]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_pageout.c
Merge support for CVSMode (aka. mirror mode) into csup. This means csup can now
[FreeBSD/FreeBSD.git] / sys / vm / vm_pageout.c
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  * Copyright (c) 2005 Yahoo! Technologies Norway AS
9  * All rights reserved.
10  *
11  * This code is derived from software contributed to Berkeley by
12  * The Mach Operating System project at Carnegie-Mellon University.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *      This product includes software developed by the University of
25  *      California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
43  *
44  *
45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46  * All rights reserved.
47  *
48  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49  *
50  * Permission to use, copy, modify and distribute this software and
51  * its documentation is hereby granted, provided that both the copyright
52  * notice and this permission notice appear in all copies of the
53  * software, derivative works or modified versions, and any portions
54  * thereof, and that both notices appear in supporting documentation.
55  *
56  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59  *
60  * Carnegie Mellon requests users of this software to return to
61  *
62  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63  *  School of Computer Science
64  *  Carnegie Mellon University
65  *  Pittsburgh PA 15213-3890
66  *
67  * any improvements or extensions that they make and grant Carnegie the
68  * rights to redistribute these changes.
69  */
70
71 /*
72  *      The proverbial page-out daemon.
73  */
74
75 #include <sys/cdefs.h>
76 __FBSDID("$FreeBSD$");
77
78 #include "opt_vm.h"
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/eventhandler.h>
83 #include <sys/lock.h>
84 #include <sys/mutex.h>
85 #include <sys/proc.h>
86 #include <sys/kthread.h>
87 #include <sys/ktr.h>
88 #include <sys/mount.h>
89 #include <sys/resourcevar.h>
90 #include <sys/sched.h>
91 #include <sys/signalvar.h>
92 #include <sys/vnode.h>
93 #include <sys/vmmeter.h>
94 #include <sys/sx.h>
95 #include <sys/sysctl.h>
96
97 #include <vm/vm.h>
98 #include <vm/vm_param.h>
99 #include <vm/vm_object.h>
100 #include <vm/vm_page.h>
101 #include <vm/vm_map.h>
102 #include <vm/vm_pageout.h>
103 #include <vm/vm_pager.h>
104 #include <vm/swap_pager.h>
105 #include <vm/vm_extern.h>
106 #include <vm/uma.h>
107
108 #include <machine/mutex.h>
109
110 /*
111  * System initialization
112  */
113
114 /* the kernel process "vm_pageout"*/
115 static void vm_pageout(void);
116 static int vm_pageout_clean(vm_page_t);
117 static void vm_pageout_scan(int pass);
118
119 struct proc *pageproc;
120
121 static struct kproc_desc page_kp = {
122         "pagedaemon",
123         vm_pageout,
124         &pageproc
125 };
126 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start,
127     &page_kp);
128
129 #if !defined(NO_SWAPPING)
130 /* the kernel process "vm_daemon"*/
131 static void vm_daemon(void);
132 static struct   proc *vmproc;
133
134 static struct kproc_desc vm_kp = {
135         "vmdaemon",
136         vm_daemon,
137         &vmproc
138 };
139 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
140 #endif
141
142
143 int vm_pages_needed;            /* Event on which pageout daemon sleeps */
144 int vm_pageout_deficit;         /* Estimated number of pages deficit */
145 int vm_pageout_pages_needed;    /* flag saying that the pageout daemon needs pages */
146
147 #if !defined(NO_SWAPPING)
148 static int vm_pageout_req_swapout;      /* XXX */
149 static int vm_daemon_needed;
150 static struct mtx vm_daemon_mtx;
151 /* Allow for use by vm_pageout before vm_daemon is initialized. */
152 MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
153 #endif
154 static int vm_max_launder = 32;
155 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
156 static int vm_pageout_full_stats_interval = 0;
157 static int vm_pageout_algorithm=0;
158 static int defer_swap_pageouts=0;
159 static int disable_swap_pageouts=0;
160
161 #if defined(NO_SWAPPING)
162 static int vm_swap_enabled=0;
163 static int vm_swap_idle_enabled=0;
164 #else
165 static int vm_swap_enabled=1;
166 static int vm_swap_idle_enabled=0;
167 #endif
168
169 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
170         CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
171
172 SYSCTL_INT(_vm, OID_AUTO, max_launder,
173         CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
174
175 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
176         CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
177
178 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
179         CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
180
181 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
182         CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
183
184 #if defined(NO_SWAPPING)
185 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
186         CTLFLAG_RD, &vm_swap_enabled, 0, "Enable entire process swapout");
