eio != NULL && i >= mreq && i - mreq < runlen)
526                                 *eio = TRUE;
527                         break;
528                 case VM_PAGER_AGAIN:
529                         if (i >= mreq && i - mreq < runlen)
530                                 runlen = i - mreq;
531                         break;
532                 }
533
534                 /*
535                  * If the operation is still going, leave the page busy to
536                  * block all other accesses. Also, leave the paging in
537                  * progress indicator set so that we don't attempt an object
538                  * collapse.
539                  */
540                 if (pageout_status[i] != VM_PAGER_PEND) {
541                         vm_object_pip_wakeup(object);
542                         vm_page_sunbusy(mt);
543                 }
544         }
545         if (prunlen != NULL)
546                 *prunlen = runlen;
547         return (numpagedout);
548 }
549
550 static void
551 vm_pageout_swapon(void *arg __unused, struct swdevt *sp __unused)
552 {
553
554         atomic_store_rel_int(&swapdev_enabled, 1);
555 }
556
557 static void
558 vm_pageout_swapoff(void *arg __unused, struct swdevt *sp __unused)
559 {
560
561         if (swap_pager_nswapdev() == 1)
562                 atomic_store_rel_int(&swapdev_enabled, 0);
563 }
564
565 /*
566  * Attempt to acquire all of the necessary locks to launder a page and
567  * then call through the clustering layer to PUTPAGES.  Wait a short
568  * time for a vnode lock.
569  *
570  * Requires the page and object lock on entry, releases both before return.
571  * Returns 0 on success and an errno otherwise.
572  */
573 static int
574 vm_pageout_clean(vm_page_t m, int *numpagedout)
575 {
576         struct vnode *vp;
577         struct mount *mp;
578         vm_object_t object;
579         vm_pindex_t pindex;
580         int error, lockmode;
581
582         vm_page_assert_locked(m);
583         object = m->object;
584         VM_OBJECT_ASSERT_WLOCKED(object);
585         error = 0;
586         vp = NULL;
587         mp = NULL;
588
589         /*
590          * The object is already known NOT to be dead.   It
591          * is possible for the vget() to block the whole
592          * pageout daemon, but the new low-memory handling
593          * code should prevent it.
594          *
595          * We can't wait forever for the vnode lock, we might
596          * deadlock due to a vn_read() getting stuck in
597          * vm_wait while holding this vnode.  We skip the 
598          * vnode if we can't get it in a reasonable amount
599          * of time.
600          */
601         if (object->type == OBJT_VNODE) {
602                 vm_page_unlock(m);
603                 vp = object->handle;
604                 if (vp->v_type == VREG &&
605                     vn_start_write(vp, &mp, V_NOWAIT) != 0) {
606                         mp = NULL;
607                         error = EDEADLK;
608                         goto unlock_all;
609                 }
610                 KASSERT(mp != NULL,
611                     ("vp %p with NULL v_mount", vp));
612                 vm_object_reference_locked(object);
613                 pindex = m->pindex;
614                 VM_OBJECT_WUNLOCK(object);
615                 lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
616                     LK_SHARED : LK_EXCLUSIVE;
617                 if (vget(vp, lockmode | LK_TIMELOCK, curthread)) {
618                         vp = NULL;
619                         error = EDEADLK;
620                         goto unlock_mp;
621                 }
622                 VM_OBJECT_WLOCK(object);
623
624                 /*
625                  * Ensure that the object and vnode were not disassociated
626                  * while locks were dropped.
627                  */
628                 if (vp->v_object != object) {
629                         error = ENOENT;
630                         goto unlock_all;
631                 }
632                 vm_page_lock(m);
633
634                 /*
635                  * While the object and page were unlocked, the page
636                  * may have been:
637                  * (1) moved to a different queue,
638                  * (2) reallocated to a different object,
639                  * (3) reallocated to a different offset, or
640                  * (4) cleaned.
641                  */
642                 if (!vm_page_in_laundry(m) || m->object != object ||
643                     m->pindex != pindex || m->dirty == 0) {
644                         vm_page_unlock(m);
645                         error = ENXIO;
646                         goto unlock_all;
647                 }
648
649                 /*
650                  * The page may have been busied or referenced while the object
651                  * and page locks were released.
652                  */
653                 if (vm_page_busied(m) || vm_page_held(m)) {
654                         vm_page_unlock(m);
655                         error = EBUSY;
656                         goto unlock_all;
657                 }
658         }
659
660         /*
661          * If a page is dirty, then it is either being washed
662          * (but not yet cleaned) or it is still in the
663          * laundry.  If it is still in the laundry, then we
664          * start the cleaning operation. 
665          */
666         if ((*numpagedout = vm_pageout_cluster(m)) == 0)
667                 error = EIO;
668
669 unlock_all:
670         VM_OBJECT_WUNLOCK(object);
671
672 unlock_mp:
673         vm_page_lock_assert(m, MA_NOTOWNED);
674         if (mp != NULL) {
675                 if (vp != NULL)
676                         vput(vp);
677                 vm_object_deallocate(object);
678                 vn_finished_write(mp);
679         }
680
681         return (error);
682 }
683
684 /*
685  * Attempt to launder the specified number of pages.
686  *
687  * Returns the number of pages successfully laundered.
688  */
689 static int
690 vm_pageout_launder(struct vm_domain *vmd, int launder, bool in_shortfall)
691 {
692         struct scan_state ss;
693         struct vm_pagequeue *pq;
694         struct mtx *mtx;
695         vm_object_t object;
696         vm_page_t m, marker;
697         int act_delta, error, numpagedout, queue, starting_target;
698         int vnodes_skipped;
699         bool pageout_ok;
700
701         mtx = NULL;
702         object = NULL;
703         starting_target = launder;
704         vnodes_skipped = 0;
705
706         /*
707          * Scan the laundry queues for pages eligible to be laundered.  We stop
708          * once the target number of dirty pages have been laundered, or once
709          * we've reached the end of the queue.  A single iteration of this loop
710          * may cause more than one page to be laundered because of clustering.
711          *
712          * As an optimization, we avoid laundering from PQ_UNSWAPPABLE when no
713          * swap devices are configured.
714          */
715         if (atomic_load_acq_int(&swapdev_enabled))
716                 queue = PQ_UNSWAPPABLE;
717         else
718                 queue = PQ_LAUNDRY;
719
720 scan:
721         marker = &vmd->vmd_markers[queue];
722         pq = &vmd->vmd_pagequeues[queue];
723         vm_pagequeue_lock(pq);
724         vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
725         while (launder > 0 && (m = vm_pageout_next(&ss, false)) != NULL) {
726                 if (__predict_false((m->flags & PG_MARKER) != 0))
727                         continue;
728
729                 vm_page_change_lock(m, &mtx);
730
731 recheck:
732                 /*
733                  * The page may have been disassociated from the queue
734                  * while locks were dropped.
735                  */
736                 if (vm_page_queue(m) != queue)
737                         continue;
738
739                 /*
740                  * A requeue was requested, so this page gets a second
741                  * chance.
742                  */
743                 if ((m->aflags & PGA_REQUEUE) != 0) {
744                         vm_page_requeue(m);
745                         continue;
746                 }
747
748                 /*
749                  * Held pages are essentially stuck in the queue.
750                  *
751                  * Wired pages may not be freed.  Complete their removal
752                  * from the queue now to avoid needless revisits during
753                  * future scans.
