]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_pageout.c
This commit was generated by cvs2svn to compensate for changes in r170242,
[FreeBSD/FreeBSD.git] / sys / vm / vm_pageout.c
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  * Copyright (c) 2005 Yahoo! Technologies Norway AS
9  * All rights reserved.
10  *
11  * This code is derived from software contributed to Berkeley by
12  * The Mach Operating System project at Carnegie-Mellon University.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *      This product includes software developed by the University of
25  *      California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
43  *
44  *
45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46  * All rights reserved.
47  *
48  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49  *
50  * Permission to use, copy, modify and distribute this software and
51  * its documentation is hereby granted, provided that both the copyright
52  * notice and this permission notice appear in all copies of the
53  * software, derivative works or modified versions, and any portions
54  * thereof, and that both notices appear in supporting documentation.
55  *
56  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59  *
60  * Carnegie Mellon requests users of this software to return to
61  *
62  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63  *  School of Computer Science
64  *  Carnegie Mellon University
65  *  Pittsburgh PA 15213-3890
66  *
67  * any improvements or extensions that they make and grant Carnegie the
68  * rights to redistribute these changes.
69  */
70
71 /*
72  *      The proverbial page-out daemon.
73  */
74
75 #include <sys/cdefs.h>
76 __FBSDID("$FreeBSD$");
77
78 #include "opt_vm.h"
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/eventhandler.h>
83 #include <sys/lock.h>
84 #include <sys/mutex.h>
85 #include <sys/proc.h>
86 #include <sys/kthread.h>
87 #include <sys/ktr.h>
88 #include <sys/resourcevar.h>
89 #include <sys/sched.h>
90 #include <sys/signalvar.h>
91 #include <sys/vnode.h>
92 #include <sys/vmmeter.h>
93 #include <sys/sx.h>
94 #include <sys/sysctl.h>
95
96 #include <vm/vm.h>
97 #include <vm/vm_param.h>
98 #include <vm/vm_object.h>
99 #include <vm/vm_page.h>
100 #include <vm/vm_map.h>
101 #include <vm/vm_pageout.h>
102 #include <vm/vm_pager.h>
103 #include <vm/swap_pager.h>
104 #include <vm/vm_extern.h>
105 #include <vm/uma.h>
106
107 #include <machine/mutex.h>
108
109 /*
110  * System initialization
111  */
112
113 /* the kernel process "vm_pageout"*/
114 static void vm_pageout(void);
115 static int vm_pageout_clean(vm_page_t);
116 static void vm_pageout_scan(int pass);
117
118 struct proc *pageproc;
119
120 static struct kproc_desc page_kp = {
121         "pagedaemon",
122         vm_pageout,
123         &pageproc
124 };
125 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
126
127 #if !defined(NO_SWAPPING)
128 /* the kernel process "vm_daemon"*/
129 static void vm_daemon(void);
130 static struct   proc *vmproc;
131
132 static struct kproc_desc vm_kp = {
133         "vmdaemon",
134         vm_daemon,
135         &vmproc
136 };
137 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
138 #endif
139
140
141 int vm_pages_needed;            /* Event on which pageout daemon sleeps */
142 int vm_pageout_deficit;         /* Estimated number of pages deficit */
143 int vm_pageout_pages_needed;    /* flag saying that the pageout daemon needs pages */
144
145 #if !defined(NO_SWAPPING)
146 static int vm_pageout_req_swapout;      /* XXX */
147 static int vm_daemon_needed;
148 #endif
149 static int vm_max_launder = 32;
150 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
151 static int vm_pageout_full_stats_interval = 0;
152 static int vm_pageout_algorithm=0;
153 static int defer_swap_pageouts=0;
154 static int disable_swap_pageouts=0;
155
156 #if defined(NO_SWAPPING)
157 static int vm_swap_enabled=0;
158 static int vm_swap_idle_enabled=0;
159 #else
160 static int vm_swap_enabled=1;
161 static int vm_swap_idle_enabled=0;
162 #endif
163
164 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
165         CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
166
167 SYSCTL_INT(_vm, OID_AUTO, max_launder,
168         CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
169
170 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
171         CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
172
173 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
174         CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
175
176 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
177         CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
178
179 #if defined(NO_SWAPPING)
180 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
181         CTLFLAG_RD, &vm_swap_enabled, 0, "");
182 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
183         CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
184 #else
185 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
186         CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
187 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
188         CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
189 #endif
190
191 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
192         CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
193
194 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
195         CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
196
197 static int pageout_lock_miss;
198 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
199         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
200
201 #define VM_PAGEOUT_PAGE_COUNT 16
202 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
203
204 int vm_page_max_wired;          /* XXX max # of wired pages system-wide */
205
206 #if !defined(NO_SWAPPING)
207 static void vm_pageout_map_deactivate_pages(vm_map_t, long);
208 static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
209 static void vm_req_vmdaemon(void);
210 #endif
211 static void vm_pageout_page_stats(void);
212
213 /*
214  * vm_pageout_fallback_object_lock:
215  * 
216  * Lock vm object currently associated with `m'. VM_OBJECT_TRYLOCK is
217  * known to have failed and page queue must be either PQ_ACTIVE or
218  * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
219  * while locking the vm object.  Use marker page to detect page queue
220  * changes and maintain notion of next page on page queue.  Return
221  * TRUE if no changes were detected, FALSE otherwise.  vm object is
222  * locked on return.
223  * 
224  * This function depends on both the lock portion of struct vm_object
225  * and normal struct vm_page being type stable.
226  */
227 static boolean_t
228 vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
229 {
230         struct vm_page marker;
231         boolean_t unchanged;
232         u_short queue;
233         vm_object_t object;
234
235         /*
236          * Initialize our marker
237          */
238         bzero(&marker, sizeof(marker));
239         marker.flags = PG_FICTITIOUS | PG_MARKER;
240         marker.oflags = VPO_BUSY;
241         marker.queue = m->queue;
242         marker.wire_count = 1;
243
244         queue = m->queue;
245         object = m->object;
246         
247         TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl,
248                            m, &marker, pageq);
249         vm_page_unlock_queues();
250         VM_OBJECT_LOCK(object);
251         vm_page_lock_queues();
252
253         /* Page queue might have changed. */
254         *next = TAILQ_NEXT(&marker, pageq);
255         unchanged = (m->queue == queue &&
256                      m->object == object &&
257                      &marker == TAILQ_NEXT(m, pageq));
258         TAILQ_REMOVE(&vm_page_queues[queue].pl,
259                      &marker, pageq);
260         return (unchanged);
261 }
262
263 /*
264  * vm_pageout_clean:
265  *
266  * Clean the page and remove it from the laundry.
267  * 
268  * We set the busy bit to cause potential page faults on this page to
269  * block.  Note the careful timing, however, the busy bit isn't set till
270  * late and we cannot do anything that will mess with the page.