187 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
188         CTLFLAG_RD, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
189 #else
190 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
191         CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
192 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
193         CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
194 #endif
195
196 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
197         CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
198
199 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
200         CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
201
202 static int pageout_lock_miss;
203 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
204         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
205
206 #define VM_PAGEOUT_PAGE_COUNT 16
207 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
208
209 int vm_page_max_wired;          /* XXX max # of wired pages system-wide */
210 SYSCTL_INT(_vm, OID_AUTO, max_wired,
211         CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
212
213 #if !defined(NO_SWAPPING)
214 static void vm_pageout_map_deactivate_pages(vm_map_t, long);
215 static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
216 static void vm_req_vmdaemon(int req);
217 #endif
218 static void vm_pageout_page_stats(void);
219
220 /*
221  * vm_pageout_fallback_object_lock:
222  * 
223  * Lock vm object currently associated with `m'. VM_OBJECT_TRYLOCK is
224  * known to have failed and page queue must be either PQ_ACTIVE or
225  * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
226  * while locking the vm object.  Use marker page to detect page queue
227  * changes and maintain notion of next page on page queue.  Return
228  * TRUE if no changes were detected, FALSE otherwise.  vm object is
229  * locked on return.
230  * 
231  * This function depends on both the lock portion of struct vm_object
232  * and normal struct vm_page being type stable.
233  */
234 boolean_t
235 vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
236 {
237         struct vm_page marker;
238         boolean_t unchanged;
239         u_short queue;
240         vm_object_t object;
241
242         /*
243          * Initialize our marker
244          */
245         bzero(&marker, sizeof(marker));
246         marker.flags = PG_FICTITIOUS | PG_MARKER;
247         marker.oflags = VPO_BUSY;
248         marker.queue = m->queue;
249         marker.wire_count = 1;
250
251         queue = m->queue;
252         object = m->object;
253         
254         TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl,
255                            m, &marker, pageq);
256         vm_page_unlock_queues();
257         VM_OBJECT_LOCK(object);
258         vm_page_lock_queues();
259
260         /* Page queue might have changed. */
261         *next = TAILQ_NEXT(&marker, pageq);
262         unchanged = (m->queue == queue &&
263                      m->object == object &&
264                      &marker == TAILQ_NEXT(m, pageq));
265         TAILQ_REMOVE(&vm_page_queues[queue].pl,
266                      &marker, pageq);
267         return (unchanged);
268 }
269
270 /*
271  * vm_pageout_clean:
272  *
273  * Clean the page and remove it from the laundry.
274  * 
275  * We set the busy bit to cause potential page faults on this page to
276  * block.  Note the careful timing, however, the busy bit isn't set till
277  * late and we cannot do anything that will mess with the page.
278  */
279 static int
280 vm_pageout_clean(m)
281         vm_page_t m;
282 {
283         vm_object_t object;
284         vm_page_t mc[2*vm_pageout_page_count];
285         int pageout_count;
286         int ib, is, page_base;
287         vm_pindex_t pindex = m->pindex;
288
289         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
290         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
291
292         /*
293          * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
294          * with the new swapper, but we could have serious problems paging
295          * out other object types if there is insufficient memory.  
296          *
297          * Unfortunately, checking free memory here is far too late, so the
298          * check has been moved up a procedural level.
299          */
300
301         /*
302          * Can't clean the page if it's busy or held.
303          */
304         if ((m->hold_count != 0) ||
305             ((m->busy != 0) || (m->oflags & VPO_BUSY))) {
306                 return 0;
307         }
308
309         mc[vm_pageout_page_count] = m;
310         pageout_count = 1;
311         page_base = vm_pageout_page_count;
312         ib = 1;
313         is = 1;
314
315         /*
316          * Scan object for clusterable pages.
317          *
318          * We can cluster ONLY if: ->> the page is NOT
319          * clean, wired, busy, held, or mapped into a
320          * buffer, and one of the following:
321          * 1) The page is inactive, or a seldom used
322          *    active page.