754                  */
755                 if (m->hold_count != 0)
756                         continue;
757                 if (vm_page_wired(m)) {
758                         vm_page_dequeue_deferred(m);
759                         continue;
760                 }
761
762                 if (object != m->object) {
763                         if (object != NULL)
764                                 VM_OBJECT_WUNLOCK(object);
765                         object = m->object;
766                         if (!VM_OBJECT_TRYWLOCK(object)) {
767                                 mtx_unlock(mtx);
768                                 /* Depends on type-stability. */
769                                 VM_OBJECT_WLOCK(object);
770                                 mtx_lock(mtx);
771                                 goto recheck;
772                         }
773                 }
774
775                 if (vm_page_busied(m))
776                         continue;
777
778                 /*
779                  * Invalid pages can be easily freed.  They cannot be
780                  * mapped; vm_page_free() asserts this.
781                  */
782                 if (m->valid == 0)
783                         goto free_page;
784
785                 /*
786                  * If the page has been referenced and the object is not dead,
787                  * reactivate or requeue the page depending on whether the
788                  * object is mapped.
789                  *
790                  * Test PGA_REFERENCED after calling pmap_ts_referenced() so
791                  * that a reference from a concurrently destroyed mapping is
792                  * observed here and now.
793                  */
794                 if (object->ref_count != 0)
795                         act_delta = pmap_ts_referenced(m);
796                 else {
797                         KASSERT(!pmap_page_is_mapped(m),
798                             ("page %p is mapped", m));
799                         act_delta = 0;
800                 }
801                 if ((m->aflags & PGA_REFERENCED) != 0) {
802                         vm_page_aflag_clear(m, PGA_REFERENCED);
803                         act_delta++;
804                 }
805                 if (act_delta != 0) {
806                         if (object->ref_count != 0) {
807                                 VM_CNT_INC(v_reactivated);
808                                 vm_page_activate(m);
809
810                                 /*
811                                  * Increase the activation count if the page
812                                  * was referenced while in the laundry queue.
813                                  * This makes it less likely that the page will
814                                  * be returned prematurely to the inactive
815                                  * queue.
816                                  */
817                                 m->act_count += act_delta + ACT_ADVANCE;
818
819                                 /*
820                                  * If this was a background laundering, count
821                                  * activated pages towards our target.  The
822                                  * purpose of background laundering is to ensure
823                                  * that pages are eventually cycled through the
824                                  * laundry queue, and an activation is a valid
825                                  * way out.
826                                  */
827                                 if (!in_shortfall)
828                                         launder--;
829                                 continue;
830                         } else if ((object->flags & OBJ_DEAD) == 0) {
831                                 vm_page_requeue(m);
832                                 continue;
833                         }
834                 }
835
836                 /*
837                  * If the page appears to be clean at the machine-independent
838                  * layer, then remove all of its mappings from the pmap in
839                  * anticipation of freeing it.  If, however, any of the page's
840                  * mappings allow write access, then the page may still be
841                  * modified until the last of those mappings are removed.
842                  */
843                 if (object->ref_count != 0) {
844                         vm_page_test_dirty(m);
845                         if (m->dirty == 0)
846                                 pmap_remove_all(m);
847                 }
848
849                 /*
850                  * Clean pages are freed, and dirty pages are paged out unless
851                  * they belong to a dead object.  Requeueing dirty pages from
852                  * dead objects is pointless, as they are being paged out and
853                  * freed by the thread that destroyed the object.
854                  */
855                 if (m->dirty == 0) {
856 free_page:
857                         vm_page_free(m);
858                         VM_CNT_INC(v_dfree);
859                 } else if ((object->flags & OBJ_DEAD) == 0) {
860                         if (object->type != OBJT_SWAP &&
861                             object->type != OBJT_DEFAULT)
862                                 pageout_ok = true;
863                         else if (disable_swap_pageouts)
864                                 pageout_ok = false;
865                         else
866                                 pageout_ok = true;
867                         if (!pageout_ok) {
868                                 vm_page_requeue(m);
869                                 continue;
870                         }
871
872                         /*
873                          * Form a cluster with adjacent, dirty pages from the
874                          * same object, and page out that entire cluster.
875                          *
876                          * The adjacent, dirty pages must also be in the
877                          * laundry.  However, their mappings are not checked
878                          * for new references.  Consequently, a recently
879                          * referenced page may be paged out.  However, that
880                          * page will not be prematurely reclaimed.  After page
881                          * out, the page will be placed in the inactive queue,
882                          * where any new references will be detected and the
883                          * page reactivated.
884                          */
885                         error = vm_pageout_clean(m, &numpagedout);
886                         if (error == 0) {
887                                 launder -= numpagedout;
888                                 ss.scanned += numpagedout;
889                         } else if (error == EDEADLK) {
890                                 pageout_lock_miss++;
891                                 vnodes_skipped++;
892                         }
893                         mtx = NULL;
894                         object = NULL;
895                 }
896         }
897         if (mtx != NULL) {
898                 mtx_unlock(mtx);
899                 mtx = NULL;
900         }
901         if (object != NULL) {
902                 VM_OBJECT_WUNLOCK(object);
903                 object = NULL;
904         }
905         vm_pagequeue_lock(pq);
906         vm_pageout_end_scan(&ss);
907         vm_pagequeue_unlock(pq);
908
909         if (launder > 0 && queue == PQ_UNSWAPPABLE) {
910                 queue = PQ_LAUNDRY;
911                 goto scan;
912         }
913
914         /*
915          * Wakeup the sync daemon if we skipped a vnode in a writeable object
916          * and we didn't launder enough pages.
917          */
918         if (vnodes_skipped > 0 && launder > 0)
919                 (void)speedup_syncer();
920
921         return (starting_target - launder);
922 }
923
924 /*
925  * Compute the integer square root.
926  */
927 static u_int
928 isqrt(u_int num)
929 {
930         u_int bit, root, tmp;
931
932         bit = 1u << ((NBBY * sizeof(u_int)) - 2);
933         while (bit > num)
934                 bit >>= 2;
935         root = 0;
936         while (bit != 0) {
937                 tmp = root + bit;
938                 root >>= 1;
939                 if (num >= tmp) {
940                         num -= tmp;
941                         root += bit;
942                 }
943                 bit >>= 2;
944         }
945         return (root);
946 }
947
948 /*
949  * Perform the work of the laundry thread: periodically wake up and determine
950  * whether any pages need to be laundered.  If so, determine the number of pages
951  * that need to be laundered, and launder them.
952  */
953 static void
954 vm_pageout_laundry_worker(void *arg)
955 {
956         struct vm_domain *vmd;
957         struct vm_pagequeue *pq;
958         uint64_t nclean, ndirty, nfreed;
959         int domain, last_target, launder, shortfall, shortfall_cycle, target;
960         bool in_shortfall;
961
962         domain = (uintptr_t)arg;
963         vmd = VM_DOMAIN(domain);
964         pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
965         KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
966
967         shortfall = 0;
968         in_shortfall = false;
969         shortfall_cycle = 0;
970         last_target = target = 0;
971         nfreed = 0;
972
973         /*
974          * Calls to these handlers are serialized by the swap syscall lock.
975          */
976         (void)EVENTHANDLER_REGISTER(swapon, vm_pageout_swapon, vmd,
977             EVENTHANDLER_PRI_ANY);
978         (void)EVENTHANDLER_REGISTER(swapoff, vm_pageout_swapoff, vmd,
979             EVENTHANDLER_PRI_ANY);
980
981         /*
982          * The pageout laundry worker is never done, so loop forever.
983          */
984         for (;;) {
985                 KASSERT(target >= 0, ("negative target %d", target));
986                 KASSERT(shortfall_cycle >= 0,
987                     ("negative cycle %d", shortfall_cycle));
988                 launder = 0;
989
990                 /*
991                  * First determine whether we need to launder pages to meet a
992                  * shortage of free pages.