271  */
272 static int
273 vm_pageout_clean(m)
274         vm_page_t m;
275 {
276         vm_object_t object;
277         vm_page_t mc[2*vm_pageout_page_count];
278         int pageout_count;
279         int ib, is, page_base;
280         vm_pindex_t pindex = m->pindex;
281
282         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
283         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
284
285         /*
286          * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
287          * with the new swapper, but we could have serious problems paging
288          * out other object types if there is insufficient memory.  
289          *
290          * Unfortunately, checking free memory here is far too late, so the
291          * check has been moved up a procedural level.
292          */
293
294         /*
295          * Don't mess with the page if it's busy, held, or special
296          */
297         if ((m->hold_count != 0) ||
298             ((m->busy != 0) || (m->oflags & VPO_BUSY) ||
299              (m->flags & PG_UNMANAGED))) {
300                 return 0;
301         }
302
303         mc[vm_pageout_page_count] = m;
304         pageout_count = 1;
305         page_base = vm_pageout_page_count;
306         ib = 1;
307         is = 1;
308
309         /*
310          * Scan object for clusterable pages.
311          *
312          * We can cluster ONLY if: ->> the page is NOT
313          * clean, wired, busy, held, or mapped into a
314          * buffer, and one of the following:
315          * 1) The page is inactive, or a seldom used
316          *    active page.
317          * -or-
318          * 2) we force the issue.
319          *
320          * During heavy mmap/modification loads the pageout
321          * daemon can really fragment the underlying file
322          * due to flushing pages out of order and not trying
323          * align the clusters (which leave sporatic out-of-order
324          * holes).  To solve this problem we do the reverse scan
325          * first and attempt to align our cluster, then do a 
326          * forward scan if room remains.
327          */
328         object = m->object;
329 more:
330         while (ib && pageout_count < vm_pageout_page_count) {
331                 vm_page_t p;
332
333                 if (ib > pindex) {
334                         ib = 0;
335                         break;
336                 }
337
338                 if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
339                         ib = 0;
340                         break;
341                 }
342                 if (VM_PAGE_INQUEUE1(p, PQ_CACHE) ||
343                     (p->oflags & VPO_BUSY) || p->busy ||
344                     (p->flags & PG_UNMANAGED)) {
345                         ib = 0;
346                         break;
347                 }
348                 vm_page_test_dirty(p);
349                 if ((p->dirty & p->valid) == 0 ||
350                     p->queue != PQ_INACTIVE ||
351                     p->wire_count != 0 ||       /* may be held by buf cache */
352                     p->hold_count != 0) {       /* may be undergoing I/O */
353                         ib = 0;
354                         break;
355                 }
356                 mc[--page_base] = p;
357                 ++pageout_count;
358                 ++ib;
359                 /*
360                  * alignment boundry, stop here and switch directions.  Do
361                  * not clear ib.
362                  */
363                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
364                         break;
365         }
366
367         while (pageout_count < vm_pageout_page_count && 
368             pindex + is < object->size) {
369                 vm_page_t p;
370
371                 if ((p = vm_page_lookup(object, pindex + is)) == NULL)
372                         break;
373                 if (VM_PAGE_INQUEUE1(p, PQ_CACHE) ||
374                     (p->oflags & VPO_BUSY) || p->busy ||
375                     (p->flags & PG_UNMANAGED)) {
376                         break;
377                 }
378                 vm_page_test_dirty(p);
379                 if ((p->dirty & p->valid) == 0 ||
380                     p->queue != PQ_INACTIVE ||
381                     p->wire_count != 0 ||       /* may be held by buf cache */
382                     p->hold_count != 0) {       /* may be undergoing I/O */
383                         break;
384                 }
385                 mc[page_base + pageout_count] = p;
386                 ++pageout_count;
387                 ++is;
388         }
389
390         /*
391          * If we exhausted our forward scan, continue with the reverse scan
392          * when possible, even past a page boundry.  This catches boundry
393          * conditions.
394          */
395         if (ib && pageout_count < vm_pageout_page_count)
396                 goto more;
397
398         /*
399          * we allow reads during pageouts...
400          */
401         return (vm_pageout_flush(&mc[page_base], pageout_count, 0));
402 }
403
404 /*
405  * vm_pageout_flush() - launder the given pages
406  *
407  *      The given pages are laundered.  Note that we setup for the start of
408  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
409  *      reference count all in here rather then in the parent.  If we want
410  *      the parent to do more sophisticated things we may have to change
411  *      the ordering.
412  */
413 int
414 vm_pageout_flush(vm_page_t *mc, int count, int flags)
415 {
416         vm_object_t object = mc[0]->object;
417         int pageout_status[count];
418         int numpagedout = 0;
419         int i;
420
421         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
422         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
423         /*
424          * Initiate I/O.  Bump the vm_page_t->busy counter and
425          * mark the pages read-only.
426          *
427          * We do not have to fixup the clean/dirty bits here... we can
428          * allow the pager to do it after the I/O completes.
429          *
430          * NOTE! mc[i]->dirty may be partial or fragmented due to an
431          * edge case with file fragments.
432          */
433         for (i = 0; i < count; i++) {
434                 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
435                     ("vm_pageout_flush: partially invalid page %p index %d/%d",
436                         mc[i], i, count));
437                 vm_page_io_start(mc[i]);
438                 pmap_remove_write(mc[i]);
439         }
440         vm_page_unlock_queues();
441         vm_object_pip_add(object, count);
442
443         vm_pager_put_pages(object, mc, count,
444             (flags | ((object == kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
445             pageout_status);
446
447         vm_page_lock_queues();
448         for (i = 0; i < count; i++) {
449                 vm_page_t mt = mc[i];
450
451                 KASSERT((mt->flags & PG_WRITEABLE) == 0,
452                     ("vm_pageout_flush: page %p is not write protected", mt));
453                 switch (pageout_status[i]) {
454                 case VM_PAGER_OK:
455                 case VM_PAGER_PEND:
456                         numpagedout++;
457                         break;
458                 case VM_PAGER_BAD:
459                         /*
460                          * Page outside of range of object. Right now we
461                          * essentially lose the changes by pretending it
462                          * worked.
463                          */
464                         pmap_clear_modify(mt);
465                         vm_page_undirty(mt);
466                         break;
467                 case VM_PAGER_ERROR:
468                 case VM_PAGER_FAIL:
469                         /*
470                          * If page couldn't be paged out, then reactivate the
471                          * page so it doesn't clog the inactive list.  (We
472                          * will try paging out it again later).
473                          */
474                         vm_page_activate(mt);
475                         break;
476                 case VM_PAGER_AGAIN:
477                         break;
478                 }
479
480                 /*
481                  * If the operation is still going, leave the page busy to
482                  * block all other accesses. Also, leave the paging in
483                  * progress indicator set so that we don't attempt an object
484                  * collapse.