323          * -or-
324          * 2) we force the issue.
325          *
326          * During heavy mmap/modification loads the pageout
327          * daemon can really fragment the underlying file
328          * due to flushing pages out of order and not trying
329          * align the clusters (which leave sporatic out-of-order
330          * holes).  To solve this problem we do the reverse scan
331          * first and attempt to align our cluster, then do a 
332          * forward scan if room remains.
333          */
334         object = m->object;
335 more:
336         while (ib && pageout_count < vm_pageout_page_count) {
337                 vm_page_t p;
338
339                 if (ib > pindex) {
340                         ib = 0;
341                         break;
342                 }
343
344                 if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
345                         ib = 0;
346                         break;
347                 }
348                 if ((p->oflags & VPO_BUSY) || p->busy) {
349                         ib = 0;
350                         break;
351                 }
352                 vm_page_test_dirty(p);
353                 if ((p->dirty & p->valid) == 0 ||
354                     p->queue != PQ_INACTIVE ||
355                     p->wire_count != 0 ||       /* may be held by buf cache */
356                     p->hold_count != 0) {       /* may be undergoing I/O */
357                         ib = 0;
358                         break;
359                 }
360                 mc[--page_base] = p;
361                 ++pageout_count;
362                 ++ib;
363                 /*
364                  * alignment boundry, stop here and switch directions.  Do
365                  * not clear ib.
366                  */
367                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
368                         break;
369         }
370
371         while (pageout_count < vm_pageout_page_count && 
372             pindex + is < object->size) {
373                 vm_page_t p;
374
375                 if ((p = vm_page_lookup(object, pindex + is)) == NULL)
376                         break;
377                 if ((p->oflags & VPO_BUSY) || p->busy) {
378                         break;
379                 }
380                 vm_page_test_dirty(p);
381                 if ((p->dirty & p->valid) == 0 ||
382                     p->queue != PQ_INACTIVE ||
383                     p->wire_count != 0 ||       /* may be held by buf cache */
384                     p->hold_count != 0) {       /* may be undergoing I/O */
385                         break;
386                 }
387                 mc[page_base + pageout_count] = p;
388                 ++pageout_count;
389                 ++is;
390         }
391
392         /*
393          * If we exhausted our forward scan, continue with the reverse scan
394          * when possible, even past a page boundry.  This catches boundry
395          * conditions.
396          */
397         if (ib && pageout_count < vm_pageout_page_count)
398                 goto more;
399
400         /*
401          * we allow reads during pageouts...
402          */
403         return (vm_pageout_flush(&mc[page_base], pageout_count, 0));
404 }
405
406 /*
407  * vm_pageout_flush() - launder the given pages
408  *
409  *      The given pages are laundered.  Note that we setup for the start of
410  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
411  *      reference count all in here rather then in the parent.  If we want
412  *      the parent to do more sophisticated things we may have to change
413  *      the ordering.
414  */
415 int
416 vm_pageout_flush(vm_page_t *mc, int count, int flags)
417 {
418         vm_object_t object = mc[0]->object;
419         int pageout_status[count];
420         int numpagedout = 0;
421         int i;
422
423         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
424         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
425         /*
426          * Initiate I/O.  Bump the vm_page_t->busy counter and
427          * mark the pages read-only.
428          *
429          * We do not have to fixup the clean/dirty bits here... we can
430          * allow the pager to do it after the I/O completes.
431          *
432          * NOTE! mc[i]->dirty may be partial or fragmented due to an
433          * edge case with file fragments.
434          */
435         for (i = 0; i < count; i++) {
436                 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
437                     ("vm_pageout_flush: partially invalid page %p index %d/%d",
438                         mc[i], i, count));
439                 vm_page_io_start(mc[i]);
440                 pmap_remove_write(mc[i]);
441         }
442         vm_page_unlock_queues();
443         vm_object_pip_add(object, count);
444
445         vm_pager_put_pages(object, mc, count, flags, pageout_status);
446
447         vm_page_lock_queues();
448         for (i = 0; i < count; i++) {
449                 vm_page_t mt = mc[i];
450
451                 KASSERT(pageout_status[i] == VM_PAGER_PEND ||
452                     (mt->flags & PG_WRITEABLE) == 0,
453                     ("vm_pageout_flush: page %p is not write protected", mt));
454                 switch (pageout_status[i]) {
455                 case VM_PAGER_OK:
456                 case VM_PAGER_PEND:
457                         numpagedout++;
458                         break;
459                 case VM_PAGER_BAD:
460                         /*
461                          * Page outside of range of object. Right now we
462                          * essentially lose the changes by pretending it
463                          * worked.