993                  */
994                 if (shortfall > 0) {
995                         in_shortfall = true;
996                         shortfall_cycle = VM_LAUNDER_RATE / VM_INACT_SCAN_RATE;
997                         target = shortfall;
998                 } else if (!in_shortfall)
999                         goto trybackground;
1000                 else if (shortfall_cycle == 0 || vm_laundry_target(vmd) <= 0) {
1001                         /*
1002                          * We recently entered shortfall and began laundering
1003                          * pages.  If we have completed that laundering run
1004                          * (and we are no longer in shortfall) or we have met
1005                          * our laundry target through other activity, then we
1006                          * can stop laundering pages.
1007                          */
1008                         in_shortfall = false;
1009                         target = 0;
1010                         goto trybackground;
1011                 }
1012                 launder = target / shortfall_cycle--;
1013                 goto dolaundry;
1014
1015                 /*
1016                  * There's no immediate need to launder any pages; see if we
1017                  * meet the conditions to perform background laundering:
1018                  *
1019                  * 1. The ratio of dirty to clean inactive pages exceeds the
1020                  *    background laundering threshold, or
1021                  * 2. we haven't yet reached the target of the current
1022                  *    background laundering run.
1023                  *
1024                  * The background laundering threshold is not a constant.
1025                  * Instead, it is a slowly growing function of the number of
1026                  * clean pages freed by the page daemon since the last
1027                  * background laundering.  Thus, as the ratio of dirty to
1028                  * clean inactive pages grows, the amount of memory pressure
1029                  * required to trigger laundering decreases.  We ensure
1030                  * that the threshold is non-zero after an inactive queue
1031                  * scan, even if that scan failed to free a single clean page.
1032                  */
1033 trybackground:
1034                 nclean = vmd->vmd_free_count +
1035                     vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt;
1036                 ndirty = vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt;
1037                 if (target == 0 && ndirty * isqrt(howmany(nfreed + 1,
1038                     vmd->vmd_free_target - vmd->vmd_free_min)) >= nclean) {
1039                         target = vmd->vmd_background_launder_target;
1040                 }
1041
1042                 /*
1043                  * We have a non-zero background laundering target.  If we've
1044                  * laundered up to our maximum without observing a page daemon
1045                  * request, just stop.  This is a safety belt that ensures we
1046                  * don't launder an excessive amount if memory pressure is low
1047                  * and the ratio of dirty to clean pages is large.  Otherwise,
1048                  * proceed at the background laundering rate.
1049                  */
1050                 if (target > 0) {
1051                         if (nfreed > 0) {
1052                                 nfreed = 0;
1053                                 last_target = target;
1054                         } else if (last_target - target >=
1055                             vm_background_launder_max * PAGE_SIZE / 1024) {
1056                                 target = 0;
1057                         }
1058                         launder = vm_background_launder_rate * PAGE_SIZE / 1024;
1059                         launder /= VM_LAUNDER_RATE;
1060                         if (launder > target)
1061                                 launder = target;
1062                 }
1063
1064 dolaundry:
1065                 if (launder > 0) {
1066                         /*
1067                          * Because of I/O clustering, the number of laundered
1068                          * pages could exceed "target" by the maximum size of
1069                          * a cluster minus one. 
1070                          */
1071                         target -= min(vm_pageout_launder(vmd, launder,
1072                             in_shortfall), target);
1073                         pause("laundp", hz / VM_LAUNDER_RATE);
1074                 }
1075
1076                 /*
1077                  * If we're not currently laundering pages and the page daemon
1078                  * hasn't posted a new request, sleep until the page daemon
1079                  * kicks us.
1080                  */
1081                 vm_pagequeue_lock(pq);
1082                 if (target == 0 && vmd->vmd_laundry_request == VM_LAUNDRY_IDLE)
1083                         (void)mtx_sleep(&vmd->vmd_laundry_request,
1084                             vm_pagequeue_lockptr(pq), PVM, "launds", 0);
1085
1086                 /*
1087                  * If the pagedaemon has indicated that it's in shortfall, start
1088                  * a shortfall laundering unless we're already in the middle of
1089                  * one.  This may preempt a background laundering.
1090                  */
1091                 if (vmd->vmd_laundry_request == VM_LAUNDRY_SHORTFALL &&
1092                     (!in_shortfall || shortfall_cycle == 0)) {
1093                         shortfall = vm_laundry_target(vmd) +
1094                             vmd->vmd_pageout_deficit;
1095                         target = 0;
1096                 } else
1097                         shortfall = 0;
1098
1099                 if (target == 0)
1100                         vmd->vmd_laundry_request = VM_LAUNDRY_IDLE;
1101                 nfreed += vmd->vmd_clean_pages_freed;
1102                 vmd->vmd_clean_pages_freed = 0;
1103                 vm_pagequeue_unlock(pq);
1104         }
1105 }
1106
1107 /*
1108  * Compute the number of pages we want to try to move from the
1109  * active queue to either the inactive or laundry queue.
1110  *
1111  * When scanning active pages during a shortage, we make clean pages
1112  * count more heavily towards the page shortage than dirty pages.
1113  * This is because dirty pages must be laundered before they can be
1114  * reused and thus have less utility when attempting to quickly
1115  * alleviate a free page shortage.  However, this weighting also
1116  * causes the scan to deactivate dirty pages more aggressively,
1117  * improving the effectiveness of clustering.
1118  */
1119 static int
1120 vm_pageout_active_target(struct vm_domain *vmd)
1121 {
1122         int shortage;
1123
1124         shortage = vmd->vmd_inactive_target + vm_paging_target(vmd) -
1125             (vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt +
1126             vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt / act_scan_laundry_weight);
1127         shortage *= act_scan_laundry_weight;
1128         return (shortage);
1129 }
1130
1131 /*
1132  * Scan the active queue.  If there is no shortage of inactive pages, scan a
1133  * small portion of the queue in order to maintain quasi-LRU.
1134  */
1135 static void
1136 vm_pageout_scan_active(struct vm_domain *vmd, int page_shortage)
1137 {
1138         struct scan_state ss;
1139         struct mtx *mtx;
1140         vm_page_t m, marker;
1141         struct vm_pagequeue *pq;
1142         long min_scan;
1143         int act_delta, max_scan, scan_tick;
1144
1145         marker = &vmd->vmd_markers[PQ_ACTIVE];
1146         pq = &vmd->vmd_pagequeues[PQ_ACTIVE];
1147         vm_pagequeue_lock(pq);
1148
1149         /*
1150          * If we're just idle polling attempt to visit every
1151          * active page within 'update_period' seconds.
1152          */
1153         scan_tick = ticks;
1154         if (vm_pageout_update_period != 0) {
1155                 min_scan = pq->pq_cnt;
1156                 min_scan *= scan_tick - vmd->vmd_last_active_scan;
1157                 min_scan /= hz * vm_pageout_update_period;
1158         } else
1159                 min_scan = 0;
1160         if (min_scan > 0 || (page_shortage > 0 && pq->pq_cnt > 0))
1161                 vmd->vmd_last_active_scan = scan_tick;
1162
1163         /*
1164          * Scan the active queue for pages that can be deactivated.  Update
1165          * the per-page activity counter and use it to identify deactivation
1166          * candidates.  Held pages may be deactivated.
1167          *
1168          * To avoid requeuing each page that remains in the active queue, we
1169          * implement the CLOCK algorithm.  To keep the implementation of the
1170          * enqueue operation consistent for all page queues, we use two hands,
1171          * represented by marker pages. Scans begin at the first hand, which
1172          * precedes the second hand in the queue.  When the two hands meet,
1173          * they are moved back to the head and tail of the queue, respectively,
1174          * and scanning resumes.
