]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_pageout.c
Import libedit 2019-09-10
[FreeBSD/FreeBSD.git] / sys / vm / vm_pageout.c
1 /*-
2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  * Copyright (c) 2005 Yahoo! Technologies Norway AS
11  * All rights reserved.
12  *
13  * This code is derived from software contributed to Berkeley by
14  * The Mach Operating System project at Carnegie-Mellon University.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. All advertising materials mentioning features or use of this software
25  *    must display the following acknowledgement:
26  *      This product includes software developed by the University of
27  *      California, Berkeley and its contributors.
28  * 4. Neither the name of the University nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  *
44  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
45  *
46  *
47  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
48  * All rights reserved.
49  *
50  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
51  *
52  * Permission to use, copy, modify and distribute this software and
53  * its documentation is hereby granted, provided that both the copyright
54  * notice and this permission notice appear in all copies of the
55  * software, derivative works or modified versions, and any portions
56  * thereof, and that both notices appear in supporting documentation.
57  *
58  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
59  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
60  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
61  *
62  * Carnegie Mellon requests users of this software to return to
63  *
64  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
65  *  School of Computer Science
66  *  Carnegie Mellon University
67  *  Pittsburgh PA 15213-3890
68  *
69  * any improvements or extensions that they make and grant Carnegie the
70  * rights to redistribute these changes.
71  */
72
73 /*
74  *      The proverbial page-out daemon.
75  */
76
77 #include <sys/cdefs.h>
78 __FBSDID("$FreeBSD$");
79
80 #include "opt_vm.h"
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/eventhandler.h>
86 #include <sys/lock.h>
87 #include <sys/mutex.h>
88 #include <sys/proc.h>
89 #include <sys/kthread.h>
90 #include <sys/ktr.h>
91 #include <sys/mount.h>
92 #include <sys/racct.h>
93 #include <sys/resourcevar.h>
94 #include <sys/sched.h>
95 #include <sys/sdt.h>
96 #include <sys/signalvar.h>
97 #include <sys/smp.h>
98 #include <sys/time.h>
99 #include <sys/vnode.h>
100 #include <sys/vmmeter.h>
101 #include <sys/rwlock.h>
102 #include <sys/sx.h>
103 #include <sys/sysctl.h>
104
105 #include <vm/vm.h>
106 #include <vm/vm_param.h>
107 #include <vm/vm_object.h>
108 #include <vm/vm_page.h>
109 #include <vm/vm_map.h>
110 #include <vm/vm_pageout.h>
111 #include <vm/vm_pager.h>
112 #include <vm/vm_phys.h>
113 #include <vm/vm_pagequeue.h>
114 #include <vm/swap_pager.h>
115 #include <vm/vm_extern.h>
116 #include <vm/uma.h>
117
118 /*
119  * System initialization
120  */
121
122 /* the kernel process "vm_pageout"*/
123 static void vm_pageout(void);
124 static void vm_pageout_init(void);
125 static int vm_pageout_clean(vm_page_t m, int *numpagedout);
126 static int vm_pageout_cluster(vm_page_t m);
127 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
128     int starting_page_shortage);
129
130 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init,
131     NULL);
132
133 struct proc *pageproc;
134
135 static struct kproc_desc page_kp = {
136         "pagedaemon",
137         vm_pageout,
138         &pageproc
139 };
140 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start,
141     &page_kp);
142
143 SDT_PROVIDER_DEFINE(vm);
144 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan);
145
146 /* Pagedaemon activity rates, in subdivisions of one second. */
147 #define VM_LAUNDER_RATE         10
148 #define VM_INACT_SCAN_RATE      10
149
150 static int vm_pageout_oom_seq = 12;
151
152 static int vm_pageout_update_period;
153 static int disable_swap_pageouts;
154 static int lowmem_period = 10;
155 static int swapdev_enabled;
156
157 static int vm_panic_on_oom = 0;
158
159 SYSCTL_INT(_vm, OID_AUTO, panic_on_oom,
160         CTLFLAG_RWTUN, &vm_panic_on_oom, 0,
161         "panic on out of memory instead of killing the largest process");
162
163 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period,
164         CTLFLAG_RWTUN, &vm_pageout_update_period, 0,
165         "Maximum active LRU update period");
166   
167 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RWTUN, &lowmem_period, 0,
168         "Low memory callback period");
169
170 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
171         CTLFLAG_RWTUN, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
172
173 static int pageout_lock_miss;
174 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
175         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
176
177 SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq,
178         CTLFLAG_RWTUN, &vm_pageout_oom_seq, 0,
179         "back-to-back calls to oom detector to start OOM");
180
181 static int act_scan_laundry_weight = 3;
182 SYSCTL_INT(_vm, OID_AUTO, act_scan_laundry_weight, CTLFLAG_RWTUN,
183     &act_scan_laundry_weight, 0,
184     "weight given to clean vs. dirty pages in active queue scans");
185
186 static u_int vm_background_launder_rate = 4096;
187 SYSCTL_UINT(_vm, OID_AUTO, background_launder_rate, CTLFLAG_RWTUN,
188     &vm_background_launder_rate, 0,
189     "background laundering rate, in kilobytes per second");
190
191 static u_int vm_background_launder_max = 20 * 1024;
192 SYSCTL_UINT(_vm, OID_AUTO, background_launder_max, CTLFLAG_RWTUN,
193     &vm_background_launder_max, 0, "background laundering cap, in kilobytes");
194
195 int vm_pageout_page_count = 32;
196
197 u_long vm_page_max_user_wired;
198 SYSCTL_ULONG(_vm, OID_AUTO, max_user_wired, CTLFLAG_RW,
199     &vm_page_max_user_wired, 0,
200     "system-wide limit to user-wired page count");
201
202 static u_int isqrt(u_int num);
203 static int vm_pageout_launder(struct vm_domain *vmd, int launder,
204     bool in_shortfall);
205 static void vm_pageout_laundry_worker(void *arg);
206
207 struct scan_state {
208         struct vm_batchqueue bq;
209         struct vm_pagequeue *pq;
210         vm_page_t       marker;
211         int             maxscan;
212         int             scanned;
213 };
214
215 static void
216 vm_pageout_init_scan(struct scan_state *ss, struct vm_pagequeue *pq,
217     vm_page_t marker, vm_page_t after, int maxscan)
218 {
219
220         vm_pagequeue_assert_locked(pq);
221         KASSERT((marker->aflags & PGA_ENQUEUED) == 0,
222             ("marker %p already enqueued", marker));
223
224         if (after == NULL)
225                 TAILQ_INSERT_HEAD(&pq->pq_pl, marker, plinks.q);
226         else
227                 TAILQ_INSERT_AFTER(&pq->pq_pl, after, marker, plinks.q);
228         vm_page_aflag_set(marker, PGA_ENQUEUED);
229
230         vm_batchqueue_init(&ss->bq);
231         ss->pq = pq;
232         ss->marker = marker;
233         ss->maxscan = maxscan;
234         ss->scanned = 0;
235         vm_pagequeue_unlock(pq);
236 }
237
238 static void
239 vm_pageout_end_scan(struct scan_state *ss)
240 {
241         struct vm_pagequeue *pq;
242
243         pq = ss->pq;
244         vm_pagequeue_assert_locked(pq);
245         KASSERT((ss->marker->aflags & PGA_ENQUEUED) != 0,
246             ("marker %p not enqueued", ss->marker));
247
248         TAILQ_REMOVE(&pq->pq_pl, ss->marker, plinks.q);
249         vm_page_aflag_clear(ss->marker, PGA_ENQUEUED);
250         pq->pq_pdpages += ss->scanned;
251 }
252
253 /*
254  * Add a small number of queued pages to a batch queue for later processing
255  * without the corresponding queue lock held.  The caller must have enqueued a
256  * marker page at the desired start point for the scan.  Pages will be
257  * physically dequeued if the caller so requests.  Otherwise, the returned
258  * batch may contain marker pages, and it is up to the caller to handle them.
259  *
260  * When processing the batch queue, vm_page_queue() must be used to
261  * determine whether the page has been logically dequeued by another thread.
262  * Once this check is performed, the page lock guarantees that the page will
263  * not be disassociated from the queue.
264  */
265 static __always_inline void
266 vm_pageout_collect_batch(struct scan_state *ss, const bool dequeue)
267 {
268         struct vm_pagequeue *pq;
269         vm_page_t m, marker, n;
270
271         marker = ss->marker;
272         pq = ss->pq;
273
274         KASSERT((marker->aflags & PGA_ENQUEUED) != 0,
275             ("marker %p not enqueued", ss->marker));
276
277         vm_pagequeue_lock(pq);
278         for (m = TAILQ_NEXT(marker, plinks.q); m != NULL &&
279             ss->scanned < ss->maxscan && ss->bq.bq_cnt < VM_BATCHQUEUE_SIZE;
280             m = n, ss->scanned++) {
281                 n = TAILQ_NEXT(m, plinks.q);
282                 if ((m->flags & PG_MARKER) == 0) {
283                         KASSERT((m->aflags & PGA_ENQUEUED) != 0,
284                             ("page %p not enqueued", m));
285                         KASSERT((m->flags & PG_FICTITIOUS) == 0,
286                             ("Fictitious page %p cannot be in page queue", m));
287                         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
288                             ("Unmanaged page %p cannot be in page queue", m));
289                 } else if (dequeue)
290                         continue;
291
292                 (void)vm_batchqueue_insert(&ss->bq, m);
293                 if (dequeue) {
294                         TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
295                         vm_page_aflag_clear(m, PGA_ENQUEUED);
296                 }
297         }
298         TAILQ_REMOVE(&pq->pq_pl, marker, plinks.q);
299         if (__predict_true(m != NULL))
300                 TAILQ_INSERT_BEFORE(m, marker, plinks.q);
301         else
302                 TAILQ_INSERT_TAIL(&pq->pq_pl, marker, plinks.q);
303         if (dequeue)
304                 vm_pagequeue_cnt_add(pq, -ss->bq.bq_cnt);
305         vm_pagequeue_unlock(pq);
306 }
307
308 /*
309  * Return the next page to be scanned, or NULL if the scan is complete.
