]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_pageout.c
Add a deferred free mechanism for freeing swap space that does not require
[FreeBSD/FreeBSD.git] / sys / vm / vm_pageout.c
1 /*-
2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  * Copyright (c) 2005 Yahoo! Technologies Norway AS
11  * All rights reserved.
12  *
13  * This code is derived from software contributed to Berkeley by
14  * The Mach Operating System project at Carnegie-Mellon University.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. All advertising materials mentioning features or use of this software
25  *    must display the following acknowledgement:
26  *      This product includes software developed by the University of
27  *      California, Berkeley and its contributors.
28  * 4. Neither the name of the University nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  *
44  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
45  *
46  *
47  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
48  * All rights reserved.
49  *
50  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
51  *
52  * Permission to use, copy, modify and distribute this software and
53  * its documentation is hereby granted, provided that both the copyright
54  * notice and this permission notice appear in all copies of the
55  * software, derivative works or modified versions, and any portions
56  * thereof, and that both notices appear in supporting documentation.
57  *
58  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
59  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
60  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
61  *
62  * Carnegie Mellon requests users of this software to return to
63  *
64  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
65  *  School of Computer Science
66  *  Carnegie Mellon University
67  *  Pittsburgh PA 15213-3890
68  *
69  * any improvements or extensions that they make and grant Carnegie the
70  * rights to redistribute these changes.
71  */
72
73 /*
74  *      The proverbial page-out daemon.
75  */
76
77 #include <sys/cdefs.h>
78 __FBSDID("$FreeBSD$");
79
80 #include "opt_vm.h"
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/eventhandler.h>
86 #include <sys/lock.h>
87 #include <sys/mutex.h>
88 #include <sys/proc.h>
89 #include <sys/kthread.h>
90 #include <sys/ktr.h>
91 #include <sys/mount.h>
92 #include <sys/racct.h>
93 #include <sys/resourcevar.h>
94 #include <sys/sched.h>
95 #include <sys/sdt.h>
96 #include <sys/signalvar.h>
97 #include <sys/smp.h>
98 #include <sys/time.h>
99 #include <sys/vnode.h>
100 #include <sys/vmmeter.h>
101 #include <sys/rwlock.h>
102 #include <sys/sx.h>
103 #include <sys/sysctl.h>
104
105 #include <vm/vm.h>
106 #include <vm/vm_param.h>
107 #include <vm/vm_object.h>
108 #include <vm/vm_page.h>
109 #include <vm/vm_map.h>
110 #include <vm/vm_pageout.h>
111 #include <vm/vm_pager.h>
112 #include <vm/vm_phys.h>
113 #include <vm/vm_pagequeue.h>
114 #include <vm/swap_pager.h>
115 #include <vm/vm_extern.h>
116 #include <vm/uma.h>
117
118 /*
119  * System initialization
120  */
121
122 /* the kernel process "vm_pageout"*/
123 static void vm_pageout(void);
124 static void vm_pageout_init(void);
125 static int vm_pageout_clean(vm_page_t m, int *numpagedout);
126 static int vm_pageout_cluster(vm_page_t m);
127 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
128     int starting_page_shortage);
129
130 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init,
131     NULL);
132
133 struct proc *pageproc;
134
135 static struct kproc_desc page_kp = {
136         "pagedaemon",
137         vm_pageout,
138         &pageproc
139 };
140 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start,
141     &page_kp);
142
143 SDT_PROVIDER_DEFINE(vm);
144 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan);
145
146 /* Pagedaemon activity rates, in subdivisions of one second. */
147 #define VM_LAUNDER_RATE         10
148 #define VM_INACT_SCAN_RATE      10
149
150 static int vm_pageout_oom_seq = 12;
151
152 static int vm_pageout_update_period;
153 static int disable_swap_pageouts;
154 static int lowmem_period = 10;
155 static int swapdev_enabled;
156
157 static int vm_panic_on_oom = 0;
158
159 SYSCTL_INT(_vm, OID_AUTO, panic_on_oom,
160         CTLFLAG_RWTUN, &vm_panic_on_oom, 0,
161         "panic on out of memory instead of killing the largest process");
162
163 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period,
164         CTLFLAG_RWTUN, &vm_pageout_update_period, 0,
165         "Maximum active LRU update period");
166   
167 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RWTUN, &lowmem_period, 0,
168         "Low memory callback period");
169
170 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
171         CTLFLAG_RWTUN, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
172
173 static int pageout_lock_miss;
174 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
175         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
176
177 SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq,
178         CTLFLAG_RWTUN, &vm_pageout_oom_seq, 0,
179         "back-to-back calls to oom detector to start OOM");
180
181 static int act_scan_laundry_weight = 3;
182 SYSCTL_INT(_vm, OID_AUTO, act_scan_laundry_weight, CTLFLAG_RWTUN,
183     &act_scan_laundry_weight, 0,
184     "weight given to clean vs. dirty pages in active queue scans");
185
186 static u_int vm_background_launder_rate = 4096;
187 SYSCTL_UINT(_vm, OID_AUTO, background_launder_rate, CTLFLAG_RWTUN,
188     &vm_background_launder_rate, 0,
189     "background laundering rate, in kilobytes per second");
190
191 static u_int vm_background_launder_max = 20 * 1024;
192 SYSCTL_UINT(_vm, OID_AUTO, background_launder_max, CTLFLAG_RWTUN,
193     &vm_background_launder_max, 0, "background laundering cap, in kilobytes");
194
195 int vm_pageout_page_count = 32;
196
197 u_long vm_page_max_user_wired;
198 SYSCTL_ULONG(_vm, OID_AUTO, max_user_wired, CTLFLAG_RW,
199     &vm_page_max_user_wired, 0,
200     "system-wide limit to user-wired page count");
201
202 static u_int isqrt(u_int num);
203 static int vm_pageout_launder(struct vm_domain *vmd, int launder,
204     bool in_shortfall);
205 static void vm_pageout_laundry_worker(void *arg);
206
207 struct scan_state {
208         struct vm_batchqueue bq;
209         struct vm_pagequeue *pq;
210         vm_page_t       marker;
211         int             maxscan;
212         int             scanned;
213 };
214
215 static void
216 vm_pageout_init_scan(struct scan_state *ss, struct vm_pagequeue *pq,
217     vm_page_t marker, vm_page_t after, int maxscan)
218 {
219
220         vm_pagequeue_assert_locked(pq);
221         KASSERT((marker->a.flags & PGA_ENQUEUED) == 0,
222             ("marker %p already enqueued", marker));
223
224         if (after == NULL)
225                 TAILQ_INSERT_HEAD(&pq->pq_pl, marker, plinks.q);
226         else
227                 TAILQ_INSERT_AFTER(&pq->pq_pl, after, marker, plinks.q);
228         vm_page_aflag_set(marker, PGA_ENQUEUED);
229
230         vm_batchqueue_init(&ss->bq);
231         ss->pq = pq;
232         ss->marker = marker;
233         ss->maxscan = maxscan;
234         ss->scanned = 0;
235         vm_pagequeue_unlock(pq);
236 }
237
238 static void
239 vm_pageout_end_scan(struct scan_state *ss)
240 {
241         struct vm_pagequeue *pq;
242
243         pq = ss->pq;
244         vm_pagequeue_assert_locked(pq);
245         KASSERT((ss->marker->a.flags & PGA_ENQUEUED) != 0,
246             ("marker %p not enqueued", ss->marker));
247
248         TAILQ_REMOVE(&pq->pq_pl, ss->marker, plinks.q);
249         vm_page_aflag_clear(ss->marker, PGA_ENQUEUED);
250         pq->pq_pdpages += ss->scanned;
251 }
252
253 /*
254  * Add a small number of queued pages to a batch queue for later processing
255  * without the corresponding queue lock held.  The caller must have enqueued a
256  * marker page at the desired start point for the scan.  Pages will be
257  * physically dequeued if the caller so requests.  Otherwise, the returned
258  * batch may contain marker pages, and it is up to the caller to handle them.
259  *
260  * When processing the batch queue, vm_page_queue() must be used to
261  * determine whether the page has been logically dequeued by another thread.
262  * Once this check is performed, the page lock guarantees that the page will
263  * not be disassociated from the queue.
264  */
265 static __always_inline void
266 vm_pageout_collect_batch(struct scan_state *ss, const bool dequeue)
267 {
268         struct vm_pagequeue *pq;
269         vm_page_t m, marker, n;
270
271         marker = ss->marker;
272         pq = ss->pq;
273
274         KASSERT((marker->a.flags & PGA_ENQUEUED) != 0,
275             ("marker %p not enqueued", ss->marker));
276
277         vm_pagequeue_lock(pq);
278         for (m = TAILQ_NEXT(marker, plinks.q); m != NULL &&
279             ss->scanned < ss->maxscan && ss->bq.bq_cnt < VM_BATCHQUEUE_SIZE;
280             m = n, ss->scanned++) {
281                 n = TAILQ_NEXT(m, plinks.q);
282                 if ((m->flags & PG_MARKER) == 0) {
283                         KASSERT((m->a.flags & PGA_ENQUEUED) != 0,
284                             ("page %p not enqueued", m));
285                         KASSERT((m->flags & PG_FICTITIOUS) == 0,
286                             ("Fictitious page %p cannot be in page queue", m));
287                         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
288                             ("Unmanaged page %p cannot be in page queue", m));
289                 } else if (dequeue)
290                         continue;
291
292                 (void)vm_batchqueue_insert(&ss->bq, m);
293                 if (dequeue) {
294                         TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
295                         vm_page_aflag_clear(m, PGA_ENQUEUED);
296                 }
297         }
298         TAILQ_REMOVE(&pq->pq_pl, marker, plinks.q);
299         if (__predict_true(m != NULL))
300                 TAILQ_INSERT_BEFORE(m, marker, plinks.q);
301         else
302                 TAILQ_INSERT_TAIL(&pq->pq_pl, marker, plinks.q);
303         if (dequeue)
304                 vm_pagequeue_cnt_add(pq, -ss->bq.bq_cnt);
305         vm_pagequeue_unlock(pq);
306 }
307
308 /*
309  * Return the next page to be scanned, or NULL if the scan is complete.
310  */
311 static __always_inline vm_page_t
312 vm_pageout_next(struct scan_state *ss, const bool dequeue)
313 {
314
315         if (ss->bq.bq_cnt == 0)
316                 vm_pageout_collect_batch(ss, dequeue);
317         return (vm_batchqueue_pop(&ss->bq));
318 }
319
320 /*
321  * Scan for pages at adjacent offsets within the given page's object that are
322  * eligible for laundering, form a cluster of these pages and the given page,
323  * and launder that cluster.