464                          */
465                         pmap_clear_modify(mt);
466                         vm_page_undirty(mt);
467                         break;
468                 case VM_PAGER_ERROR:
469                 case VM_PAGER_FAIL:
470                         /*
471                          * If page couldn't be paged out, then reactivate the
472                          * page so it doesn't clog the inactive list.  (We
473                          * will try paging out it again later).
474                          */
475                         vm_page_activate(mt);
476                         break;
477                 case VM_PAGER_AGAIN:
478                         break;
479                 }
480
481                 /*
482                  * If the operation is still going, leave the page busy to
483                  * block all other accesses. Also, leave the paging in
484                  * progress indicator set so that we don't attempt an object
485                  * collapse.
486                  */
487                 if (pageout_status[i] != VM_PAGER_PEND) {
488                         vm_object_pip_wakeup(object);
489                         vm_page_io_finish(mt);
490                         if (vm_page_count_severe())
491                                 vm_page_try_to_cache(mt);
492                 }
493         }
494         return numpagedout;
495 }
496
497 #if !defined(NO_SWAPPING)
498 /*
499  *      vm_pageout_object_deactivate_pages
500  *
501  *      deactivate enough pages to satisfy the inactive target
502  *      requirements or if vm_page_proc_limit is set, then
503  *      deactivate all of the pages in the object and its
504  *      backing_objects.
505  *
506  *      The object and map must be locked.
507  */
508 static void
509 vm_pageout_object_deactivate_pages(pmap, first_object, desired)
510         pmap_t pmap;
511         vm_object_t first_object;
512         long desired;
513 {
514         vm_object_t backing_object, object;
515         vm_page_t p, next;
516         int actcount, rcount, remove_mode;
517
518         VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
519         if (first_object->type == OBJT_DEVICE || first_object->type == OBJT_PHYS)
520                 return;
521         for (object = first_object;; object = backing_object) {
522                 if (pmap_resident_count(pmap) <= desired)
523                         goto unlock_return;
524                 if (object->paging_in_progress)
525                         goto unlock_return;
526
527                 remove_mode = 0;
528                 if (object->shadow_count > 1)
529                         remove_mode = 1;
530                 /*
531                  * scan the objects entire memory queue
532                  */
533                 rcount = object->resident_page_count;
534                 p = TAILQ_FIRST(&object->memq);
535                 vm_page_lock_queues();
536                 while (p && (rcount-- > 0)) {
537                         if (pmap_resident_count(pmap) <= desired) {
538                                 vm_page_unlock_queues();
539                                 goto unlock_return;
540                         }
541                         next = TAILQ_NEXT(p, listq);
542                         cnt.v_pdpages++;
543                         if (p->wire_count != 0 ||
544                             p->hold_count != 0 ||
545                             p->busy != 0 ||
546                             (p->oflags & VPO_BUSY) ||
547                             (p->flags & PG_UNMANAGED) ||
548                             !pmap_page_exists_quick(pmap, p)) {
549                                 p = next;
550                                 continue;
551                         }
552                         actcount = pmap_ts_referenced(p);
553                         if (actcount) {
554                                 vm_page_flag_set(p, PG_REFERENCED);
555                         } else if (p->flags & PG_REFERENCED) {
556                                 actcount = 1;
557                         }
558                         if ((p->queue != PQ_ACTIVE) &&
559                                 (p->flags & PG_REFERENCED)) {
560                                 vm_page_activate(p);
561                                 p->act_count += actcount;
562                                 vm_page_flag_clear(p, PG_REFERENCED);
563                         } else if (p->queue == PQ_ACTIVE) {
564                                 if ((p->flags & PG_REFERENCED) == 0) {
565                                         p->act_count -= min(p->act_count, ACT_DECLINE);
566                                         if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
567                                                 pmap_remove_all(p);
568                                                 vm_page_deactivate(p);
569                                         } else {
570                                                 vm_page_requeue(p);
571                                         }
572                                 } else {
573                                         vm_page_activate(p);
574                                         vm_page_flag_clear(p, PG_REFERENCED);
575                                         if (p->act_count < (ACT_MAX - ACT_ADVANCE))
576                                                 p->act_count += ACT_ADVANCE;
577                                         vm_page_requeue(p);
578                                 }
579                         } else if (p->queue == PQ_INACTIVE) {
580                                 pmap_remove_all(p);
581                         }
582                         p = next;
583                 }
584                 vm_page_unlock_queues();
585                 if ((backing_object = object->backing_object) == NULL)
586                         goto unlock_return;
587                 VM_OBJECT_LOCK(backing_object);
588                 if (object != first_object)
589                         VM_OBJECT_UNLOCK(object);
590         }
591 unlock_return:
592         if (object != first_object)
593                 VM_OBJECT_UNLOCK(object);
594 }
595
596 /*
597  * deactivate some number of pages in a map, try to do it fairly, but
598  * that is really hard to do.