310  */
311 static __always_inline vm_page_t
312 vm_pageout_next(struct scan_state *ss, const bool dequeue)
313 {
314
315         if (ss->bq.bq_cnt == 0)
316                 vm_pageout_collect_batch(ss, dequeue);
317         return (vm_batchqueue_pop(&ss->bq));
318 }
319
320 /*
321  * Scan for pages at adjacent offsets within the given page's object that are
322  * eligible for laundering, form a cluster of these pages and the given page,
323  * and launder that cluster.
324  */
325 static int
326 vm_pageout_cluster(vm_page_t m)
327 {
328         vm_object_t object;
329         vm_page_t mc[2 * vm_pageout_page_count], p, pb, ps;
330         vm_pindex_t pindex;
331         int ib, is, page_base, pageout_count;
332
333         object = m->object;
334         VM_OBJECT_ASSERT_WLOCKED(object);
335         pindex = m->pindex;
336
337         vm_page_assert_unbusied(m);
338
339         mc[vm_pageout_page_count] = pb = ps = m;
340         pageout_count = 1;
341         page_base = vm_pageout_page_count;
342         ib = 1;
343         is = 1;
344
345         /*
346          * We can cluster only if the page is not clean, busy, or held, and
347          * the page is in the laundry queue.
348          *
349          * During heavy mmap/modification loads the pageout
350          * daemon can really fragment the underlying file
351          * due to flushing pages out of order and not trying to
352          * align the clusters (which leaves sporadic out-of-order
353          * holes).  To solve this problem we do the reverse scan
354          * first and attempt to align our cluster, then do a 
355          * forward scan if room remains.
356          */
357 more:
358         while (ib != 0 && pageout_count < vm_pageout_page_count) {
359                 if (ib > pindex) {
360                         ib = 0;
361                         break;
362                 }
363                 if ((p = vm_page_prev(pb)) == NULL || vm_page_busied(p) ||
364                     vm_page_wired(p)) {
365                         ib = 0;
366                         break;
367                 }
368                 vm_page_test_dirty(p);
369                 if (p->dirty == 0) {
370                         ib = 0;
371                         break;
372                 }
373                 vm_page_lock(p);
374                 if (!vm_page_in_laundry(p) || !vm_page_try_remove_write(p)) {
375                         vm_page_unlock(p);
376                         ib = 0;
377                         break;
378                 }
379                 vm_page_unlock(p);
380                 mc[--page_base] = pb = p;
381                 ++pageout_count;
382                 ++ib;
383
384                 /*
385                  * We are at an alignment boundary.  Stop here, and switch
386                  * directions.  Do not clear ib.
387                  */
388                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
389                         break;
390         }
391         while (pageout_count < vm_pageout_page_count && 
392             pindex + is < object->size) {
393                 if ((p = vm_page_next(ps)) == NULL || vm_page_busied(p) ||
394                     vm_page_wired(p))
395                         break;
396                 vm_page_test_dirty(p);
397                 if (p->dirty == 0)
398                         break;
399                 vm_page_lock(p);
400                 if (!vm_page_in_laundry(p) || !vm_page_try_remove_write(p)) {
401                         vm_page_unlock(p);
402                         break;
403                 }
404                 vm_page_unlock(p);
405                 mc[page_base + pageout_count] = ps = p;
406                 ++pageout_count;
407                 ++is;
408         }
409
410         /*
411          * If we exhausted our forward scan, continue with the reverse scan
412          * when possible, even past an alignment boundary.  This catches
413          * boundary conditions.
414          */
415         if (ib != 0 && pageout_count < vm_pageout_page_count)
416                 goto more;
417
418         return (vm_pageout_flush(&mc[page_base], pageout_count,
419             VM_PAGER_PUT_NOREUSE, 0, NULL, NULL));
420 }
421
422 /*
423  * vm_pageout_flush() - launder the given pages
424  *
425  *      The given pages are laundered.  Note that we setup for the start of
426  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
427  *      reference count all in here rather then in the parent.  If we want
428  *      the parent to do more sophisticated things we may have to change
429  *      the ordering.
430  *
431  *      Returned runlen is the count of pages between mreq and first
432  *      page after mreq with status VM_PAGER_AGAIN.
433  *      *eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
434  *      for any page in runlen set.
435  */
436 int
437 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
438     boolean_t *eio)
439 {
440         vm_object_t object = mc[0]->object;
441         int pageout_status[count];
442         int numpagedout = 0;
443         int i, runlen;
444
445         VM_OBJECT_ASSERT_WLOCKED(object);
446
447         /*
448          * Initiate I/O.  Mark the pages busy and verify that they're valid
449          * and read-only.
450          *
451          * We do not have to fixup the clean/dirty bits here... we can
452          * allow the pager to do it after the I/O completes.
453          *
454          * NOTE! mc[i]->dirty may be partial or fragmented due to an
455          * edge case with file fragments.
456          */
457         for (i = 0; i < count; i++) {
458                 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
459                     ("vm_pageout_flush: partially invalid page %p index %d/%d",
460                         mc[i], i, count));
461                 KASSERT((mc[i]->aflags & PGA_WRITEABLE) == 0,
462                     ("vm_pageout_flush: writeable page %p", mc[i]));
463                 vm_page_sbusy(mc[i]);
464         }
465         vm_object_pip_add(object, count);
466
467         vm_pager_put_pages(object, mc, count, flags, pageout_status);
468
469         runlen = count - mreq;
470         if (eio != NULL)
471                 *eio = FALSE;
472         for (i = 0; i < count; i++) {
473                 vm_page_t mt = mc[i];
474
475                 KASSERT(pageout_status[i] == VM_PAGER_PEND ||
476                     !pmap_page_is_write_mapped(mt),
477                     ("vm_pageout_flush: page %p is not write protected", mt));
478                 switch (pageout_status[i]) {
479                 case VM_PAGER_OK:
480                         vm_page_lock(mt);
481                         if (vm_page_in_laundry(mt))
482                                 vm_page_deactivate_noreuse(mt);
483                         vm_page_unlock(mt);
484                         /* FALLTHROUGH */
485                 case VM_PAGER_PEND:
486                         numpagedout++;
487                         break;
488                 case VM_PAGER_BAD:
489                         /*
490                          * The page is outside the object's range.  We pretend
491                          * that the page out worked and clean the page, so the
492                          * changes will be lost if the page is reclaimed by
493                          * the page daemon.
494                          */
495                         vm_page_undirty(mt);
496                         vm_page_lock(mt);
497                         if (vm_page_in_laundry(mt))
498                                 vm_page_deactivate_noreuse(mt);
499                         vm_page_unlock(mt);
500                         break;
501                 case VM_PAGER_ERROR:
502                 case VM_PAGER_FAIL:
503                         /*
504                          * If the page couldn't be paged out to swap because the
505                          * pager wasn't able to find space, place the page in
506                          * the PQ_UNSWAPPABLE holding queue.  This is an
507                          * optimization that prevents the page daemon from
508                          * wasting CPU cycles on pages that cannot be reclaimed
509                          * becase no swap device is configured.
510                          *
511                          * Otherwise, reactivate the page so that it doesn't
512                          * clog the laundry and inactive queues.  (We will try
513                          * paging it out again later.)
514                          */
515                         vm_page_lock(mt);
516                         if (object->type == OBJT_SWAP &&
517                             pageout_status[i] == VM_PAGER_FAIL) {
518                                 vm_page_unswappable(mt);
519                                 numpagedout++;
520                         } else
521                                 vm_page_activate(mt);
522                         vm_page_unlock(mt);
523                         if (eio != NULL && i >= mreq && i - mreq < runlen)
524                                 *eio = TRUE;
525                         break;
526                 case VM_PAGER_AGAIN:
527                         if (i >= mreq && i - mreq < runlen)
528                                 runlen = i - mreq;
529                         break;
530                 }
531
532                 /*
533                  * If the operation is still going, leave the page busy to
534                  * block all other accesses. Also, leave the paging in
535                  * progress indicator set so that we don't attempt an object
536                  * collapse.
537                  */
538                 if (pageout_status[i] != VM_PAGER_PEND) {
539                         vm_object_pip_wakeup(object);
540                         vm_page_sunbusy(mt);
541                 }
542         }
543         if (prunlen != NULL)
544                 *prunlen = runlen;
545         return (numpagedout);
546 }
547
548 static void
549 vm_pageout_swapon(void *arg __unused, struct swdevt *sp __unused)
550 {
551
552         atomic_store_rel_int(&swapdev_enabled, 1);
553 }
554
555 static void
556 vm_pageout_swapoff(void *arg __unused, struct swdevt *sp __unused)
557 {
558
559         if (swap_pager_nswapdev() == 1)
560                 atomic_store_rel_int(&swapdev_enabled, 0);
561 }
562
563 /*
564  * Attempt to acquire all of the necessary locks to launder a page and
565  * then call through the clustering layer to PUTPAGES.  Wait a short
566  * time for a vnode lock.
567  *
568  * Requires the page and object lock on entry, releases both before return.
569  * Returns 0 on success and an errno otherwise.
570  */
571 static int
572 vm_pageout_clean(vm_page_t m, int *numpagedout)
573 {
574         struct vnode *vp;
575         struct mount *mp;
576         vm_object_t object;
577         vm_pindex_t pindex;
578         int error, lockmode;
579
580         vm_page_assert_locked(m);
581         object = m->object;
582         VM_OBJECT_ASSERT_WLOCKED(object);
583         error = 0;
584         vp = NULL;
585         mp = NULL;
586
587         /*
588          * The object is already known NOT to be dead.   It
589          * is possible for the vget() to block the whole
590          * pageout daemon, but the new low-memory handling
591          * code should prevent it.
592          *
593          * We can't wait forever for the vnode lock, we might
594          * deadlock due to a vn_read() getting stuck in
595          * vm_wait while holding this vnode.  We skip the 
596          * vnode if we can't get it in a reasonable amount
597          * of time.