1175          */
1176         max_scan = page_shortage > 0 ? pq->pq_cnt : min_scan;
1177         mtx = NULL;
1178 act_scan:
1179         vm_pageout_init_scan(&ss, pq, marker, &vmd->vmd_clock[0], max_scan);
1180         while ((m = vm_pageout_next(&ss, false)) != NULL) {
1181                 if (__predict_false(m == &vmd->vmd_clock[1])) {
1182                         vm_pagequeue_lock(pq);
1183                         TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
1184                         TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[1], plinks.q);
1185                         TAILQ_INSERT_HEAD(&pq->pq_pl, &vmd->vmd_clock[0],
1186                             plinks.q);
1187                         TAILQ_INSERT_TAIL(&pq->pq_pl, &vmd->vmd_clock[1],
1188                             plinks.q);
1189                         max_scan -= ss.scanned;
1190                         vm_pageout_end_scan(&ss);
1191                         goto act_scan;
1192                 }
1193                 if (__predict_false((m->flags & PG_MARKER) != 0))
1194                         continue;
1195
1196                 vm_page_change_lock(m, &mtx);
1197
1198                 /*
1199                  * The page may have been disassociated from the queue
1200                  * while locks were dropped.
1201                  */
1202                 if (vm_page_queue(m) != PQ_ACTIVE)
1203                         continue;
1204
1205                 /*
1206                  * Wired pages are dequeued lazily.
1207                  */
1208                 if (vm_page_wired(m)) {
1209                         vm_page_dequeue_deferred(m);
1210                         continue;
1211                 }
1212
1213                 /*
1214                  * Check to see "how much" the page has been used.
1215                  *
1216                  * Test PGA_REFERENCED after calling pmap_ts_referenced() so
1217                  * that a reference from a concurrently destroyed mapping is
1218                  * observed here and now.
1219                  *
1220                  * Perform an unsynchronized object ref count check.  While
1221                  * the page lock ensures that the page is not reallocated to
1222                  * another object, in particular, one with unmanaged mappings
1223                  * that cannot support pmap_ts_referenced(), two races are,
1224                  * nonetheless, possible:
1225                  * 1) The count was transitioning to zero, but we saw a non-
1226                  *    zero value.  pmap_ts_referenced() will return zero
1227                  *    because the page is not mapped.
1228                  * 2) The count was transitioning to one, but we saw zero.
1229                  *    This race delays the detection of a new reference.  At
1230                  *    worst, we will deactivate and reactivate the page.
1231                  */
1232                 if (m->object->ref_count != 0)
1233                         act_delta = pmap_ts_referenced(m);
1234                 else
1235                         act_delta = 0;
1236                 if ((m->aflags & PGA_REFERENCED) != 0) {
1237                         vm_page_aflag_clear(m, PGA_REFERENCED);
1238                         act_delta++;
1239                 }
1240
1241                 /*
1242                  * Advance or decay the act_count based on recent usage.
1243                  */
1244                 if (act_delta != 0) {
1245                         m->act_count += ACT_ADVANCE + act_delta;
1246                         if (m->act_count > ACT_MAX)
1247                                 m->act_count = ACT_MAX;
1248                 } else
1249                         m->act_count -= min(m->act_count, ACT_DECLINE);
1250
1251                 if (m->act_count == 0) {
1252                         /*
1253                          * When not short for inactive pages, let dirty pages go
1254                          * through the inactive queue before moving to the
1255                          * laundry queues.  This gives them some extra time to
1256                          * be reactivated, potentially avoiding an expensive
1257                          * pageout.  However, during a page shortage, the
1258                          * inactive queue is necessarily small, and so dirty
1259                          * pages would only spend a trivial amount of time in
1260                          * the inactive queue.  Therefore, we might as well
1261                          * place them directly in the laundry queue to reduce
1262                          * queuing overhead.
1263                          */
1264                         if (page_shortage <= 0)
1265                                 vm_page_deactivate(m);
1266                         else {
1267                                 /*
1268                                  * Calling vm_page_test_dirty() here would
1269                                  * require acquisition of the object's write
1270                                  * lock.  However, during a page shortage,
1271                                  * directing dirty pages into the laundry
1272                                  * queue is only an optimization and not a
1273                                  * requirement.  Therefore, we simply rely on
1274                                  * the opportunistic updates to the page's
1275                                  * dirty field by the pmap.
1276                                  */
1277                                 if (m->dirty == 0) {
1278                                         vm_page_deactivate(m);
1279                                         page_shortage -=
1280                                             act_scan_laundry_weight;
1281                                 } else {
1282                                         vm_page_launder(m);
1283                                         page_shortage--;
1284                                 }
1285                         }
1286                 }
1287         }
1288         if (mtx != NULL) {
1289                 mtx_unlock(mtx);
1290                 mtx = NULL;
1291         }
1292         vm_pagequeue_lock(pq);
1293         TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
1294         TAILQ_INSERT_AFTER(&pq->pq_pl, marker, &vmd->vmd_clock[0], plinks.q);
1295         vm_pageout_end_scan(&ss);
1296         vm_pagequeue_unlock(pq);
1297 }
1298
1299 static int
1300 vm_pageout_reinsert_inactive_page(struct scan_state *ss, vm_page_t m)
1301 {
1302         struct vm_domain *vmd;
1303
1304         if (m->queue != PQ_INACTIVE || (m->aflags & PGA_ENQUEUED) != 0)
1305                 return (0);
1306         vm_page_aflag_set(m, PGA_ENQUEUED);
1307         if ((m->aflags & PGA_REQUEUE_HEAD) != 0) {
1308                 vmd = vm_pagequeue_domain(m);
1309                 TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q);
1310                 vm_page_aflag_clear(m, PGA_REQUEUE | PGA_REQUEUE_HEAD);
1311         } else if ((m->aflags & PGA_REQUEUE) != 0) {
1312                 TAILQ_INSERT_TAIL(&ss->pq->pq_pl, m, plinks.q);
1313                 vm_page_aflag_clear(m, PGA_REQUEUE | PGA_REQUEUE_HEAD);
1314         } else
1315                 TAILQ_INSERT_BEFORE(ss->marker, m, plinks.q);
1316         return (1);
1317 }
1318
1319 /*
1320  * Re-add stuck pages to the inactive queue.  We will examine them again
1321  * during the next scan.  If the queue state of a page has changed since
1322  * it was physically removed from the page queue in
1323  * vm_pageout_collect_batch(), don't do anything with that page.
1324  */
1325 static void
1326 vm_pageout_reinsert_inactive(struct scan_state *ss, struct vm_batchqueue *bq,
1327     vm_page_t m)
1328 {
1329         struct vm_pagequeue *pq;
1330         int delta;
1331
1332         delta = 0;
1333         pq = ss->pq;
1334
1335         if (m != NULL) {
1336                 if (vm_batchqueue_insert(bq, m))
1337                         return;
1338                 vm_pagequeue_lock(pq);
1339                 delta += vm_pageout_reinsert_inactive_page(ss, m);
1340         } else
1341                 vm_pagequeue_lock(pq);
1342         while ((m = vm_batchqueue_pop(bq)) != NULL)
1343                 delta += vm_pageout_reinsert_inactive_page(ss, m);
1344         vm_pagequeue_cnt_add(pq, delta);
1345         vm_pagequeue_unlock(pq);
1346         vm_batchqueue_init(bq);
1347 }
1348
1349 /*
1350  * Attempt to reclaim the requested number of pages from the inactive queue.
1351  * Returns true if the shortage was addressed.