599  */
600 static void
601 vm_pageout_map_deactivate_pages(map, desired)
602         vm_map_t map;
603         long desired;
604 {
605         vm_map_entry_t tmpe;
606         vm_object_t obj, bigobj;
607         int nothingwired;
608
609         if (!vm_map_trylock(map))
610                 return;
611
612         bigobj = NULL;
613         nothingwired = TRUE;
614
615         /*
616          * first, search out the biggest object, and try to free pages from
617          * that.
618          */
619         tmpe = map->header.next;
620         while (tmpe != &map->header) {
621                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
622                         obj = tmpe->object.vm_object;
623                         if (obj != NULL && VM_OBJECT_TRYLOCK(obj)) {
624                                 if (obj->shadow_count <= 1 &&
625                                     (bigobj == NULL ||
626                                      bigobj->resident_page_count < obj->resident_page_count)) {
627                                         if (bigobj != NULL)
628                                                 VM_OBJECT_UNLOCK(bigobj);
629                                         bigobj = obj;
630                                 } else
631                                         VM_OBJECT_UNLOCK(obj);
632                         }
633                 }
634                 if (tmpe->wired_count > 0)
635                         nothingwired = FALSE;
636                 tmpe = tmpe->next;
637         }
638
639         if (bigobj != NULL) {
640                 vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
641                 VM_OBJECT_UNLOCK(bigobj);
642         }
643         /*
644          * Next, hunt around for other pages to deactivate.  We actually
645          * do this search sort of wrong -- .text first is not the best idea.
646          */
647         tmpe = map->header.next;
648         while (tmpe != &map->header) {
649                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
650                         break;
651                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
652                         obj = tmpe->object.vm_object;
653                         if (obj != NULL) {
654                                 VM_OBJECT_LOCK(obj);
655                                 vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
656                                 VM_OBJECT_UNLOCK(obj);
657                         }
658                 }
659                 tmpe = tmpe->next;
660         }
661
662         /*
663          * Remove all mappings if a process is swapped out, this will free page
664          * table pages.
665          */
666         if (desired == 0 && nothingwired) {
667                 pmap_remove(vm_map_pmap(map), vm_map_min(map),
668                     vm_map_max(map));
669         }
670         vm_map_unlock(map);
671 }
672 #endif          /* !defined(NO_SWAPPING) */
673
674 /*
675  *      vm_pageout_scan does the dirty work for the pageout daemon.
676  */
677 static void
678 vm_pageout_scan(int pass)
679 {
680         vm_page_t m, next;
681         struct vm_page marker;
682         int page_shortage, maxscan, pcount;
683         int addl_page_shortage, addl_page_shortage_init;
684         vm_object_t object;
685         int actcount;
686         int vnodes_skipped = 0;
687         int maxlaunder;
688
689         /*
690          * Decrease registered cache sizes.
691          */
692         EVENTHANDLER_INVOKE(vm_lowmem, 0);
693         /*
694          * We do this explicitly after the caches have been drained above.
695          */
696         uma_reclaim();
697
698         addl_page_shortage_init = atomic_readandclear_int(&vm_pageout_deficit);
699
700         /*
701          * Calculate the number of pages we want to either free or move
702          * to the cache.
