]> CyberLeo.Net >> Repos - FreeBSD/releng/9.1.git/blob - sys/vm/vm_pageout.c
MFC r239655:
[FreeBSD/releng/9.1.git] / sys / vm / vm_pageout.c
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  * Copyright (c) 2005 Yahoo! Technologies Norway AS
9  * All rights reserved.
10  *
11  * This code is derived from software contributed to Berkeley by
12  * The Mach Operating System project at Carnegie-Mellon University.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *      This product includes software developed by the University of
25  *      California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
43  *
44  *
45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46  * All rights reserved.
47  *
48  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49  *
50  * Permission to use, copy, modify and distribute this software and
51  * its documentation is hereby granted, provided that both the copyright
52  * notice and this permission notice appear in all copies of the
53  * software, derivative works or modified versions, and any portions
54  * thereof, and that both notices appear in supporting documentation.
55  *
56  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59  *
60  * Carnegie Mellon requests users of this software to return to
61  *
62  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63  *  School of Computer Science
64  *  Carnegie Mellon University
65  *  Pittsburgh PA 15213-3890
66  *
67  * any improvements or extensions that they make and grant Carnegie the
68  * rights to redistribute these changes.
69  */
70
71 /*
72  *      The proverbial page-out daemon.
73  */
74
75 #include <sys/cdefs.h>
76 __FBSDID("$FreeBSD$");
77
78 #include "opt_vm.h"
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/eventhandler.h>
83 #include <sys/lock.h>
84 #include <sys/mutex.h>
85 #include <sys/proc.h>
86 #include <sys/kthread.h>
87 #include <sys/ktr.h>
88 #include <sys/mount.h>
89 #include <sys/racct.h>
90 #include <sys/resourcevar.h>
91 #include <sys/sched.h>
92 #include <sys/signalvar.h>
93 #include <sys/vnode.h>
94 #include <sys/vmmeter.h>
95 #include <sys/sx.h>
96 #include <sys/sysctl.h>
97
98 #include <vm/vm.h>
99 #include <vm/vm_param.h>
100 #include <vm/vm_object.h>
101 #include <vm/vm_page.h>
102 #include <vm/vm_map.h>
103 #include <vm/vm_pageout.h>
104 #include <vm/vm_pager.h>
105 #include <vm/swap_pager.h>
106 #include <vm/vm_extern.h>
107 #include <vm/uma.h>
108
109 /*
110  * System initialization
111  */
112
113 /* the kernel process "vm_pageout"*/
114 static void vm_pageout(void);
115 static int vm_pageout_clean(vm_page_t);
116 static void vm_pageout_scan(int pass);
117
118 struct proc *pageproc;
119
120 static struct kproc_desc page_kp = {
121         "pagedaemon",
122         vm_pageout,
123         &pageproc
124 };
125 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start,
126     &page_kp);
127
128 #if !defined(NO_SWAPPING)
129 /* the kernel process "vm_daemon"*/
130 static void vm_daemon(void);
131 static struct   proc *vmproc;
132
133 static struct kproc_desc vm_kp = {
134         "vmdaemon",
135         vm_daemon,
136         &vmproc
137 };
138 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
139 #endif
140
141
142 int vm_pages_needed;            /* Event on which pageout daemon sleeps */
143 int vm_pageout_deficit;         /* Estimated number of pages deficit */
144 int vm_pageout_pages_needed;    /* flag saying that the pageout daemon needs pages */
145
146 #if !defined(NO_SWAPPING)
147 static int vm_pageout_req_swapout;      /* XXX */
148 static int vm_daemon_needed;
149 static struct mtx vm_daemon_mtx;
150 /* Allow for use by vm_pageout before vm_daemon is initialized. */
151 MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
152 #endif
153 static int vm_max_launder = 32;
154 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
155 static int vm_pageout_full_stats_interval = 0;
156 static int vm_pageout_algorithm=0;
157 static int defer_swap_pageouts=0;
158 static int disable_swap_pageouts=0;
159
160 #if defined(NO_SWAPPING)
161 static int vm_swap_enabled=0;
162 static int vm_swap_idle_enabled=0;
163 #else
164 static int vm_swap_enabled=1;
165 static int vm_swap_idle_enabled=0;
166 #endif
167
168 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
169         CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
170
171 SYSCTL_INT(_vm, OID_AUTO, max_launder,
172         CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
173
174 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
175         CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
176
177 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
178         CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
179
180 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
181         CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
182
183 #if defined(NO_SWAPPING)
184 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
185         CTLFLAG_RD, &vm_swap_enabled, 0, "Enable entire process swapout");
186 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
187         CTLFLAG_RD, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
188 #else
189 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
190         CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
191 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
192         CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
193 #endif
194
195 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
196         CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
197
198 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
199         CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
200
201 static int pageout_lock_miss;
202 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
203         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
204
205 #define VM_PAGEOUT_PAGE_COUNT 16
206 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
207
208 int vm_page_max_wired;          /* XXX max # of wired pages system-wide */
209 SYSCTL_INT(_vm, OID_AUTO, max_wired,
210         CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
211
212 #if !defined(NO_SWAPPING)
213 static void vm_pageout_map_deactivate_pages(vm_map_t, long);
214 static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
215 static void vm_req_vmdaemon(int req);
216 #endif
217 static void vm_pageout_page_stats(void);
218
219 /*
220  * Initialize a dummy page for marking the caller's place in the specified
221  * paging queue.  In principle, this function only needs to set the flag
222  * PG_MARKER.  Nonetheless, it sets the flag VPO_BUSY and initializes the hold
223  * count to one as safety precautions.
224  */ 
225 static void
226 vm_pageout_init_marker(vm_page_t marker, u_short queue)
227 {
228
229         bzero(marker, sizeof(*marker));
230         marker->flags = PG_MARKER;
231         marker->oflags = VPO_BUSY;
232         marker->queue = queue;
233         marker->hold_count = 1;
234 }
235
236 /*
237  * vm_pageout_fallback_object_lock:
238  * 
239  * Lock vm object currently associated with `m'. VM_OBJECT_TRYLOCK is
240  * known to have failed and page queue must be either PQ_ACTIVE or
241  * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
242  * while locking the vm object.  Use marker page to detect page queue
243  * changes and maintain notion of next page on page queue.  Return
244  * TRUE if no changes were detected, FALSE otherwise.  vm object is
245  * locked on return.
246  * 
247  * This function depends on both the lock portion of struct vm_object
248  * and normal struct vm_page being type stable.
249  */
250 boolean_t
251 vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
252 {
253         struct vm_page marker;
254         boolean_t unchanged;
255         u_short queue;
256         vm_object_t object;
257
258         queue = m->queue;
259         vm_pageout_init_marker(&marker, queue);
260         object = m->object;
261         
262         TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl,
263                            m, &marker, pageq);
264         vm_page_unlock_queues();
265         vm_page_unlock(m);
266         VM_OBJECT_LOCK(object);
267         vm_page_lock(m);
268         vm_page_lock_queues();
269
270         /* Page queue might have changed. */
271         *next = TAILQ_NEXT(&marker, pageq);
272         unchanged = (m->queue == queue &&
273                      m->object == object &&
274                      &marker == TAILQ_NEXT(m, pageq));
275         TAILQ_REMOVE(&vm_page_queues[queue].pl,
276                      &marker, pageq);
277         return (unchanged);
278 }
279
280 /*
281  * Lock the page while holding the page queue lock.  Use marker page
282  * to detect page queue changes and maintain notion of next page on
283  * page queue.  Return TRUE if no changes were detected, FALSE
284  * otherwise.  The page is locked on return. The page queue lock might
285  * be dropped and reacquired.