485                  */
486                 if (pageout_status[i] != VM_PAGER_PEND) {
487                         vm_object_pip_wakeup(object);
488                         vm_page_io_finish(mt);
489                         if (vm_page_count_severe())
490                                 vm_page_try_to_cache(mt);
491                 }
492         }
493         return numpagedout;
494 }
495
496 #if !defined(NO_SWAPPING)
497 /*
498  *      vm_pageout_object_deactivate_pages
499  *
500  *      deactivate enough pages to satisfy the inactive target
501  *      requirements or if vm_page_proc_limit is set, then
502  *      deactivate all of the pages in the object and its
503  *      backing_objects.
504  *
505  *      The object and map must be locked.
506  */
507 static void
508 vm_pageout_object_deactivate_pages(pmap, first_object, desired)
509         pmap_t pmap;
510         vm_object_t first_object;
511         long desired;
512 {
513         vm_object_t backing_object, object;
514         vm_page_t p, next;
515         int actcount, rcount, remove_mode;
516
517         VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
518         if (first_object->type == OBJT_DEVICE || first_object->type == OBJT_PHYS)
519                 return;
520         for (object = first_object;; object = backing_object) {
521                 if (pmap_resident_count(pmap) <= desired)
522                         goto unlock_return;
523                 if (object->paging_in_progress)
524                         goto unlock_return;
525
526                 remove_mode = 0;
527                 if (object->shadow_count > 1)
528                         remove_mode = 1;
529                 /*
530                  * scan the objects entire memory queue
531                  */
532                 rcount = object->resident_page_count;
533                 p = TAILQ_FIRST(&object->memq);
534                 vm_page_lock_queues();
535                 while (p && (rcount-- > 0)) {
536                         if (pmap_resident_count(pmap) <= desired) {
537                                 vm_page_unlock_queues();
538                                 goto unlock_return;
539                         }
540                         next = TAILQ_NEXT(p, listq);
541                         cnt.v_pdpages++;
542                         if (p->wire_count != 0 ||
543                             p->hold_count != 0 ||
544                             p->busy != 0 ||
545                             (p->oflags & VPO_BUSY) ||
546                             (p->flags & PG_UNMANAGED) ||
547                             !pmap_page_exists_quick(pmap, p)) {
548                                 p = next;
549                                 continue;
550                         }
551                         actcount = pmap_ts_referenced(p);
552                         if (actcount) {
553                                 vm_page_flag_set(p, PG_REFERENCED);
554                         } else if (p->flags & PG_REFERENCED) {
555                                 actcount = 1;
556                         }
557                         if ((p->queue != PQ_ACTIVE) &&
558                                 (p->flags & PG_REFERENCED)) {
559                                 vm_page_activate(p);
560                                 p->act_count += actcount;
561                                 vm_page_flag_clear(p, PG_REFERENCED);
562                         } else if (p->queue == PQ_ACTIVE) {
563                                 if ((p->flags & PG_REFERENCED) == 0) {
564                                         p->act_count -= min(p->act_count, ACT_DECLINE);
565                                         if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
566                                                 pmap_remove_all(p);
567                                                 vm_page_deactivate(p);
568                                         } else {
569                                                 vm_pageq_requeue(p);
570                                         }
571                                 } else {
572                                         vm_page_activate(p);
573                                         vm_page_flag_clear(p, PG_REFERENCED);
574                                         if (p->act_count < (ACT_MAX - ACT_ADVANCE))
575                                                 p->act_count += ACT_ADVANCE;
576                                         vm_pageq_requeue(p);
577                                 }
578                         } else if (p->queue == PQ_INACTIVE) {
579                                 pmap_remove_all(p);
580                         }
581                         p = next;
582                 }
583                 vm_page_unlock_queues();
584                 if ((backing_object = object->backing_object) == NULL)
585                         goto unlock_return;
586                 VM_OBJECT_LOCK(backing_object);
587                 if (object != first_object)
588                         VM_OBJECT_UNLOCK(object);
589         }
590 unlock_return:
591         if (object != first_object)
592                 VM_OBJECT_UNLOCK(object);
593 }
594
595 /*
596  * deactivate some number of pages in a map, try to do it fairly, but
597  * that is really hard to do.
598  */
599 static void
600 vm_pageout_map_deactivate_pages(map, desired)
601         vm_map_t map;
602         long desired;
603 {
604         vm_map_entry_t tmpe;
605         vm_object_t obj, bigobj;
606         int nothingwired;
607
608         if (!vm_map_trylock(map))
609                 return;
610
611         bigobj = NULL;
612         nothingwired = TRUE;
613
614         /*
615          * first, search out the biggest object, and try to free pages from
616          * that.
617          */
618         tmpe = map->header.next;
619         while (tmpe != &map->header) {
620                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
621                         obj = tmpe->object.vm_object;
622                         if (obj != NULL && VM_OBJECT_TRYLOCK(obj)) {
623                                 if (obj->shadow_count <= 1 &&
624                                     (bigobj == NULL ||
625                                      bigobj->resident_page_count < obj->resident_page_count)) {
626                                         if (bigobj != NULL)
627                                                 VM_OBJECT_UNLOCK(bigobj);
628                                         bigobj = obj;
629                                 } else
630                                         VM_OBJECT_UNLOCK(obj);
631                         }
632                 }
633                 if (tmpe->wired_count > 0)
634                         nothingwired = FALSE;
635                 tmpe = tmpe->next;
636         }
637
638         if (bigobj != NULL) {
639                 vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
640                 VM_OBJECT_UNLOCK(bigobj);
641         }
642         /*
643          * Next, hunt around for other pages to deactivate.  We actually
644          * do this search sort of wrong -- .text first is not the best idea.
645          */
646         tmpe = map->header.next;
647         while (tmpe != &map->header) {
648                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
649                         break;
650                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
651                         obj = tmpe->object.vm_object;
652                         if (obj != NULL) {
653                                 VM_OBJECT_LOCK(obj);
654                                 vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
655                                 VM_OBJECT_UNLOCK(obj);
656                         }
657                 }
658                 tmpe = tmpe->next;
659         }
660
661         /*
662          * Remove all mappings if a process is swapped out, this will free page
663          * table pages.
664          */
665         if (desired == 0 && nothingwired) {
666                 pmap_remove(vm_map_pmap(map), vm_map_min(map),
667                     vm_map_max(map));
668         }
669         vm_map_unlock(map);
670 }
671 #endif          /* !defined(NO_SWAPPING) */
672
673 /*
674  *      vm_pageout_scan does the dirty work for the pageout daemon.
675  */
676 static void
677 vm_pageout_scan(int pass)
678 {
679         vm_page_t m, next;
680         struct vm_page marker;
681         int page_shortage, maxscan, pcount;
682         int addl_page_shortage, addl_page_shortage_init;
683         struct proc *p, *bigproc;
684         struct thread *td;
685         vm_offset_t size, bigsize;
686         vm_object_t object;
687         int actcount, cache_cur, cache_first_failure;
688         static int cache_last_free;
689         int vnodes_skipped = 0;
690         int maxlaunder;
691
692         mtx_lock(&Giant);
693         /*
694          * Decrease registered cache sizes.