1352  */
1353 static int
1354 vm_pageout_scan_inactive(struct vm_domain *vmd, int shortage,
1355     int *addl_shortage)
1356 {
1357         struct scan_state ss;
1358         struct vm_batchqueue rq;
1359         struct mtx *mtx;
1360         vm_page_t m, marker;
1361         struct vm_pagequeue *pq;
1362         vm_object_t object;
1363         int act_delta, addl_page_shortage, deficit, page_shortage;
1364         int starting_page_shortage;
1365
1366         /*
1367          * The addl_page_shortage is an estimate of the number of temporarily
1368          * stuck pages in the inactive queue.  In other words, the
1369          * number of pages from the inactive count that should be
1370          * discounted in setting the target for the active queue scan.
1371          */
1372         addl_page_shortage = 0;
1373
1374         /*
1375          * vmd_pageout_deficit counts the number of pages requested in
1376          * allocations that failed because of a free page shortage.  We assume
1377          * that the allocations will be reattempted and thus include the deficit
1378          * in our scan target.
1379          */
1380         deficit = atomic_readandclear_int(&vmd->vmd_pageout_deficit);
1381         starting_page_shortage = page_shortage = shortage + deficit;
1382
1383         mtx = NULL;
1384         object = NULL;
1385         vm_batchqueue_init(&rq);
1386
1387         /*
1388          * Start scanning the inactive queue for pages that we can free.  The
1389          * scan will stop when we reach the target or we have scanned the
1390          * entire queue.  (Note that m->act_count is not used to make
1391          * decisions for the inactive queue, only for the active queue.)
1392          */
1393         marker = &vmd->vmd_markers[PQ_INACTIVE];
1394         pq = &vmd->vmd_pagequeues[PQ_INACTIVE];
1395         vm_pagequeue_lock(pq);
1396         vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
1397         while (page_shortage > 0 && (m = vm_pageout_next(&ss, true)) != NULL) {
1398                 KASSERT((m->flags & PG_MARKER) == 0,
1399                     ("marker page %p was dequeued", m));
1400
1401                 vm_page_change_lock(m, &mtx);
1402
1403 recheck:
1404                 /*
1405                  * The page may have been disassociated from the queue
1406                  * while locks were dropped.
1407                  */
1408                 if (vm_page_queue(m) != PQ_INACTIVE) {
1409                         addl_page_shortage++;
1410                         continue;
1411                 }
1412
1413                 /*
1414                  * The page was re-enqueued after the page queue lock was
1415                  * dropped, or a requeue was requested.  This page gets a second
1416                  * chance.
1417                  */
1418                 if ((m->aflags & (PGA_ENQUEUED | PGA_REQUEUE |
1419                     PGA_REQUEUE_HEAD)) != 0)
1420                         goto reinsert;
1421
1422                 /*
1423                  * Held pages are essentially stuck in the queue.  So,
1424                  * they ought to be discounted from the inactive count.
1425                  * See the description of addl_page_shortage above.
1426                  *
1427                  * Wired pages may not be freed.  Complete their removal
1428                  * from the queue now to avoid needless revisits during
1429                  * future scans.
1430                  */
1431                 if (m->hold_count != 0) {
1432                         addl_page_shortage++;
1433                         goto reinsert;
1434                 }
1435                 if (vm_page_wired(m)) {
1436                         vm_page_dequeue_deferred(m);
1437                         continue;
1438                 }
1439
1440                 if (object != m->object) {
1441                         if (object != NULL)
1442                                 VM_OBJECT_WUNLOCK(object);
1443                         object = m->object;
1444                         if (!VM_OBJECT_TRYWLOCK(object)) {
1445                                 mtx_unlock(mtx);
1446                                 /* Depends on type-stability. */
1447                                 VM_OBJECT_WLOCK(object);
1448                                 mtx_lock(mtx);
1449                                 goto recheck;
1450                         }
1451                 }
1452
1453                 if (vm_page_busied(m)) {
1454                         /*
1455                          * Don't mess with busy pages.  Leave them at
1456                          * the front of the queue.  Most likely, they
1457                          * are being paged out and will leave the
1458                          * queue shortly after the scan finishes.  So,
1459                          * they ought to be discounted from the
1460                          * inactive count.
1461                          */
1462                         addl_page_shortage++;
1463                         goto reinsert;
1464                 }
1465
1466                 /*
1467                  * Invalid pages can be easily freed. They cannot be
1468                  * mapped, vm_page_free() asserts this.
1469                  */
1470                 if (m->valid == 0)
1471                         goto free_page;
1472
1473                 /*
1474                  * If the page has been referenced and the object is not dead,
1475                  * reactivate or requeue the page depending on whether the
1476                  * object is mapped.
1477                  *
1478                  * Test PGA_REFERENCED after calling pmap_ts_referenced() so
1479                  * that a reference from a concurrently destroyed mapping is
1480                  * observed here and now.
1481                  */
1482                 if (object->ref_count != 0)
1483                         act_delta = pmap_ts_referenced(m);
1484                 else {
1485                         KASSERT(!pmap_page_is_mapped(m),
1486                             ("page %p is mapped", m));
1487                         act_delta = 0;
1488                 }
1489                 if ((m->aflags & PGA_REFERENCED) != 0) {
1490                         vm_page_aflag_clear(m, PGA_REFERENCED);
1491                         act_delta++;
1492                 }
1493                 if (act_delta != 0) {
1494                         if (object->ref_count != 0) {
1495                                 VM_CNT_INC(v_reactivated);
1496                                 vm_page_activate(m);
1497
1498                                 /*
1499                                  * Increase the activation count if the page
1500                                  * was referenced while in the inactive queue.
1501                                  * This makes it less likely that the page will
1502                                  * be returned prematurely to the inactive
1503                                  * queue.
1504                                  */
1505                                 m->act_count += act_delta + ACT_ADVANCE;
1506                                 continue;
1507                         } else if ((object->flags & OBJ_DEAD) == 0) {
1508                                 vm_page_aflag_set(m, PGA_REQUEUE);
1509                                 goto reinsert;
1510                         }
1511                 }
1512
1513                 /*
1514                  * If the page appears to be clean at the machine-independent
1515                  * layer, then remove all of its mappings from the pmap in
1516                  * anticipation of freeing it.  If, however, any of the page's
1517                  * mappings allow write access, then the page may still be
1518                  * modified until the last of those mappings are removed.
1519                  */
1520                 if (object->ref_count != 0) {
1521                         vm_page_test_dirty(m);
1522                         if (m->dirty == 0)
1523                                 pmap_remove_all(m);
1524                 }
1525
1526                 /*
1527                  * Clean pages can be freed, but dirty pages must be sent back
1528                  * to the laundry, unless they belong to a dead object.
1529                  * Requeueing dirty pages from dead objects is pointless, as
1530                  * they are being paged out and freed by the thread that
1531                  * destroyed the object.
1532                  */
1533                 if (m->dirty == 0) {
1534 free_page:
1535                         /*
1536                          * Because we dequeued the page and have already
1537                          * checked for concurrent dequeue and enqueue
1538                          * requests, we can safely disassociate the page
1539                          * from the inactive queue.