286  *
287  * This function depends on normal struct vm_page being type stable.
288  */
289 boolean_t
290 vm_pageout_page_lock(vm_page_t m, vm_page_t *next)
291 {
292         struct vm_page marker;
293         boolean_t unchanged;
294         u_short queue;
295
296         vm_page_lock_assert(m, MA_NOTOWNED);
297         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
298
299         if (vm_page_trylock(m))
300                 return (TRUE);
301
302         queue = m->queue;
303         vm_pageout_init_marker(&marker, queue);
304
305         TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl, m, &marker, pageq);
306         vm_page_unlock_queues();
307         vm_page_lock(m);
308         vm_page_lock_queues();
309
310         /* Page queue might have changed. */
311         *next = TAILQ_NEXT(&marker, pageq);
312         unchanged = (m->queue == queue && &marker == TAILQ_NEXT(m, pageq));
313         TAILQ_REMOVE(&vm_page_queues[queue].pl, &marker, pageq);
314         return (unchanged);
315 }
316
317 /*
318  * vm_pageout_clean:
319  *
320  * Clean the page and remove it from the laundry.
321  * 
322  * We set the busy bit to cause potential page faults on this page to
323  * block.  Note the careful timing, however, the busy bit isn't set till
324  * late and we cannot do anything that will mess with the page.
325  */
326 static int
327 vm_pageout_clean(vm_page_t m)
328 {
329         vm_object_t object;
330         vm_page_t mc[2*vm_pageout_page_count], pb, ps;
331         int pageout_count;
332         int ib, is, page_base;
333         vm_pindex_t pindex = m->pindex;
334
335         vm_page_lock_assert(m, MA_OWNED);
336         object = m->object;
337         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
338
339         /*
340          * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
341          * with the new swapper, but we could have serious problems paging
342          * out other object types if there is insufficient memory.  
343          *
344          * Unfortunately, checking free memory here is far too late, so the
345          * check has been moved up a procedural level.
346          */
347
348         /*
349          * Can't clean the page if it's busy or held.
350          */
351         KASSERT(m->busy == 0 && (m->oflags & VPO_BUSY) == 0,
352             ("vm_pageout_clean: page %p is busy", m));
353         KASSERT(m->hold_count == 0, ("vm_pageout_clean: page %p is held", m));
354         vm_page_unlock(m);
355
356         mc[vm_pageout_page_count] = pb = ps = m;
357         pageout_count = 1;
358         page_base = vm_pageout_page_count;
359         ib = 1;
360         is = 1;
361
362         /*
363          * Scan object for clusterable pages.
364          *
365          * We can cluster ONLY if: ->> the page is NOT
366          * clean, wired, busy, held, or mapped into a
367          * buffer, and one of the following:
368          * 1) The page is inactive, or a seldom used
369          *    active page.
370          * -or-
371          * 2) we force the issue.
372          *
373          * During heavy mmap/modification loads the pageout
374          * daemon can really fragment the underlying file
375          * due to flushing pages out of order and not trying
376          * align the clusters (which leave sporatic out-of-order
377          * holes).  To solve this problem we do the reverse scan
378          * first and attempt to align our cluster, then do a 
379          * forward scan if room remains.
380          */
381 more:
382         while (ib && pageout_count < vm_pageout_page_count) {
383                 vm_page_t p;
384
385                 if (ib > pindex) {
386                         ib = 0;
387                         break;
388                 }
389
390                 if ((p = vm_page_prev(pb)) == NULL ||
391                     (p->oflags & VPO_BUSY) != 0 || p->busy != 0) {
392                         ib = 0;
393                         break;
394                 }
395                 vm_page_lock(p);
396                 vm_page_test_dirty(p);
397                 if (p->dirty == 0 ||
398                     p->queue != PQ_INACTIVE ||
399                     p->hold_count != 0) {       /* may be undergoing I/O */
400                         vm_page_unlock(p);
401                         ib = 0;
402                         break;
403                 }
404                 vm_page_unlock(p);
405                 mc[--page_base] = pb = p;
406                 ++pageout_count;
407                 ++ib;
408                 /*
409                  * alignment boundry, stop here and switch directions.  Do
410                  * not clear ib.
411                  */
412                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
413                         break;
414         }
415
416         while (pageout_count < vm_pageout_page_count && 
417             pindex + is < object->size) {
418                 vm_page_t p;
419
420                 if ((p = vm_page_next(ps)) == NULL ||
421                     (p->oflags & VPO_BUSY) != 0 || p->busy != 0)
422                         break;
423                 vm_page_lock(p);
424                 vm_page_test_dirty(p);
425                 if (p->dirty == 0 ||
426                     p->queue != PQ_INACTIVE ||
427                     p->hold_count != 0) {       /* may be undergoing I/O */
428                         vm_page_unlock(p);
429                         break;
430                 }
431                 vm_page_unlock(p);
432                 mc[page_base + pageout_count] = ps = p;
433                 ++pageout_count;
434                 ++is;
435         }
436
437         /*
438          * If we exhausted our forward scan, continue with the reverse scan
439          * when possible, even past a page boundry.  This catches boundry
440          * conditions.
441          */
442         if (ib && pageout_count < vm_pageout_page_count)
443                 goto more;
444
445         /*
446          * we allow reads during pageouts...
447          */
448         return (vm_pageout_flush(&mc[page_base], pageout_count, 0, 0, NULL,
449             NULL));
450 }
451
452 /*
453  * vm_pageout_flush() - launder the given pages
454  *
455  *      The given pages are laundered.  Note that we setup for the start of
456  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
457  *      reference count all in here rather then in the parent.  If we want
458  *      the parent to do more sophisticated things we may have to change
459  *      the ordering.
460  *
461  *      Returned runlen is the count of pages between mreq and first
462  *      page after mreq with status VM_PAGER_AGAIN.
463  *      *eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
464  *      for any page in runlen set.
465  */
466 int
467 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
468     boolean_t *eio)
469 {
470         vm_object_t object = mc[0]->object;
471         int pageout_status[count];
472         int numpagedout = 0;
473         int i, runlen;
474
475         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
476         mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
477
478         /*
479          * Initiate I/O.  Bump the vm_page_t->busy counter and
480          * mark the pages read-only.
481          *
482          * We do not have to fixup the clean/dirty bits here... we can
483          * allow the pager to do it after the I/O completes.
484          *
485          * NOTE! mc[i]->dirty may be partial or fragmented due to an
486          * edge case with file fragments.
487          */
488         for (i = 0; i < count; i++) {
489                 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
490                     ("vm_pageout_flush: partially invalid page %p index %d/%d",
491                         mc[i], i, count));
492                 vm_page_io_start(mc[i]);
493                 pmap_remove_write(mc[i]);
494         }
495         vm_object_pip_add(object, count);
496
497         vm_pager_put_pages(object, mc, count, flags, pageout_status);
498
499         runlen = count - mreq;
500         if (eio != NULL)
501                 *eio = FALSE;
502         for (i = 0; i < count; i++) {
503                 vm_page_t mt = mc[i];
504
505                 KASSERT(pageout_status[i] == VM_PAGER_PEND ||
506                     (mt->aflags & PGA_WRITEABLE) == 0,
507                     ("vm_pageout_flush: page %p is not write protected", mt));
508                 switch (pageout_status[i]) {
509                 case VM_PAGER_OK:
510                 case VM_PAGER_PEND:
511                         numpagedout++;
512                         break;
513                 case VM_PAGER_BAD:
514                         /*
515                          * Page outside of range of object. Right now we
516                          * essentially lose the changes by pretending it
517                          * worked.