324  */
325 static int
326 vm_pageout_cluster(vm_page_t m)
327 {
328         vm_object_t object;
329         vm_page_t mc[2 * vm_pageout_page_count], p, pb, ps;
330         vm_pindex_t pindex;
331         int ib, is, page_base, pageout_count;
332
333         object = m->object;
334         VM_OBJECT_ASSERT_WLOCKED(object);
335         pindex = m->pindex;
336
337         vm_page_assert_xbusied(m);
338
339         mc[vm_pageout_page_count] = pb = ps = m;
340         pageout_count = 1;
341         page_base = vm_pageout_page_count;
342         ib = 1;
343         is = 1;
344
345         /*
346          * We can cluster only if the page is not clean, busy, or held, and
347          * the page is in the laundry queue.
348          *
349          * During heavy mmap/modification loads the pageout
350          * daemon can really fragment the underlying file
351          * due to flushing pages out of order and not trying to
352          * align the clusters (which leaves sporadic out-of-order
353          * holes).  To solve this problem we do the reverse scan
354          * first and attempt to align our cluster, then do a 
355          * forward scan if room remains.
356          */
357 more:
358         while (ib != 0 && pageout_count < vm_pageout_page_count) {
359                 if (ib > pindex) {
360                         ib = 0;
361                         break;
362                 }
363                 if ((p = vm_page_prev(pb)) == NULL ||
364                     vm_page_tryxbusy(p) == 0) {
365                         ib = 0;
366                         break;
367                 }
368                 if (vm_page_wired(p)) {
369                         ib = 0;
370                         vm_page_xunbusy(p);
371                         break;
372                 }
373                 vm_page_test_dirty(p);
374                 if (p->dirty == 0) {
375                         ib = 0;
376                         vm_page_xunbusy(p);
377                         break;
378                 }
379                 vm_page_lock(p);
380                 if (!vm_page_in_laundry(p) || !vm_page_try_remove_write(p)) {
381                         vm_page_unlock(p);
382                         vm_page_xunbusy(p);
383                         ib = 0;
384                         break;
385                 }
386                 vm_page_unlock(p);
387                 mc[--page_base] = pb = p;
388                 ++pageout_count;
389                 ++ib;
390
391                 /*
392                  * We are at an alignment boundary.  Stop here, and switch
393                  * directions.  Do not clear ib.
394                  */
395                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
396                         break;
397         }
398         while (pageout_count < vm_pageout_page_count && 
399             pindex + is < object->size) {
400                 if ((p = vm_page_next(ps)) == NULL ||
401                     vm_page_tryxbusy(p) == 0)
402                         break;
403                 if (vm_page_wired(p)) {
404                         vm_page_xunbusy(p);
405                         break;
406                 }
407                 vm_page_test_dirty(p);
408                 if (p->dirty == 0) {
409                         vm_page_xunbusy(p);
410                         break;
411                 }
412                 vm_page_lock(p);
413                 if (!vm_page_in_laundry(p) || !vm_page_try_remove_write(p)) {
414                         vm_page_unlock(p);
415                         vm_page_xunbusy(p);
416                         break;
417                 }
418                 vm_page_unlock(p);
419                 mc[page_base + pageout_count] = ps = p;
420                 ++pageout_count;
421                 ++is;
422         }
423
424         /*
425          * If we exhausted our forward scan, continue with the reverse scan
426          * when possible, even past an alignment boundary.  This catches
427          * boundary conditions.
428          */
429         if (ib != 0 && pageout_count < vm_pageout_page_count)
430                 goto more;
431
432         return (vm_pageout_flush(&mc[page_base], pageout_count,
433             VM_PAGER_PUT_NOREUSE, 0, NULL, NULL));
434 }
435
436 /*
437  * vm_pageout_flush() - launder the given pages
438  *
439  *      The given pages are laundered.  Note that we setup for the start of
440  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
441  *      reference count all in here rather then in the parent.  If we want
442  *      the parent to do more sophisticated things we may have to change
443  *      the ordering.
444  *
445  *      Returned runlen is the count of pages between mreq and first
446  *      page after mreq with status VM_PAGER_AGAIN.
447  *      *eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
448  *      for any page in runlen set.
449  */
450 int
451 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
452     boolean_t *eio)
453 {
454         vm_object_t object = mc[0]->object;
455         int pageout_status[count];
456         int numpagedout = 0;
457         int i, runlen;
458
459         VM_OBJECT_ASSERT_WLOCKED(object);
460
461         /*
462          * Initiate I/O.  Mark the pages shared busy and verify that they're
463          * valid and read-only.
464          *
465          * We do not have to fixup the clean/dirty bits here... we can
466          * allow the pager to do it after the I/O completes.
467          *
468          * NOTE! mc[i]->dirty may be partial or fragmented due to an
469          * edge case with file fragments.
470          */
471         for (i = 0; i < count; i++) {
472                 KASSERT(vm_page_all_valid(mc[i]),
473                     ("vm_pageout_flush: partially invalid page %p index %d/%d",
474                         mc[i], i, count));
475                 KASSERT((mc[i]->a.flags & PGA_WRITEABLE) == 0,
476                     ("vm_pageout_flush: writeable page %p", mc[i]));
477                 vm_page_busy_downgrade(mc[i]);
478         }
479         vm_object_pip_add(object, count);
480
481         vm_pager_put_pages(object, mc, count, flags, pageout_status);
482
483         runlen = count - mreq;
484         if (eio != NULL)
485                 *eio = FALSE;
486         for (i = 0; i < count; i++) {
487                 vm_page_t mt = mc[i];
488
489                 KASSERT(pageout_status[i] == VM_PAGER_PEND ||
490                     !pmap_page_is_write_mapped(mt),
491                     ("vm_pageout_flush: page %p is not write protected", mt));
492                 switch (pageout_status[i]) {
493                 case VM_PAGER_OK:
494                         vm_page_lock(mt);
495                         if (vm_page_in_laundry(mt))
496                                 vm_page_deactivate_noreuse(mt);
497                         vm_page_unlock(mt);
498                         /* FALLTHROUGH */
499                 case VM_PAGER_PEND:
500                         numpagedout++;
501                         break;
502                 case VM_PAGER_BAD:
503                         /*
504                          * The page is outside the object's range.  We pretend
505                          * that the page out worked and clean the page, so the
506                          * changes will be lost if the page is reclaimed by
507                          * the page daemon.
508                          */
509                         vm_page_undirty(mt);
510                         vm_page_lock(mt);
511                         if (vm_page_in_laundry(mt))
512                                 vm_page_deactivate_noreuse(mt);
513                         vm_page_unlock(mt);
514                         break;
515                 case VM_PAGER_ERROR:
516                 case VM_PAGER_FAIL:
517                         /*
518                          * If the page couldn't be paged out to swap because the
519                          * pager wasn't able to find space, place the page in
520                          * the PQ_UNSWAPPABLE holding queue.  This is an
521                          * optimization that prevents the page daemon from
522                          * wasting CPU cycles on pages that cannot be reclaimed
523                          * becase no swap device is configured.
524                          *
525                          * Otherwise, reactivate the page so that it doesn't
526                          * clog the laundry and inactive queues.  (We will try
527                          * paging it out again later.)
528                          */
529                         vm_page_lock(mt);
530                         if (object->type == OBJT_SWAP &&
531                             pageout_status[i] == VM_PAGER_FAIL) {
532                                 vm_page_unswappable(mt);
533                                 numpagedout++;
534                         } else
535                                 vm_page_activate(mt);
536                         vm_page_unlock(mt);
537                         if (eio != NULL && i >= mreq && i - mreq < runlen)
538                                 *eio = TRUE;
539                         break;
540                 case VM_PAGER_AGAIN:
541                         if (i >= mreq && i - mreq < runlen)
542                                 runlen = i - mreq;
543                         break;
544                 }
545
546                 /*
547                  * If the operation is still going, leave the page busy to
548                  * block all other accesses. Also, leave the paging in
549                  * progress indicator set so that we don't attempt an object
550                  * collapse.
551                  */
552                 if (pageout_status[i] != VM_PAGER_PEND) {
553                         vm_object_pip_wakeup(object);
554                         vm_page_sunbusy(mt);
555                 }
556         }
557         if (prunlen != NULL)
558                 *prunlen = runlen;
559         return (numpagedout);
560 }
561
562 static void
563 vm_pageout_swapon(void *arg __unused, struct swdevt *sp __unused)
564 {
565
566         atomic_store_rel_int(&swapdev_enabled, 1);
567 }
568
569 static void
570 vm_pageout_swapoff(void *arg __unused, struct swdevt *sp __unused)
571 {
572
573         if (swap_pager_nswapdev() == 1)
574                 atomic_store_rel_int(&swapdev_enabled, 0);
575 }
576
577 /*
578  * Attempt to acquire all of the necessary locks to launder a page and
579  * then call through the clustering layer to PUTPAGES.  Wait a short
580  * time for a vnode lock.
581  *
582  * Requires the page and object lock on entry, releases both before return.
583  * Returns 0 on success and an errno otherwise.
584  */
585 static int
586 vm_pageout_clean(vm_page_t m, int *numpagedout)
587 {
588         struct vnode *vp;
589         struct mount *mp;
590         vm_object_t object;
591         vm_pindex_t pindex;
592         int error, lockmode;
593
594         vm_page_assert_locked(m);
595         object = m->object;
596         VM_OBJECT_ASSERT_WLOCKED(object);
597         error = 0;
598         vp = NULL;
599         mp = NULL;
600
601         /*
602          * The object is already known NOT to be dead.   It
603          * is possible for the vget() to block the whole
604          * pageout daemon, but the new low-memory handling
605          * code should prevent it.
606          *
607          * We can't wait forever for the vnode lock, we might
608          * deadlock due to a vn_read() getting stuck in
609          * vm_wait while holding this vnode.  We skip the 
610          * vnode if we can't get it in a reasonable amount
611          * of time.
612          */
613         if (object->type == OBJT_VNODE) {
614                 vm_page_unlock(m);
615                 vm_page_xunbusy(m);
616                 vp = object->handle;
617                 if (vp->v_type == VREG &&
618                     vn_start_write(vp, &mp, V_NOWAIT) != 0) {
619                         mp = NULL;
620                         error = EDEADLK;
621                         goto unlock_all;
622                 }
623                 KASSERT(mp != NULL,
624                     ("vp %p with NULL v_mount", vp));
625                 vm_object_reference_locked(object);
626                 pindex = m->pindex;
627                 VM_OBJECT_WUNLOCK(object);
628                 lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
629                     LK_SHARED : LK_EXCLUSIVE;
630                 if (vget(vp, lockmode | LK_TIMELOCK, curthread)) {
631                         vp = NULL;
632                         error = EDEADLK;
633                         goto unlock_mp;
634                 }
635                 VM_OBJECT_WLOCK(object);
636
637                 /*
638                  * Ensure that the object and vnode were not disassociated
639                  * while locks were dropped.