703          */
704         page_shortage = vm_paging_target() + addl_page_shortage_init;
705
706         /*
707          * Initialize our marker
708          */
709         bzero(&marker, sizeof(marker));
710         marker.flags = PG_FICTITIOUS | PG_MARKER;
711         marker.oflags = VPO_BUSY;
712         marker.queue = PQ_INACTIVE;
713         marker.wire_count = 1;
714
715         /*
716          * Start scanning the inactive queue for pages we can move to the
717          * cache or free.  The scan will stop when the target is reached or
718          * we have scanned the entire inactive queue.  Note that m->act_count
719          * is not used to form decisions for the inactive queue, only for the
720          * active queue.
721          *
722          * maxlaunder limits the number of dirty pages we flush per scan.
723          * For most systems a smaller value (16 or 32) is more robust under
724          * extreme memory and disk pressure because any unnecessary writes
725          * to disk can result in extreme performance degredation.  However,
726          * systems with excessive dirty pages (especially when MAP_NOSYNC is
727          * used) will die horribly with limited laundering.  If the pageout
728          * daemon cannot clean enough pages in the first pass, we let it go
729          * all out in succeeding passes.
730          */
731         if ((maxlaunder = vm_max_launder) <= 1)
732                 maxlaunder = 1;
733         if (pass)
734                 maxlaunder = 10000;
735         vm_page_lock_queues();
736 rescan0:
737         addl_page_shortage = addl_page_shortage_init;
738         maxscan = cnt.v_inactive_count;
739
740         for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
741              m != NULL && maxscan-- > 0 && page_shortage > 0;
742              m = next) {
743
744                 cnt.v_pdpages++;
745
746                 if (VM_PAGE_GETQUEUE(m) != PQ_INACTIVE) {
747                         goto rescan0;
748                 }
749
750                 next = TAILQ_NEXT(m, pageq);
751                 object = m->object;
752
753                 /*
754                  * skip marker pages
755                  */
756                 if (m->flags & PG_MARKER)
757                         continue;
758
759                 /*
760                  * A held page may be undergoing I/O, so skip it.
761                  */
762                 if (m->hold_count) {
763                         vm_page_requeue(m);
764                         addl_page_shortage++;
765                         continue;
766                 }
767                 /*
768                  * Don't mess with busy pages, keep in the front of the
769                  * queue, most likely are being paged out.
770                  */
771                 if (!VM_OBJECT_TRYLOCK(object) &&
772                     (!vm_pageout_fallback_object_lock(m, &next) ||
773                      m->hold_count != 0)) {
774                         VM_OBJECT_UNLOCK(object);
775                         addl_page_shortage++;
776                         continue;
777                 }
778                 if (m->busy || (m->oflags & VPO_BUSY)) {
779                         VM_OBJECT_UNLOCK(object);
780                         addl_page_shortage++;
781                         continue;
782                 }
783
784                 /*
785                  * If the object is not being used, we ignore previous 
786                  * references.
787                  */
788                 if (object->ref_count == 0) {
789                         vm_page_flag_clear(m, PG_REFERENCED);
790                         pmap_clear_reference(m);
791
792                 /*
793                  * Otherwise, if the page has been referenced while in the 
794                  * inactive queue, we bump the "activation count" upwards, 
795                  * making it less likely that the page will be added back to 
796                  * the inactive queue prematurely again.  Here we check the 
797                  * page tables (or emulated bits, if any), given the upper 
798                  * level VM system not knowing anything about existing 
799                  * references.
800                  */
801                 } else if (((m->flags & PG_REFERENCED) == 0) &&
802                         (actcount = pmap_ts_referenced(m))) {
803                         vm_page_activate(m);
804                         VM_OBJECT_UNLOCK(object);
805                         m->act_count += (actcount + ACT_ADVANCE);
806                         continue;
807                 }
808
809                 /*
810                  * If the upper level VM system knows about any page 
811                  * references, we activate the page.  We also set the 
812                  * "activation count" higher than normal so that we will less 
813                  * likely place pages back onto the inactive queue again.