695          */
696         EVENTHANDLER_INVOKE(vm_lowmem, 0);
697         /*
698          * We do this explicitly after the caches have been drained above.
699          */
700         uma_reclaim();
701
702         addl_page_shortage_init = atomic_readandclear_int(&vm_pageout_deficit);
703
704         /*
705          * Calculate the number of pages we want to either free or move
706          * to the cache.
707          */
708         page_shortage = vm_paging_target() + addl_page_shortage_init;
709
710         /*
711          * Initialize our marker
712          */
713         bzero(&marker, sizeof(marker));
714         marker.flags = PG_FICTITIOUS | PG_MARKER;
715         marker.oflags = VPO_BUSY;
716         marker.queue = PQ_INACTIVE;
717         marker.wire_count = 1;
718
719         /*
720          * Start scanning the inactive queue for pages we can move to the
721          * cache or free.  The scan will stop when the target is reached or
722          * we have scanned the entire inactive queue.  Note that m->act_count
723          * is not used to form decisions for the inactive queue, only for the
724          * active queue.
725          *
726          * maxlaunder limits the number of dirty pages we flush per scan.
727          * For most systems a smaller value (16 or 32) is more robust under
728          * extreme memory and disk pressure because any unnecessary writes
729          * to disk can result in extreme performance degredation.  However,
730          * systems with excessive dirty pages (especially when MAP_NOSYNC is
731          * used) will die horribly with limited laundering.  If the pageout
732          * daemon cannot clean enough pages in the first pass, we let it go
733          * all out in succeeding passes.
734          */
735         if ((maxlaunder = vm_max_launder) <= 1)
736                 maxlaunder = 1;
737         if (pass)
738                 maxlaunder = 10000;
739         vm_page_lock_queues();
740 rescan0:
741         addl_page_shortage = addl_page_shortage_init;
742         maxscan = cnt.v_inactive_count;
743
744         for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
745              m != NULL && maxscan-- > 0 && page_shortage > 0;
746              m = next) {
747
748                 cnt.v_pdpages++;
749
750                 if (VM_PAGE_GETQUEUE(m) != PQ_INACTIVE) {
751                         goto rescan0;
752                 }
753
754                 next = TAILQ_NEXT(m, pageq);
755                 object = m->object;
756
757                 /*
758                  * skip marker pages
759                  */
760                 if (m->flags & PG_MARKER)
761                         continue;
762
763                 /*
764                  * A held page may be undergoing I/O, so skip it.
765                  */
766                 if (m->hold_count) {
767                         vm_pageq_requeue(m);
768                         addl_page_shortage++;
769                         continue;
770                 }
771                 /*
772                  * Don't mess with busy pages, keep in the front of the
773                  * queue, most likely are being paged out.
774                  */
775                 if (!VM_OBJECT_TRYLOCK(object) &&
776                     (!vm_pageout_fallback_object_lock(m, &next) ||
777                      m->hold_count != 0)) {
778                         VM_OBJECT_UNLOCK(object);
779                         addl_page_shortage++;
780                         continue;
781                 }
782                 if (m->busy || (m->oflags & VPO_BUSY)) {
783                         VM_OBJECT_UNLOCK(object);
784                         addl_page_shortage++;
785                         continue;
786                 }
787
788                 /*
789                  * If the object is not being used, we ignore previous 
790                  * references.
791                  */
792                 if (object->ref_count == 0) {
793                         vm_page_flag_clear(m, PG_REFERENCED);
794                         pmap_clear_reference(m);
795
796                 /*
797                  * Otherwise, if the page has been referenced while in the 
798                  * inactive queue, we bump the "activation count" upwards, 
799                  * making it less likely that the page will be added back to 
800                  * the inactive queue prematurely again.  Here we check the 
801                  * page tables (or emulated bits, if any), given the upper 
802                  * level VM system not knowing anything about existing 
803                  * references.
804                  */
805                 } else if (((m->flags & PG_REFERENCED) == 0) &&
806                         (actcount = pmap_ts_referenced(m))) {
807                         vm_page_activate(m);
808                         VM_OBJECT_UNLOCK(object);
809                         m->act_count += (actcount + ACT_ADVANCE);
810                         continue;
811                 }
812
813                 /*
814                  * If the upper level VM system knows about any page 
815                  * references, we activate the page.  We also set the 
816                  * "activation count" higher than normal so that we will less 
817                  * likely place pages back onto the inactive queue again.
818                  */
819                 if ((m->flags & PG_REFERENCED) != 0) {
820                         vm_page_flag_clear(m, PG_REFERENCED);
821                         actcount = pmap_ts_referenced(m);
822                         vm_page_activate(m);
823                         VM_OBJECT_UNLOCK(object);
824                         m->act_count += (actcount + ACT_ADVANCE + 1);
825                         continue;
826                 }
827
828                 /*
829                  * If the upper level VM system doesn't know anything about 
830                  * the page being dirty, we have to check for it again.  As 
831                  * far as the VM code knows, any partially dirty pages are 
832                  * fully dirty.
833                  */
834                 if (m->dirty == 0 && !pmap_is_modified(m)) {
835                         /*
836                          * Avoid a race condition: Unless write access is
837                          * removed from the page, another processor could
838                          * modify it before all access is removed by the call
839                          * to vm_page_cache() below.  If vm_page_cache() finds
840                          * that the page has been modified when it removes all
841                          * access, it panics because it cannot cache dirty
842                          * pages.  In principle, we could eliminate just write
843                          * access here rather than all access.  In the expected
844                          * case, when there are no last instant modifications
845                          * to the page, removing all access will be cheaper
846                          * overall.
847                          */
848                         if ((m->flags & PG_WRITEABLE) != 0)
849                                 pmap_remove_all(m);
850                 } else {
851                         vm_page_dirty(m);
852                 }
853
854                 if (m->valid == 0) {
855                         /*
856                          * Invalid pages can be easily freed
857                          */
858                         vm_page_free(m);
859                         cnt.v_dfree++;
860                         --page_shortage;
861                 } else if (m->dirty == 0) {
862                         /*
863                          * Clean pages can be placed onto the cache queue.
864                          * This effectively frees them.
865                          */
866                         vm_page_cache(m);
867                         --page_shortage;
868                 } else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
869                         /*
870                          * Dirty pages need to be paged out, but flushing
871                          * a page is extremely expensive verses freeing
872                          * a clean page.  Rather then artificially limiting
873                          * the number of pages we can flush, we instead give
874                          * dirty pages extra priority on the inactive queue
875                          * by forcing them to be cycled through the queue
876                          * twice before being flushed, after which the
877                          * (now clean) page will cycle through once more
878                          * before being freed.  This significantly extends
879                          * the thrash point for a heavily loaded machine.
880                          */
881                         vm_page_flag_set(m, PG_WINATCFLS);
882                         vm_pageq_requeue(m);
883                 } else if (maxlaunder > 0) {
884                         /*
885                          * We always want to try to flush some dirty pages if
886                          * we encounter them, to keep the system stable.