598          */
599         if (object->type == OBJT_VNODE) {
600                 vm_page_unlock(m);
601                 vp = object->handle;
602                 if (vp->v_type == VREG &&
603                     vn_start_write(vp, &mp, V_NOWAIT) != 0) {
604                         mp = NULL;
605                         error = EDEADLK;
606                         goto unlock_all;
607                 }
608                 KASSERT(mp != NULL,
609                     ("vp %p with NULL v_mount", vp));
610                 vm_object_reference_locked(object);
611                 pindex = m->pindex;
612                 VM_OBJECT_WUNLOCK(object);
613                 lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
614                     LK_SHARED : LK_EXCLUSIVE;
615                 if (vget(vp, lockmode | LK_TIMELOCK, curthread)) {
616                         vp = NULL;
617                         error = EDEADLK;
618                         goto unlock_mp;
619                 }
620                 VM_OBJECT_WLOCK(object);
621
622                 /*
623                  * Ensure that the object and vnode were not disassociated
624                  * while locks were dropped.
625                  */
626                 if (vp->v_object != object) {
627                         error = ENOENT;
628                         goto unlock_all;
629                 }
630                 vm_page_lock(m);
631
632                 /*
633                  * While the object and page were unlocked, the page
634                  * may have been:
635                  * (1) moved to a different queue,
636                  * (2) reallocated to a different object,
637                  * (3) reallocated to a different offset, or
638                  * (4) cleaned.
639                  */
640                 if (!vm_page_in_laundry(m) || m->object != object ||
641                     m->pindex != pindex || m->dirty == 0) {
642                         vm_page_unlock(m);
643                         error = ENXIO;
644                         goto unlock_all;
645                 }
646
647                 /*
648                  * The page may have been busied while the object and page
649                  * locks were released.
650                  */
651                 if (vm_page_busied(m)) {
652                         vm_page_unlock(m);
653                         error = EBUSY;
654                         goto unlock_all;
655                 }
656         }
657
658         /*
659          * Remove all writeable mappings, failing if the page is wired.
660          */
661         if (!vm_page_try_remove_write(m)) {
662                 vm_page_unlock(m);
663                 error = EBUSY;
664                 goto unlock_all;
665         }
666         vm_page_unlock(m);
667
668         /*
669          * If a page is dirty, then it is either being washed
670          * (but not yet cleaned) or it is still in the
671          * laundry.  If it is still in the laundry, then we
672          * start the cleaning operation. 
673          */
674         if ((*numpagedout = vm_pageout_cluster(m)) == 0)
675                 error = EIO;
676
677 unlock_all:
678         VM_OBJECT_WUNLOCK(object);
679
680 unlock_mp:
681         vm_page_lock_assert(m, MA_NOTOWNED);
682         if (mp != NULL) {
683                 if (vp != NULL)
684                         vput(vp);
685                 vm_object_deallocate(object);
686                 vn_finished_write(mp);
687         }
688
689         return (error);
690 }
691
692 /*
693  * Attempt to launder the specified number of pages.
694  *
695  * Returns the number of pages successfully laundered.
696  */
697 static int
698 vm_pageout_launder(struct vm_domain *vmd, int launder, bool in_shortfall)
699 {
700         struct scan_state ss;
701         struct vm_pagequeue *pq;
702         struct mtx *mtx;
703         vm_object_t object;
704         vm_page_t m, marker;
705         int act_delta, error, numpagedout, queue, starting_target;
706         int vnodes_skipped;
707         bool pageout_ok;
708
709         mtx = NULL;
710         object = NULL;
711         starting_target = launder;
712         vnodes_skipped = 0;
713
714         /*
715          * Scan the laundry queues for pages eligible to be laundered.  We stop
716          * once the target number of dirty pages have been laundered, or once
717          * we've reached the end of the queue.  A single iteration of this loop
718          * may cause more than one page to be laundered because of clustering.
719          *
720          * As an optimization, we avoid laundering from PQ_UNSWAPPABLE when no
721          * swap devices are configured.
722          */
723         if (atomic_load_acq_int(&swapdev_enabled))
724                 queue = PQ_UNSWAPPABLE;
725         else
726                 queue = PQ_LAUNDRY;
727
728 scan:
729         marker = &vmd->vmd_markers[queue];
730         pq = &vmd->vmd_pagequeues[queue];
731         vm_pagequeue_lock(pq);
732         vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
733         while (launder > 0 && (m = vm_pageout_next(&ss, false)) != NULL) {
734                 if (__predict_false((m->flags & PG_MARKER) != 0))
735                         continue;
736
737                 vm_page_change_lock(m, &mtx);
738
739 recheck:
740                 /*
741                  * The page may have been disassociated from the queue
742                  * or even freed while locks were dropped.  We thus must be
743                  * careful whenever modifying page state.  Once the object lock
744                  * has been acquired, we have a stable reference to the page.
745                  */
746                 if (vm_page_queue(m) != queue)
747                         continue;
748
749                 /*
750                  * A requeue was requested, so this page gets a second
751                  * chance.
752                  */
753                 if ((m->aflags & PGA_REQUEUE) != 0) {
754                         vm_page_pqbatch_submit(m, queue);
755                         continue;
756                 }
757
758                 /*
759                  * Wired pages may not be freed.  Complete their removal
760                  * from the queue now to avoid needless revisits during
761                  * future scans.  This check is racy and must be reverified once
762                  * we hold the object lock and have verified that the page
763                  * is not busy.
764                  */
765                 if (vm_page_wired(m)) {
766                         vm_page_dequeue_deferred(m);
767                         continue;
768                 }
769
770                 if (object != m->object) {
771                         if (object != NULL)
772                                 VM_OBJECT_WUNLOCK(object);
773
774                         /*
775                          * A page's object pointer may be set to NULL before
776                          * the object lock is acquired.
777                          */
778                         object = (vm_object_t)atomic_load_ptr(&m->object);
779                         if (object != NULL && !VM_OBJECT_TRYWLOCK(object)) {
780                                 mtx_unlock(mtx);
781                                 /* Depends on type-stability. */
782                                 VM_OBJECT_WLOCK(object);
783                                 mtx_lock(mtx);
784                                 goto recheck;
785                         }
786                 }
787                 if (__predict_false(m->object == NULL))
788                         /*
789                          * The page has been removed from its object.
790                          */
791                         continue;
792                 KASSERT(m->object == object, ("page %p does not belong to %p",
793                     m, object));
794
795                 if (vm_page_busied(m))
796                         continue;
797
798                 /*
799                  * Re-check for wirings now that we hold the object lock and
800                  * have verified that the page is unbusied.  If the page is
801                  * mapped, it may still be wired by pmap lookups.  The call to
802                  * vm_page_try_remove_all() below atomically checks for such
803                  * wirings and removes mappings.  If the page is unmapped, the
804                  * wire count is guaranteed not to increase.
805                  */
806                 if (__predict_false(vm_page_wired(m))) {
807                         vm_page_dequeue_deferred(m);
808                         continue;
809                 }
810
811                 /*
812                  * Invalid pages can be easily freed.  They cannot be
813                  * mapped; vm_page_free() asserts this.
814                  */
815                 if (m->valid == 0)
816                         goto free_page;
817
818                 /*
819                  * If the page has been referenced and the object is not dead,
820                  * reactivate or requeue the page depending on whether the
821                  * object is mapped.
822                  *
823                  * Test PGA_REFERENCED after calling pmap_ts_referenced() so
824                  * that a reference from a concurrently destroyed mapping is
825                  * observed here and now.
826                  */
827                 if (object->ref_count != 0)
828                         act_delta = pmap_ts_referenced(m);
829                 else {
830                         KASSERT(!pmap_page_is_mapped(m),
831                             ("page %p is mapped", m));
832                         act_delta = 0;
833                 }
834                 if ((m->aflags & PGA_REFERENCED) != 0) {
835                         vm_page_aflag_clear(m, PGA_REFERENCED);
836                         act_delta++;
837                 }
838                 if (act_delta != 0) {
839                         if (object->ref_count != 0) {
840                                 VM_CNT_INC(v_reactivated);
841                                 vm_page_activate(m);
842
843                                 /*
844                                  * Increase the activation count if the page
845                                  * was referenced while in the laundry queue.
846                                  * This makes it less likely that the page will
847                                  * be returned prematurely to the inactive
848                                  * queue.
849                                  */
850                                 m->act_count += act_delta + ACT_ADVANCE;
851
852                                 /*
853                                  * If this was a background laundering, count
854                                  * activated pages towards our target.  The
855                                  * purpose of background laundering is to ensure
856                                  * that pages are eventually cycled through the
857                                  * laundry queue, and an activation is a valid
858                                  * way out.
859                                  */
860                                 if (!in_shortfall)
861                                         launder--;
862                                 continue;
863                         } else if ((object->flags & OBJ_DEAD) == 0) {
864                                 vm_page_requeue(m);
865                                 continue;
866                         }
867                 }
868
869                 /*
870                  * If the page appears to be clean at the machine-independent
871                  * layer, then remove all of its mappings from the pmap in
872                  * anticipation of freeing it.  If, however, any of the page's
873                  * mappings allow write access, then the page may still be
874                  * modified until the last of those mappings are removed.
875                  */
876                 if (object->ref_count != 0) {
877                         vm_page_test_dirty(m);
878                         if (m->dirty == 0 && !vm_page_try_remove_all(m)) {
879                                 vm_page_dequeue_deferred(m);
880                                 continue;
881                         }
882                 }
883
884                 /*
885                  * Clean pages are freed, and dirty pages are paged out unless
886                  * they belong to a dead object.  Requeueing dirty pages from
887                  * dead objects is pointless, as they are being paged out and
888                  * freed by the thread that destroyed the object.
889                  */
890                 if (m->dirty == 0) {
891 free_page:
892                         vm_page_free(m);
893                         VM_CNT_INC(v_dfree);
894                 } else if ((object->flags & OBJ_DEAD) == 0) {
895                         if (object->type != OBJT_SWAP &&
896                             object->type != OBJT_DEFAULT)
897                                 pageout_ok = true;
898                         else if (disable_swap_pageouts)
899                                 pageout_ok = false;
900                         else
901                                 pageout_ok = true;
902                         if (!pageout_ok) {
903                                 vm_page_requeue(m);
904                                 continue;
905                         }
906
907                         /*
908                          * Form a cluster with adjacent, dirty pages from the
909                          * same object, and page out that entire cluster.
910                          *
911                          * The adjacent, dirty pages must also be in the
912                          * laundry.  However, their mappings are not checked
913                          * for new references.  Consequently, a recently
914                          * referenced page may be paged out.  However, that
915                          * page will not be prematurely reclaimed.  After page
916                          * out, the page will be placed in the inactive queue,
917                          * where any new references will be detected and the
918                          * page reactivated.