814                  */
815                 if ((m->flags & PG_REFERENCED) != 0) {
816                         vm_page_flag_clear(m, PG_REFERENCED);
817                         actcount = pmap_ts_referenced(m);
818                         vm_page_activate(m);
819                         VM_OBJECT_UNLOCK(object);
820                         m->act_count += (actcount + ACT_ADVANCE + 1);
821                         continue;
822                 }
823
824                 /*
825                  * If the upper level VM system doesn't know anything about 
826                  * the page being dirty, we have to check for it again.  As 
827                  * far as the VM code knows, any partially dirty pages are 
828                  * fully dirty.
829                  */
830                 if (m->dirty == 0 && !pmap_is_modified(m)) {
831                         /*
832                          * Avoid a race condition: Unless write access is
833                          * removed from the page, another processor could
834                          * modify it before all access is removed by the call
835                          * to vm_page_cache() below.  If vm_page_cache() finds
836                          * that the page has been modified when it removes all
837                          * access, it panics because it cannot cache dirty
838                          * pages.  In principle, we could eliminate just write
839                          * access here rather than all access.  In the expected
840                          * case, when there are no last instant modifications
841                          * to the page, removing all access will be cheaper
842                          * overall.
843                          */
844                         if ((m->flags & PG_WRITEABLE) != 0)
845                                 pmap_remove_all(m);
846                 } else {
847                         vm_page_dirty(m);
848                 }
849
850                 if (m->valid == 0) {
851                         /*
852                          * Invalid pages can be easily freed
853                          */
854                         vm_page_free(m);
855                         cnt.v_dfree++;
856                         --page_shortage;
857                 } else if (m->dirty == 0) {
858                         /*
859                          * Clean pages can be placed onto the cache queue.
860                          * This effectively frees them.
861                          */
862                         vm_page_cache(m);
863                         --page_shortage;
864                 } else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
865                         /*
866                          * Dirty pages need to be paged out, but flushing
867                          * a page is extremely expensive verses freeing
868                          * a clean page.  Rather then artificially limiting
869                          * the number of pages we can flush, we instead give
870                          * dirty pages extra priority on the inactive queue
871                          * by forcing them to be cycled through the queue
872                          * twice before being flushed, after which the
873                          * (now clean) page will cycle through once more
874                          * before being freed.  This significantly extends
875                          * the thrash point for a heavily loaded machine.
876                          */
877                         vm_page_flag_set(m, PG_WINATCFLS);
878                         vm_page_requeue(m);
879                 } else if (maxlaunder > 0) {
880                         /*
881                          * We always want to try to flush some dirty pages if
882                          * we encounter them, to keep the system stable.
883                          * Normally this number is small, but under extreme
884                          * pressure where there are insufficient clean pages
885                          * on the inactive queue, we may have to go all out.
886                          */
887                         int swap_pageouts_ok, vfslocked = 0;
888                         struct vnode *vp = NULL;
889                         struct mount *mp = NULL;
890
891                         if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
892                                 swap_pageouts_ok = 1;
893                         } else {
894                                 swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
895                                 swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
896                                 vm_page_count_min());
897                                                                                 
898                         }
899
900                         /*
901                          * We don't bother paging objects that are "dead".  
902                          * Those objects are in a "rundown" state.
903                          */
904                         if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
905                                 VM_OBJECT_UNLOCK(object);
906                                 vm_page_requeue(m);
907                                 continue;
908                         }
909
910                         /*
911                          * Following operations may unlock
912                          * vm_page_queue_mtx, invalidating the 'next'
913                          * pointer.  To prevent an inordinate number
914                          * of restarts we use our marker to remember
915                          * our place.
916                          *
917                          */
918                         TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl,
919                                            m, &marker, pageq);
920                         /*
921                          * The object is already known NOT to be dead.   It
922                          * is possible for the vget() to block the whole
923                          * pageout daemon, but the new low-memory handling
924                          * code should prevent it.
925                          *
926                          * The previous code skipped locked vnodes and, worse,
927                          * reordered pages in the queue.  This results in
928                          * completely non-deterministic operation and, on a
929                          * busy system, can lead to extremely non-optimal
930                          * pageouts.  For example, it can cause clean pages
931                          * to be freed and dirty pages to be moved to the end
932                          * of the queue.  Since dirty pages are also moved to
933                          * the end of the queue once-cleaned, this gives
934                          * way too large a weighting to defering the freeing
935                          * of dirty pages.