640                  */
641                 if (vp->v_object != object) {
642                         error = ENOENT;
643                         goto unlock_all;
644                 }
645                 vm_page_lock(m);
646
647                 /*
648                  * While the object and page were unlocked, the page
649                  * may have been:
650                  * (1) moved to a different queue,
651                  * (2) reallocated to a different object,
652                  * (3) reallocated to a different offset, or
653                  * (4) cleaned.
654                  */
655                 if (!vm_page_in_laundry(m) || m->object != object ||
656                     m->pindex != pindex || m->dirty == 0) {
657                         vm_page_unlock(m);
658                         error = ENXIO;
659                         goto unlock_all;
660                 }
661
662                 /*
663                  * The page may have been busied while the object and page
664                  * locks were released.
665                  */
666                 if (vm_page_tryxbusy(m) == 0) {
667                         vm_page_unlock(m);
668                         error = EBUSY;
669                         goto unlock_all;
670                 }
671         }
672
673         /*
674          * Remove all writeable mappings, failing if the page is wired.
675          */
676         if (!vm_page_try_remove_write(m)) {
677                 vm_page_xunbusy(m);
678                 vm_page_unlock(m);
679                 error = EBUSY;
680                 goto unlock_all;
681         }
682         vm_page_unlock(m);
683
684         /*
685          * If a page is dirty, then it is either being washed
686          * (but not yet cleaned) or it is still in the
687          * laundry.  If it is still in the laundry, then we
688          * start the cleaning operation. 
689          */
690         if ((*numpagedout = vm_pageout_cluster(m)) == 0)
691                 error = EIO;
692
693 unlock_all:
694         VM_OBJECT_WUNLOCK(object);
695
696 unlock_mp:
697         vm_page_lock_assert(m, MA_NOTOWNED);
698         if (mp != NULL) {
699                 if (vp != NULL)
700                         vput(vp);
701                 vm_object_deallocate(object);
702                 vn_finished_write(mp);
703         }
704
705         return (error);
706 }
707
708 /*
709  * Attempt to launder the specified number of pages.
710  *
711  * Returns the number of pages successfully laundered.
712  */
713 static int
714 vm_pageout_launder(struct vm_domain *vmd, int launder, bool in_shortfall)
715 {
716         struct scan_state ss;
717         struct vm_pagequeue *pq;
718         struct mtx *mtx;
719         vm_object_t object;
720         vm_page_t m, marker;
721         int act_delta, error, numpagedout, queue, starting_target;
722         int vnodes_skipped;
723         bool pageout_ok;
724
725         mtx = NULL;
726         object = NULL;
727         starting_target = launder;
728         vnodes_skipped = 0;
729
730         /*
731          * Scan the laundry queues for pages eligible to be laundered.  We stop
732          * once the target number of dirty pages have been laundered, or once
733          * we've reached the end of the queue.  A single iteration of this loop
734          * may cause more than one page to be laundered because of clustering.
735          *
736          * As an optimization, we avoid laundering from PQ_UNSWAPPABLE when no
737          * swap devices are configured.
738          */
739         if (atomic_load_acq_int(&swapdev_enabled))
740                 queue = PQ_UNSWAPPABLE;
741         else
742                 queue = PQ_LAUNDRY;
743
744 scan:
745         marker = &vmd->vmd_markers[queue];
746         pq = &vmd->vmd_pagequeues[queue];
747         vm_pagequeue_lock(pq);
748         vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
749         while (launder > 0 && (m = vm_pageout_next(&ss, false)) != NULL) {
750                 if (__predict_false((m->flags & PG_MARKER) != 0))
751                         continue;
752
753                 vm_page_change_lock(m, &mtx);
754
755 recheck:
756                 /*
757                  * The page may have been disassociated from the queue
758                  * or even freed while locks were dropped.  We thus must be
759                  * careful whenever modifying page state.  Once the object lock
760                  * has been acquired, we have a stable reference to the page.
761                  */
762                 if (vm_page_queue(m) != queue)
763                         continue;
764
765                 /*
766                  * A requeue was requested, so this page gets a second
767                  * chance.
768                  */
769                 if ((m->a.flags & PGA_REQUEUE) != 0) {
770                         vm_page_pqbatch_submit(m, queue);
771                         continue;
772                 }
773
774                 /*
775                  * Wired pages may not be freed.  Complete their removal
776                  * from the queue now to avoid needless revisits during
777                  * future scans.  This check is racy and must be reverified once
778                  * we hold the object lock and have verified that the page
779                  * is not busy.
780                  */
781                 if (vm_page_wired(m)) {
782                         vm_page_dequeue_deferred(m);
783                         continue;
784                 }
785
786                 if (object != m->object) {
787                         if (object != NULL)
788                                 VM_OBJECT_WUNLOCK(object);
789
790                         /*
791                          * A page's object pointer may be set to NULL before
792                          * the object lock is acquired.
793                          */
794                         object = (vm_object_t)atomic_load_ptr(&m->object);
795                         if (object != NULL && !VM_OBJECT_TRYWLOCK(object)) {
796                                 mtx_unlock(mtx);
797                                 /* Depends on type-stability. */
798                                 VM_OBJECT_WLOCK(object);
799                                 mtx_lock(mtx);
800                                 goto recheck;
801                         }
802                 }
803                 if (__predict_false(m->object == NULL))
804                         /*
805                          * The page has been removed from its object.
806                          */
807                         continue;
808                 KASSERT(m->object == object, ("page %p does not belong to %p",
809                     m, object));
810
811                 if (vm_page_tryxbusy(m) == 0)
812                         continue;
813
814                 /*
815                  * Re-check for wirings now that we hold the object lock and
816                  * have verified that the page is unbusied.  If the page is
817                  * mapped, it may still be wired by pmap lookups.  The call to
818                  * vm_page_try_remove_all() below atomically checks for such
819                  * wirings and removes mappings.  If the page is unmapped, the
820                  * wire count is guaranteed not to increase.
821                  */
822                 if (__predict_false(vm_page_wired(m))) {
823                         vm_page_xunbusy(m);
824                         vm_page_dequeue_deferred(m);
825                         continue;
826                 }
827
828                 /*
829                  * Invalid pages can be easily freed.  They cannot be
830                  * mapped; vm_page_free() asserts this.
831                  */
832                 if (vm_page_none_valid(m))
833                         goto free_page;
834
835                 /*
836                  * If the page has been referenced and the object is not dead,
837                  * reactivate or requeue the page depending on whether the
838                  * object is mapped.
839                  *
840                  * Test PGA_REFERENCED after calling pmap_ts_referenced() so
841                  * that a reference from a concurrently destroyed mapping is
842                  * observed here and now.
843                  */
844                 if (object->ref_count != 0)
845                         act_delta = pmap_ts_referenced(m);
846                 else {
847                         KASSERT(!pmap_page_is_mapped(m),
848                             ("page %p is mapped", m));
849                         act_delta = 0;
850                 }
851                 if ((m->a.flags & PGA_REFERENCED) != 0) {
852                         vm_page_aflag_clear(m, PGA_REFERENCED);
853                         act_delta++;
854                 }
855                 if (act_delta != 0) {
856                         if (object->ref_count != 0) {
857                                 vm_page_xunbusy(m);
858                                 VM_CNT_INC(v_reactivated);
859                                 vm_page_activate(m);
860
861                                 /*
862                                  * Increase the activation count if the page
863                                  * was referenced while in the laundry queue.
864                                  * This makes it less likely that the page will
865                                  * be returned prematurely to the inactive
866                                  * queue.
867                                  */
868                                 m->a.act_count += act_delta + ACT_ADVANCE;
869
870                                 /*
871                                  * If this was a background laundering, count
872                                  * activated pages towards our target.  The
873                                  * purpose of background laundering is to ensure
874                                  * that pages are eventually cycled through the
875                                  * laundry queue, and an activation is a valid
876                                  * way out.
877                                  */
878                                 if (!in_shortfall)
879                                         launder--;
880                                 continue;
881                         } else if ((object->flags & OBJ_DEAD) == 0) {
882                                 vm_page_xunbusy(m);
883                                 vm_page_requeue(m);
884                                 continue;
885                         }
886                 }
887
888                 /*
889                  * If the page appears to be clean at the machine-independent
890                  * layer, then remove all of its mappings from the pmap in
891                  * anticipation of freeing it.  If, however, any of the page's
892                  * mappings allow write access, then the page may still be
893                  * modified until the last of those mappings are removed.
894                  */
895                 if (object->ref_count != 0) {
896                         vm_page_test_dirty(m);
897                         if (m->dirty == 0 && !vm_page_try_remove_all(m)) {
898                                 vm_page_xunbusy(m);
899                                 vm_page_dequeue_deferred(m);
900                                 continue;
901                         }
902                 }
903
904                 /*
905                  * Clean pages are freed, and dirty pages are paged out unless
906                  * they belong to a dead object.  Requeueing dirty pages from
907                  * dead objects is pointless, as they are being paged out and
908                  * freed by the thread that destroyed the object.
909                  */
910                 if (m->dirty == 0) {
911 free_page:
912                         vm_page_free(m);
913                         VM_CNT_INC(v_dfree);
914                 } else if ((object->flags & OBJ_DEAD) == 0) {
915                         if (object->type != OBJT_SWAP &&
916                             object->type != OBJT_DEFAULT)
917                                 pageout_ok = true;
918                         else if (disable_swap_pageouts)
919                                 pageout_ok = false;
920                         else
921                                 pageout_ok = true;
922                         if (!pageout_ok) {
923                                 vm_page_xunbusy(m);
924                                 vm_page_requeue(m);
925                                 continue;
926                         }
927
928                         /*
929                          * Form a cluster with adjacent, dirty pages from the
930                          * same object, and page out that entire cluster.
931                          *
932                          * The adjacent, dirty pages must also be in the
933                          * laundry.  However, their mappings are not checked
934                          * for new references.  Consequently, a recently
935                          * referenced page may be paged out.  However, that
936                          * page will not be prematurely reclaimed.  After page
937                          * out, the page will be placed in the inactive queue,
938                          * where any new references will be detected and the
939                          * page reactivated.