919                          */
920                         error = vm_pageout_clean(m, &numpagedout);
921                         if (error == 0) {
922                                 launder -= numpagedout;
923                                 ss.scanned += numpagedout;
924                         } else if (error == EDEADLK) {
925                                 pageout_lock_miss++;
926                                 vnodes_skipped++;
927                         }
928                         mtx = NULL;
929                         object = NULL;
930                 }
931         }
932         if (mtx != NULL) {
933                 mtx_unlock(mtx);
934                 mtx = NULL;
935         }
936         if (object != NULL) {
937                 VM_OBJECT_WUNLOCK(object);
938                 object = NULL;
939         }
940         vm_pagequeue_lock(pq);
941         vm_pageout_end_scan(&ss);
942         vm_pagequeue_unlock(pq);
943
944         if (launder > 0 && queue == PQ_UNSWAPPABLE) {
945                 queue = PQ_LAUNDRY;
946                 goto scan;
947         }
948
949         /*
950          * Wakeup the sync daemon if we skipped a vnode in a writeable object
951          * and we didn't launder enough pages.
952          */
953         if (vnodes_skipped > 0 && launder > 0)
954                 (void)speedup_syncer();
955
956         return (starting_target - launder);
957 }
958
959 /*
960  * Compute the integer square root.
961  */
962 static u_int
963 isqrt(u_int num)
964 {
965         u_int bit, root, tmp;
966
967         bit = num != 0 ? (1u << ((fls(num) - 1) & ~1)) : 0;
968         root = 0;
969         while (bit != 0) {
970                 tmp = root + bit;
971                 root >>= 1;
972                 if (num >= tmp) {
973                         num -= tmp;
974                         root += bit;
975                 }
976                 bit >>= 2;
977         }
978         return (root);
979 }
980
981 /*
982  * Perform the work of the laundry thread: periodically wake up and determine
983  * whether any pages need to be laundered.  If so, determine the number of pages
984  * that need to be laundered, and launder them.
985  */
986 static void
987 vm_pageout_laundry_worker(void *arg)
988 {
989         struct vm_domain *vmd;
990         struct vm_pagequeue *pq;
991         uint64_t nclean, ndirty, nfreed;
992         int domain, last_target, launder, shortfall, shortfall_cycle, target;
993         bool in_shortfall;
994
995         domain = (uintptr_t)arg;
996         vmd = VM_DOMAIN(domain);
997         pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
998         KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
999
1000         shortfall = 0;
1001         in_shortfall = false;
1002         shortfall_cycle = 0;
1003         last_target = target = 0;
1004         nfreed = 0;
1005
1006         /*
1007          * Calls to these handlers are serialized by the swap syscall lock.
1008          */
1009         (void)EVENTHANDLER_REGISTER(swapon, vm_pageout_swapon, vmd,
1010             EVENTHANDLER_PRI_ANY);
1011         (void)EVENTHANDLER_REGISTER(swapoff, vm_pageout_swapoff, vmd,
1012             EVENTHANDLER_PRI_ANY);
1013
1014         /*
1015          * The pageout laundry worker is never done, so loop forever.
1016          */
1017         for (;;) {
1018                 KASSERT(target >= 0, ("negative target %d", target));
1019                 KASSERT(shortfall_cycle >= 0,
1020                     ("negative cycle %d", shortfall_cycle));
1021                 launder = 0;
1022
1023                 /*
1024                  * First determine whether we need to launder pages to meet a
1025                  * shortage of free pages.
1026                  */
1027                 if (shortfall > 0) {
1028                         in_shortfall = true;
1029                         shortfall_cycle = VM_LAUNDER_RATE / VM_INACT_SCAN_RATE;
1030                         target = shortfall;
1031                 } else if (!in_shortfall)
1032                         goto trybackground;
1033                 else if (shortfall_cycle == 0 || vm_laundry_target(vmd) <= 0) {
1034                         /*
1035                          * We recently entered shortfall and began laundering
1036                          * pages.  If we have completed that laundering run
1037                          * (and we are no longer in shortfall) or we have met
1038                          * our laundry target through other activity, then we
1039                          * can stop laundering pages.
1040                          */
1041                         in_shortfall = false;
1042                         target = 0;
1043                         goto trybackground;
1044                 }
1045                 launder = target / shortfall_cycle--;
1046                 goto dolaundry;
1047
1048                 /*
1049                  * There's no immediate need to launder any pages; see if we
1050                  * meet the conditions to perform background laundering:
1051                  *
1052                  * 1. The ratio of dirty to clean inactive pages exceeds the
1053                  *    background laundering threshold, or
1054                  * 2. we haven't yet reached the target of the current
1055                  *    background laundering run.
1056                  *
1057                  * The background laundering threshold is not a constant.
1058                  * Instead, it is a slowly growing function of the number of
1059                  * clean pages freed by the page daemon since the last
1060                  * background laundering.  Thus, as the ratio of dirty to
1061                  * clean inactive pages grows, the amount of memory pressure
1062                  * required to trigger laundering decreases.  We ensure
1063                  * that the threshold is non-zero after an inactive queue
1064                  * scan, even if that scan failed to free a single clean page.
1065                  */
1066 trybackground:
1067                 nclean = vmd->vmd_free_count +
1068                     vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt;
1069                 ndirty = vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt;
1070                 if (target == 0 && ndirty * isqrt(howmany(nfreed + 1,
1071                     vmd->vmd_free_target - vmd->vmd_free_min)) >= nclean) {
1072                         target = vmd->vmd_background_launder_target;
1073                 }
1074
1075                 /*
1076                  * We have a non-zero background laundering target.  If we've
1077                  * laundered up to our maximum without observing a page daemon
1078                  * request, just stop.  This is a safety belt that ensures we
1079                  * don't launder an excessive amount if memory pressure is low
1080                  * and the ratio of dirty to clean pages is large.  Otherwise,
1081                  * proceed at the background laundering rate.
1082                  */
1083                 if (target > 0) {
1084                         if (nfreed > 0) {
1085                                 nfreed = 0;
1086                                 last_target = target;
1087                         } else if (last_target - target >=
1088                             vm_background_launder_max * PAGE_SIZE / 1024) {
1089                                 target = 0;
1090                         }
1091                         launder = vm_background_launder_rate * PAGE_SIZE / 1024;
1092                         launder /= VM_LAUNDER_RATE;
1093                         if (launder > target)
1094                                 launder = target;
1095                 }
1096
1097 dolaundry:
1098                 if (launder > 0) {
1099                         /*
1100                          * Because of I/O clustering, the number of laundered
1101                          * pages could exceed "target" by the maximum size of
1102                          * a cluster minus one. 
1103                          */
1104                         target -= min(vm_pageout_launder(vmd, launder,
1105                             in_shortfall), target);
1106                         pause("laundp", hz / VM_LAUNDER_RATE);
1107                 }
1108
1109                 /*
1110                  * If we're not currently laundering pages and the page daemon
1111                  * hasn't posted a new request, sleep until the page daemon
1112                  * kicks us.
1113                  */
1114                 vm_pagequeue_lock(pq);
1115                 if (target == 0 && vmd->vmd_laundry_request == VM_LAUNDRY_IDLE)
1116                         (void)mtx_sleep(&vmd->vmd_laundry_request,
1117                             vm_pagequeue_lockptr(pq), PVM, "launds", 0);
1118
1119                 /*
1120                  * If the pagedaemon has indicated that it's in shortfall, start
1121                  * a shortfall laundering unless we're already in the middle of
1122                  * one.  This may preempt a background laundering.
1123                  */
1124                 if (vmd->vmd_laundry_request == VM_LAUNDRY_SHORTFALL &&
1125                     (!in_shortfall || shortfall_cycle == 0)) {
1126                         shortfall = vm_laundry_target(vmd) +
1127                             vmd->vmd_pageout_deficit;
1128                         target = 0;
1129                 } else
1130                         shortfall = 0;
1131
1132                 if (target == 0)
1133                         vmd->vmd_laundry_request = VM_LAUNDRY_IDLE;
1134                 nfreed += vmd->vmd_clean_pages_freed;
1135                 vmd->vmd_clean_pages_freed = 0;
1136                 vm_pagequeue_unlock(pq);
1137         }
1138 }
1139
1140 /*
1141  * Compute the number of pages we want to try to move from the
1142  * active queue to either the inactive or laundry queue.
1143  *
1144  * When scanning active pages during a shortage, we make clean pages
1145  * count more heavily towards the page shortage than dirty pages.
1146  * This is because dirty pages must be laundered before they can be
1147  * reused and thus have less utility when attempting to quickly
1148  * alleviate a free page shortage.  However, this weighting also
1149  * causes the scan to deactivate dirty pages more aggressively,
1150  * improving the effectiveness of clustering.
1151  */
1152 static int
1153 vm_pageout_active_target(struct vm_domain *vmd)
1154 {
1155         int shortage;
1156
1157         shortage = vmd->vmd_inactive_target + vm_paging_target(vmd) -
1158             (vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt +
1159             vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt / act_scan_laundry_weight);
1160         shortage *= act_scan_laundry_weight;
1161         return (shortage);
1162 }
1163
1164 /*
1165  * Scan the active queue.  If there is no shortage of inactive pages, scan a
1166  * small portion of the queue in order to maintain quasi-LRU.
1167  */
1168 static void
1169 vm_pageout_scan_active(struct vm_domain *vmd, int page_shortage)
1170 {
1171         struct scan_state ss;
1172         struct mtx *mtx;
1173         vm_object_t object;
1174         vm_page_t m, marker;
1175         struct vm_pagequeue *pq;
1176         long min_scan;
1177         int act_delta, max_scan, scan_tick;
1178
1179         marker = &vmd->vmd_markers[PQ_ACTIVE];
1180         pq = &vmd->vmd_pagequeues[PQ_ACTIVE];
1181         vm_pagequeue_lock(pq);
1182
1183         /*
1184          * If we're just idle polling attempt to visit every
1185          * active page within 'update_period' seconds.