1540                          */
1541                         KASSERT((m->aflags & PGA_QUEUE_STATE_MASK) == 0,
1542                             ("page %p has queue state", m));
1543                         m->queue = PQ_NONE;
1544                         vm_page_free(m);
1545                         page_shortage--;
1546                 } else if ((object->flags & OBJ_DEAD) == 0)
1547                         vm_page_launder(m);
1548                 continue;
1549 reinsert:
1550                 vm_pageout_reinsert_inactive(&ss, &rq, m);
1551         }
1552         if (mtx != NULL)
1553                 mtx_unlock(mtx);
1554         if (object != NULL)
1555                 VM_OBJECT_WUNLOCK(object);
1556         vm_pageout_reinsert_inactive(&ss, &rq, NULL);
1557         vm_pageout_reinsert_inactive(&ss, &ss.bq, NULL);
1558         vm_pagequeue_lock(pq);
1559         vm_pageout_end_scan(&ss);
1560         vm_pagequeue_unlock(pq);
1561
1562         VM_CNT_ADD(v_dfree, starting_page_shortage - page_shortage);
1563
1564         /*
1565          * Wake up the laundry thread so that it can perform any needed
1566          * laundering.  If we didn't meet our target, we're in shortfall and
1567          * need to launder more aggressively.  If PQ_LAUNDRY is empty and no
1568          * swap devices are configured, the laundry thread has no work to do, so
1569          * don't bother waking it up.
1570          *
1571          * The laundry thread uses the number of inactive queue scans elapsed
1572          * since the last laundering to determine whether to launder again, so
1573          * keep count.
1574          */
1575         if (starting_page_shortage > 0) {
1576                 pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
1577                 vm_pagequeue_lock(pq);
1578                 if (vmd->vmd_laundry_request == VM_LAUNDRY_IDLE &&
1579                     (pq->pq_cnt > 0 || atomic_load_acq_int(&swapdev_enabled))) {
1580                         if (page_shortage > 0) {
1581                                 vmd->vmd_laundry_request = VM_LAUNDRY_SHORTFALL;
1582                                 VM_CNT_INC(v_pdshortfalls);
1583                         } else if (vmd->vmd_laundry_request !=
1584                             VM_LAUNDRY_SHORTFALL)
1585                                 vmd->vmd_laundry_request =
1586                                     VM_LAUNDRY_BACKGROUND;
1587                         wakeup(&vmd->vmd_laundry_request);
1588                 }
1589                 vmd->vmd_clean_pages_freed +=
1590                     starting_page_shortage - page_shortage;
1591                 vm_pagequeue_unlock(pq);
1592         }
1593
1594         /*
1595          * Wakeup the swapout daemon if we didn't free the targeted number of
1596          * pages.
1597          */
1598         if (page_shortage > 0)
1599                 vm_swapout_run();
1600
1601         /*
1602          * If the inactive queue scan fails repeatedly to meet its
1603          * target, kill the largest process.
1604          */
1605         vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage);
1606
1607         /*
1608          * Reclaim pages by swapping out idle processes, if configured to do so.
1609          */
1610         vm_swapout_run_idle();
1611
1612         /*
1613          * See the description of addl_page_shortage above.
1614          */
1615         *addl_shortage = addl_page_shortage + deficit;
1616
1617         return (page_shortage <= 0);
1618 }
1619
1620 static int vm_pageout_oom_vote;
1621
1622 /*
1623  * The pagedaemon threads randlomly select one to perform the
1624  * OOM.  Trying to kill processes before all pagedaemons
1625  * failed to reach free target is premature.
1626  */
1627 static void
1628 vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
1629     int starting_page_shortage)
1630 {
1631         int old_vote;
1632
1633         if (starting_page_shortage <= 0 || starting_page_shortage !=
1634             page_shortage)
1635                 vmd->vmd_oom_seq = 0;
1636         else
1637                 vmd->vmd_oom_seq++;
1638         if (vmd->vmd_oom_seq < vm_pageout_oom_seq) {
1639                 if (vmd->vmd_oom) {
1640                         vmd->vmd_oom = FALSE;
1641                         atomic_subtract_int(&vm_pageout_oom_vote, 1);
1642                 }
1643                 return;
1644         }
1645
1646         /*
1647          * Do not follow the call sequence until OOM condition is
1648          * cleared.
1649          */
1650         vmd->vmd_oom_seq = 0;
1651
1652         if (vmd->vmd_oom)
1653                 return;
1654
1655         vmd->vmd_oom = TRUE;
1656         old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1);
1657         if (old_vote != vm_ndomains - 1)
1658                 return;
1659
1660         /*
1661          * The current pagedaemon thread is the last in the quorum to
1662          * start OOM.  Initiate the selection and signaling of the
1663          * victim.
1664          */
1665         vm_pageout_oom(VM_OOM_MEM);
1666
1667         /*
1668          * After one round of OOM terror, recall our vote.  On the
1669          * next pass, current pagedaemon would vote again if the low
1670          * memory condition is still there, due to vmd_oom being
1671          * false.
1672          */
1673         vmd->vmd_oom = FALSE;
1674         atomic_subtract_int(&vm_pageout_oom_vote, 1);
1675 }
1676
1677 /*
1678  * The OOM killer is the page daemon's action of last resort when
1679  * memory allocation requests have been stalled for a prolonged period
1680  * of time because it cannot reclaim memory.  This function computes
1681  * the approximate number of physical pages that could be reclaimed if
1682  * the specified address space is destroyed.
1683  *
1684  * Private, anonymous memory owned by the address space is the
1685  * principal resource that we expect to recover after an OOM kill.
1686  * Since the physical pages mapped by the address space's COW entries
1687  * are typically shared pages, they are unlikely to be released and so
1688  * they are not counted.
1689  *
1690  * To get to the point where the page daemon runs the OOM killer, its
1691  * efforts to write-back vnode-backed pages may have stalled.  This
1692  * could be caused by a memory allocation deadlock in the write path
1693  * that might be resolved by an OOM kill.  Therefore, physical pages
1694  * belonging to vnode-backed objects are counted, because they might
1695  * be freed without being written out first if the address space holds
1696  * the last reference to an unlinked vnode.
1697  *
1698  * Similarly, physical pages belonging to OBJT_PHYS objects are
1699  * counted because the address space might hold the last reference to
1700  * the object.
1701  */
1702 static long
1703 vm_pageout_oom_pagecount(struct vmspace *vmspace)
1704 {
1705         vm_map_t map;
1706         vm_map_entry_t entry;
1707         vm_object_t obj;
1708         long res;
1709
1710         map = &vmspace->vm_map;
1711         KASSERT(!map->system_map, ("system map"));
1712         sx_assert(&map->lock, SA_LOCKED);
1713         res = 0;
1714         for (entry = map->header.next; entry != &map->header;
1715             entry = entry->next) {
1716                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
1717                         continue;
1718                 obj = entry->object.vm_object;
1719                 if (obj == NULL)
1720                         continue;
1721                 if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 &&
1722                     obj->ref_count != 1)
1723                         continue;
1724                 switch (obj->type) {
1725                 case OBJT_DEFAULT:
1726                 case OBJT_SWAP:
1727                 case OBJT_PHYS:
1728                 case OBJT_VNODE:
1729                         res += obj->resident_page_count;
1730                         break;
1731                 }
1732         }
1733         return (res);
1734 }
1735
1736 static int vm_oom_ratelim_last;
1737 static int vm_oom_pf_secs = 10;
1738 SYSCTL_INT(_vm, OID_AUTO, oom_pf_secs, CTLFLAG_RWTUN, &vm_oom_pf_secs, 0,
1739     "");
1740 static struct mtx vm_oom_ratelim_mtx;
1741
1742 void
1743 vm_pageout_oom(int shortage)
1744 {
1745         struct proc *p, *bigproc;
1746         vm_offset_t size, bigsize;
1747         struct thread *td;
1748         struct vmspace *vm;
1749         int now;
1750         bool breakout;
1751
1752         /*
1753          * For OOM requests originating from vm_fault(), there is a high
1754          * chance that a single large process faults simultaneously in
1755          * several threads.  Also, on an active system running many
1756          * processes of middle-size, like buildworld, all of them
1757          * could fault almost simultaneously as well.
1758          *
1759          * To avoid killing too many processes, rate-limit OOMs
1760          * initiated by vm_fault() time-outs on the waits for free
1761          * pages.