518                          */
519                         vm_page_undirty(mt);
520                         break;
521                 case VM_PAGER_ERROR:
522                 case VM_PAGER_FAIL:
523                         /*
524                          * If page couldn't be paged out, then reactivate the
525                          * page so it doesn't clog the inactive list.  (We
526                          * will try paging out it again later).
527                          */
528                         vm_page_lock(mt);
529                         vm_page_activate(mt);
530                         vm_page_unlock(mt);
531                         if (eio != NULL && i >= mreq && i - mreq < runlen)
532                                 *eio = TRUE;
533                         break;
534                 case VM_PAGER_AGAIN:
535                         if (i >= mreq && i - mreq < runlen)
536                                 runlen = i - mreq;
537                         break;
538                 }
539
540                 /*
541                  * If the operation is still going, leave the page busy to
542                  * block all other accesses. Also, leave the paging in
543                  * progress indicator set so that we don't attempt an object
544                  * collapse.
545                  */
546                 if (pageout_status[i] != VM_PAGER_PEND) {
547                         vm_object_pip_wakeup(object);
548                         vm_page_io_finish(mt);
549                         if (vm_page_count_severe()) {
550                                 vm_page_lock(mt);
551                                 vm_page_try_to_cache(mt);
552                                 vm_page_unlock(mt);
553                         }
554                 }
555         }
556         if (prunlen != NULL)
557                 *prunlen = runlen;
558         return (numpagedout);
559 }
560
561 #if !defined(NO_SWAPPING)
562 /*
563  *      vm_pageout_object_deactivate_pages
564  *
565  *      Deactivate enough pages to satisfy the inactive target
566  *      requirements.
567  *
568  *      The object and map must be locked.
569  */
570 static void
571 vm_pageout_object_deactivate_pages(pmap_t pmap, vm_object_t first_object,
572     long desired)
573 {
574         vm_object_t backing_object, object;
575         vm_page_t p;
576         int actcount, remove_mode;
577
578         VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
579         if (first_object->type == OBJT_DEVICE ||
580             first_object->type == OBJT_SG)
581                 return;
582         for (object = first_object;; object = backing_object) {
583                 if (pmap_resident_count(pmap) <= desired)
584                         goto unlock_return;
585                 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
586                 if (object->type == OBJT_PHYS || object->paging_in_progress)
587                         goto unlock_return;
588
589                 remove_mode = 0;
590                 if (object->shadow_count > 1)
591                         remove_mode = 1;
592                 /*
593                  * Scan the object's entire memory queue.
594                  */
595                 TAILQ_FOREACH(p, &object->memq, listq) {
596                         if (pmap_resident_count(pmap) <= desired)
597                                 goto unlock_return;
598                         if ((p->oflags & VPO_BUSY) != 0 || p->busy != 0)
599                                 continue;
600                         PCPU_INC(cnt.v_pdpages);
601                         vm_page_lock(p);
602                         if (p->wire_count != 0 || p->hold_count != 0 ||
603                             !pmap_page_exists_quick(pmap, p)) {
604                                 vm_page_unlock(p);
605                                 continue;
606                         }
607                         actcount = pmap_ts_referenced(p);
608                         if ((p->aflags & PGA_REFERENCED) != 0) {
609                                 if (actcount == 0)
610                                         actcount = 1;
611                                 vm_page_aflag_clear(p, PGA_REFERENCED);
612                         }
613                         if (p->queue != PQ_ACTIVE && actcount != 0) {
614                                 vm_page_activate(p);
615                                 p->act_count += actcount;
616                         } else if (p->queue == PQ_ACTIVE) {
617                                 if (actcount == 0) {
618                                         p->act_count -= min(p->act_count,
619                                             ACT_DECLINE);
620                                         if (!remove_mode &&
621                                             (vm_pageout_algorithm ||
622                                             p->act_count == 0)) {
623                                                 pmap_remove_all(p);
624                                                 vm_page_deactivate(p);
625                                         } else {
626                                                 vm_page_lock_queues();
627                                                 vm_page_requeue(p);
628                                                 vm_page_unlock_queues();
629                                         }
630                                 } else {
631                                         vm_page_activate(p);
632                                         if (p->act_count < ACT_MAX -
633                                             ACT_ADVANCE)
634                                                 p->act_count += ACT_ADVANCE;
635                                         vm_page_lock_queues();
636                                         vm_page_requeue(p);
637                                         vm_page_unlock_queues();
638                                 }
639                         } else if (p->queue == PQ_INACTIVE)
640                                 pmap_remove_all(p);
641                         vm_page_unlock(p);
642                 }
643                 if ((backing_object = object->backing_object) == NULL)
644                         goto unlock_return;
645                 VM_OBJECT_LOCK(backing_object);
646                 if (object != first_object)
647                         VM_OBJECT_UNLOCK(object);
648         }
649 unlock_return:
650         if (object != first_object)
651                 VM_OBJECT_UNLOCK(object);
652 }
653
654 /*
655  * deactivate some number of pages in a map, try to do it fairly, but
656  * that is really hard to do.
657  */
658 static void
659 vm_pageout_map_deactivate_pages(map, desired)
660         vm_map_t map;
661         long desired;
662 {
663         vm_map_entry_t tmpe;
664         vm_object_t obj, bigobj;
665         int nothingwired;
666
667         if (!vm_map_trylock(map))
668                 return;
669
670         bigobj = NULL;
671         nothingwired = TRUE;
672
673         /*
674          * first, search out the biggest object, and try to free pages from
675          * that.
676          */
677         tmpe = map->header.next;
678         while (tmpe != &map->header) {
679                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
680                         obj = tmpe->object.vm_object;
681                         if (obj != NULL && VM_OBJECT_TRYLOCK(obj)) {
682                                 if (obj->shadow_count <= 1 &&
683                                     (bigobj == NULL ||
684                                      bigobj->resident_page_count < obj->resident_page_count)) {
685                                         if (bigobj != NULL)
686                                                 VM_OBJECT_UNLOCK(bigobj);
687                                         bigobj = obj;
688                                 } else
689                                         VM_OBJECT_UNLOCK(obj);
690                         }
691                 }
692                 if (tmpe->wired_count > 0)
693                         nothingwired = FALSE;
694                 tmpe = tmpe->next;
695         }
696
697         if (bigobj != NULL) {
698                 vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
699                 VM_OBJECT_UNLOCK(bigobj);
700         }
701         /*
702          * Next, hunt around for other pages to deactivate.  We actually
703          * do this search sort of wrong -- .text first is not the best idea.
704          */
705         tmpe = map->header.next;
706         while (tmpe != &map->header) {
707                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
708                         break;
709                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
710                         obj = tmpe->object.vm_object;
711                         if (obj != NULL) {
712                                 VM_OBJECT_LOCK(obj);
713                                 vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
714                                 VM_OBJECT_UNLOCK(obj);
715                         }
716                 }
717                 tmpe = tmpe->next;
718         }
719
720         /*
721          * Remove all mappings if a process is swapped out, this will free page
722          * table pages.
723          */
724         if (desired == 0 && nothingwired) {
725                 pmap_remove(vm_map_pmap(map), vm_map_min(map),
726                     vm_map_max(map));
727         }
728         vm_map_unlock(map);
729 }
730 #endif          /* !defined(NO_SWAPPING) */
731
732 /*
733  *      vm_pageout_scan does the dirty work for the pageout daemon.