1186          */
1187         scan_tick = ticks;
1188         if (vm_pageout_update_period != 0) {
1189                 min_scan = pq->pq_cnt;
1190                 min_scan *= scan_tick - vmd->vmd_last_active_scan;
1191                 min_scan /= hz * vm_pageout_update_period;
1192         } else
1193                 min_scan = 0;
1194         if (min_scan > 0 || (page_shortage > 0 && pq->pq_cnt > 0))
1195                 vmd->vmd_last_active_scan = scan_tick;
1196
1197         /*
1198          * Scan the active queue for pages that can be deactivated.  Update
1199          * the per-page activity counter and use it to identify deactivation
1200          * candidates.  Held pages may be deactivated.
1201          *
1202          * To avoid requeuing each page that remains in the active queue, we
1203          * implement the CLOCK algorithm.  To keep the implementation of the
1204          * enqueue operation consistent for all page queues, we use two hands,
1205          * represented by marker pages. Scans begin at the first hand, which
1206          * precedes the second hand in the queue.  When the two hands meet,
1207          * they are moved back to the head and tail of the queue, respectively,
1208          * and scanning resumes.
1209          */
1210         max_scan = page_shortage > 0 ? pq->pq_cnt : min_scan;
1211         mtx = NULL;
1212 act_scan:
1213         vm_pageout_init_scan(&ss, pq, marker, &vmd->vmd_clock[0], max_scan);
1214         while ((m = vm_pageout_next(&ss, false)) != NULL) {
1215                 if (__predict_false(m == &vmd->vmd_clock[1])) {
1216                         vm_pagequeue_lock(pq);
1217                         TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
1218                         TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[1], plinks.q);
1219                         TAILQ_INSERT_HEAD(&pq->pq_pl, &vmd->vmd_clock[0],
1220                             plinks.q);
1221                         TAILQ_INSERT_TAIL(&pq->pq_pl, &vmd->vmd_clock[1],
1222                             plinks.q);
1223                         max_scan -= ss.scanned;
1224                         vm_pageout_end_scan(&ss);
1225                         goto act_scan;
1226                 }
1227                 if (__predict_false((m->flags & PG_MARKER) != 0))
1228                         continue;
1229
1230                 vm_page_change_lock(m, &mtx);
1231
1232                 /*
1233                  * The page may have been disassociated from the queue
1234                  * or even freed while locks were dropped.  We thus must be
1235                  * careful whenever modifying page state.  Once the object lock
1236                  * has been acquired, we have a stable reference to the page.
1237                  */
1238                 if (vm_page_queue(m) != PQ_ACTIVE)
1239                         continue;
1240
1241                 /*
1242                  * Wired pages are dequeued lazily.
1243                  */
1244                 if (vm_page_wired(m)) {
1245                         vm_page_dequeue_deferred(m);
1246                         continue;
1247                 }
1248
1249                 /*
1250                  * A page's object pointer may be set to NULL before
1251                  * the object lock is acquired.
1252                  */
1253                 object = (vm_object_t)atomic_load_ptr(&m->object);
1254                 if (__predict_false(object == NULL))
1255                         /*
1256                          * The page has been removed from its object.
1257                          */
1258                         continue;
1259
1260                 /*
1261                  * Check to see "how much" the page has been used.
1262                  *
1263                  * Test PGA_REFERENCED after calling pmap_ts_referenced() so
1264                  * that a reference from a concurrently destroyed mapping is
1265                  * observed here and now.
1266                  *
1267                  * Perform an unsynchronized object ref count check.  While
1268                  * the page lock ensures that the page is not reallocated to
1269                  * another object, in particular, one with unmanaged mappings
1270                  * that cannot support pmap_ts_referenced(), two races are,
1271                  * nonetheless, possible:
1272                  * 1) The count was transitioning to zero, but we saw a non-
1273                  *    zero value.  pmap_ts_referenced() will return zero
1274                  *    because the page is not mapped.
1275                  * 2) The count was transitioning to one, but we saw zero.
1276                  *    This race delays the detection of a new reference.  At
1277                  *    worst, we will deactivate and reactivate the page.
1278                  */
1279                 if (object->ref_count != 0)
1280                         act_delta = pmap_ts_referenced(m);
1281                 else
1282                         act_delta = 0;
1283                 if ((m->aflags & PGA_REFERENCED) != 0) {
1284                         vm_page_aflag_clear(m, PGA_REFERENCED);
1285                         act_delta++;
1286                 }
1287
1288                 /*
1289                  * Advance or decay the act_count based on recent usage.
1290                  */
1291                 if (act_delta != 0) {
1292                         m->act_count += ACT_ADVANCE + act_delta;
1293                         if (m->act_count > ACT_MAX)
1294                                 m->act_count = ACT_MAX;
1295                 } else
1296                         m->act_count -= min(m->act_count, ACT_DECLINE);
1297
1298                 if (m->act_count == 0) {
1299                         /*
1300                          * When not short for inactive pages, let dirty pages go
1301                          * through the inactive queue before moving to the
1302                          * laundry queues.  This gives them some extra time to
1303                          * be reactivated, potentially avoiding an expensive
1304                          * pageout.  However, during a page shortage, the
1305                          * inactive queue is necessarily small, and so dirty
1306                          * pages would only spend a trivial amount of time in
1307                          * the inactive queue.  Therefore, we might as well
1308                          * place them directly in the laundry queue to reduce
1309                          * queuing overhead.
1310                          */
1311                         if (page_shortage <= 0) {
1312                                 vm_page_swapqueue(m, PQ_ACTIVE, PQ_INACTIVE);
1313                         } else {
1314                                 /*
1315                                  * Calling vm_page_test_dirty() here would
1316                                  * require acquisition of the object's write
1317                                  * lock.  However, during a page shortage,
1318                                  * directing dirty pages into the laundry
1319                                  * queue is only an optimization and not a
1320                                  * requirement.  Therefore, we simply rely on
1321                                  * the opportunistic updates to the page's
1322                                  * dirty field by the pmap.
1323                                  */
1324                                 if (m->dirty == 0) {
1325                                         vm_page_swapqueue(m, PQ_ACTIVE,
1326                                             PQ_INACTIVE);
1327                                         page_shortage -=
1328                                             act_scan_laundry_weight;
1329                                 } else {
1330                                         vm_page_swapqueue(m, PQ_ACTIVE,
1331                                             PQ_LAUNDRY);
1332                                         page_shortage--;
1333                                 }
1334                         }
1335                 }
1336         }
1337         if (mtx != NULL) {
1338                 mtx_unlock(mtx);
1339                 mtx = NULL;
1340         }
1341         vm_pagequeue_lock(pq);
1342         TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
1343         TAILQ_INSERT_AFTER(&pq->pq_pl, marker, &vmd->vmd_clock[0], plinks.q);
1344         vm_pageout_end_scan(&ss);
1345         vm_pagequeue_unlock(pq);
1346 }
1347
1348 static int
1349 vm_pageout_reinsert_inactive_page(struct scan_state *ss, vm_page_t m)
1350 {
1351         struct vm_domain *vmd;
1352
1353         if (m->queue != PQ_INACTIVE || (m->aflags & PGA_ENQUEUED) != 0)
1354                 return (0);
1355         vm_page_aflag_set(m, PGA_ENQUEUED);
1356         if ((m->aflags & PGA_REQUEUE_HEAD) != 0) {
1357                 vmd = vm_pagequeue_domain(m);
1358                 TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q);
1359                 vm_page_aflag_clear(m, PGA_REQUEUE | PGA_REQUEUE_HEAD);
1360         } else if ((m->aflags & PGA_REQUEUE) != 0) {
1361                 TAILQ_INSERT_TAIL(&ss->pq->pq_pl, m, plinks.q);
1362                 vm_page_aflag_clear(m, PGA_REQUEUE | PGA_REQUEUE_HEAD);
1363         } else
1364                 TAILQ_INSERT_BEFORE(ss->marker, m, plinks.q);
1365         return (1);
1366 }
1367
1368 /*
1369  * Re-add stuck pages to the inactive queue.  We will examine them again
1370  * during the next scan.  If the queue state of a page has changed since
1371  * it was physically removed from the page queue in
1372  * vm_pageout_collect_batch(), don't do anything with that page.
1373  */
1374 static void
1375 vm_pageout_reinsert_inactive(struct scan_state *ss, struct vm_batchqueue *bq,
1376     vm_page_t m)
1377 {
1378         struct vm_pagequeue *pq;
1379         int delta;
1380
1381         delta = 0;
1382         pq = ss->pq;
1383
1384         if (m != NULL) {
1385                 if (vm_batchqueue_insert(bq, m))
1386                         return;
1387                 vm_pagequeue_lock(pq);
1388                 delta += vm_pageout_reinsert_inactive_page(ss, m);
1389         } else
1390                 vm_pagequeue_lock(pq);
1391         while ((m = vm_batchqueue_pop(bq)) != NULL)
1392                 delta += vm_pageout_reinsert_inactive_page(ss, m);
1393         vm_pagequeue_cnt_add(pq, delta);
1394         vm_pagequeue_unlock(pq);
1395         vm_batchqueue_init(bq);
1396 }
1397
1398 /*
1399  * Attempt to reclaim the requested number of pages from the inactive queue.
1400  * Returns true if the shortage was addressed.
1401  */
1402 static int
1403 vm_pageout_scan_inactive(struct vm_domain *vmd, int shortage,
1404     int *addl_shortage)
1405 {
1406         struct scan_state ss;
1407         struct vm_batchqueue rq;
1408         struct mtx *mtx;
1409         vm_page_t m, marker;
1410         struct vm_pagequeue *pq;
1411         vm_object_t object;
1412         int act_delta, addl_page_shortage, deficit, page_shortage;
1413         int starting_page_shortage;
1414
1415         /*
1416          * The addl_page_shortage is an estimate of the number of temporarily
1417          * stuck pages in the inactive queue.  In other words, the
1418          * number of pages from the inactive count that should be
1419          * discounted in setting the target for the active queue scan.
1420          */
1421         addl_page_shortage = 0;
1422
1423         /*
1424          * vmd_pageout_deficit counts the number of pages requested in
1425          * allocations that failed because of a free page shortage.  We assume
1426          * that the allocations will be reattempted and thus include the deficit
1427          * in our scan target.