887                          * Normally this number is small, but under extreme
888                          * pressure where there are insufficient clean pages
889                          * on the inactive queue, we may have to go all out.
890                          */
891                         int swap_pageouts_ok;
892                         struct vnode *vp = NULL;
893                         struct mount *mp;
894
895                         if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
896                                 swap_pageouts_ok = 1;
897                         } else {
898                                 swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
899                                 swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
900                                 vm_page_count_min());
901                                                                                 
902                         }
903
904                         /*
905                          * We don't bother paging objects that are "dead".  
906                          * Those objects are in a "rundown" state.
907                          */
908                         if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
909                                 VM_OBJECT_UNLOCK(object);
910                                 vm_pageq_requeue(m);
911                                 continue;
912                         }
913
914                         /*
915                          * Following operations may unlock
916                          * vm_page_queue_mtx, invalidating the 'next'
917                          * pointer.  To prevent an inordinate number
918                          * of restarts we use our marker to remember
919                          * our place.
920                          *
921                          */
922                         TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl,
923                                            m, &marker, pageq);
924                         /*
925                          * The object is already known NOT to be dead.   It
926                          * is possible for the vget() to block the whole
927                          * pageout daemon, but the new low-memory handling
928                          * code should prevent it.
929                          *
930                          * The previous code skipped locked vnodes and, worse,
931                          * reordered pages in the queue.  This results in
932                          * completely non-deterministic operation and, on a
933                          * busy system, can lead to extremely non-optimal
934                          * pageouts.  For example, it can cause clean pages
935                          * to be freed and dirty pages to be moved to the end
936                          * of the queue.  Since dirty pages are also moved to
937                          * the end of the queue once-cleaned, this gives
938                          * way too large a weighting to defering the freeing
939                          * of dirty pages.
940                          *
941                          * We can't wait forever for the vnode lock, we might
942                          * deadlock due to a vn_read() getting stuck in
943                          * vm_wait while holding this vnode.  We skip the 
944                          * vnode if we can't get it in a reasonable amount
945                          * of time.
946                          */
947                         if (object->type == OBJT_VNODE) {
948                                 vp = object->handle;
949                                 mp = NULL;
950                                 if (vp->v_type == VREG &&
951                                     vn_start_write(vp, &mp, V_NOWAIT) != 0) {
952                                         ++pageout_lock_miss;
953                                         if (object->flags & OBJ_MIGHTBEDIRTY)
954                                                 vnodes_skipped++;
955                                         vp = NULL;
956                                         goto unlock_and_continue;
957                                 }
958                                 vm_page_unlock_queues();
959                                 VI_LOCK(vp);
960                                 VM_OBJECT_UNLOCK(object);
961                                 if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK |
962                                     LK_TIMELOCK, curthread)) {
963                                         VM_OBJECT_LOCK(object);
964                                         vm_page_lock_queues();
965                                         ++pageout_lock_miss;
966                                         vn_finished_write(mp);
967                                         if (object->flags & OBJ_MIGHTBEDIRTY)
968                                                 vnodes_skipped++;
969                                         vp = NULL;
970                                         goto unlock_and_continue;
971                                 }
972                                 VM_OBJECT_LOCK(object);
973                                 vm_page_lock_queues();
974                                 /*
975                                  * The page might have been moved to another
976                                  * queue during potential blocking in vget()
977                                  * above.  The page might have been freed and
978                                  * reused for another vnode.  The object might
979                                  * have been reused for another vnode.
980                                  */
981                                 if (VM_PAGE_GETQUEUE(m) != PQ_INACTIVE ||
982                                     m->object != object ||
983                                     object->handle != vp ||
984                                     TAILQ_NEXT(m, pageq) != &marker) {
985                                         if (object->flags & OBJ_MIGHTBEDIRTY)
986                                                 vnodes_skipped++;
987                                         goto unlock_and_continue;
988                                 }
989         
990                                 /*
991                                  * The page may have been busied during the
992                                  * blocking in vput();  We don't move the
993                                  * page back onto the end of the queue so that
994                                  * statistics are more correct if we don't.
995                                  */
996                                 if (m->busy || (m->oflags & VPO_BUSY)) {
997                                         goto unlock_and_continue;
998                                 }
999
1000                                 /*
1001                                  * If the page has become held it might
1002                                  * be undergoing I/O, so skip it
1003                                  */
1004                                 if (m->hold_count) {
1005                                         vm_pageq_requeue(m);
1006                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1007                                                 vnodes_skipped++;
1008                                         goto unlock_and_continue;
1009                                 }
1010                         }
1011
1012                         /*
1013                          * If a page is dirty, then it is either being washed
1014                          * (but not yet cleaned) or it is still in the
1015                          * laundry.  If it is still in the laundry, then we
1016                          * start the cleaning operation. 
1017                          *
1018                          * decrement page_shortage on success to account for
1019                          * the (future) cleaned page.  Otherwise we could wind
1020                          * up laundering or cleaning too many pages.
1021                          */
1022                         if (vm_pageout_clean(m) != 0) {
1023                                 --page_shortage;
1024                                 --maxlaunder;
1025                         }
1026 unlock_and_continue:
1027                         VM_OBJECT_UNLOCK(object);
1028                         if (vp) {
1029                                 vm_page_unlock_queues();
1030                                 vput(vp);
1031                                 vn_finished_write(mp);
1032                                 vm_page_lock_queues();
1033                         }
1034                         next = TAILQ_NEXT(&marker, pageq);
1035                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl,
1036                                      &marker, pageq);
1037                         continue;
1038                 }
1039                 VM_OBJECT_UNLOCK(object);
1040         }
1041
1042         /*
1043          * Compute the number of pages we want to try to move from the
1044          * active queue to the inactive queue.
1045          */
1046         page_shortage = vm_paging_target() +
1047                 cnt.v_inactive_target - cnt.v_inactive_count;
1048         page_shortage += addl_page_shortage;
1049
1050         /*
1051          * Scan the active queue for things we can deactivate. We nominally
1052          * track the per-page activity counter and use it to locate
1053          * deactivation candidates.
1054          */
1055         pcount = cnt.v_active_count;
1056         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1057
1058         while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1059
1060                 KASSERT(VM_PAGE_INQUEUE2(m, PQ_ACTIVE),
1061                     ("vm_pageout_scan: page %p isn't active", m));
1062
1063                 next = TAILQ_NEXT(m, pageq);
1064                 object = m->object;
1065                 if ((m->flags & PG_MARKER) != 0) {
1066                         m = next;
1067                         continue;
1068                 }
1069                 if (!VM_OBJECT_TRYLOCK(object) &&
1070                     !vm_pageout_fallback_object_lock(m, &next)) {
1071                         VM_OBJECT_UNLOCK(object);
1072                         m = next;
1073                         continue;
1074                 }
1075
1076                 /*
1077                  * Don't deactivate pages that are busy.