734  */
735 static void
736 vm_pageout_scan(int pass)
737 {
738         vm_page_t m, next;
739         struct vm_page marker;
740         int page_shortage, maxscan, pcount;
741         int addl_page_shortage, addl_page_shortage_init;
742         vm_object_t object;
743         int actcount;
744         int vnodes_skipped = 0;
745         int maxlaunder;
746
747         /*
748          * Decrease registered cache sizes.
749          */
750         EVENTHANDLER_INVOKE(vm_lowmem, 0);
751         /*
752          * We do this explicitly after the caches have been drained above.
753          */
754         uma_reclaim();
755
756         addl_page_shortage_init = atomic_readandclear_int(&vm_pageout_deficit);
757
758         /*
759          * Calculate the number of pages we want to either free or move
760          * to the cache.
761          */
762         page_shortage = vm_paging_target() + addl_page_shortage_init;
763
764         vm_pageout_init_marker(&marker, PQ_INACTIVE);
765
766         /*
767          * Start scanning the inactive queue for pages we can move to the
768          * cache or free.  The scan will stop when the target is reached or
769          * we have scanned the entire inactive queue.  Note that m->act_count
770          * is not used to form decisions for the inactive queue, only for the
771          * active queue.
772          *
773          * maxlaunder limits the number of dirty pages we flush per scan.
774          * For most systems a smaller value (16 or 32) is more robust under
775          * extreme memory and disk pressure because any unnecessary writes
776          * to disk can result in extreme performance degredation.  However,
777          * systems with excessive dirty pages (especially when MAP_NOSYNC is
778          * used) will die horribly with limited laundering.  If the pageout
779          * daemon cannot clean enough pages in the first pass, we let it go
780          * all out in succeeding passes.
781          */
782         if ((maxlaunder = vm_max_launder) <= 1)
783                 maxlaunder = 1;
784         if (pass)
785                 maxlaunder = 10000;
786         vm_page_lock_queues();
787 rescan0:
788         addl_page_shortage = addl_page_shortage_init;
789         maxscan = cnt.v_inactive_count;
790
791         for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
792              m != NULL && maxscan-- > 0 && page_shortage > 0;
793              m = next) {
794
795                 cnt.v_pdpages++;
796
797                 if (m->queue != PQ_INACTIVE)
798                         goto rescan0;
799
800                 next = TAILQ_NEXT(m, pageq);
801
802                 /*
803                  * skip marker pages
804                  */
805                 if (m->flags & PG_MARKER)
806                         continue;
807
808                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
809                     ("Fictitious page %p cannot be in inactive queue", m));
810                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
811                     ("Unmanaged page %p cannot be in inactive queue", m));
812
813                 /*
814                  * Lock the page.
815                  */
816                 if (!vm_pageout_page_lock(m, &next)) {
817                         vm_page_unlock(m);
818                         addl_page_shortage++;
819                         continue;
820                 }
821
822                 /*
823                  * A held page may be undergoing I/O, so skip it.
824                  */
825                 if (m->hold_count) {
826                         vm_page_unlock(m);
827                         vm_page_requeue(m);
828                         addl_page_shortage++;
829                         continue;
830                 }
831
832                 /*
833                  * Don't mess with busy pages, keep in the front of the
834                  * queue, most likely are being paged out.
835                  */
836                 object = m->object;
837                 if (!VM_OBJECT_TRYLOCK(object) &&
838                     (!vm_pageout_fallback_object_lock(m, &next) ||
839                         m->hold_count != 0)) {
840                         VM_OBJECT_UNLOCK(object);
841                         vm_page_unlock(m);
842                         addl_page_shortage++;
843                         continue;
844                 }
845                 if (m->busy || (m->oflags & VPO_BUSY)) {
846                         vm_page_unlock(m);
847                         VM_OBJECT_UNLOCK(object);
848                         addl_page_shortage++;
849                         continue;
850                 }
851
852                 /*
853                  * If the object is not being used, we ignore previous 
854                  * references.
855                  */
856                 if (object->ref_count == 0) {
857                         vm_page_aflag_clear(m, PGA_REFERENCED);
858                         KASSERT(!pmap_page_is_mapped(m),
859                             ("vm_pageout_scan: page %p is mapped", m));
860
861                 /*
862                  * Otherwise, if the page has been referenced while in the 
863                  * inactive queue, we bump the "activation count" upwards, 
864                  * making it less likely that the page will be added back to 
865                  * the inactive queue prematurely again.  Here we check the 
866                  * page tables (or emulated bits, if any), given the upper 
867                  * level VM system not knowing anything about existing 
868                  * references.
869                  */
870                 } else if (((m->aflags & PGA_REFERENCED) == 0) &&
871                         (actcount = pmap_ts_referenced(m))) {
872                         vm_page_activate(m);
873                         vm_page_unlock(m);
874                         m->act_count += actcount + ACT_ADVANCE;
875                         VM_OBJECT_UNLOCK(object);
876                         continue;
877                 }
878
879                 /*
880                  * If the upper level VM system knows about any page 
881                  * references, we activate the page.  We also set the 
882                  * "activation count" higher than normal so that we will less 
883                  * likely place pages back onto the inactive queue again.
884                  */
885                 if ((m->aflags & PGA_REFERENCED) != 0) {
886                         vm_page_aflag_clear(m, PGA_REFERENCED);
887                         actcount = pmap_ts_referenced(m);
888                         vm_page_activate(m);
889                         vm_page_unlock(m);
890                         m->act_count += actcount + ACT_ADVANCE + 1;
891                         VM_OBJECT_UNLOCK(object);
892                         continue;
893                 }
894
895                 /*
896                  * If the upper level VM system does not believe that the page
897                  * is fully dirty, but it is mapped for write access, then we
898                  * consult the pmap to see if the page's dirty status should
899                  * be updated.
900                  */
901                 if (m->dirty != VM_PAGE_BITS_ALL &&
902                     (m->aflags & PGA_WRITEABLE) != 0) {
903                         /*
904                          * Avoid a race condition: Unless write access is
905                          * removed from the page, another processor could
906                          * modify it before all access is removed by the call
907                          * to vm_page_cache() below.  If vm_page_cache() finds
908                          * that the page has been modified when it removes all
909                          * access, it panics because it cannot cache dirty
910                          * pages.  In principle, we could eliminate just write
911                          * access here rather than all access.  In the expected
912                          * case, when there are no last instant modifications
913                          * to the page, removing all access will be cheaper
914                          * overall.
915                          */
916                         if (pmap_is_modified(m))
917                                 vm_page_dirty(m);
918                         else if (m->dirty == 0)
919                                 pmap_remove_all(m);
920                 }
921
922                 if (m->valid == 0) {
923                         /*
924                          * Invalid pages can be easily freed
925                          */
926                         vm_page_free(m);
927                         cnt.v_dfree++;
928                         --page_shortage;
929                 } else if (m->dirty == 0) {
930                         /*
931                          * Clean pages can be placed onto the cache queue.
932                          * This effectively frees them.
933                          */
934                         vm_page_cache(m);
935                         --page_shortage;
936                 } else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
937                         /*
938                          * Dirty pages need to be paged out, but flushing
939                          * a page is extremely expensive verses freeing
940                          * a clean page.  Rather then artificially limiting
941                          * the number of pages we can flush, we instead give
942                          * dirty pages extra priority on the inactive queue
943                          * by forcing them to be cycled through the queue
944                          * twice before being flushed, after which the
945                          * (now clean) page will cycle through once more
946                          * before being freed.  This significantly extends
947                          * the thrash point for a heavily loaded machine.