1428          */
1429         deficit = atomic_readandclear_int(&vmd->vmd_pageout_deficit);
1430         starting_page_shortage = page_shortage = shortage + deficit;
1431
1432         mtx = NULL;
1433         object = NULL;
1434         vm_batchqueue_init(&rq);
1435
1436         /*
1437          * Start scanning the inactive queue for pages that we can free.  The
1438          * scan will stop when we reach the target or we have scanned the
1439          * entire queue.  (Note that m->act_count is not used to make
1440          * decisions for the inactive queue, only for the active queue.)
1441          */
1442         marker = &vmd->vmd_markers[PQ_INACTIVE];
1443         pq = &vmd->vmd_pagequeues[PQ_INACTIVE];
1444         vm_pagequeue_lock(pq);
1445         vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
1446         while (page_shortage > 0 && (m = vm_pageout_next(&ss, true)) != NULL) {
1447                 KASSERT((m->flags & PG_MARKER) == 0,
1448                     ("marker page %p was dequeued", m));
1449
1450                 vm_page_change_lock(m, &mtx);
1451
1452 recheck:
1453                 /*
1454                  * The page may have been disassociated from the queue
1455                  * or even freed while locks were dropped.  We thus must be
1456                  * careful whenever modifying page state.  Once the object lock
1457                  * has been acquired, we have a stable reference to the page.
1458                  */
1459                 if (vm_page_queue(m) != PQ_INACTIVE) {
1460                         addl_page_shortage++;
1461                         continue;
1462                 }
1463
1464                 /*
1465                  * The page was re-enqueued after the page queue lock was
1466                  * dropped, or a requeue was requested.  This page gets a second
1467                  * chance.
1468                  */
1469                 if ((m->aflags & (PGA_ENQUEUED | PGA_REQUEUE |
1470                     PGA_REQUEUE_HEAD)) != 0)
1471                         goto reinsert;
1472
1473                 /*
1474                  * Wired pages may not be freed.  Complete their removal
1475                  * from the queue now to avoid needless revisits during
1476                  * future scans.  This check is racy and must be reverified once
1477                  * we hold the object lock and have verified that the page
1478                  * is not busy.
1479                  */
1480                 if (vm_page_wired(m)) {
1481                         vm_page_dequeue_deferred(m);
1482                         continue;
1483                 }
1484
1485                 if (object != m->object) {
1486                         if (object != NULL)
1487                                 VM_OBJECT_WUNLOCK(object);
1488
1489                         /*
1490                          * A page's object pointer may be set to NULL before
1491                          * the object lock is acquired.
1492                          */
1493                         object = (vm_object_t)atomic_load_ptr(&m->object);
1494                         if (object != NULL && !VM_OBJECT_TRYWLOCK(object)) {
1495                                 mtx_unlock(mtx);
1496                                 /* Depends on type-stability. */
1497                                 VM_OBJECT_WLOCK(object);
1498                                 mtx_lock(mtx);
1499                                 goto recheck;
1500                         }
1501                 }
1502                 if (__predict_false(m->object == NULL))
1503                         /*
1504                          * The page has been removed from its object.
1505                          */
1506                         continue;
1507                 KASSERT(m->object == object, ("page %p does not belong to %p",
1508                     m, object));
1509
1510                 if (vm_page_busied(m)) {
1511                         /*
1512                          * Don't mess with busy pages.  Leave them at
1513                          * the front of the queue.  Most likely, they
1514                          * are being paged out and will leave the
1515                          * queue shortly after the scan finishes.  So,
1516                          * they ought to be discounted from the
1517                          * inactive count.
1518                          */
1519                         addl_page_shortage++;
1520                         goto reinsert;
1521                 }
1522
1523                 /*
1524                  * Re-check for wirings now that we hold the object lock and
1525                  * have verified that the page is unbusied.  If the page is
1526                  * mapped, it may still be wired by pmap lookups.  The call to
1527                  * vm_page_try_remove_all() below atomically checks for such
1528                  * wirings and removes mappings.  If the page is unmapped, the
1529                  * wire count is guaranteed not to increase.
1530                  */
1531                 if (__predict_false(vm_page_wired(m))) {
1532                         vm_page_dequeue_deferred(m);
1533                         continue;
1534                 }
1535
1536                 /*
1537                  * Invalid pages can be easily freed. They cannot be
1538                  * mapped, vm_page_free() asserts this.
1539                  */
1540                 if (m->valid == 0)
1541                         goto free_page;
1542
1543                 /*
1544                  * If the page has been referenced and the object is not dead,
1545                  * reactivate or requeue the page depending on whether the
1546                  * object is mapped.
1547                  *
1548                  * Test PGA_REFERENCED after calling pmap_ts_referenced() so
1549                  * that a reference from a concurrently destroyed mapping is
1550                  * observed here and now.
1551                  */
1552                 if (object->ref_count != 0)
1553                         act_delta = pmap_ts_referenced(m);
1554                 else {
1555                         KASSERT(!pmap_page_is_mapped(m),
1556                             ("page %p is mapped", m));
1557                         act_delta = 0;
1558                 }
1559                 if ((m->aflags & PGA_REFERENCED) != 0) {
1560                         vm_page_aflag_clear(m, PGA_REFERENCED);
1561                         act_delta++;
1562                 }
1563                 if (act_delta != 0) {
1564                         if (object->ref_count != 0) {
1565                                 VM_CNT_INC(v_reactivated);
1566                                 vm_page_activate(m);
1567
1568                                 /*
1569                                  * Increase the activation count if the page
1570                                  * was referenced while in the inactive queue.
1571                                  * This makes it less likely that the page will
1572                                  * be returned prematurely to the inactive
1573                                  * queue.
1574                                  */
1575                                 m->act_count += act_delta + ACT_ADVANCE;
1576                                 continue;
1577                         } else if ((object->flags & OBJ_DEAD) == 0) {
1578                                 vm_page_aflag_set(m, PGA_REQUEUE);
1579                                 goto reinsert;
1580                         }
1581                 }
1582
1583                 /*
1584                  * If the page appears to be clean at the machine-independent
1585                  * layer, then remove all of its mappings from the pmap in
1586                  * anticipation of freeing it.  If, however, any of the page's
1587                  * mappings allow write access, then the page may still be
1588                  * modified until the last of those mappings are removed.
1589                  */
1590                 if (object->ref_count != 0) {
1591                         vm_page_test_dirty(m);
1592                         if (m->dirty == 0 && !vm_page_try_remove_all(m)) {
1593                                 vm_page_dequeue_deferred(m);
1594                                 continue;
1595                         }
1596                 }
1597
1598                 /*
1599                  * Clean pages can be freed, but dirty pages must be sent back
1600                  * to the laundry, unless they belong to a dead object.
1601                  * Requeueing dirty pages from dead objects is pointless, as
1602                  * they are being paged out and freed by the thread that
1603                  * destroyed the object.
1604                  */
1605                 if (m->dirty == 0) {
1606 free_page:
1607                         /*
1608                          * Because we dequeued the page and have already
1609                          * checked for concurrent dequeue and enqueue
1610                          * requests, we can safely disassociate the page
1611                          * from the inactive queue.
1612                          */
1613                         KASSERT((m->aflags & PGA_QUEUE_STATE_MASK) == 0,
1614                             ("page %p has queue state", m));
1615                         m->queue = PQ_NONE;
1616                         vm_page_free(m);
1617                         page_shortage--;
1618                 } else if ((object->flags & OBJ_DEAD) == 0)
1619                         vm_page_launder(m);
1620                 continue;
1621 reinsert:
1622                 vm_pageout_reinsert_inactive(&ss, &rq, m);
1623         }
1624         if (mtx != NULL)
1625                 mtx_unlock(mtx);
1626         if (object != NULL)
1627                 VM_OBJECT_WUNLOCK(object);
1628         vm_pageout_reinsert_inactive(&ss, &rq, NULL);
1629         vm_pageout_reinsert_inactive(&ss, &ss.bq, NULL);
1630         vm_pagequeue_lock(pq);
1631         vm_pageout_end_scan(&ss);
1632         vm_pagequeue_unlock(pq);
1633
1634         VM_CNT_ADD(v_dfree, starting_page_shortage - page_shortage);
1635
1636         /*
1637          * Wake up the laundry thread so that it can perform any needed
1638          * laundering.  If we didn't meet our target, we're in shortfall and
1639          * need to launder more aggressively.  If PQ_LAUNDRY is empty and no
1640          * swap devices are configured, the laundry thread has no work to do, so
1641          * don't bother waking it up.
1642          *
1643          * The laundry thread uses the number of inactive queue scans elapsed
1644          * since the last laundering to determine whether to launder again, so
1645          * keep count.
1646          */
1647         if (starting_page_shortage > 0) {
1648                 pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
1649                 vm_pagequeue_lock(pq);
1650                 if (vmd->vmd_laundry_request == VM_LAUNDRY_IDLE &&
1651                     (pq->pq_cnt > 0 || atomic_load_acq_int(&swapdev_enabled))) {
1652                         if (page_shortage > 0) {
1653                                 vmd->vmd_laundry_request = VM_LAUNDRY_SHORTFALL;
1654                                 VM_CNT_INC(v_pdshortfalls);
1655                         } else if (vmd->vmd_laundry_request !=
1656                             VM_LAUNDRY_SHORTFALL)
1657                                 vmd->vmd_laundry_request =
1658                                     VM_LAUNDRY_BACKGROUND;
1659                         wakeup(&vmd->vmd_laundry_request);
1660                 }
1661                 vmd->vmd_clean_pages_freed +=
1662                     starting_page_shortage - page_shortage;
1663                 vm_pagequeue_unlock(pq);
1664         }
1665
1666         /*
1667          * Wakeup the swapout daemon if we didn't free the targeted number of
1668          * pages.
1669          */
1670         if (page_shortage > 0)
1671                 vm_swapout_run();
1672
1673         /*
1674          * If the inactive queue scan fails repeatedly to meet its
1675          * target, kill the largest process.
1676          */
1677         vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage);
1678
1679         /*
1680          * Reclaim pages by swapping out idle processes, if configured to do so.
1681          */
1682         vm_swapout_run_idle();
1683
1684         /*
1685          * See the description of addl_page_shortage above.
1686          */
1687         *addl_shortage = addl_page_shortage + deficit;
1688
1689         return (page_shortage <= 0);
1690 }
1691
1692 static int vm_pageout_oom_vote;
1693
1694 /*
1695  * The pagedaemon threads randlomly select one to perform the
1696  * OOM.  Trying to kill processes before all pagedaemons
1697  * failed to reach free target is premature.