940                          */
941                         error = vm_pageout_clean(m, &numpagedout);
942                         if (error == 0) {
943                                 launder -= numpagedout;
944                                 ss.scanned += numpagedout;
945                         } else if (error == EDEADLK) {
946                                 pageout_lock_miss++;
947                                 vnodes_skipped++;
948                         }
949                         mtx = NULL;
950                         object = NULL;
951                 } else
952                         vm_page_xunbusy(m);
953         }
954         if (mtx != NULL) {
955                 mtx_unlock(mtx);
956                 mtx = NULL;
957         }
958         if (object != NULL) {
959                 VM_OBJECT_WUNLOCK(object);
960                 object = NULL;
961         }
962         vm_pagequeue_lock(pq);
963         vm_pageout_end_scan(&ss);
964         vm_pagequeue_unlock(pq);
965
966         if (launder > 0 && queue == PQ_UNSWAPPABLE) {
967                 queue = PQ_LAUNDRY;
968                 goto scan;
969         }
970
971         /*
972          * Wakeup the sync daemon if we skipped a vnode in a writeable object
973          * and we didn't launder enough pages.
974          */
975         if (vnodes_skipped > 0 && launder > 0)
976                 (void)speedup_syncer();
977
978         return (starting_target - launder);
979 }
980
981 /*
982  * Compute the integer square root.
983  */
984 static u_int
985 isqrt(u_int num)
986 {
987         u_int bit, root, tmp;
988
989         bit = num != 0 ? (1u << ((fls(num) - 1) & ~1)) : 0;
990         root = 0;
991         while (bit != 0) {
992                 tmp = root + bit;
993                 root >>= 1;
994                 if (num >= tmp) {
995                         num -= tmp;
996                         root += bit;
997                 }
998                 bit >>= 2;
999         }
1000         return (root);
1001 }
1002
1003 /*
1004  * Perform the work of the laundry thread: periodically wake up and determine
1005  * whether any pages need to be laundered.  If so, determine the number of pages
1006  * that need to be laundered, and launder them.
1007  */
1008 static void
1009 vm_pageout_laundry_worker(void *arg)
1010 {
1011         struct vm_domain *vmd;
1012         struct vm_pagequeue *pq;
1013         uint64_t nclean, ndirty, nfreed;
1014         int domain, last_target, launder, shortfall, shortfall_cycle, target;
1015         bool in_shortfall;
1016
1017         domain = (uintptr_t)arg;
1018         vmd = VM_DOMAIN(domain);
1019         pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
1020         KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
1021
1022         shortfall = 0;
1023         in_shortfall = false;
1024         shortfall_cycle = 0;
1025         last_target = target = 0;
1026         nfreed = 0;
1027
1028         /*
1029          * Calls to these handlers are serialized by the swap syscall lock.
1030          */
1031         (void)EVENTHANDLER_REGISTER(swapon, vm_pageout_swapon, vmd,
1032             EVENTHANDLER_PRI_ANY);
1033         (void)EVENTHANDLER_REGISTER(swapoff, vm_pageout_swapoff, vmd,
1034             EVENTHANDLER_PRI_ANY);
1035
1036         /*
1037          * The pageout laundry worker is never done, so loop forever.
1038          */
1039         for (;;) {
1040                 KASSERT(target >= 0, ("negative target %d", target));
1041                 KASSERT(shortfall_cycle >= 0,
1042                     ("negative cycle %d", shortfall_cycle));
1043                 launder = 0;
1044
1045                 /*
1046                  * First determine whether we need to launder pages to meet a
1047                  * shortage of free pages.
1048                  */
1049                 if (shortfall > 0) {
1050                         in_shortfall = true;
1051                         shortfall_cycle = VM_LAUNDER_RATE / VM_INACT_SCAN_RATE;
1052                         target = shortfall;
1053                 } else if (!in_shortfall)
1054                         goto trybackground;
1055                 else if (shortfall_cycle == 0 || vm_laundry_target(vmd) <= 0) {
1056                         /*
1057                          * We recently entered shortfall and began laundering
1058                          * pages.  If we have completed that laundering run
1059                          * (and we are no longer in shortfall) or we have met
1060                          * our laundry target through other activity, then we
1061                          * can stop laundering pages.
1062                          */
1063                         in_shortfall = false;
1064                         target = 0;
1065                         goto trybackground;
1066                 }
1067                 launder = target / shortfall_cycle--;
1068                 goto dolaundry;
1069
1070                 /*
1071                  * There's no immediate need to launder any pages; see if we
1072                  * meet the conditions to perform background laundering:
1073                  *
1074                  * 1. The ratio of dirty to clean inactive pages exceeds the
1075                  *    background laundering threshold, or
1076                  * 2. we haven't yet reached the target of the current
1077                  *    background laundering run.
1078                  *
1079                  * The background laundering threshold is not a constant.
1080                  * Instead, it is a slowly growing function of the number of
1081                  * clean pages freed by the page daemon since the last
1082                  * background laundering.  Thus, as the ratio of dirty to
1083                  * clean inactive pages grows, the amount of memory pressure
1084                  * required to trigger laundering decreases.  We ensure
1085                  * that the threshold is non-zero after an inactive queue
1086                  * scan, even if that scan failed to free a single clean page.
1087                  */
1088 trybackground:
1089                 nclean = vmd->vmd_free_count +
1090                     vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt;
1091                 ndirty = vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt;
1092                 if (target == 0 && ndirty * isqrt(howmany(nfreed + 1,
1093                     vmd->vmd_free_target - vmd->vmd_free_min)) >= nclean) {
1094                         target = vmd->vmd_background_launder_target;
1095                 }
1096
1097                 /*
1098                  * We have a non-zero background laundering target.  If we've
1099                  * laundered up to our maximum without observing a page daemon
1100                  * request, just stop.  This is a safety belt that ensures we
1101                  * don't launder an excessive amount if memory pressure is low
1102                  * and the ratio of dirty to clean pages is large.  Otherwise,
1103                  * proceed at the background laundering rate.
1104                  */
1105                 if (target > 0) {
1106                         if (nfreed > 0) {
1107                                 nfreed = 0;
1108                                 last_target = target;
1109                         } else if (last_target - target >=
1110                             vm_background_launder_max * PAGE_SIZE / 1024) {
1111                                 target = 0;
1112                         }
1113                         launder = vm_background_launder_rate * PAGE_SIZE / 1024;
1114                         launder /= VM_LAUNDER_RATE;
1115                         if (launder > target)
1116                                 launder = target;
1117                 }
1118
1119 dolaundry:
1120                 if (launder > 0) {
1121                         /*
1122                          * Because of I/O clustering, the number of laundered
1123                          * pages could exceed "target" by the maximum size of
1124                          * a cluster minus one. 
1125                          */
1126                         target -= min(vm_pageout_launder(vmd, launder,
1127                             in_shortfall), target);
1128                         pause("laundp", hz / VM_LAUNDER_RATE);
1129                 }
1130
1131                 /*
1132                  * If we're not currently laundering pages and the page daemon
1133                  * hasn't posted a new request, sleep until the page daemon
1134                  * kicks us.
1135                  */
1136                 vm_pagequeue_lock(pq);
1137                 if (target == 0 && vmd->vmd_laundry_request == VM_LAUNDRY_IDLE)
1138                         (void)mtx_sleep(&vmd->vmd_laundry_request,
1139                             vm_pagequeue_lockptr(pq), PVM, "launds", 0);
1140
1141                 /*
1142                  * If the pagedaemon has indicated that it's in shortfall, start
1143                  * a shortfall laundering unless we're already in the middle of
1144                  * one.  This may preempt a background laundering.
1145                  */
1146                 if (vmd->vmd_laundry_request == VM_LAUNDRY_SHORTFALL &&
1147                     (!in_shortfall || shortfall_cycle == 0)) {
1148                         shortfall = vm_laundry_target(vmd) +
1149                             vmd->vmd_pageout_deficit;
1150                         target = 0;
1151                 } else
1152                         shortfall = 0;
1153
1154                 if (target == 0)
1155                         vmd->vmd_laundry_request = VM_LAUNDRY_IDLE;
1156                 nfreed += vmd->vmd_clean_pages_freed;
1157                 vmd->vmd_clean_pages_freed = 0;
1158                 vm_pagequeue_unlock(pq);
1159         }
1160 }
1161
1162 /*
1163  * Compute the number of pages we want to try to move from the
1164  * active queue to either the inactive or laundry queue.
1165  *
1166  * When scanning active pages during a shortage, we make clean pages
1167  * count more heavily towards the page shortage than dirty pages.
1168  * This is because dirty pages must be laundered before they can be
1169  * reused and thus have less utility when attempting to quickly
1170  * alleviate a free page shortage.  However, this weighting also
1171  * causes the scan to deactivate dirty pages more aggressively,
1172  * improving the effectiveness of clustering.
1173  */
1174 static int
1175 vm_pageout_active_target(struct vm_domain *vmd)
1176 {
1177         int shortage;
1178
1179         shortage = vmd->vmd_inactive_target + vm_paging_target(vmd) -
1180             (vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt +
1181             vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt / act_scan_laundry_weight);
1182         shortage *= act_scan_laundry_weight;
1183         return (shortage);
1184 }
1185
1186 /*
1187  * Scan the active queue.  If there is no shortage of inactive pages, scan a
1188  * small portion of the queue in order to maintain quasi-LRU.
1189  */
1190 static void
1191 vm_pageout_scan_active(struct vm_domain *vmd, int page_shortage)
1192 {
1193         struct scan_state ss;
1194         struct mtx *mtx;
1195         vm_object_t object;
1196         vm_page_t m, marker;
1197         struct vm_pagequeue *pq;
1198         long min_scan;
1199         int act_delta, max_scan, scan_tick;
1200
1201         marker = &vmd->vmd_markers[PQ_ACTIVE];
1202         pq = &vmd->vmd_pagequeues[PQ_ACTIVE];
1203         vm_pagequeue_lock(pq);
1204
1205         /*
1206          * If we're just idle polling attempt to visit every
1207          * active page within 'update_period' seconds.
1208          */
1209         scan_tick = ticks;
1210         if (vm_pageout_update_period != 0) {
1211                 min_scan = pq->pq_cnt;
1212                 min_scan *= scan_tick - vmd->vmd_last_active_scan;
1213                 min_scan /= hz * vm_pageout_update_period;
1214         } else
1215                 min_scan = 0;
1216         if (min_scan > 0 || (page_shortage > 0 && pq->pq_cnt > 0))
1217                 vmd->vmd_last_active_scan = scan_tick;
1218
1219         /*
1220          * Scan the active queue for pages that can be deactivated.  Update
1221          * the per-page activity counter and use it to identify deactivation
1222          * candidates.  Held pages may be deactivated.