948                          */
949                         m->flags |= PG_WINATCFLS;
950                         vm_page_requeue(m);
951                 } else if (maxlaunder > 0) {
952                         /*
953                          * We always want to try to flush some dirty pages if
954                          * we encounter them, to keep the system stable.
955                          * Normally this number is small, but under extreme
956                          * pressure where there are insufficient clean pages
957                          * on the inactive queue, we may have to go all out.
958                          */
959                         int swap_pageouts_ok, vfslocked = 0;
960                         struct vnode *vp = NULL;
961                         struct mount *mp = NULL;
962
963                         if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
964                                 swap_pageouts_ok = 1;
965                         } else {
966                                 swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
967                                 swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
968                                 vm_page_count_min());
969                                                                                 
970                         }
971
972                         /*
973                          * We don't bother paging objects that are "dead".  
974                          * Those objects are in a "rundown" state.
975                          */
976                         if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
977                                 vm_page_unlock(m);
978                                 VM_OBJECT_UNLOCK(object);
979                                 vm_page_requeue(m);
980                                 continue;
981                         }
982
983                         /*
984                          * Following operations may unlock
985                          * vm_page_queue_mtx, invalidating the 'next'
986                          * pointer.  To prevent an inordinate number
987                          * of restarts we use our marker to remember
988                          * our place.
989                          *
990                          */
991                         TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl,
992                                            m, &marker, pageq);
993                         /*
994                          * The object is already known NOT to be dead.   It
995                          * is possible for the vget() to block the whole
996                          * pageout daemon, but the new low-memory handling
997                          * code should prevent it.
998                          *
999                          * The previous code skipped locked vnodes and, worse,
1000                          * reordered pages in the queue.  This results in
1001                          * completely non-deterministic operation and, on a
1002                          * busy system, can lead to extremely non-optimal
1003                          * pageouts.  For example, it can cause clean pages
1004                          * to be freed and dirty pages to be moved to the end
1005                          * of the queue.  Since dirty pages are also moved to
1006                          * the end of the queue once-cleaned, this gives
1007                          * way too large a weighting to defering the freeing
1008                          * of dirty pages.
1009                          *
1010                          * We can't wait forever for the vnode lock, we might
1011                          * deadlock due to a vn_read() getting stuck in
1012                          * vm_wait while holding this vnode.  We skip the 
1013                          * vnode if we can't get it in a reasonable amount
1014                          * of time.
1015                          */
1016                         if (object->type == OBJT_VNODE) {
1017                                 vm_page_unlock_queues();
1018                                 vm_page_unlock(m);
1019                                 vp = object->handle;
1020                                 if (vp->v_type == VREG &&
1021                                     vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1022                                         mp = NULL;
1023                                         ++pageout_lock_miss;
1024                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1025                                                 vnodes_skipped++;
1026                                         vm_page_lock_queues();
1027                                         goto unlock_and_continue;
1028                                 }
1029                                 KASSERT(mp != NULL,
1030                                     ("vp %p with NULL v_mount", vp));
1031                                 vm_object_reference_locked(object);
1032                                 VM_OBJECT_UNLOCK(object);
1033                                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1034                                 if (vget(vp, LK_EXCLUSIVE | LK_TIMELOCK,
1035                                     curthread)) {
1036                                         VM_OBJECT_LOCK(object);
1037                                         vm_page_lock_queues();
1038                                         ++pageout_lock_miss;
1039                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1040                                                 vnodes_skipped++;
1041                                         vp = NULL;
1042                                         goto unlock_and_continue;
1043                                 }
1044                                 VM_OBJECT_LOCK(object);
1045                                 vm_page_lock(m);
1046                                 vm_page_lock_queues();
1047                                 /*
1048                                  * The page might have been moved to another
1049                                  * queue during potential blocking in vget()
1050                                  * above.  The page might have been freed and
1051                                  * reused for another vnode.
1052                                  */
1053                                 if (m->queue != PQ_INACTIVE ||
1054                                     m->object != object ||
1055                                     TAILQ_NEXT(m, pageq) != &marker) {
1056                                         vm_page_unlock(m);
1057                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1058                                                 vnodes_skipped++;
1059                                         goto unlock_and_continue;
1060                                 }
1061         
1062                                 /*
1063                                  * The page may have been busied during the
1064                                  * blocking in vget().  We don't move the
1065                                  * page back onto the end of the queue so that
1066                                  * statistics are more correct if we don't.
1067                                  */
1068                                 if (m->busy || (m->oflags & VPO_BUSY)) {
1069                                         vm_page_unlock(m);
1070                                         goto unlock_and_continue;
1071                                 }
1072
1073                                 /*
1074                                  * If the page has become held it might
1075                                  * be undergoing I/O, so skip it
1076                                  */
1077                                 if (m->hold_count) {
1078                                         vm_page_unlock(m);
1079                                         vm_page_requeue(m);
1080                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1081                                                 vnodes_skipped++;
1082                                         goto unlock_and_continue;
1083                                 }
1084                         }
1085
1086                         /*
1087                          * If a page is dirty, then it is either being washed
1088                          * (but not yet cleaned) or it is still in the
1089                          * laundry.  If it is still in the laundry, then we
1090                          * start the cleaning operation. 
1091                          *
1092                          * decrement page_shortage on success to account for
1093                          * the (future) cleaned page.  Otherwise we could wind
1094                          * up laundering or cleaning too many pages.
1095                          */
1096                         vm_page_unlock_queues();
1097                         if (vm_pageout_clean(m) != 0) {
1098                                 --page_shortage;
1099                                 --maxlaunder;
1100                         }
1101                         vm_page_lock_queues();
1102 unlock_and_continue:
1103                         vm_page_lock_assert(m, MA_NOTOWNED);
1104                         VM_OBJECT_UNLOCK(object);
1105                         if (mp != NULL) {
1106                                 vm_page_unlock_queues();
1107                                 if (vp != NULL)
1108                                         vput(vp);
1109                                 VFS_UNLOCK_GIANT(vfslocked);
1110                                 vm_object_deallocate(object);
1111                                 vn_finished_write(mp);
1112                                 vm_page_lock_queues();
1113                         }
1114                         next = TAILQ_NEXT(&marker, pageq);
1115                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl,
1116                                      &marker, pageq);
1117                         vm_page_lock_assert(m, MA_NOTOWNED);
1118                         continue;
1119                 }
1120                 vm_page_unlock(m);
1121                 VM_OBJECT_UNLOCK(object);
1122         }
1123
1124         /*
1125          * Compute the number of pages we want to try to move from the
1126          * active queue to the inactive queue.
1127          */
1128         page_shortage = vm_paging_target() +
1129                 cnt.v_inactive_target - cnt.v_inactive_count;
1130         page_shortage += addl_page_shortage;
1131
1132         /*
1133          * Scan the active queue for things we can deactivate. We nominally
1134          * track the per-page activity counter and use it to locate
1135          * deactivation candidates.
1136          */
1137         pcount = cnt.v_active_count;
1138         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1139         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1140
1141         while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1142
1143                 KASSERT(m->queue == PQ_ACTIVE,
1144                     ("vm_pageout_scan: page %p isn't active", m));
1145
1146                 next = TAILQ_NEXT(m, pageq);
1147                 if ((m->flags & PG_MARKER) != 0) {
1148                         m = next;
1149                         continue;
1150                 }
1151                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
1152                     ("Fictitious page %p cannot be in active queue", m));
1153                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1154                     ("Unmanaged page %p cannot be in active queue", m));
1155                 if (!vm_pageout_page_lock(m, &next)) {
1156                         vm_page_unlock(m);
1157                         m = next;
1158                         continue;
1159                 }
1160                 object = m->object;
1161                 if (!VM_OBJECT_TRYLOCK(object) &&
1162                     !vm_pageout_fallback_object_lock(m, &next)) {
1163                         VM_OBJECT_UNLOCK(object);
1164                         vm_page_unlock(m);
1165                         m = next;
1166                         continue;
1167                 }
1168
1169                 /*
1170                  * Don't deactivate pages that are busy.