1762          */
1763         mtx_lock(&vm_oom_ratelim_mtx);
1764         now = ticks;
1765         if (shortage == VM_OOM_MEM_PF &&
1766             (u_int)(now - vm_oom_ratelim_last) < hz * vm_oom_pf_secs) {
1767                 mtx_unlock(&vm_oom_ratelim_mtx);
1768                 return;
1769         }
1770         vm_oom_ratelim_last = now;
1771         mtx_unlock(&vm_oom_ratelim_mtx);
1772
1773         /*
1774          * We keep the process bigproc locked once we find it to keep anyone
1775          * from messing with it; however, there is a possibility of
1776          * deadlock if process B is bigproc and one of its child processes
1777          * attempts to propagate a signal to B while we are waiting for A's
1778          * lock while walking this list.  To avoid this, we don't block on
1779          * the process lock but just skip a process if it is already locked.
1780          */
1781         bigproc = NULL;
1782         bigsize = 0;
1783         sx_slock(&allproc_lock);
1784         FOREACH_PROC_IN_SYSTEM(p) {
1785                 PROC_LOCK(p);
1786
1787                 /*
1788                  * If this is a system, protected or killed process, skip it.
1789                  */
1790                 if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC |
1791                     P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 ||
1792                     p->p_pid == 1 || P_KILLED(p) ||
1793                     (p->p_pid < 48 && swap_pager_avail != 0)) {
1794                         PROC_UNLOCK(p);
1795                         continue;
1796                 }
1797                 /*
1798                  * If the process is in a non-running type state,
1799                  * don't touch it.  Check all the threads individually.
1800                  */
1801                 breakout = false;
1802                 FOREACH_THREAD_IN_PROC(p, td) {
1803                         thread_lock(td);
1804                         if (!TD_ON_RUNQ(td) &&
1805                             !TD_IS_RUNNING(td) &&
1806                             !TD_IS_SLEEPING(td) &&
1807                             !TD_IS_SUSPENDED(td) &&
1808                             !TD_IS_SWAPPED(td)) {
1809                                 thread_unlock(td);
1810                                 breakout = true;
1811                                 break;
1812                         }
1813                         thread_unlock(td);
1814                 }
1815                 if (breakout) {
1816                         PROC_UNLOCK(p);
1817                         continue;
1818                 }
1819                 /*
1820                  * get the process size
1821                  */
1822                 vm = vmspace_acquire_ref(p);
1823                 if (vm == NULL) {
1824                         PROC_UNLOCK(p);
1825                         continue;
1826                 }
1827                 _PHOLD_LITE(p);
1828                 PROC_UNLOCK(p);
1829                 sx_sunlock(&allproc_lock);
1830                 if (!vm_map_trylock_read(&vm->vm_map)) {
1831                         vmspace_free(vm);
1832                         sx_slock(&allproc_lock);
1833                         PRELE(p);
1834                         continue;
1835                 }
1836                 size = vmspace_swap_count(vm);
1837                 if (shortage == VM_OOM_MEM || shortage == VM_OOM_MEM_PF)
1838                         size += vm_pageout_oom_pagecount(vm);
1839                 vm_map_unlock_read(&vm->vm_map);
1840                 vmspace_free(vm);
1841                 sx_slock(&allproc_lock);
1842
1843                 /*
1844                  * If this process is bigger than the biggest one,
1845                  * remember it.
1846                  */
1847                 if (size > bigsize) {
1848                         if (bigproc != NULL)
1849                                 PRELE(bigproc);
1850                         bigproc = p;
1851                         bigsize = size;
1852                 } else {
1853                         PRELE(p);
1854                 }
1855         }
1856         sx_sunlock(&allproc_lock);
1857         if (bigproc != NULL) {
1858                 if (vm_panic_on_oom != 0)
1859                         panic("out of swap space");
1860                 PROC_LOCK(bigproc);
1861                 killproc(bigproc, "out of swap space");
1862                 sched_nice(bigproc, PRIO_MIN);
1863                 _PRELE(bigproc);
1864                 PROC_UNLOCK(bigproc);
1865         }
1866 }
1867
1868 static bool
1869 vm_pageout_lowmem(void)
1870 {
1871         static int lowmem_ticks = 0;
1872         int last;
1873
1874         last = atomic_load_int(&lowmem_ticks);
1875         while ((u_int)(ticks - last) / hz >= lowmem_period) {
1876                 if (atomic_fcmpset_int(&lowmem_ticks, &last, ticks) == 0)
1877                         continue;
1878
1879                 /*
1880                  * Decrease registered cache sizes.
1881                  */
1882                 SDT_PROBE0(vm, , , vm__lowmem_scan);
1883                 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_PAGES);
1884
1885                 /*
1886                  * We do this explicitly after the caches have been
1887                  * drained above.
1888                  */
1889                 uma_reclaim();
1890                 return (true);
1891         }
1892         return (false);
1893 }
1894
1895 static void
1896 vm_pageout_worker(void *arg)
1897 {
1898         struct vm_domain *vmd;
1899         u_int ofree;
1900         int addl_shortage, domain, shortage;
1901         bool target_met;
1902
1903         domain = (uintptr_t)arg;
1904         vmd = VM_DOMAIN(domain);
1905         shortage = 0;
1906         target_met = true;
1907
1908         /*
1909          * XXXKIB It could be useful to bind pageout daemon threads to
1910          * the cores belonging to the domain, from which vm_page_array
1911          * is allocated.
1912          */
1913
1914         KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
1915         vmd->vmd_last_active_scan = ticks;
1916
1917         /*
1918          * The pageout daemon worker is never done, so loop forever.
1919          */
1920         while (TRUE) {
1921                 vm_domain_pageout_lock(vmd);
1922
1923                 /*
1924                  * We need to clear wanted before we check the limits.  This
1925                  * prevents races with wakers who will check wanted after they
1926                  * reach the limit.
1927                  */
1928                 atomic_store_int(&vmd->vmd_pageout_wanted, 0);
1929
1930                 /*
1931                  * Might the page daemon need to run again?
1932                  */
1933                 if (vm_paging_needed(vmd, vmd->vmd_free_count)) {
1934                         /*
1935                          * Yes.  If the scan failed to produce enough free
1936                          * pages, sleep uninterruptibly for some time in the
1937                          * hope that the laundry thread will clean some pages.
1938                          */
1939                         vm_domain_pageout_unlock(vmd);
1940                         if (!target_met)
1941                                 pause("pwait", hz / VM_INACT_SCAN_RATE);
1942                 } else {
1943                         /*
1944                          * No, sleep until the next wakeup or until pages
1945                          * need to have their reference stats updated.
1946                          */
1947                         if (mtx_sleep(&vmd->vmd_pageout_wanted,
1948                             vm_domain_pageout_lockptr(vmd), PDROP | PVM,
1949                             "psleep", hz / VM_INACT_SCAN_RATE) == 0)
1950                                 VM_CNT_INC(v_pdwakeups);
1951                 }
1952
1953                 /* Prevent spurious wakeups by ensuring that wanted is set. */
1954                 atomic_store_int(&vmd->vmd_pageout_wanted, 1);
1955
1956                 /*
1957                  * Use the controller to calculate how many pages to free in
1958                  * this interval, and scan the inactive queue.  If the lowmem
1959                  * handlers appear to have freed up some pages, subtract the
1960                  * difference from the inactive queue scan target.