1223          *
1224          * To avoid requeuing each page that remains in the active queue, we
1225          * implement the CLOCK algorithm.  To keep the implementation of the
1226          * enqueue operation consistent for all page queues, we use two hands,
1227          * represented by marker pages. Scans begin at the first hand, which
1228          * precedes the second hand in the queue.  When the two hands meet,
1229          * they are moved back to the head and tail of the queue, respectively,
1230          * and scanning resumes.
1231          */
1232         max_scan = page_shortage > 0 ? pq->pq_cnt : min_scan;
1233         mtx = NULL;
1234 act_scan:
1235         vm_pageout_init_scan(&ss, pq, marker, &vmd->vmd_clock[0], max_scan);
1236         while ((m = vm_pageout_next(&ss, false)) != NULL) {
1237                 if (__predict_false(m == &vmd->vmd_clock[1])) {
1238                         vm_pagequeue_lock(pq);
1239                         TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
1240                         TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[1], plinks.q);
1241                         TAILQ_INSERT_HEAD(&pq->pq_pl, &vmd->vmd_clock[0],
1242                             plinks.q);
1243                         TAILQ_INSERT_TAIL(&pq->pq_pl, &vmd->vmd_clock[1],
1244                             plinks.q);
1245                         max_scan -= ss.scanned;
1246                         vm_pageout_end_scan(&ss);
1247                         goto act_scan;
1248                 }
1249                 if (__predict_false((m->flags & PG_MARKER) != 0))
1250                         continue;
1251
1252                 vm_page_change_lock(m, &mtx);
1253
1254                 /*
1255                  * The page may have been disassociated from the queue
1256                  * or even freed while locks were dropped.  We thus must be
1257                  * careful whenever modifying page state.  Once the object lock
1258                  * has been acquired, we have a stable reference to the page.
1259                  */
1260                 if (vm_page_queue(m) != PQ_ACTIVE)
1261                         continue;
1262
1263                 /*
1264                  * Wired pages are dequeued lazily.
1265                  */
1266                 if (vm_page_wired(m)) {
1267                         vm_page_dequeue_deferred(m);
1268                         continue;
1269                 }
1270
1271                 /*
1272                  * A page's object pointer may be set to NULL before
1273                  * the object lock is acquired.
1274                  */
1275                 object = (vm_object_t)atomic_load_ptr(&m->object);
1276                 if (__predict_false(object == NULL))
1277                         /*
1278                          * The page has been removed from its object.
1279                          */
1280                         continue;
1281
1282                 /*
1283                  * Check to see "how much" the page has been used.
1284                  *
1285                  * Test PGA_REFERENCED after calling pmap_ts_referenced() so
1286                  * that a reference from a concurrently destroyed mapping is
1287                  * observed here and now.
1288                  *
1289                  * Perform an unsynchronized object ref count check.  While
1290                  * the page lock ensures that the page is not reallocated to
1291                  * another object, in particular, one with unmanaged mappings
1292                  * that cannot support pmap_ts_referenced(), two races are,
1293                  * nonetheless, possible:
1294                  * 1) The count was transitioning to zero, but we saw a non-
1295                  *    zero value.  pmap_ts_referenced() will return zero
1296                  *    because the page is not mapped.
1297                  * 2) The count was transitioning to one, but we saw zero.
1298                  *    This race delays the detection of a new reference.  At
1299                  *    worst, we will deactivate and reactivate the page.
1300                  */
1301                 if (object->ref_count != 0)
1302                         act_delta = pmap_ts_referenced(m);
1303                 else
1304                         act_delta = 0;
1305                 if ((m->a.flags & PGA_REFERENCED) != 0) {
1306                         vm_page_aflag_clear(m, PGA_REFERENCED);
1307                         act_delta++;
1308                 }
1309
1310                 /* Deferred free of swap space. */
1311                 if ((m->a.flags & PGA_SWAP_FREE) != 0 &&
1312                     VM_OBJECT_TRYWLOCK(object)) {
1313                         if (m->object == object)
1314                                 vm_pager_page_unswapped(m);
1315                         VM_OBJECT_WUNLOCK(object);
1316                 }
1317
1318                 /*
1319                  * Advance or decay the act_count based on recent usage.
1320                  */
1321                 if (act_delta != 0) {
1322                         m->a.act_count += ACT_ADVANCE + act_delta;
1323                         if (m->a.act_count > ACT_MAX)
1324                                 m->a.act_count = ACT_MAX;
1325                 } else
1326                         m->a.act_count -= min(m->a.act_count, ACT_DECLINE);
1327
1328                 if (m->a.act_count == 0) {
1329                         /*
1330                          * When not short for inactive pages, let dirty pages go
1331                          * through the inactive queue before moving to the
1332                          * laundry queues.  This gives them some extra time to
1333                          * be reactivated, potentially avoiding an expensive
1334                          * pageout.  However, during a page shortage, the
1335                          * inactive queue is necessarily small, and so dirty
1336                          * pages would only spend a trivial amount of time in
1337                          * the inactive queue.  Therefore, we might as well
1338                          * place them directly in the laundry queue to reduce
1339                          * queuing overhead.
1340                          */
1341                         if (page_shortage <= 0) {
1342                                 vm_page_swapqueue(m, PQ_ACTIVE, PQ_INACTIVE);
1343                         } else {
1344                                 /*
1345                                  * Calling vm_page_test_dirty() here would
1346                                  * require acquisition of the object's write
1347                                  * lock.  However, during a page shortage,
1348                                  * directing dirty pages into the laundry
1349                                  * queue is only an optimization and not a
1350                                  * requirement.  Therefore, we simply rely on
1351                                  * the opportunistic updates to the page's
1352                                  * dirty field by the pmap.
1353                                  */
1354                                 if (m->dirty == 0) {
1355                                         vm_page_swapqueue(m, PQ_ACTIVE,
1356                                             PQ_INACTIVE);
1357                                         page_shortage -=
1358                                             act_scan_laundry_weight;
1359                                 } else {
1360                                         vm_page_swapqueue(m, PQ_ACTIVE,
1361                                             PQ_LAUNDRY);
1362                                         page_shortage--;
1363                                 }
1364                         }
1365                 }
1366         }
1367         if (mtx != NULL) {
1368                 mtx_unlock(mtx);
1369                 mtx = NULL;
1370         }
1371         vm_pagequeue_lock(pq);
1372         TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
1373         TAILQ_INSERT_AFTER(&pq->pq_pl, marker, &vmd->vmd_clock[0], plinks.q);
1374         vm_pageout_end_scan(&ss);
1375         vm_pagequeue_unlock(pq);
1376 }
1377
1378 static int
1379 vm_pageout_reinsert_inactive_page(struct scan_state *ss, vm_page_t m)
1380 {
1381         struct vm_domain *vmd;
1382
1383         if (m->a.queue != PQ_INACTIVE || (m->a.flags & PGA_ENQUEUED) != 0)
1384                 return (0);
1385         vm_page_aflag_set(m, PGA_ENQUEUED);
1386         if ((m->a.flags & PGA_REQUEUE_HEAD) != 0) {
1387                 vmd = vm_pagequeue_domain(m);
1388                 TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q);
1389                 vm_page_aflag_clear(m, PGA_REQUEUE | PGA_REQUEUE_HEAD);
1390         } else if ((m->a.flags & PGA_REQUEUE) != 0) {
1391                 TAILQ_INSERT_TAIL(&ss->pq->pq_pl, m, plinks.q);
1392                 vm_page_aflag_clear(m, PGA_REQUEUE | PGA_REQUEUE_HEAD);
1393         } else
1394                 TAILQ_INSERT_BEFORE(ss->marker, m, plinks.q);
1395         return (1);
1396 }
1397
1398 /*
1399  * Re-add stuck pages to the inactive queue.  We will examine them again
1400  * during the next scan.  If the queue state of a page has changed since
1401  * it was physically removed from the page queue in
1402  * vm_pageout_collect_batch(), don't do anything with that page.
1403  */
1404 static void
1405 vm_pageout_reinsert_inactive(struct scan_state *ss, struct vm_batchqueue *bq,
1406     vm_page_t m)
1407 {
1408         struct vm_pagequeue *pq;
1409         int delta;
1410
1411         delta = 0;
1412         pq = ss->pq;
1413
1414         if (m != NULL) {
1415                 if (vm_batchqueue_insert(bq, m))
1416                         return;
1417                 vm_pagequeue_lock(pq);
1418                 delta += vm_pageout_reinsert_inactive_page(ss, m);
1419         } else
1420                 vm_pagequeue_lock(pq);
1421         while ((m = vm_batchqueue_pop(bq)) != NULL)
1422                 delta += vm_pageout_reinsert_inactive_page(ss, m);
1423         vm_pagequeue_cnt_add(pq, delta);
1424         vm_pagequeue_unlock(pq);
1425         vm_batchqueue_init(bq);
1426 }
1427
1428 /*
1429  * Attempt to reclaim the requested number of pages from the inactive queue.
1430  * Returns true if the shortage was addressed.
1431  */
1432 static int
1433 vm_pageout_scan_inactive(struct vm_domain *vmd, int shortage,
1434     int *addl_shortage)
1435 {
1436         struct scan_state ss;
1437         struct vm_batchqueue rq;
1438         struct mtx *mtx;
1439         vm_page_t m, marker;
1440         struct vm_pagequeue *pq;
1441         vm_object_t object;
1442         int act_delta, addl_page_shortage, deficit, page_shortage;
1443         int starting_page_shortage;
1444
1445         /*
1446          * The addl_page_shortage is an estimate of the number of temporarily
1447          * stuck pages in the inactive queue.  In other words, the
1448          * number of pages from the inactive count that should be
1449          * discounted in setting the target for the active queue scan.
1450          */
1451         addl_page_shortage = 0;
1452
1453         /*
1454          * vmd_pageout_deficit counts the number of pages requested in
1455          * allocations that failed because of a free page shortage.  We assume
1456          * that the allocations will be reattempted and thus include the deficit
1457          * in our scan target.
1458          */
1459         deficit = atomic_readandclear_int(&vmd->vmd_pageout_deficit);
1460         starting_page_shortage = page_shortage = shortage + deficit;
1461
1462         mtx = NULL;
1463         object = NULL;
1464         vm_batchqueue_init(&rq);
1465
1466         /*
1467          * Start scanning the inactive queue for pages that we can free.  The
1468          * scan will stop when we reach the target or we have scanned the
1469          * entire queue.  (Note that m->a.act_count is not used to make
1470          * decisions for the inactive queue, only for the active queue.)