1171                  */
1172                 if ((m->busy != 0) ||
1173                     (m->oflags & VPO_BUSY) ||
1174                     (m->hold_count != 0)) {
1175                         vm_page_unlock(m);
1176                         VM_OBJECT_UNLOCK(object);
1177                         vm_page_requeue(m);
1178                         m = next;
1179                         continue;
1180                 }
1181
1182                 /*
1183                  * The count for pagedaemon pages is done after checking the
1184                  * page for eligibility...
1185                  */
1186                 cnt.v_pdpages++;
1187
1188                 /*
1189                  * Check to see "how much" the page has been used.
1190                  */
1191                 actcount = 0;
1192                 if (object->ref_count != 0) {
1193                         if (m->aflags & PGA_REFERENCED) {
1194                                 actcount += 1;
1195                         }
1196                         actcount += pmap_ts_referenced(m);
1197                         if (actcount) {
1198                                 m->act_count += ACT_ADVANCE + actcount;
1199                                 if (m->act_count > ACT_MAX)
1200                                         m->act_count = ACT_MAX;
1201                         }
1202                 }
1203
1204                 /*
1205                  * Since we have "tested" this bit, we need to clear it now.
1206                  */
1207                 vm_page_aflag_clear(m, PGA_REFERENCED);
1208
1209                 /*
1210                  * Only if an object is currently being used, do we use the
1211                  * page activation count stats.
1212                  */
1213                 if (actcount && (object->ref_count != 0)) {
1214                         vm_page_requeue(m);
1215                 } else {
1216                         m->act_count -= min(m->act_count, ACT_DECLINE);
1217                         if (vm_pageout_algorithm ||
1218                             object->ref_count == 0 ||
1219                             m->act_count == 0) {
1220                                 page_shortage--;
1221                                 if (object->ref_count == 0) {
1222                                         KASSERT(!pmap_page_is_mapped(m),
1223                                     ("vm_pageout_scan: page %p is mapped", m));
1224                                         if (m->dirty == 0)
1225                                                 vm_page_cache(m);
1226                                         else
1227                                                 vm_page_deactivate(m);
1228                                 } else {
1229                                         vm_page_deactivate(m);
1230                                 }
1231                         } else {
1232                                 vm_page_requeue(m);
1233                         }
1234                 }
1235                 vm_page_unlock(m);
1236                 VM_OBJECT_UNLOCK(object);
1237                 m = next;
1238         }
1239         vm_page_unlock_queues();
1240 #if !defined(NO_SWAPPING)
1241         /*
1242          * Idle process swapout -- run once per second.
1243          */
1244         if (vm_swap_idle_enabled) {
1245                 static long lsec;
1246                 if (time_second != lsec) {
1247                         vm_req_vmdaemon(VM_SWAP_IDLE);
1248                         lsec = time_second;
1249                 }
1250         }
1251 #endif
1252                 
1253         /*
1254          * If we didn't get enough free pages, and we have skipped a vnode
1255          * in a writeable object, wakeup the sync daemon.  And kick swapout
1256          * if we did not get enough free pages.
1257          */
1258         if (vm_paging_target() > 0) {
1259                 if (vnodes_skipped && vm_page_count_min())
1260                         (void) speedup_syncer();
1261 #if !defined(NO_SWAPPING)
1262                 if (vm_swap_enabled && vm_page_count_target())
1263                         vm_req_vmdaemon(VM_SWAP_NORMAL);
1264 #endif
1265         }
1266
1267         /*
1268          * If we are critically low on one of RAM or swap and low on
1269          * the other, kill the largest process.  However, we avoid
1270          * doing this on the first pass in order to give ourselves a
1271          * chance to flush out dirty vnode-backed pages and to allow
1272          * active pages to be moved to the inactive queue and reclaimed.
1273          */
1274         if (pass != 0 &&
1275             ((swap_pager_avail < 64 && vm_page_count_min()) ||
1276              (swap_pager_full && vm_paging_target() > 0)))
1277                 vm_pageout_oom(VM_OOM_MEM);
1278 }
1279
1280
1281 void
1282 vm_pageout_oom(int shortage)
1283 {
1284         struct proc *p, *bigproc;
1285         vm_offset_t size, bigsize;
1286         struct thread *td;
1287         struct vmspace *vm;
1288
1289         /*
1290          * We keep the process bigproc locked once we find it to keep anyone
1291          * from messing with it; however, there is a possibility of
1292          * deadlock if process B is bigproc and one of it's child processes
1293          * attempts to propagate a signal to B while we are waiting for A's
1294          * lock while walking this list.  To avoid this, we don't block on
1295          * the process lock but just skip a process if it is already locked.
1296          */
1297         bigproc = NULL;
1298         bigsize = 0;
1299         sx_slock(&allproc_lock);
1300         FOREACH_PROC_IN_SYSTEM(p) {
1301                 int breakout;
1302
1303                 if (PROC_TRYLOCK(p) == 0)
1304                         continue;
1305                 /*
1306                  * If this is a system, protected or killed process, skip it.
1307                  */
1308                 if (p->p_state != PRS_NORMAL ||
1309                     (p->p_flag & (P_INEXEC | P_PROTECTED | P_SYSTEM)) ||
1310                     (p->p_pid == 1) || P_KILLED(p) ||
1311                     ((p->p_pid < 48) && (swap_pager_avail != 0))) {
1312                         PROC_UNLOCK(p);
1313                         continue;
1314                 }
1315                 /*
1316                  * If the process is in a non-running type state,
1317                  * don't touch it.  Check all the threads individually.
1318                  */
1319                 breakout = 0;
1320                 FOREACH_THREAD_IN_PROC(p, td) {
1321                         thread_lock(td);
1322                         if (!TD_ON_RUNQ(td) &&
1323                             !TD_IS_RUNNING(td) &&
1324                             !TD_IS_SLEEPING(td) &&
1325                             !TD_IS_SUSPENDED(td)) {
1326                                 thread_unlock(td);
1327                                 breakout = 1;
1328                                 break;
1329                         }
1330                         thread_unlock(td);
1331                 }
1332                 if (breakout) {
1333                         PROC_UNLOCK(p);
1334                         continue;
1335                 }
1336                 /*
1337                  * get the process size
1338                  */
1339                 vm = vmspace_acquire_ref(p);
1340                 if (vm == NULL) {
1341                         PROC_UNLOCK(p);
1342                         continue;
1343                 }
1344                 if (!vm_map_trylock_read(&vm->vm_map)) {
1345                         vmspace_free(vm);
1346                         PROC_UNLOCK(p);
1347                         continue;
1348                 }
1349                 size = vmspace_swap_count(vm);
1350                 vm_map_unlock_read(&vm->vm_map);
1351                 if (shortage == VM_OOM_MEM)
1352                         size += vmspace_resident_count(vm);
1353                 vmspace_free(vm);
1354                 /*
1355                  * if the this process is bigger than the biggest one
1356                  * remember it.