1698  */
1699 static void
1700 vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
1701     int starting_page_shortage)
1702 {
1703         int old_vote;
1704
1705         if (starting_page_shortage <= 0 || starting_page_shortage !=
1706             page_shortage)
1707                 vmd->vmd_oom_seq = 0;
1708         else
1709                 vmd->vmd_oom_seq++;
1710         if (vmd->vmd_oom_seq < vm_pageout_oom_seq) {
1711                 if (vmd->vmd_oom) {
1712                         vmd->vmd_oom = FALSE;
1713                         atomic_subtract_int(&vm_pageout_oom_vote, 1);
1714                 }
1715                 return;
1716         }
1717
1718         /*
1719          * Do not follow the call sequence until OOM condition is
1720          * cleared.
1721          */
1722         vmd->vmd_oom_seq = 0;
1723
1724         if (vmd->vmd_oom)
1725                 return;
1726
1727         vmd->vmd_oom = TRUE;
1728         old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1);
1729         if (old_vote != vm_ndomains - 1)
1730                 return;
1731
1732         /*
1733          * The current pagedaemon thread is the last in the quorum to
1734          * start OOM.  Initiate the selection and signaling of the
1735          * victim.
1736          */
1737         vm_pageout_oom(VM_OOM_MEM);
1738
1739         /*
1740          * After one round of OOM terror, recall our vote.  On the
1741          * next pass, current pagedaemon would vote again if the low
1742          * memory condition is still there, due to vmd_oom being
1743          * false.
1744          */
1745         vmd->vmd_oom = FALSE;
1746         atomic_subtract_int(&vm_pageout_oom_vote, 1);
1747 }
1748
1749 /*
1750  * The OOM killer is the page daemon's action of last resort when
1751  * memory allocation requests have been stalled for a prolonged period
1752  * of time because it cannot reclaim memory.  This function computes
1753  * the approximate number of physical pages that could be reclaimed if
1754  * the specified address space is destroyed.
1755  *
1756  * Private, anonymous memory owned by the address space is the
1757  * principal resource that we expect to recover after an OOM kill.
1758  * Since the physical pages mapped by the address space's COW entries
1759  * are typically shared pages, they are unlikely to be released and so
1760  * they are not counted.
1761  *
1762  * To get to the point where the page daemon runs the OOM killer, its
1763  * efforts to write-back vnode-backed pages may have stalled.  This
1764  * could be caused by a memory allocation deadlock in the write path
1765  * that might be resolved by an OOM kill.  Therefore, physical pages
1766  * belonging to vnode-backed objects are counted, because they might
1767  * be freed without being written out first if the address space holds
1768  * the last reference to an unlinked vnode.
1769  *
1770  * Similarly, physical pages belonging to OBJT_PHYS objects are
1771  * counted because the address space might hold the last reference to
1772  * the object.
1773  */
1774 static long
1775 vm_pageout_oom_pagecount(struct vmspace *vmspace)
1776 {
1777         vm_map_t map;
1778         vm_map_entry_t entry;
1779         vm_object_t obj;
1780         long res;
1781
1782         map = &vmspace->vm_map;
1783         KASSERT(!map->system_map, ("system map"));
1784         sx_assert(&map->lock, SA_LOCKED);
1785         res = 0;
1786         for (entry = map->header.next; entry != &map->header;
1787             entry = entry->next) {
1788                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
1789                         continue;
1790                 obj = entry->object.vm_object;
1791                 if (obj == NULL)
1792                         continue;
1793                 if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 &&
1794                     obj->ref_count != 1)
1795                         continue;
1796                 switch (obj->type) {
1797                 case OBJT_DEFAULT:
1798                 case OBJT_SWAP:
1799                 case OBJT_PHYS:
1800                 case OBJT_VNODE:
1801                         res += obj->resident_page_count;
1802                         break;
1803                 }
1804         }
1805         return (res);
1806 }
1807
1808 static int vm_oom_ratelim_last;
1809 static int vm_oom_pf_secs = 10;
1810 SYSCTL_INT(_vm, OID_AUTO, oom_pf_secs, CTLFLAG_RWTUN, &vm_oom_pf_secs, 0,
1811     "");
1812 static struct mtx vm_oom_ratelim_mtx;
1813
1814 void
1815 vm_pageout_oom(int shortage)
1816 {
1817         struct proc *p, *bigproc;
1818         vm_offset_t size, bigsize;
1819         struct thread *td;
1820         struct vmspace *vm;
1821         int now;
1822         bool breakout;
1823
1824         /*
1825          * For OOM requests originating from vm_fault(), there is a high
1826          * chance that a single large process faults simultaneously in
1827          * several threads.  Also, on an active system running many
1828          * processes of middle-size, like buildworld, all of them
1829          * could fault almost simultaneously as well.
1830          *
1831          * To avoid killing too many processes, rate-limit OOMs
1832          * initiated by vm_fault() time-outs on the waits for free
1833          * pages.
1834          */
1835         mtx_lock(&vm_oom_ratelim_mtx);
1836         now = ticks;
1837         if (shortage == VM_OOM_MEM_PF &&
1838             (u_int)(now - vm_oom_ratelim_last) < hz * vm_oom_pf_secs) {
1839                 mtx_unlock(&vm_oom_ratelim_mtx);
1840                 return;
1841         }
1842         vm_oom_ratelim_last = now;
1843         mtx_unlock(&vm_oom_ratelim_mtx);
1844
1845         /*
1846          * We keep the process bigproc locked once we find it to keep anyone
1847          * from messing with it; however, there is a possibility of
1848          * deadlock if process B is bigproc and one of its child processes
1849          * attempts to propagate a signal to B while we are waiting for A's
1850          * lock while walking this list.  To avoid this, we don't block on
1851          * the process lock but just skip a process if it is already locked.
1852          */
1853         bigproc = NULL;
1854         bigsize = 0;
1855         sx_slock(&allproc_lock);
1856         FOREACH_PROC_IN_SYSTEM(p) {
1857                 PROC_LOCK(p);
1858
1859                 /*
1860                  * If this is a system, protected or killed process, skip it.
1861                  */
1862                 if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC |
1863                     P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 ||
1864                     p->p_pid == 1 || P_KILLED(p) ||
1865                     (p->p_pid < 48 && swap_pager_avail != 0)) {
1866                         PROC_UNLOCK(p);
1867                         continue;
1868                 }
1869                 /*
1870                  * If the process is in a non-running type state,
1871                  * don't touch it.  Check all the threads individually.
1872                  */
1873                 breakout = false;
1874                 FOREACH_THREAD_IN_PROC(p, td) {
1875                         thread_lock(td);
1876                         if (!TD_ON_RUNQ(td) &&
1877                             !TD_IS_RUNNING(td) &&
1878                             !TD_IS_SLEEPING(td) &&
1879                             !TD_IS_SUSPENDED(td) &&
1880                             !TD_IS_SWAPPED(td)) {
1881                                 thread_unlock(td);
1882                                 breakout = true;
1883                                 break;
1884                         }
1885                         thread_unlock(td);
1886                 }
1887                 if (breakout) {
1888                         PROC_UNLOCK(p);
1889                         continue;
1890                 }
1891                 /*
1892                  * get the process size
1893                  */
1894                 vm = vmspace_acquire_ref(p);
1895                 if (vm == NULL) {
1896                         PROC_UNLOCK(p);
1897                         continue;
1898                 }
1899                 _PHOLD_LITE(p);
1900                 PROC_UNLOCK(p);
1901                 sx_sunlock(&allproc_lock);
1902                 if (!vm_map_trylock_read(&vm->vm_map)) {
1903                         vmspace_free(vm);
1904                         sx_slock(&allproc_lock);
1905                         PRELE(p);
1906                         continue;
1907                 }
1908                 size = vmspace_swap_count(vm);
1909                 if (shortage == VM_OOM_MEM || shortage == VM_OOM_MEM_PF)
1910                         size += vm_pageout_oom_pagecount(vm);
1911                 vm_map_unlock_read(&vm->vm_map);
1912                 vmspace_free(vm);
1913                 sx_slock(&allproc_lock);
1914
1915                 /*
1916                  * If this process is bigger than the biggest one,
1917                  * remember it.
1918                  */
1919                 if (size > bigsize) {
1920                         if (bigproc != NULL)
1921                                 PRELE(bigproc);
1922                         bigproc = p;
1923                         bigsize = size;
1924                 } else {
1925                         PRELE(p);
1926                 }
1927         }
1928         sx_sunlock(&allproc_lock);
1929         if (bigproc != NULL) {
1930                 if (vm_panic_on_oom != 0)
1931                         panic("out of swap space");
1932                 PROC_LOCK(bigproc);
1933                 killproc(bigproc, "out of swap space");
1934                 sched_nice(bigproc, PRIO_MIN);
1935                 _PRELE(bigproc);
1936                 PROC_UNLOCK(bigproc);
1937         }
1938 }
1939
1940 static bool
1941 vm_pageout_lowmem(void)
1942 {
1943         static int lowmem_ticks = 0;
1944         int last;
1945
1946         last = atomic_load_int(&lowmem_ticks);
1947         while ((u_int)(ticks - last) / hz >= lowmem_period) {
1948                 if (atomic_fcmpset_int(&lowmem_ticks, &last, ticks) == 0)
1949                         continue;
1950
1951                 /*
1952                  * Decrease registered cache sizes.
1953                  */
1954                 SDT_PROBE0(vm, , , vm__lowmem_scan);
1955                 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_PAGES);
1956
1957                 /*
1958                  * We do this explicitly after the caches have been
1959                  * drained above.  If we have a severe page shortage on
1960                  * our hands, completely drain all UMA zones.  Otherwise,
1961                  * just prune the caches.
1962                  */
1963                 uma_reclaim(vm_page_count_min() ? UMA_RECLAIM_DRAIN_CPU :
1964                     UMA_RECLAIM_TRIM);
1965                 return (true);
1966         }
1967         return (false);
1968 }
1969
1970 static void
1971 vm_pageout_worker(void *arg)
1972 {
1973         struct vm_domain *vmd;
1974         u_int ofree;
1975         int addl_shortage, domain, shortage;
1976         bool target_met;
1977
1978         domain = (uintptr_t)arg;
1979         vmd = VM_DOMAIN(domain);
1980         shortage = 0;
1981         target_met = true;
1982
1983         /*
1984          * XXXKIB It could be useful to bind pageout daemon threads to
1985          * the cores belonging to the domain, from which vm_page_array
1986          * is allocated.