1471          */
1472         marker = &vmd->vmd_markers[PQ_INACTIVE];
1473         pq = &vmd->vmd_pagequeues[PQ_INACTIVE];
1474         vm_pagequeue_lock(pq);
1475         vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
1476         while (page_shortage > 0 && (m = vm_pageout_next(&ss, true)) != NULL) {
1477                 KASSERT((m->flags & PG_MARKER) == 0,
1478                     ("marker page %p was dequeued", m));
1479
1480                 vm_page_change_lock(m, &mtx);
1481
1482 recheck:
1483                 /*
1484                  * The page may have been disassociated from the queue
1485                  * or even freed while locks were dropped.  We thus must be
1486                  * careful whenever modifying page state.  Once the object lock
1487                  * has been acquired, we have a stable reference to the page.
1488                  */
1489                 if (vm_page_queue(m) != PQ_INACTIVE) {
1490                         addl_page_shortage++;
1491                         continue;
1492                 }
1493
1494                 /*
1495                  * The page was re-enqueued after the page queue lock was
1496                  * dropped, or a requeue was requested.  This page gets a second
1497                  * chance.
1498                  */
1499                 if ((m->a.flags & (PGA_ENQUEUED | PGA_REQUEUE |
1500                     PGA_REQUEUE_HEAD)) != 0)
1501                         goto reinsert;
1502
1503                 /*
1504                  * Wired pages may not be freed.  Complete their removal
1505                  * from the queue now to avoid needless revisits during
1506                  * future scans.  This check is racy and must be reverified once
1507                  * we hold the object lock and have verified that the page
1508                  * is not busy.
1509                  */
1510                 if (vm_page_wired(m)) {
1511                         vm_page_dequeue_deferred(m);
1512                         continue;
1513                 }
1514
1515                 if (object != m->object) {
1516                         if (object != NULL)
1517                                 VM_OBJECT_WUNLOCK(object);
1518
1519                         /*
1520                          * A page's object pointer may be set to NULL before
1521                          * the object lock is acquired.
1522                          */
1523                         object = (vm_object_t)atomic_load_ptr(&m->object);
1524                         if (object != NULL && !VM_OBJECT_TRYWLOCK(object)) {
1525                                 mtx_unlock(mtx);
1526                                 /* Depends on type-stability. */
1527                                 VM_OBJECT_WLOCK(object);
1528                                 mtx_lock(mtx);
1529                                 goto recheck;
1530                         }
1531                 }
1532                 if (__predict_false(m->object == NULL))
1533                         /*
1534                          * The page has been removed from its object.
1535                          */
1536                         continue;
1537                 KASSERT(m->object == object, ("page %p does not belong to %p",
1538                     m, object));
1539
1540                 if (vm_page_tryxbusy(m) == 0) {
1541                         /*
1542                          * Don't mess with busy pages.  Leave them at
1543                          * the front of the queue.  Most likely, they
1544                          * are being paged out and will leave the
1545                          * queue shortly after the scan finishes.  So,
1546                          * they ought to be discounted from the
1547                          * inactive count.
1548                          */
1549                         addl_page_shortage++;
1550                         goto reinsert;
1551                 }
1552
1553                 /* Deferred free of swap space. */
1554                 if ((m->a.flags & PGA_SWAP_FREE) != 0)
1555                         vm_pager_page_unswapped(m);
1556
1557                 /*
1558                  * Re-check for wirings now that we hold the object lock and
1559                  * have verified that the page is unbusied.  If the page is
1560                  * mapped, it may still be wired by pmap lookups.  The call to
1561                  * vm_page_try_remove_all() below atomically checks for such
1562                  * wirings and removes mappings.  If the page is unmapped, the
1563                  * wire count is guaranteed not to increase.
1564                  */
1565                 if (__predict_false(vm_page_wired(m))) {
1566                         vm_page_xunbusy(m);
1567                         vm_page_dequeue_deferred(m);
1568                         continue;
1569                 }
1570
1571                 /*
1572                  * Invalid pages can be easily freed. They cannot be
1573                  * mapped, vm_page_free() asserts this.
1574                  */
1575                 if (vm_page_none_valid(m))
1576                         goto free_page;
1577
1578                 /*
1579                  * If the page has been referenced and the object is not dead,
1580                  * reactivate or requeue the page depending on whether the
1581                  * object is mapped.
1582                  *
1583                  * Test PGA_REFERENCED after calling pmap_ts_referenced() so
1584                  * that a reference from a concurrently destroyed mapping is
1585                  * observed here and now.
1586                  */
1587                 if (object->ref_count != 0)
1588                         act_delta = pmap_ts_referenced(m);
1589                 else {
1590                         KASSERT(!pmap_page_is_mapped(m),
1591                             ("page %p is mapped", m));
1592                         act_delta = 0;
1593                 }
1594                 if ((m->a.flags & PGA_REFERENCED) != 0) {
1595                         vm_page_aflag_clear(m, PGA_REFERENCED);
1596                         act_delta++;
1597                 }
1598                 if (act_delta != 0) {
1599                         if (object->ref_count != 0) {
1600                                 vm_page_xunbusy(m);
1601                                 VM_CNT_INC(v_reactivated);
1602                                 vm_page_activate(m);
1603
1604                                 /*
1605                                  * Increase the activation count if the page
1606                                  * was referenced while in the inactive queue.
1607                                  * This makes it less likely that the page will
1608                                  * be returned prematurely to the inactive
1609                                  * queue.
1610                                  */
1611                                 m->a.act_count += act_delta + ACT_ADVANCE;
1612                                 continue;
1613                         } else if ((object->flags & OBJ_DEAD) == 0) {
1614                                 vm_page_xunbusy(m);
1615                                 vm_page_aflag_set(m, PGA_REQUEUE);
1616                                 goto reinsert;
1617                         }
1618                 }
1619
1620                 /*
1621                  * If the page appears to be clean at the machine-independent
1622                  * layer, then remove all of its mappings from the pmap in
1623                  * anticipation of freeing it.  If, however, any of the page's
1624                  * mappings allow write access, then the page may still be
1625                  * modified until the last of those mappings are removed.
1626                  */
1627                 if (object->ref_count != 0) {
1628                         vm_page_test_dirty(m);
1629                         if (m->dirty == 0 && !vm_page_try_remove_all(m)) {
1630                                 vm_page_xunbusy(m);
1631                                 vm_page_dequeue_deferred(m);
1632                                 continue;
1633                         }
1634                 }
1635
1636                 /*
1637                  * Clean pages can be freed, but dirty pages must be sent back
1638                  * to the laundry, unless they belong to a dead object.
1639                  * Requeueing dirty pages from dead objects is pointless, as
1640                  * they are being paged out and freed by the thread that
1641                  * destroyed the object.
1642                  */
1643                 if (m->dirty == 0) {
1644 free_page:
1645                         /*
1646                          * Because we dequeued the page and have already
1647                          * checked for concurrent dequeue and enqueue
1648                          * requests, we can safely disassociate the page
1649                          * from the inactive queue.
1650                          */
1651                         KASSERT((m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
1652                             ("page %p has queue state", m));
1653                         m->a.queue = PQ_NONE;
1654                         vm_page_free(m);
1655                         page_shortage--;
1656                         continue;
1657                 }
1658                 vm_page_xunbusy(m);
1659                 if ((object->flags & OBJ_DEAD) == 0)
1660                         vm_page_launder(m);
1661                 continue;
1662 reinsert:
1663                 vm_pageout_reinsert_inactive(&ss, &rq, m);
1664         }
1665         if (mtx != NULL)
1666                 mtx_unlock(mtx);
1667         if (object != NULL)
1668                 VM_OBJECT_WUNLOCK(object);
1669         vm_pageout_reinsert_inactive(&ss, &rq, NULL);
1670         vm_pageout_reinsert_inactive(&ss, &ss.bq, NULL);
1671         vm_pagequeue_lock(pq);
1672         vm_pageout_end_scan(&ss);
1673         vm_pagequeue_unlock(pq);
1674
1675         VM_CNT_ADD(v_dfree, starting_page_shortage - page_shortage);
1676
1677         /*
1678          * Wake up the laundry thread so that it can perform any needed
1679          * laundering.  If we didn't meet our target, we're in shortfall and
1680          * need to launder more aggressively.  If PQ_LAUNDRY is empty and no
1681          * swap devices are configured, the laundry thread has no work to do, so
1682          * don't bother waking it up.
1683          *
1684          * The laundry thread uses the number of inactive queue scans elapsed
1685          * since the last laundering to determine whether to launder again, so
1686          * keep count.
1687          */
1688         if (starting_page_shortage > 0) {
1689                 pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
1690                 vm_pagequeue_lock(pq);
1691                 if (vmd->vmd_laundry_request == VM_LAUNDRY_IDLE &&
1692                     (pq->pq_cnt > 0 || atomic_load_acq_int(&swapdev_enabled))) {
1693                         if (page_shortage > 0) {
1694                                 vmd->vmd_laundry_request = VM_LAUNDRY_SHORTFALL;
1695                                 VM_CNT_INC(v_pdshortfalls);
1696                         } else if (vmd->vmd_laundry_request !=
1697                             VM_LAUNDRY_SHORTFALL)
1698                                 vmd->vmd_laundry_request =
1699                                     VM_LAUNDRY_BACKGROUND;
1700                         wakeup(&vmd->vmd_laundry_request);
1701                 }
1702                 vmd->vmd_clean_pages_freed +=
1703                     starting_page_shortage - page_shortage;
1704                 vm_pagequeue_unlock(pq);
1705         }
1706
1707         /*
1708          * Wakeup the swapout daemon if we didn't free the targeted number of
1709          * pages.
1710          */
1711         if (page_shortage > 0)
1712                 vm_swapout_run();
1713
1714         /*
1715          * If the inactive queue scan fails repeatedly to meet its
1716          * target, kill the largest process.
1717          */
1718         vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage);
1719
1720         /*
1721          * Reclaim pages by swapping out idle processes, if configured to do so.
1722          */
1723         vm_swapout_run_idle();
1724
1725         /*
1726          * See the description of addl_page_shortage above.
1727          */
1728         *addl_shortage = addl_page_shortage + deficit;
1729
1730         return (page_shortage <= 0);
1731 }
1732
1733 static int vm_pageout_oom_vote;
1734
1735 /*
1736  * The pagedaemon threads randlomly select one to perform the
1737  * OOM.  Trying to kill processes before all pagedaemons
1738  * failed to reach free target is premature.