1961                  */
1962                 shortage = pidctrl_daemon(&vmd->vmd_pid, vmd->vmd_free_count);
1963                 if (shortage > 0) {
1964                         ofree = vmd->vmd_free_count;
1965                         if (vm_pageout_lowmem() && vmd->vmd_free_count > ofree)
1966                                 shortage -= min(vmd->vmd_free_count - ofree,
1967                                     (u_int)shortage);
1968                         target_met = vm_pageout_scan_inactive(vmd, shortage,
1969                             &addl_shortage);
1970                 } else
1971                         addl_shortage = 0;
1972
1973                 /*
1974                  * Scan the active queue.  A positive value for shortage
1975                  * indicates that we must aggressively deactivate pages to avoid
1976                  * a shortfall.
1977                  */
1978                 shortage = vm_pageout_active_target(vmd) + addl_shortage;
1979                 vm_pageout_scan_active(vmd, shortage);
1980         }
1981 }
1982
1983 /*
1984  *      vm_pageout_init initialises basic pageout daemon settings.
1985  */
1986 static void
1987 vm_pageout_init_domain(int domain)
1988 {
1989         struct vm_domain *vmd;
1990         struct sysctl_oid *oid;
1991
1992         vmd = VM_DOMAIN(domain);
1993         vmd->vmd_interrupt_free_min = 2;
1994
1995         /*
1996          * v_free_reserved needs to include enough for the largest
1997          * swap pager structures plus enough for any pv_entry structs
1998          * when paging. 
1999          */
2000         if (vmd->vmd_page_count > 1024)
2001                 vmd->vmd_free_min = 4 + (vmd->vmd_page_count - 1024) / 200;
2002         else
2003                 vmd->vmd_free_min = 4;
2004         vmd->vmd_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
2005             vmd->vmd_interrupt_free_min;
2006         vmd->vmd_free_reserved = vm_pageout_page_count +
2007             vmd->vmd_pageout_free_min + (vmd->vmd_page_count / 768);
2008         vmd->vmd_free_severe = vmd->vmd_free_min / 2;
2009         vmd->vmd_free_target = 4 * vmd->vmd_free_min + vmd->vmd_free_reserved;
2010         vmd->vmd_free_min += vmd->vmd_free_reserved;
2011         vmd->vmd_free_severe += vmd->vmd_free_reserved;
2012         vmd->vmd_inactive_target = (3 * vmd->vmd_free_target) / 2;
2013         if (vmd->vmd_inactive_target > vmd->vmd_free_count / 3)
2014                 vmd->vmd_inactive_target = vmd->vmd_free_count / 3;
2015
2016         /*
2017          * Set the default wakeup threshold to be 10% below the paging
2018          * target.  This keeps the steady state out of shortfall.
2019          */
2020         vmd->vmd_pageout_wakeup_thresh = (vmd->vmd_free_target / 10) * 9;
2021
2022         /*
2023          * Target amount of memory to move out of the laundry queue during a
2024          * background laundering.  This is proportional to the amount of system
2025          * memory.
2026          */
2027         vmd->vmd_background_launder_target = (vmd->vmd_free_target -
2028             vmd->vmd_free_min) / 10;
2029
2030         /* Initialize the pageout daemon pid controller. */
2031         pidctrl_init(&vmd->vmd_pid, hz / VM_INACT_SCAN_RATE,
2032             vmd->vmd_free_target, PIDCTRL_BOUND,
2033             PIDCTRL_KPD, PIDCTRL_KID, PIDCTRL_KDD);
2034         oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(vmd->vmd_oid), OID_AUTO,
2035             "pidctrl", CTLFLAG_RD, NULL, "");
2036         pidctrl_init_sysctl(&vmd->vmd_pid, SYSCTL_CHILDREN(oid));
2037 }
2038
2039 static void
2040 vm_pageout_init(void)
2041 {
2042         u_int freecount;
2043         int i;
2044
2045         /*
2046          * Initialize some paging parameters.
2047          */
2048         if (vm_cnt.v_page_count < 2000)
2049                 vm_pageout_page_count = 8;
2050
2051         freecount = 0;
2052         for (i = 0; i < vm_ndomains; i++) {
2053                 struct vm_domain *vmd;
2054
2055                 vm_pageout_init_domain(i);
2056                 vmd = VM_DOMAIN(i);
2057                 vm_cnt.v_free_reserved += vmd->vmd_free_reserved;
2058                 vm_cnt.v_free_target += vmd->vmd_free_target;
2059                 vm_cnt.v_free_min += vmd->vmd_free_min;
2060                 vm_cnt.v_inactive_target += vmd->vmd_inactive_target;
2061                 vm_cnt.v_pageout_free_min += vmd->vmd_pageout_free_min;
2062                 vm_cnt.v_interrupt_free_min += vmd->vmd_interrupt_free_min;
2063                 vm_cnt.v_free_severe += vmd->vmd_free_severe;
2064                 freecount += vmd->vmd_free_count;
2065         }
2066
2067         /*
2068          * Set interval in seconds for active scan.  We want to visit each
2069          * page at least once every ten minutes.  This is to prevent worst
2070          * case paging behaviors with stale active LRU.
2071          */
2072         if (vm_pageout_update_period == 0)
2073                 vm_pageout_update_period = 600;
2074
2075         if (vm_page_max_wired == 0)
2076                 vm_page_max_wired = freecount / 3;
2077 }
2078
2079 /*
2080  *     vm_pageout is the high level pageout daemon.
2081  */
2082 static void
2083 vm_pageout(void)
2084 {
2085         struct proc *p;
2086         struct thread *td;
2087         int error, first, i;
2088
2089         p = curproc;
2090         td = curthread;
2091
2092         mtx_init(&vm_oom_ratelim_mtx, "vmoomr", NULL, MTX_DEF);
2093         swap_pager_swap_init();
2094         for (first = -1, i = 0; i < vm_ndomains; i++) {
2095                 if (VM_DOMAIN_EMPTY(i)) {
2096                         if (bootverbose)
2097                                 printf("domain %d empty; skipping pageout\n",
2098                                     i);
2099                         continue;
2100                 }
2101                 if (first == -1)
2102                         first = i;
2103                 else {
2104                         error = kthread_add(vm_pageout_worker,
2105                             (void *)(uintptr_t)i, p, NULL, 0, 0, "dom%d", i);
2106                         if (error != 0)
2107                                 panic("starting pageout for domain %d: %d\n",
2108                                     i, error);
2109                 }
2110                 error = kthread_add(vm_pageout_laundry_worker,
2111                     (void *)(uintptr_t)i, p, NULL, 0, 0, "laundry: dom%d", i);
2112                 if (error != 0)
2113                         panic("starting laundry for domain %d: %d", i, error);
2114         }
2115         error = kthread_add(uma_reclaim_worker, NULL, p, NULL, 0, 0, "uma");
2116         if (error != 0)
2117                 panic("starting uma_reclaim helper, error %d\n", error);
2118
2119         snprintf(td->td_name, sizeof(td->td_name), "dom%d", first);
2120         vm_pageout_worker((void *)(uintptr_t)first);
2121 }
2122
2123 /*
2124  * Perform an advisory wakeup of the page daemon.
2125  */
2126 void
2127 pagedaemon_wakeup(int domain)
2128 {
2129         struct vm_domain *vmd;
2130
2131         vmd = VM_DOMAIN(domain);
2132         vm_domain_pageout_assert_unlocked(vmd);
2133         if (curproc == pageproc)
2134                 return;
2135
2136         if (atomic_fetchadd_int(&vmd->vmd_pageout_wanted, 1) == 0) {
2137                 vm_domain_pageout_lock(vmd);
2138                 atomic_store_int(&vmd->vmd_pageout_wanted, 1);
2139                 wakeup(&vmd->vmd_pageout_wanted);
2140                 vm_domain_pageout_unlock(vmd);
2141         }
2142 }