1078                  */
1079                 if ((m->busy != 0) ||
1080                     (m->oflags & VPO_BUSY) ||
1081                     (m->hold_count != 0)) {
1082                         VM_OBJECT_UNLOCK(object);
1083                         vm_pageq_requeue(m);
1084                         m = next;
1085                         continue;
1086                 }
1087
1088                 /*
1089                  * The count for pagedaemon pages is done after checking the
1090                  * page for eligibility...
1091                  */
1092                 cnt.v_pdpages++;
1093
1094                 /*
1095                  * Check to see "how much" the page has been used.
1096                  */
1097                 actcount = 0;
1098                 if (object->ref_count != 0) {
1099                         if (m->flags & PG_REFERENCED) {
1100                                 actcount += 1;
1101                         }
1102                         actcount += pmap_ts_referenced(m);
1103                         if (actcount) {
1104                                 m->act_count += ACT_ADVANCE + actcount;
1105                                 if (m->act_count > ACT_MAX)
1106                                         m->act_count = ACT_MAX;
1107                         }
1108                 }
1109
1110                 /*
1111                  * Since we have "tested" this bit, we need to clear it now.
1112                  */
1113                 vm_page_flag_clear(m, PG_REFERENCED);
1114
1115                 /*
1116                  * Only if an object is currently being used, do we use the
1117                  * page activation count stats.
1118                  */
1119                 if (actcount && (object->ref_count != 0)) {
1120                         vm_pageq_requeue(m);
1121                 } else {
1122                         m->act_count -= min(m->act_count, ACT_DECLINE);
1123                         if (vm_pageout_algorithm ||
1124                             object->ref_count == 0 ||
1125                             m->act_count == 0) {
1126                                 page_shortage--;
1127                                 if (object->ref_count == 0) {
1128                                         pmap_remove_all(m);
1129                                         if (m->dirty == 0)
1130                                                 vm_page_cache(m);
1131                                         else
1132                                                 vm_page_deactivate(m);
1133                                 } else {
1134                                         vm_page_deactivate(m);
1135                                 }
1136                         } else {
1137                                 vm_pageq_requeue(m);
1138                         }
1139                 }
1140                 VM_OBJECT_UNLOCK(object);
1141                 m = next;
1142         }
1143
1144         /*
1145          * We try to maintain some *really* free pages, this allows interrupt
1146          * code to be guaranteed space.  Since both cache and free queues 
1147          * are considered basically 'free', moving pages from cache to free
1148          * does not effect other calculations.
1149          */
1150         cache_cur = cache_last_free;
1151         cache_first_failure = -1;
1152         while (cnt.v_free_count < cnt.v_free_reserved && (cache_cur =
1153             (cache_cur + PQ_PRIME2) & PQ_COLORMASK) != cache_first_failure) {
1154                 TAILQ_FOREACH(m, &vm_page_queues[PQ_CACHE + cache_cur].pl,
1155                     pageq) {
1156                         KASSERT(m->dirty == 0,
1157                             ("Found dirty cache page %p", m));
1158                         KASSERT(!pmap_page_is_mapped(m),
1159                             ("Found mapped cache page %p", m));
1160                         KASSERT((m->flags & PG_UNMANAGED) == 0,
1161                             ("Found unmanaged cache page %p", m));
1162                         KASSERT(m->wire_count == 0,
1163                             ("Found wired cache page %p", m));
1164                         if (m->hold_count == 0 && VM_OBJECT_TRYLOCK(object =
1165                             m->object)) {
1166                                 KASSERT((m->oflags & VPO_BUSY) == 0 &&
1167                                     m->busy == 0, ("Found busy cache page %p",
1168                                     m));
1169                                 vm_page_free(m);
1170                                 VM_OBJECT_UNLOCK(object);
1171                                 cnt.v_dfree++;
1172                                 cache_last_free = cache_cur;
1173                                 cache_first_failure = -1;
1174                                 break;
1175                         }
1176                 }
1177                 if (m == NULL && cache_first_failure == -1)
1178                         cache_first_failure = cache_cur;
1179         }
1180         vm_page_unlock_queues();
1181 #if !defined(NO_SWAPPING)
1182         /*
1183          * Idle process swapout -- run once per second.
1184          */
1185         if (vm_swap_idle_enabled) {
1186                 static long lsec;
1187                 if (time_second != lsec) {
1188                         vm_pageout_req_swapout |= VM_SWAP_IDLE;
1189                         vm_req_vmdaemon();
1190                         lsec = time_second;
1191                 }
1192         }
1193 #endif
1194                 
1195         /*
1196          * If we didn't get enough free pages, and we have skipped a vnode
1197          * in a writeable object, wakeup the sync daemon.  And kick swapout
1198          * if we did not get enough free pages.
1199          */
1200         if (vm_paging_target() > 0) {
1201                 if (vnodes_skipped && vm_page_count_min())
1202                         (void) speedup_syncer();
1203 #if !defined(NO_SWAPPING)
1204                 if (vm_swap_enabled && vm_page_count_target()) {
1205                         vm_req_vmdaemon();
1206                         vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1207                 }
1208 #endif
1209         }
1210
1211         /*
1212          * If we are critically low on one of RAM or swap and low on
1213          * the other, kill the largest process.  However, we avoid
1214          * doing this on the first pass in order to give ourselves a
1215          * chance to flush out dirty vnode-backed pages and to allow
1216          * active pages to be moved to the inactive queue and reclaimed.
1217          *
1218          * We keep the process bigproc locked once we find it to keep anyone
1219          * from messing with it; however, there is a possibility of
1220          * deadlock if process B is bigproc and one of it's child processes
1221          * attempts to propagate a signal to B while we are waiting for A's
1222          * lock while walking this list.  To avoid this, we don't block on
1223          * the process lock but just skip a process if it is already locked.
1224          */
1225         if (pass != 0 &&
1226             ((swap_pager_avail < 64 && vm_page_count_min()) ||
1227              (swap_pager_full && vm_paging_target() > 0))) {
1228                 bigproc = NULL;
1229                 bigsize = 0;
1230                 sx_slock(&allproc_lock);
1231                 FOREACH_PROC_IN_SYSTEM(p) {
1232                         int breakout;
1233
1234                         if (PROC_TRYLOCK(p) == 0)
1235                                 continue;
1236                         /*
1237                          * If this is a system or protected process, skip it.
1238                          */
1239                         if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1240                             (p->p_flag & P_PROTECTED) ||
1241                             ((p->p_pid < 48) && (swap_pager_avail != 0))) {
1242                                 PROC_UNLOCK(p);
1243                                 continue;
1244                         }
1245                         /*
1246                          * If the process is in a non-running type state,
1247                          * don't touch it.  Check all the threads individually.