1739  */
1740 static void
1741 vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
1742     int starting_page_shortage)
1743 {
1744         int old_vote;
1745
1746         if (starting_page_shortage <= 0 || starting_page_shortage !=
1747             page_shortage)
1748                 vmd->vmd_oom_seq = 0;
1749         else
1750                 vmd->vmd_oom_seq++;
1751         if (vmd->vmd_oom_seq < vm_pageout_oom_seq) {
1752                 if (vmd->vmd_oom) {
1753                         vmd->vmd_oom = FALSE;
1754                         atomic_subtract_int(&vm_pageout_oom_vote, 1);
1755                 }
1756                 return;
1757         }
1758
1759         /*
1760          * Do not follow the call sequence until OOM condition is
1761          * cleared.
1762          */
1763         vmd->vmd_oom_seq = 0;
1764
1765         if (vmd->vmd_oom)
1766                 return;
1767
1768         vmd->vmd_oom = TRUE;
1769         old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1);
1770         if (old_vote != vm_ndomains - 1)
1771                 return;
1772
1773         /*
1774          * The current pagedaemon thread is the last in the quorum to
1775          * start OOM.  Initiate the selection and signaling of the
1776          * victim.
1777          */
1778         vm_pageout_oom(VM_OOM_MEM);
1779
1780         /*
1781          * After one round of OOM terror, recall our vote.  On the
1782          * next pass, current pagedaemon would vote again if the low
1783          * memory condition is still there, due to vmd_oom being
1784          * false.
1785          */
1786         vmd->vmd_oom = FALSE;
1787         atomic_subtract_int(&vm_pageout_oom_vote, 1);
1788 }
1789
1790 /*
1791  * The OOM killer is the page daemon's action of last resort when
1792  * memory allocation requests have been stalled for a prolonged period
1793  * of time because it cannot reclaim memory.  This function computes
1794  * the approximate number of physical pages that could be reclaimed if
1795  * the specified address space is destroyed.
1796  *
1797  * Private, anonymous memory owned by the address space is the
1798  * principal resource that we expect to recover after an OOM kill.
1799  * Since the physical pages mapped by the address space's COW entries
1800  * are typically shared pages, they are unlikely to be released and so
1801  * they are not counted.
1802  *
1803  * To get to the point where the page daemon runs the OOM killer, its
1804  * efforts to write-back vnode-backed pages may have stalled.  This
1805  * could be caused by a memory allocation deadlock in the write path
1806  * that might be resolved by an OOM kill.  Therefore, physical pages
1807  * belonging to vnode-backed objects are counted, because they might
1808  * be freed without being written out first if the address space holds
1809  * the last reference to an unlinked vnode.
1810  *
1811  * Similarly, physical pages belonging to OBJT_PHYS objects are
1812  * counted because the address space might hold the last reference to
1813  * the object.
1814  */
1815 static long
1816 vm_pageout_oom_pagecount(struct vmspace *vmspace)
1817 {
1818         vm_map_t map;
1819         vm_map_entry_t entry;
1820         vm_object_t obj;
1821         long res;
1822
1823         map = &vmspace->vm_map;
1824         KASSERT(!map->system_map, ("system map"));
1825         sx_assert(&map->lock, SA_LOCKED);
1826         res = 0;
1827         VM_MAP_ENTRY_FOREACH(entry, map) {
1828                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
1829                         continue;
1830                 obj = entry->object.vm_object;
1831                 if (obj == NULL)
1832                         continue;
1833                 if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 &&
1834                     obj->ref_count != 1)
1835                         continue;
1836                 switch (obj->type) {
1837                 case OBJT_DEFAULT:
1838                 case OBJT_SWAP:
1839                 case OBJT_PHYS:
1840                 case OBJT_VNODE:
1841                         res += obj->resident_page_count;
1842                         break;
1843                 }
1844         }
1845         return (res);
1846 }
1847
1848 static int vm_oom_ratelim_last;
1849 static int vm_oom_pf_secs = 10;
1850 SYSCTL_INT(_vm, OID_AUTO, oom_pf_secs, CTLFLAG_RWTUN, &vm_oom_pf_secs, 0,
1851     "");
1852 static struct mtx vm_oom_ratelim_mtx;
1853
1854 void
1855 vm_pageout_oom(int shortage)
1856 {
1857         struct proc *p, *bigproc;
1858         vm_offset_t size, bigsize;
1859         struct thread *td;
1860         struct vmspace *vm;
1861         int now;
1862         bool breakout;
1863
1864         /*
1865          * For OOM requests originating from vm_fault(), there is a high
1866          * chance that a single large process faults simultaneously in
1867          * several threads.  Also, on an active system running many
1868          * processes of middle-size, like buildworld, all of them
1869          * could fault almost simultaneously as well.
1870          *
1871          * To avoid killing too many processes, rate-limit OOMs
1872          * initiated by vm_fault() time-outs on the waits for free
1873          * pages.
1874          */
1875         mtx_lock(&vm_oom_ratelim_mtx);
1876         now = ticks;
1877         if (shortage == VM_OOM_MEM_PF &&
1878             (u_int)(now - vm_oom_ratelim_last) < hz * vm_oom_pf_secs) {
1879                 mtx_unlock(&vm_oom_ratelim_mtx);
1880                 return;
1881         }
1882         vm_oom_ratelim_last = now;
1883         mtx_unlock(&vm_oom_ratelim_mtx);
1884
1885         /*
1886          * We keep the process bigproc locked once we find it to keep anyone
1887          * from messing with it; however, there is a possibility of
1888          * deadlock if process B is bigproc and one of its child processes
1889          * attempts to propagate a signal to B while we are waiting for A's
1890          * lock while walking this list.  To avoid this, we don't block on
1891          * the process lock but just skip a process if it is already locked.
1892          */
1893         bigproc = NULL;
1894         bigsize = 0;
1895         sx_slock(&allproc_lock);
1896         FOREACH_PROC_IN_SYSTEM(p) {
1897                 PROC_LOCK(p);
1898
1899                 /*
1900                  * If this is a system, protected or killed process, skip it.
1901                  */
1902                 if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC |
1903                     P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 ||
1904                     p->p_pid == 1 || P_KILLED(p) ||
1905                     (p->p_pid < 48 && swap_pager_avail != 0)) {
1906                         PROC_UNLOCK(p);
1907                         continue;
1908                 }
1909                 /*
1910                  * If the process is in a non-running type state,
1911                  * don't touch it.  Check all the threads individually.
1912                  */
1913                 breakout = false;
1914                 FOREACH_THREAD_IN_PROC(p, td) {
1915                         thread_lock(td);
1916                         if (!TD_ON_RUNQ(td) &&
1917                             !TD_IS_RUNNING(td) &&
1918                             !TD_IS_SLEEPING(td) &&
1919                             !TD_IS_SUSPENDED(td) &&
1920                             !TD_IS_SWAPPED(td)) {
1921                                 thread_unlock(td);
1922                                 breakout = true;
1923                                 break;
1924                         }
1925                         thread_unlock(td);
1926                 }
1927                 if (breakout) {
1928                         PROC_UNLOCK(p);
1929                         continue;
1930                 }
1931                 /*
1932                  * get the process size
1933                  */
1934                 vm = vmspace_acquire_ref(p);
1935                 if (vm == NULL) {
1936                         PROC_UNLOCK(p);
1937                         continue;
1938                 }
1939                 _PHOLD_LITE(p);
1940                 PROC_UNLOCK(p);
1941                 sx_sunlock(&allproc_lock);
1942                 if (!vm_map_trylock_read(&vm->vm_map)) {
1943                         vmspace_free(vm);
1944                         sx_slock(&allproc_lock);
1945                         PRELE(p);
1946                         continue;
1947                 }
1948                 size = vmspace_swap_count(vm);
1949                 if (shortage == VM_OOM_MEM || shortage == VM_OOM_MEM_PF)
1950                         size += vm_pageout_oom_pagecount(vm);
1951                 vm_map_unlock_read(&vm->vm_map);
1952                 vmspace_free(vm);
1953                 sx_slock(&allproc_lock);
1954
1955                 /*
1956                  * If this process is bigger than the biggest one,
1957                  * remember it.
1958                  */
1959                 if (size > bigsize) {
1960                         if (bigproc != NULL)
1961                                 PRELE(bigproc);
1962                         bigproc = p;
1963                         bigsize = size;
1964                 } else {
1965                         PRELE(p);
1966                 }
1967         }
1968         sx_sunlock(&allproc_lock);
1969         if (bigproc != NULL) {
1970                 if (vm_panic_on_oom != 0)
1971                         panic("out of swap space");
1972                 PROC_LOCK(bigproc);
1973                 killproc(bigproc, "out of swap space");
1974                 sched_nice(bigproc, PRIO_MIN);
1975                 _PRELE(bigproc);
1976                 PROC_UNLOCK(bigproc);
1977         }
1978 }
1979
1980 /*
1981  * Signal a free page shortage to subsystems that have registered an event
1982  * handler.  Reclaim memory from UMA in the event of a severe shortage.
1983  * Return true if the free page count should be re-evaluated.
1984  */
1985 static bool
1986 vm_pageout_lowmem(void)
1987 {
1988         static int lowmem_ticks = 0;
1989         int last;
1990         bool ret;
1991
1992         ret = false;
1993
1994         last = atomic_load_int(&lowmem_ticks);
1995         while ((u_int)(ticks - last) / hz >= lowmem_period) {
1996                 if (atomic_fcmpset_int(&lowmem_ticks, &last, ticks) == 0)
1997                         continue;
1998
1999                 /*
2000                  * Decrease registered cache sizes.
2001                  */
2002                 SDT_PROBE0(vm, , , vm__lowmem_scan);
2003                 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_PAGES);
2004
2005                 /*
2006                  * We do this explicitly after the caches have been
2007                  * drained above.
2008                  */
2009                 uma_reclaim(UMA_RECLAIM_TRIM);
2010                 ret = true;
2011         }
2012
2013         /*
2014          * Kick off an asynchronous reclaim of cached memory if one of the
2015          * page daemons is failing to keep up with demand.  Use the "severe"
2016          * threshold instead of "min" to ensure that we do not blow away the
2017          * caches if a subset of the NUMA domains are depleted by kernel memory
2018          * allocations; the domainset iterators automatically skip domains
2019          * below the "min" threshold on the first pass.