1357                  */
1358                 if (size > bigsize) {
1359                         if (bigproc != NULL)
1360                                 PROC_UNLOCK(bigproc);
1361                         bigproc = p;
1362                         bigsize = size;
1363                 } else
1364                         PROC_UNLOCK(p);
1365         }
1366         sx_sunlock(&allproc_lock);
1367         if (bigproc != NULL) {
1368                 killproc(bigproc, "out of swap space");
1369                 sched_nice(bigproc, PRIO_MIN);
1370                 PROC_UNLOCK(bigproc);
1371                 wakeup(&cnt.v_free_count);
1372         }
1373 }
1374
1375 /*
1376  * This routine tries to maintain the pseudo LRU active queue,
1377  * so that during long periods of time where there is no paging,
1378  * that some statistic accumulation still occurs.  This code
1379  * helps the situation where paging just starts to occur.
1380  */
1381 static void
1382 vm_pageout_page_stats()
1383 {
1384         vm_object_t object;
1385         vm_page_t m,next;
1386         int pcount,tpcount;             /* Number of pages to check */
1387         static int fullintervalcount = 0;
1388         int page_shortage;
1389
1390         page_shortage = 
1391             (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1392             (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1393
1394         if (page_shortage <= 0)
1395                 return;
1396
1397         vm_page_lock_queues();
1398         pcount = cnt.v_active_count;
1399         fullintervalcount += vm_pageout_stats_interval;
1400         if (fullintervalcount < vm_pageout_full_stats_interval) {
1401                 tpcount = (int64_t)vm_pageout_stats_max * cnt.v_active_count /
1402                     cnt.v_page_count;
1403                 if (pcount > tpcount)
1404                         pcount = tpcount;
1405         } else {
1406                 fullintervalcount = 0;
1407         }
1408
1409         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1410         while ((m != NULL) && (pcount-- > 0)) {
1411                 int actcount;
1412
1413                 KASSERT(m->queue == PQ_ACTIVE,
1414                     ("vm_pageout_page_stats: page %p isn't active", m));
1415
1416                 next = TAILQ_NEXT(m, pageq);
1417                 if ((m->flags & PG_MARKER) != 0) {
1418                         m = next;
1419                         continue;
1420                 }
1421                 vm_page_lock_assert(m, MA_NOTOWNED);
1422                 if (!vm_pageout_page_lock(m, &next)) {
1423                         vm_page_unlock(m);
1424                         m = next;
1425                         continue;
1426                 }
1427                 object = m->object;
1428                 if (!VM_OBJECT_TRYLOCK(object) &&
1429                     !vm_pageout_fallback_object_lock(m, &next)) {
1430                         VM_OBJECT_UNLOCK(object);
1431                         vm_page_unlock(m);
1432                         m = next;
1433                         continue;
1434                 }
1435
1436                 /*
1437                  * Don't deactivate pages that are busy.
1438                  */
1439                 if ((m->busy != 0) ||
1440                     (m->oflags & VPO_BUSY) ||
1441                     (m->hold_count != 0)) {
1442                         vm_page_unlock(m);
1443                         VM_OBJECT_UNLOCK(object);
1444                         vm_page_requeue(m);
1445                         m = next;
1446                         continue;
1447                 }
1448
1449                 actcount = 0;
1450                 if (m->aflags & PGA_REFERENCED) {
1451                         vm_page_aflag_clear(m, PGA_REFERENCED);
1452                         actcount += 1;
1453                 }
1454
1455                 actcount += pmap_ts_referenced(m);
1456                 if (actcount) {
1457                         m->act_count += ACT_ADVANCE + actcount;
1458                         if (m->act_count > ACT_MAX)
1459                                 m->act_count = ACT_MAX;
1460                         vm_page_requeue(m);
1461                 } else {
1462                         if (m->act_count == 0) {
1463                                 /*
1464                                  * We turn off page access, so that we have
1465                                  * more accurate RSS stats.  We don't do this
1466                                  * in the normal page deactivation when the
1467                                  * system is loaded VM wise, because the
1468                                  * cost of the large number of page protect
1469                                  * operations would be higher than the value
1470                                  * of doing the operation.
1471                                  */
1472                                 pmap_remove_all(m);
1473                                 vm_page_deactivate(m);
1474                         } else {
1475                                 m->act_count -= min(m->act_count, ACT_DECLINE);
1476                                 vm_page_requeue(m);
1477                         }
1478                 }
1479                 vm_page_unlock(m);
1480                 VM_OBJECT_UNLOCK(object);
1481                 m = next;
1482         }
1483         vm_page_unlock_queues();
1484 }
1485
1486 /*
1487  *      vm_pageout is the high level pageout daemon.
1488  */
1489 static void
1490 vm_pageout()
1491 {
1492         int error, pass;
1493
1494         /*
1495          * Initialize some paging parameters.
1496          */
1497         cnt.v_interrupt_free_min = 2;
1498         if (cnt.v_page_count < 2000)
1499                 vm_pageout_page_count = 8;
1500
1501         /*
1502          * v_free_reserved needs to include enough for the largest
1503          * swap pager structures plus enough for any pv_entry structs
1504          * when paging. 
1505          */
1506         if (cnt.v_page_count > 1024)
1507                 cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1508         else
1509                 cnt.v_free_min = 4;
1510         cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1511             cnt.v_interrupt_free_min;
1512         cnt.v_free_reserved = vm_pageout_page_count +
1513             cnt.v_pageout_free_min + (cnt.v_page_count / 768);
1514         cnt.v_free_severe = cnt.v_free_min / 2;
1515         cnt.v_free_min += cnt.v_free_reserved;
1516         cnt.v_free_severe += cnt.v_free_reserved;
1517
1518         /*
1519          * v_free_target and v_cache_min control pageout hysteresis.  Note
1520          * that these are more a measure of the VM cache queue hysteresis
1521          * then the VM free queue.  Specifically, v_free_target is the
1522          * high water mark (free+cache pages).
1523          *
1524          * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1525          * low water mark, while v_free_min is the stop.  v_cache_min must
1526          * be big enough to handle memory needs while the pageout daemon
1527          * is signalled and run to free more pages.
1528          */
1529         if (cnt.v_free_count > 6144)
1530                 cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1531         else
1532                 cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1533
1534         if (cnt.v_free_count > 2048) {
1535                 cnt.v_cache_min = cnt.v_free_target;
1536                 cnt.v_cache_max = 2 * cnt.v_cache_min;
1537                 cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1538         } else {
1539                 cnt.v_cache_min = 0;
1540                 cnt.v_cache_max = 0;
1541                 cnt.v_inactive_target = cnt.v_free_count / 4;
1542         }
1543         if (cnt.v_inactive_target > cnt.v_free_count / 3)
1544                 cnt.v_inactive_target = cnt.v_free_count / 3;
1545
1546         /* XXX does not really belong here */
1547         if (vm_page_max_wired == 0)
1548                 vm_page_max_wired = cnt.v_free_count / 3;
1549
1550         if (vm_pageout_stats_max == 0)
1551                 vm_pageout_stats_max = cnt.v_free_target;
1552
1553         /*
1554          * Set interval in seconds for stats scan.
1555          */
1556         if (vm_pageout_stats_interval == 0)
1557                 vm_pageout_stats_interval = 5;
1558         if (vm_pageout_full_stats_interval == 0)
1559                 vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1560
1561         swap_pager_swap_init();
1562         pass = 0;
1563         /*
1564          * The pageout daemon is never done, so loop forever.
1565          */
1566         while (TRUE) {
1567                 /*
1568                  * If we have enough free memory, wakeup waiters.  Do
1569                  * not clear vm_pages_needed until we reach our target,
1570                  * otherwise we may be woken up over and over again and
1571                  * waste a lot of cpu.