1248                          */
1249                         mtx_lock_spin(&sched_lock);
1250                         breakout = 0;
1251                         FOREACH_THREAD_IN_PROC(p, td) {
1252                                 if (!TD_ON_RUNQ(td) &&
1253                                     !TD_IS_RUNNING(td) &&
1254                                     !TD_IS_SLEEPING(td)) {
1255                                         breakout = 1;
1256                                         break;
1257                                 }
1258                         }
1259                         if (breakout) {
1260                                 mtx_unlock_spin(&sched_lock);
1261                                 PROC_UNLOCK(p);
1262                                 continue;
1263                         }
1264                         mtx_unlock_spin(&sched_lock);
1265                         /*
1266                          * get the process size
1267                          */
1268                         if (!vm_map_trylock_read(&p->p_vmspace->vm_map)) {
1269                                 PROC_UNLOCK(p);
1270                                 continue;
1271                         }
1272                         size = vmspace_swap_count(p->p_vmspace);
1273                         vm_map_unlock_read(&p->p_vmspace->vm_map);
1274                         size += vmspace_resident_count(p->p_vmspace);
1275                         /*
1276                          * if the this process is bigger than the biggest one
1277                          * remember it.
1278                          */
1279                         if (size > bigsize) {
1280                                 if (bigproc != NULL)
1281                                         PROC_UNLOCK(bigproc);
1282                                 bigproc = p;
1283                                 bigsize = size;
1284                         } else
1285                                 PROC_UNLOCK(p);
1286                 }
1287                 sx_sunlock(&allproc_lock);
1288                 if (bigproc != NULL) {
1289                         killproc(bigproc, "out of swap space");
1290                         mtx_lock_spin(&sched_lock);
1291                         sched_nice(bigproc, PRIO_MIN);
1292                         mtx_unlock_spin(&sched_lock);
1293                         PROC_UNLOCK(bigproc);
1294                         wakeup(&cnt.v_free_count);
1295                 }
1296         }
1297         mtx_unlock(&Giant);
1298 }
1299
1300 /*
1301  * This routine tries to maintain the pseudo LRU active queue,
1302  * so that during long periods of time where there is no paging,
1303  * that some statistic accumulation still occurs.  This code
1304  * helps the situation where paging just starts to occur.
1305  */
1306 static void
1307 vm_pageout_page_stats()
1308 {
1309         vm_object_t object;
1310         vm_page_t m,next;
1311         int pcount,tpcount;             /* Number of pages to check */
1312         static int fullintervalcount = 0;
1313         int page_shortage;
1314
1315         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1316         page_shortage = 
1317             (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1318             (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1319
1320         if (page_shortage <= 0)
1321                 return;
1322
1323         pcount = cnt.v_active_count;
1324         fullintervalcount += vm_pageout_stats_interval;
1325         if (fullintervalcount < vm_pageout_full_stats_interval) {
1326                 tpcount = (vm_pageout_stats_max * cnt.v_active_count) / cnt.v_page_count;
1327                 if (pcount > tpcount)
1328                         pcount = tpcount;
1329         } else {
1330                 fullintervalcount = 0;
1331         }
1332
1333         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1334         while ((m != NULL) && (pcount-- > 0)) {
1335                 int actcount;
1336
1337                 KASSERT(VM_PAGE_INQUEUE2(m, PQ_ACTIVE),
1338                     ("vm_pageout_page_stats: page %p isn't active", m));
1339
1340                 next = TAILQ_NEXT(m, pageq);
1341                 object = m->object;
1342
1343                 if ((m->flags & PG_MARKER) != 0) {
1344                         m = next;
1345                         continue;
1346                 }
1347                 if (!VM_OBJECT_TRYLOCK(object) &&
1348                     !vm_pageout_fallback_object_lock(m, &next)) {
1349                         VM_OBJECT_UNLOCK(object);
1350                         m = next;
1351                         continue;
1352                 }
1353
1354                 /*
1355                  * Don't deactivate pages that are busy.
1356                  */
1357                 if ((m->busy != 0) ||
1358                     (m->oflags & VPO_BUSY) ||
1359                     (m->hold_count != 0)) {
1360                         VM_OBJECT_UNLOCK(object);
1361                         vm_pageq_requeue(m);
1362                         m = next;
1363                         continue;
1364                 }
1365
1366                 actcount = 0;
1367                 if (m->flags & PG_REFERENCED) {
1368                         vm_page_flag_clear(m, PG_REFERENCED);
1369                         actcount += 1;
1370                 }
1371
1372                 actcount += pmap_ts_referenced(m);
1373                 if (actcount) {
1374                         m->act_count += ACT_ADVANCE + actcount;
1375                         if (m->act_count > ACT_MAX)
1376                                 m->act_count = ACT_MAX;
1377                         vm_pageq_requeue(m);
1378                 } else {
1379                         if (m->act_count == 0) {
1380                                 /*
1381                                  * We turn off page access, so that we have
1382                                  * more accurate RSS stats.  We don't do this
1383                                  * in the normal page deactivation when the
1384                                  * system is loaded VM wise, because the
1385                                  * cost of the large number of page protect
1386                                  * operations would be higher than the value
1387                                  * of doing the operation.
1388                                  */
1389                                 pmap_remove_all(m);
1390                                 vm_page_deactivate(m);
1391                         } else {
1392                                 m->act_count -= min(m->act_count, ACT_DECLINE);
1393                                 vm_pageq_requeue(m);
1394                         }
1395                 }
1396                 VM_OBJECT_UNLOCK(object);
1397                 m = next;
1398         }
1399 }
1400
1401 /*
1402  *      vm_pageout is the high level pageout daemon.
1403  */
1404 static void
1405 vm_pageout()
1406 {
1407         int error, pass;
1408
1409         /*
1410          * Initialize some paging parameters.
1411          */
1412         cnt.v_interrupt_free_min = 2;
1413         if (cnt.v_page_count < 2000)
1414                 vm_pageout_page_count = 8;
1415
1416         /*
1417          * v_free_reserved needs to include enough for the largest
1418          * swap pager structures plus enough for any pv_entry structs
1419          * when paging. 
1420          */
1421         if (cnt.v_page_count > 1024)
1422                 cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1423         else
1424                 cnt.v_free_min = 4;
1425         cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1426             cnt.v_interrupt_free_min;
1427         cnt.v_free_reserved = vm_pageout_page_count +
1428             cnt.v_pageout_free_min + (cnt.v_page_count / 768) + PQ_NUMCOLORS;
1429         cnt.v_free_severe = cnt.v_free_min / 2;
1430         cnt.v_free_min += cnt.v_free_reserved;
1431         cnt.v_free_severe += cnt.v_free_reserved;
1432
1433         /*
1434          * v_free_target and v_cache_min control pageout hysteresis.  Note
1435          * that these are more a measure of the VM cache queue hysteresis
1436          * then the VM free queue.  Specifically, v_free_target is the
1437          * high water mark (free+cache pages).
1438          *
1439          * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1440          * low water mark, while v_free_min is the stop.  v_cache_min must
1441          * be big enough to handle memory needs while the pageout daemon
1442          * is signalled and run to free more pages.