2020          *
2021          * UMA reclaim worker has its own rate-limiting mechanism, so don't
2022          * worry about kicking it too often.
2023          */
2024         if (vm_page_count_severe())
2025                 uma_reclaim_wakeup();
2026
2027         return (ret);
2028 }
2029
2030 static void
2031 vm_pageout_worker(void *arg)
2032 {
2033         struct vm_domain *vmd;
2034         u_int ofree;
2035         int addl_shortage, domain, shortage;
2036         bool target_met;
2037
2038         domain = (uintptr_t)arg;
2039         vmd = VM_DOMAIN(domain);
2040         shortage = 0;
2041         target_met = true;
2042
2043         /*
2044          * XXXKIB It could be useful to bind pageout daemon threads to
2045          * the cores belonging to the domain, from which vm_page_array
2046          * is allocated.
2047          */
2048
2049         KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
2050         vmd->vmd_last_active_scan = ticks;
2051
2052         /*
2053          * The pageout daemon worker is never done, so loop forever.
2054          */
2055         while (TRUE) {
2056                 vm_domain_pageout_lock(vmd);
2057
2058                 /*
2059                  * We need to clear wanted before we check the limits.  This
2060                  * prevents races with wakers who will check wanted after they
2061                  * reach the limit.
2062                  */
2063                 atomic_store_int(&vmd->vmd_pageout_wanted, 0);
2064
2065                 /*
2066                  * Might the page daemon need to run again?
2067                  */
2068                 if (vm_paging_needed(vmd, vmd->vmd_free_count)) {
2069                         /*
2070                          * Yes.  If the scan failed to produce enough free
2071                          * pages, sleep uninterruptibly for some time in the
2072                          * hope that the laundry thread will clean some pages.
2073                          */
2074                         vm_domain_pageout_unlock(vmd);
2075                         if (!target_met)
2076                                 pause("pwait", hz / VM_INACT_SCAN_RATE);
2077                 } else {
2078                         /*
2079                          * No, sleep until the next wakeup or until pages
2080                          * need to have their reference stats updated.
2081                          */
2082                         if (mtx_sleep(&vmd->vmd_pageout_wanted,
2083                             vm_domain_pageout_lockptr(vmd), PDROP | PVM,
2084                             "psleep", hz / VM_INACT_SCAN_RATE) == 0)
2085                                 VM_CNT_INC(v_pdwakeups);
2086                 }
2087
2088                 /* Prevent spurious wakeups by ensuring that wanted is set. */
2089                 atomic_store_int(&vmd->vmd_pageout_wanted, 1);
2090
2091                 /*
2092                  * Use the controller to calculate how many pages to free in
2093                  * this interval, and scan the inactive queue.  If the lowmem
2094                  * handlers appear to have freed up some pages, subtract the
2095                  * difference from the inactive queue scan target.
2096                  */
2097                 shortage = pidctrl_daemon(&vmd->vmd_pid, vmd->vmd_free_count);
2098                 if (shortage > 0) {
2099                         ofree = vmd->vmd_free_count;
2100                         if (vm_pageout_lowmem() && vmd->vmd_free_count > ofree)
2101                                 shortage -= min(vmd->vmd_free_count - ofree,
2102                                     (u_int)shortage);
2103                         target_met = vm_pageout_scan_inactive(vmd, shortage,
2104                             &addl_shortage);
2105                 } else
2106                         addl_shortage = 0;
2107
2108                 /*
2109                  * Scan the active queue.  A positive value for shortage
2110                  * indicates that we must aggressively deactivate pages to avoid
2111                  * a shortfall.
2112                  */
2113                 shortage = vm_pageout_active_target(vmd) + addl_shortage;
2114                 vm_pageout_scan_active(vmd, shortage);
2115         }
2116 }
2117
2118 /*
2119  * Initialize basic pageout daemon settings.  See the comment above the
2120  * definition of vm_domain for some explanation of how these thresholds are
2121  * used.
2122  */
2123 static void
2124 vm_pageout_init_domain(int domain)
2125 {
2126         struct vm_domain *vmd;
2127         struct sysctl_oid *oid;
2128
2129         vmd = VM_DOMAIN(domain);
2130         vmd->vmd_interrupt_free_min = 2;
2131
2132         /*
2133          * v_free_reserved needs to include enough for the largest
2134          * swap pager structures plus enough for any pv_entry structs
2135          * when paging. 
2136          */
2137         vmd->vmd_pageout_free_min = 2 * MAXBSIZE / PAGE_SIZE +
2138             vmd->vmd_interrupt_free_min;
2139         vmd->vmd_free_reserved = vm_pageout_page_count +
2140             vmd->vmd_pageout_free_min + vmd->vmd_page_count / 768;
2141         vmd->vmd_free_min = vmd->vmd_page_count / 200;
2142         vmd->vmd_free_severe = vmd->vmd_free_min / 2;
2143         vmd->vmd_free_target = 4 * vmd->vmd_free_min + vmd->vmd_free_reserved;
2144         vmd->vmd_free_min += vmd->vmd_free_reserved;
2145         vmd->vmd_free_severe += vmd->vmd_free_reserved;
2146         vmd->vmd_inactive_target = (3 * vmd->vmd_free_target) / 2;
2147         if (vmd->vmd_inactive_target > vmd->vmd_free_count / 3)
2148                 vmd->vmd_inactive_target = vmd->vmd_free_count / 3;
2149
2150         /*
2151          * Set the default wakeup threshold to be 10% below the paging
2152          * target.  This keeps the steady state out of shortfall.
2153          */
2154         vmd->vmd_pageout_wakeup_thresh = (vmd->vmd_free_target / 10) * 9;
2155
2156         /*
2157          * Target amount of memory to move out of the laundry queue during a
2158          * background laundering.  This is proportional to the amount of system
2159          * memory.
2160          */
2161         vmd->vmd_background_launder_target = (vmd->vmd_free_target -
2162             vmd->vmd_free_min) / 10;
2163
2164         /* Initialize the pageout daemon pid controller. */
2165         pidctrl_init(&vmd->vmd_pid, hz / VM_INACT_SCAN_RATE,
2166             vmd->vmd_free_target, PIDCTRL_BOUND,
2167             PIDCTRL_KPD, PIDCTRL_KID, PIDCTRL_KDD);
2168         oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(vmd->vmd_oid), OID_AUTO,
2169             "pidctrl", CTLFLAG_RD, NULL, "");
2170         pidctrl_init_sysctl(&vmd->vmd_pid, SYSCTL_CHILDREN(oid));
2171 }
2172
2173 static void
2174 vm_pageout_init(void)
2175 {
2176         u_int freecount;
2177         int i;
2178
2179         /*
2180          * Initialize some paging parameters.
2181          */
2182         if (vm_cnt.v_page_count < 2000)
2183                 vm_pageout_page_count = 8;
2184
2185         freecount = 0;
2186         for (i = 0; i < vm_ndomains; i++) {
2187                 struct vm_domain *vmd;
2188
2189                 vm_pageout_init_domain(i);
2190                 vmd = VM_DOMAIN(i);
2191                 vm_cnt.v_free_reserved += vmd->vmd_free_reserved;
2192                 vm_cnt.v_free_target += vmd->vmd_free_target;
2193                 vm_cnt.v_free_min += vmd->vmd_free_min;
2194                 vm_cnt.v_inactive_target += vmd->vmd_inactive_target;
2195                 vm_cnt.v_pageout_free_min += vmd->vmd_pageout_free_min;
2196                 vm_cnt.v_interrupt_free_min += vmd->vmd_interrupt_free_min;
2197                 vm_cnt.v_free_severe += vmd->vmd_free_severe;
2198                 freecount += vmd->vmd_free_count;
2199         }
2200
2201         /*
2202          * Set interval in seconds for active scan.  We want to visit each
2203          * page at least once every ten minutes.  This is to prevent worst
2204          * case paging behaviors with stale active LRU.
2205          */
2206         if (vm_pageout_update_period == 0)
2207                 vm_pageout_update_period = 600;
2208
2209         if (vm_page_max_user_wired == 0)
2210                 vm_page_max_user_wired = freecount / 3;
2211 }
2212
2213 /*
2214  *     vm_pageout is the high level pageout daemon.
2215  */
2216 static void
2217 vm_pageout(void)
2218 {
2219         struct proc *p;
2220         struct thread *td;
2221         int error, first, i;
2222
2223         p = curproc;
2224         td = curthread;
2225
2226         mtx_init(&vm_oom_ratelim_mtx, "vmoomr", NULL, MTX_DEF);
2227         swap_pager_swap_init();
2228         for (first = -1, i = 0; i < vm_ndomains; i++) {
2229                 if (VM_DOMAIN_EMPTY(i)) {
2230                         if (bootverbose)
2231                                 printf("domain %d empty; skipping pageout\n",
2232                                     i);
2233                         continue;
2234                 }
2235                 if (first == -1)
2236                         first = i;
2237                 else {
2238                         error = kthread_add(vm_pageout_worker,
2239                             (void *)(uintptr_t)i, p, NULL, 0, 0, "dom%d", i);
2240                         if (error != 0)
2241                                 panic("starting pageout for domain %d: %d\n",
2242                                     i, error);
2243                 }
2244                 error = kthread_add(vm_pageout_laundry_worker,
2245                     (void *)(uintptr_t)i, p, NULL, 0, 0, "laundry: dom%d", i);
2246                 if (error != 0)
2247                         panic("starting laundry for domain %d: %d", i, error);
2248         }
2249         error = kthread_add(uma_reclaim_worker, NULL, p, NULL, 0, 0, "uma");
2250         if (error != 0)
2251                 panic("starting uma_reclaim helper, error %d\n", error);
2252
2253         snprintf(td->td_name, sizeof(td->td_name), "dom%d", first);
2254         vm_pageout_worker((void *)(uintptr_t)first);
2255 }
2256
2257 /*
2258  * Perform an advisory wakeup of the page daemon.
2259  */
2260 void
2261 pagedaemon_wakeup(int domain)
2262 {
2263         struct vm_domain *vmd;
2264
2265         vmd = VM_DOMAIN(domain);
2266         vm_domain_pageout_assert_unlocked(vmd);
2267         if (curproc == pageproc)
2268                 return;
2269
2270         if (atomic_fetchadd_int(&vmd->vmd_pageout_wanted, 1) == 0) {
2271                 vm_domain_pageout_lock(vmd);
2272                 atomic_store_int(&vmd->vmd_pageout_wanted, 1);
2273                 wakeup(&vmd->vmd_pageout_wanted);
2274                 vm_domain_pageout_unlock(vmd);
2275         }
2276 }