1572                  */
1573                 mtx_lock(&vm_page_queue_free_mtx);
1574                 if (vm_pages_needed && !vm_page_count_min()) {
1575                         if (!vm_paging_needed())
1576                                 vm_pages_needed = 0;
1577                         wakeup(&cnt.v_free_count);
1578                 }
1579                 if (vm_pages_needed) {
1580                         /*
1581                          * Still not done, take a second pass without waiting
1582                          * (unlimited dirty cleaning), otherwise sleep a bit
1583                          * and try again.
1584                          */
1585                         ++pass;
1586                         if (pass > 1)
1587                                 msleep(&vm_pages_needed,
1588                                     &vm_page_queue_free_mtx, PVM, "psleep",
1589                                     hz / 2);
1590                 } else {
1591                         /*
1592                          * Good enough, sleep & handle stats.  Prime the pass
1593                          * for the next run.
1594                          */
1595                         if (pass > 1)
1596                                 pass = 1;
1597                         else
1598                                 pass = 0;
1599                         error = msleep(&vm_pages_needed,
1600                             &vm_page_queue_free_mtx, PVM, "psleep",
1601                             vm_pageout_stats_interval * hz);
1602                         if (error && !vm_pages_needed) {
1603                                 mtx_unlock(&vm_page_queue_free_mtx);
1604                                 pass = 0;
1605                                 vm_pageout_page_stats();
1606                                 continue;
1607                         }
1608                 }
1609                 if (vm_pages_needed)
1610                         cnt.v_pdwakeups++;
1611                 mtx_unlock(&vm_page_queue_free_mtx);
1612                 vm_pageout_scan(pass);
1613         }
1614 }
1615
1616 /*
1617  * Unless the free page queue lock is held by the caller, this function
1618  * should be regarded as advisory.  Specifically, the caller should
1619  * not msleep() on &cnt.v_free_count following this function unless
1620  * the free page queue lock is held until the msleep() is performed.
1621  */
1622 void
1623 pagedaemon_wakeup()
1624 {
1625
1626         if (!vm_pages_needed && curthread->td_proc != pageproc) {
1627                 vm_pages_needed = 1;
1628                 wakeup(&vm_pages_needed);
1629         }
1630 }
1631
1632 #if !defined(NO_SWAPPING)
1633 static void
1634 vm_req_vmdaemon(int req)
1635 {
1636         static int lastrun = 0;
1637
1638         mtx_lock(&vm_daemon_mtx);
1639         vm_pageout_req_swapout |= req;
1640         if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1641                 wakeup(&vm_daemon_needed);
1642                 lastrun = ticks;
1643         }
1644         mtx_unlock(&vm_daemon_mtx);
1645 }
1646
1647 static void
1648 vm_daemon()
1649 {
1650         struct rlimit rsslim;
1651         struct proc *p;
1652         struct thread *td;
1653         struct vmspace *vm;
1654         int breakout, swapout_flags, tryagain, attempts;
1655 #ifdef RACCT
1656         uint64_t rsize, ravailable;
1657 #endif
1658
1659         while (TRUE) {
1660                 mtx_lock(&vm_daemon_mtx);
1661 #ifdef RACCT
1662                 msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", hz);
1663 #else
1664                 msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", 0);
1665 #endif
1666                 swapout_flags = vm_pageout_req_swapout;
1667                 vm_pageout_req_swapout = 0;
1668                 mtx_unlock(&vm_daemon_mtx);
1669                 if (swapout_flags)
1670                         swapout_procs(swapout_flags);
1671
1672                 /*
1673                  * scan the processes for exceeding their rlimits or if
1674                  * process is swapped out -- deactivate pages
1675                  */
1676                 tryagain = 0;
1677                 attempts = 0;
1678 again:
1679                 attempts++;
1680                 sx_slock(&allproc_lock);
1681                 FOREACH_PROC_IN_SYSTEM(p) {
1682                         vm_pindex_t limit, size;
1683
1684                         /*
1685                          * if this is a system process or if we have already
1686                          * looked at this process, skip it.
1687                          */
1688                         PROC_LOCK(p);
1689                         if (p->p_state != PRS_NORMAL ||
1690                             p->p_flag & (P_INEXEC | P_SYSTEM | P_WEXIT)) {
1691                                 PROC_UNLOCK(p);
1692                                 continue;
1693                         }
1694                         /*
1695                          * if the process is in a non-running type state,
1696                          * don't touch it.
1697                          */
1698                         breakout = 0;
1699                         FOREACH_THREAD_IN_PROC(p, td) {
1700                                 thread_lock(td);
1701                                 if (!TD_ON_RUNQ(td) &&
1702                                     !TD_IS_RUNNING(td) &&
1703                                     !TD_IS_SLEEPING(td) &&
1704                                     !TD_IS_SUSPENDED(td)) {
1705                                         thread_unlock(td);
1706                                         breakout = 1;
1707                                         break;
1708                                 }
1709                                 thread_unlock(td);
1710                         }
1711                         if (breakout) {
1712                                 PROC_UNLOCK(p);
1713                                 continue;
1714                         }
1715                         /*
1716                          * get a limit
1717                          */
1718                         lim_rlimit(p, RLIMIT_RSS, &rsslim);
1719                         limit = OFF_TO_IDX(
1720                             qmin(rsslim.rlim_cur, rsslim.rlim_max));
1721
1722                         /*
1723                          * let processes that are swapped out really be
1724                          * swapped out set the limit to nothing (will force a
1725                          * swap-out.)
1726                          */
1727                         if ((p->p_flag & P_INMEM) == 0)
1728                                 limit = 0;      /* XXX */
1729                         vm = vmspace_acquire_ref(p);
1730                         PROC_UNLOCK(p);
1731                         if (vm == NULL)
1732                                 continue;
1733
1734                         size = vmspace_resident_count(vm);
1735                         if (limit >= 0 && size >= limit) {
1736                                 vm_pageout_map_deactivate_pages(
1737                                     &vm->vm_map, limit);
1738                         }
1739 #ifdef RACCT
1740                         rsize = IDX_TO_OFF(size);
1741                         PROC_LOCK(p);
1742                         racct_set(p, RACCT_RSS, rsize);
1743                         ravailable = racct_get_available(p, RACCT_RSS);
1744                         PROC_UNLOCK(p);
1745                         if (rsize > ravailable) {
1746                                 /*
1747                                  * Don't be overly aggressive; this might be
1748                                  * an innocent process, and the limit could've
1749                                  * been exceeded by some memory hog.  Don't
1750                                  * try to deactivate more than 1/4th of process'
1751                                  * resident set size.
1752                                  */
1753                                 if (attempts <= 8) {
1754                                         if (ravailable < rsize - (rsize / 4))
1755                                                 ravailable = rsize - (rsize / 4);
1756                                 }
1757                                 vm_pageout_map_deactivate_pages(
1758                                     &vm->vm_map, OFF_TO_IDX(ravailable));
1759                                 /* Update RSS usage after paging out. */
1760                                 size = vmspace_resident_count(vm);
1761                                 rsize = IDX_TO_OFF(size);
1762                                 PROC_LOCK(p);
1763                                 racct_set(p, RACCT_RSS, rsize);
1764                                 PROC_UNLOCK(p);
1765                                 if (rsize > ravailable)
1766                                         tryagain = 1;
1767                         }
1768 #endif
1769                         vmspace_free(vm);
1770                 }
1771                 sx_sunlock(&allproc_lock);
1772                 if (tryagain != 0 && attempts <= 10)
1773                         goto again;
1774         }
1775 }
1776 #endif                  /* !defined(NO_SWAPPING) */