1443          */
1444         if (cnt.v_free_count > 6144)
1445                 cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1446         else
1447                 cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1448
1449         if (cnt.v_free_count > 2048) {
1450                 cnt.v_cache_min = cnt.v_free_target;
1451                 cnt.v_cache_max = 2 * cnt.v_cache_min;
1452                 cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1453         } else {
1454                 cnt.v_cache_min = 0;
1455                 cnt.v_cache_max = 0;
1456                 cnt.v_inactive_target = cnt.v_free_count / 4;
1457         }
1458         if (cnt.v_inactive_target > cnt.v_free_count / 3)
1459                 cnt.v_inactive_target = cnt.v_free_count / 3;
1460
1461         /* XXX does not really belong here */
1462         if (vm_page_max_wired == 0)
1463                 vm_page_max_wired = cnt.v_free_count / 3;
1464
1465         if (vm_pageout_stats_max == 0)
1466                 vm_pageout_stats_max = cnt.v_free_target;
1467
1468         /*
1469          * Set interval in seconds for stats scan.
1470          */
1471         if (vm_pageout_stats_interval == 0)
1472                 vm_pageout_stats_interval = 5;
1473         if (vm_pageout_full_stats_interval == 0)
1474                 vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1475
1476         swap_pager_swap_init();
1477         pass = 0;
1478         /*
1479          * The pageout daemon is never done, so loop forever.
1480          */
1481         while (TRUE) {
1482                 /*
1483                  * If we have enough free memory, wakeup waiters.  Do
1484                  * not clear vm_pages_needed until we reach our target,
1485                  * otherwise we may be woken up over and over again and
1486                  * waste a lot of cpu.
1487                  */
1488                 mtx_lock(&vm_page_queue_free_mtx);
1489                 if (vm_pages_needed && !vm_page_count_min()) {
1490                         if (!vm_paging_needed())
1491                                 vm_pages_needed = 0;
1492                         wakeup(&cnt.v_free_count);
1493                 }
1494                 if (vm_pages_needed) {
1495                         /*
1496                          * Still not done, take a second pass without waiting
1497                          * (unlimited dirty cleaning), otherwise sleep a bit
1498                          * and try again.
1499                          */
1500                         ++pass;
1501                         if (pass > 1)
1502                                 msleep(&vm_pages_needed,
1503                                     &vm_page_queue_free_mtx, PVM, "psleep",
1504                                     hz / 2);
1505                 } else {
1506                         /*
1507                          * Good enough, sleep & handle stats.  Prime the pass
1508                          * for the next run.
1509                          */
1510                         if (pass > 1)
1511                                 pass = 1;
1512                         else
1513                                 pass = 0;
1514                         error = msleep(&vm_pages_needed,
1515                             &vm_page_queue_free_mtx, PVM, "psleep",
1516                             vm_pageout_stats_interval * hz);
1517                         if (error && !vm_pages_needed) {
1518                                 mtx_unlock(&vm_page_queue_free_mtx);
1519                                 pass = 0;
1520                                 vm_page_lock_queues();
1521                                 vm_pageout_page_stats();
1522                                 vm_page_unlock_queues();
1523                                 continue;
1524                         }
1525                 }
1526                 if (vm_pages_needed)
1527                         cnt.v_pdwakeups++;
1528                 mtx_unlock(&vm_page_queue_free_mtx);
1529                 vm_pageout_scan(pass);
1530         }
1531 }
1532
1533 /*
1534  * Unless the free page queue lock is held by the caller, this function
1535  * should be regarded as advisory.  Specifically, the caller should
1536  * not msleep() on &cnt.v_free_count following this function unless
1537  * the free page queue lock is held until the msleep() is performed.
1538  */
1539 void
1540 pagedaemon_wakeup()
1541 {
1542
1543         if (!vm_pages_needed && curthread->td_proc != pageproc) {
1544                 vm_pages_needed = 1;
1545                 wakeup(&vm_pages_needed);
1546         }
1547 }
1548
1549 #if !defined(NO_SWAPPING)
1550 static void
1551 vm_req_vmdaemon()
1552 {
1553         static int lastrun = 0;
1554
1555         if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1556                 wakeup(&vm_daemon_needed);
1557                 lastrun = ticks;
1558         }
1559 }
1560
1561 static void
1562 vm_daemon()
1563 {
1564         struct rlimit rsslim;
1565         struct proc *p;
1566         struct thread *td;
1567         int breakout;
1568
1569         mtx_lock(&Giant);
1570         while (TRUE) {
1571                 tsleep(&vm_daemon_needed, PPAUSE, "psleep", 0);
1572                 if (vm_pageout_req_swapout) {
1573                         swapout_procs(vm_pageout_req_swapout);
1574                         vm_pageout_req_swapout = 0;
1575                 }
1576                 /*
1577                  * scan the processes for exceeding their rlimits or if
1578                  * process is swapped out -- deactivate pages
1579                  */
1580                 sx_slock(&allproc_lock);
1581                 FOREACH_PROC_IN_SYSTEM(p) {
1582                         vm_pindex_t limit, size;
1583
1584                         /*
1585                          * if this is a system process or if we have already
1586                          * looked at this process, skip it.
1587                          */
1588                         PROC_LOCK(p);
1589                         if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
1590                                 PROC_UNLOCK(p);
1591                                 continue;
1592                         }
1593                         /*
1594                          * if the process is in a non-running type state,
1595                          * don't touch it.
1596                          */
1597                         mtx_lock_spin(&sched_lock);
1598                         breakout = 0;
1599                         FOREACH_THREAD_IN_PROC(p, td) {
1600                                 if (!TD_ON_RUNQ(td) &&
1601                                     !TD_IS_RUNNING(td) &&
1602                                     !TD_IS_SLEEPING(td)) {
1603                                         breakout = 1;
1604                                         break;
1605                                 }
1606                         }
1607                         mtx_unlock_spin(&sched_lock);
1608                         if (breakout) {
1609                                 PROC_UNLOCK(p);
1610                                 continue;
1611                         }
1612                         /*
1613                          * get a limit
1614                          */
1615                         lim_rlimit(p, RLIMIT_RSS, &rsslim);
1616                         limit = OFF_TO_IDX(
1617                             qmin(rsslim.rlim_cur, rsslim.rlim_max));
1618
1619                         /*
1620                          * let processes that are swapped out really be
1621                          * swapped out set the limit to nothing (will force a
1622                          * swap-out.)
1623                          */
1624                         if ((p->p_sflag & PS_INMEM) == 0)
1625                                 limit = 0;      /* XXX */
1626                         PROC_UNLOCK(p);
1627
1628                         size = vmspace_resident_count(p->p_vmspace);
1629                         if (limit >= 0 && size >= limit) {
1630                                 vm_pageout_map_deactivate_pages(
1631                                     &p->p_vmspace->vm_map, limit);
1632                         }
1633                 }
1634                 sx_sunlock(&allproc_lock);
1635         }
1636 }
1637 #endif                  /* !defined(NO_SWAPPING) */