1987          */
1988
1989         KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
1990         vmd->vmd_last_active_scan = ticks;
1991
1992         /*
1993          * The pageout daemon worker is never done, so loop forever.
1994          */
1995         while (TRUE) {
1996                 vm_domain_pageout_lock(vmd);
1997
1998                 /*
1999                  * We need to clear wanted before we check the limits.  This
2000                  * prevents races with wakers who will check wanted after they
2001                  * reach the limit.
2002                  */
2003                 atomic_store_int(&vmd->vmd_pageout_wanted, 0);
2004
2005                 /*
2006                  * Might the page daemon need to run again?
2007                  */
2008                 if (vm_paging_needed(vmd, vmd->vmd_free_count)) {
2009                         /*
2010                          * Yes.  If the scan failed to produce enough free
2011                          * pages, sleep uninterruptibly for some time in the
2012                          * hope that the laundry thread will clean some pages.
2013                          */
2014                         vm_domain_pageout_unlock(vmd);
2015                         if (!target_met)
2016                                 pause("pwait", hz / VM_INACT_SCAN_RATE);
2017                 } else {
2018                         /*
2019                          * No, sleep until the next wakeup or until pages
2020                          * need to have their reference stats updated.
2021                          */
2022                         if (mtx_sleep(&vmd->vmd_pageout_wanted,
2023                             vm_domain_pageout_lockptr(vmd), PDROP | PVM,
2024                             "psleep", hz / VM_INACT_SCAN_RATE) == 0)
2025                                 VM_CNT_INC(v_pdwakeups);
2026                 }
2027
2028                 /* Prevent spurious wakeups by ensuring that wanted is set. */
2029                 atomic_store_int(&vmd->vmd_pageout_wanted, 1);
2030
2031                 /*
2032                  * Use the controller to calculate how many pages to free in
2033                  * this interval, and scan the inactive queue.  If the lowmem
2034                  * handlers appear to have freed up some pages, subtract the
2035                  * difference from the inactive queue scan target.
2036                  */
2037                 shortage = pidctrl_daemon(&vmd->vmd_pid, vmd->vmd_free_count);
2038                 if (shortage > 0) {
2039                         ofree = vmd->vmd_free_count;
2040                         if (vm_pageout_lowmem() && vmd->vmd_free_count > ofree)
2041                                 shortage -= min(vmd->vmd_free_count - ofree,
2042                                     (u_int)shortage);
2043                         target_met = vm_pageout_scan_inactive(vmd, shortage,
2044                             &addl_shortage);
2045                 } else
2046                         addl_shortage = 0;
2047
2048                 /*
2049                  * Scan the active queue.  A positive value for shortage
2050                  * indicates that we must aggressively deactivate pages to avoid
2051                  * a shortfall.
2052                  */
2053                 shortage = vm_pageout_active_target(vmd) + addl_shortage;
2054                 vm_pageout_scan_active(vmd, shortage);
2055         }
2056 }
2057
2058 /*
2059  *      vm_pageout_init initialises basic pageout daemon settings.
2060  */
2061 static void
2062 vm_pageout_init_domain(int domain)
2063 {
2064         struct vm_domain *vmd;
2065         struct sysctl_oid *oid;
2066
2067         vmd = VM_DOMAIN(domain);
2068         vmd->vmd_interrupt_free_min = 2;
2069
2070         /*
2071          * v_free_reserved needs to include enough for the largest
2072          * swap pager structures plus enough for any pv_entry structs
2073          * when paging. 
2074          */
2075         if (vmd->vmd_page_count > 1024)
2076                 vmd->vmd_free_min = 4 + (vmd->vmd_page_count - 1024) / 200;
2077         else
2078                 vmd->vmd_free_min = 4;
2079         vmd->vmd_pageout_free_min = 2 * MAXBSIZE / PAGE_SIZE +
2080             vmd->vmd_interrupt_free_min;
2081         vmd->vmd_free_reserved = vm_pageout_page_count +
2082             vmd->vmd_pageout_free_min + (vmd->vmd_page_count / 768);
2083         vmd->vmd_free_severe = vmd->vmd_free_min / 2;
2084         vmd->vmd_free_target = 4 * vmd->vmd_free_min + vmd->vmd_free_reserved;
2085         vmd->vmd_free_min += vmd->vmd_free_reserved;
2086         vmd->vmd_free_severe += vmd->vmd_free_reserved;
2087         vmd->vmd_inactive_target = (3 * vmd->vmd_free_target) / 2;
2088         if (vmd->vmd_inactive_target > vmd->vmd_free_count / 3)
2089                 vmd->vmd_inactive_target = vmd->vmd_free_count / 3;
2090
2091         /*
2092          * Set the default wakeup threshold to be 10% below the paging
2093          * target.  This keeps the steady state out of shortfall.
2094          */
2095         vmd->vmd_pageout_wakeup_thresh = (vmd->vmd_free_target / 10) * 9;
2096
2097         /*
2098          * Target amount of memory to move out of the laundry queue during a
2099          * background laundering.  This is proportional to the amount of system
2100          * memory.
2101          */
2102         vmd->vmd_background_launder_target = (vmd->vmd_free_target -
2103             vmd->vmd_free_min) / 10;
2104
2105         /* Initialize the pageout daemon pid controller. */
2106         pidctrl_init(&vmd->vmd_pid, hz / VM_INACT_SCAN_RATE,
2107             vmd->vmd_free_target, PIDCTRL_BOUND,
2108             PIDCTRL_KPD, PIDCTRL_KID, PIDCTRL_KDD);
2109         oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(vmd->vmd_oid), OID_AUTO,
2110             "pidctrl", CTLFLAG_RD, NULL, "");
2111         pidctrl_init_sysctl(&vmd->vmd_pid, SYSCTL_CHILDREN(oid));
2112 }
2113
2114 static void
2115 vm_pageout_init(void)
2116 {
2117         u_int freecount;
2118         int i;
2119
2120         /*
2121          * Initialize some paging parameters.
2122          */
2123         if (vm_cnt.v_page_count < 2000)
2124                 vm_pageout_page_count = 8;
2125
2126         freecount = 0;
2127         for (i = 0; i < vm_ndomains; i++) {
2128                 struct vm_domain *vmd;
2129
2130                 vm_pageout_init_domain(i);
2131                 vmd = VM_DOMAIN(i);
2132                 vm_cnt.v_free_reserved += vmd->vmd_free_reserved;
2133                 vm_cnt.v_free_target += vmd->vmd_free_target;
2134                 vm_cnt.v_free_min += vmd->vmd_free_min;
2135                 vm_cnt.v_inactive_target += vmd->vmd_inactive_target;
2136                 vm_cnt.v_pageout_free_min += vmd->vmd_pageout_free_min;
2137                 vm_cnt.v_interrupt_free_min += vmd->vmd_interrupt_free_min;
2138                 vm_cnt.v_free_severe += vmd->vmd_free_severe;
2139                 freecount += vmd->vmd_free_count;
2140         }
2141
2142         /*
2143          * Set interval in seconds for active scan.  We want to visit each
2144          * page at least once every ten minutes.  This is to prevent worst
2145          * case paging behaviors with stale active LRU.
2146          */
2147         if (vm_pageout_update_period == 0)
2148                 vm_pageout_update_period = 600;
2149
2150         if (vm_page_max_user_wired == 0)
2151                 vm_page_max_user_wired = freecount / 3;
2152 }
2153
2154 /*
2155  *     vm_pageout is the high level pageout daemon.
2156  */
2157 static void
2158 vm_pageout(void)
2159 {
2160         struct proc *p;
2161         struct thread *td;
2162         int error, first, i;
2163
2164         p = curproc;
2165         td = curthread;
2166
2167         mtx_init(&vm_oom_ratelim_mtx, "vmoomr", NULL, MTX_DEF);
2168         swap_pager_swap_init();
2169         for (first = -1, i = 0; i < vm_ndomains; i++) {
2170                 if (VM_DOMAIN_EMPTY(i)) {
2171                         if (bootverbose)
2172                                 printf("domain %d empty; skipping pageout\n",
2173                                     i);
2174                         continue;
2175                 }
2176                 if (first == -1)
2177                         first = i;
2178                 else {
2179                         error = kthread_add(vm_pageout_worker,
2180                             (void *)(uintptr_t)i, p, NULL, 0, 0, "dom%d", i);
2181                         if (error != 0)
2182                                 panic("starting pageout for domain %d: %d\n",
2183                                     i, error);
2184                 }
2185                 error = kthread_add(vm_pageout_laundry_worker,
2186                     (void *)(uintptr_t)i, p, NULL, 0, 0, "laundry: dom%d", i);
2187                 if (error != 0)
2188                         panic("starting laundry for domain %d: %d", i, error);
2189         }
2190         error = kthread_add(uma_reclaim_worker, NULL, p, NULL, 0, 0, "uma");
2191         if (error != 0)
2192                 panic("starting uma_reclaim helper, error %d\n", error);
2193
2194         snprintf(td->td_name, sizeof(td->td_name), "dom%d", first);
2195         vm_pageout_worker((void *)(uintptr_t)first);
2196 }
2197
2198 /*
2199  * Perform an advisory wakeup of the page daemon.
2200  */
2201 void
2202 pagedaemon_wakeup(int domain)
2203 {
2204         struct vm_domain *vmd;
2205
2206         vmd = VM_DOMAIN(domain);
2207         vm_domain_pageout_assert_unlocked(vmd);
2208         if (curproc == pageproc)
2209                 return;
2210
2211         if (atomic_fetchadd_int(&vmd->vmd_pageout_wanted, 1) == 0) {
2212                 vm_domain_pageout_lock(vmd);
2213                 atomic_store_int(&vmd->vmd_pageout_wanted, 1);
2214                 wakeup(&vmd->vmd_pageout_wanted);
2215                 vm_domain_pageout_unlock(vmd);
2216         }
2217 }