936                          *
937                          * We can't wait forever for the vnode lock, we might
938                          * deadlock due to a vn_read() getting stuck in
939                          * vm_wait while holding this vnode.  We skip the 
940                          * vnode if we can't get it in a reasonable amount
941                          * of time.
942                          */
943                         if (object->type == OBJT_VNODE) {
944                                 vp = object->handle;
945                                 if (vp->v_type == VREG &&
946                                     vn_start_write(vp, &mp, V_NOWAIT) != 0) {
947                                         mp = NULL;
948                                         ++pageout_lock_miss;
949                                         if (object->flags & OBJ_MIGHTBEDIRTY)
950                                                 vnodes_skipped++;
951                                         goto unlock_and_continue;
952                                 }
953                                 vm_page_unlock_queues();
954                                 vm_object_reference_locked(object);
955                                 VM_OBJECT_UNLOCK(object);
956                                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
957                                 if (vget(vp, LK_EXCLUSIVE | LK_TIMELOCK,
958                                     curthread)) {
959                                         VM_OBJECT_LOCK(object);
960                                         vm_page_lock_queues();
961                                         ++pageout_lock_miss;
962                                         if (object->flags & OBJ_MIGHTBEDIRTY)
963                                                 vnodes_skipped++;
964                                         vp = NULL;
965                                         goto unlock_and_continue;
966                                 }
967                                 VM_OBJECT_LOCK(object);
968                                 vm_page_lock_queues();
969                                 /*
970                                  * The page might have been moved to another
971                                  * queue during potential blocking in vget()
972                                  * above.  The page might have been freed and
973                                  * reused for another vnode.
974                                  */
975                                 if (VM_PAGE_GETQUEUE(m) != PQ_INACTIVE ||
976                                     m->object != object ||
977                                     TAILQ_NEXT(m, pageq) != &marker) {
978                                         if (object->flags & OBJ_MIGHTBEDIRTY)
979                                                 vnodes_skipped++;
980                                         goto unlock_and_continue;
981                                 }
982         
983                                 /*
984                                  * The page may have been busied during the
985                                  * blocking in vget().  We don't move the
986                                  * page back onto the end of the queue so that
987                                  * statistics are more correct if we don't.
988                                  */
989                                 if (m->busy || (m->oflags & VPO_BUSY)) {
990                                         goto unlock_and_continue;
991                                 }
992
993                                 /*
994                                  * If the page has become held it might
995                                  * be undergoing I/O, so skip it
996                                  */
997                                 if (m->hold_count) {
998                                         vm_page_requeue(m);
999                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1000                                                 vnodes_skipped++;
1001                                         goto unlock_and_continue;
1002                                 }
1003                         }
1004
1005                         /*
1006                          * If a page is dirty, then it is either being washed
1007                          * (but not yet cleaned) or it is still in the
1008                          * laundry.  If it is still in the laundry, then we
1009                          * start the cleaning operation. 
1010                          *
1011                          * decrement page_shortage on success to account for
1012                          * the (future) cleaned page.  Otherwise we could wind
1013                          * up laundering or cleaning too many pages.
1014                          */
1015                         if (vm_pageout_clean(m) != 0) {
1016                                 --page_shortage;
1017                                 --maxlaunder;
1018                         }
1019 unlock_and_continue:
1020                         VM_OBJECT_UNLOCK(object);
1021                         if (mp != NULL) {
1022                                 vm_page_unlock_queues();
1023                                 if (vp != NULL)
1024                                         vput(vp);
1025                                 VFS_UNLOCK_GIANT(vfslocked);
1026                                 vm_object_deallocate(object);
1027                                 vn_finished_write(mp);
1028                                 vm_page_lock_queues();
1029                         }
1030                         next = TAILQ_NEXT(&marker, pageq);
1031                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl,
1032                                      &marker, pageq);
1033                         continue;
1034                 }
1035                 VM_OBJECT_UNLOCK(object);
1036         }
1037
1038         /*
1039          * Compute the number of pages we want to try to move from the
1040          * active queue to the inactive queue.
1041          */
1042         page_shortage = vm_paging_target() +
1043                 cnt.v_inactive_target - cnt.v_inactive_count;
1044         page_shortage += addl_page_shortage;
1045
1046         /*
1047          * Scan the active queue for things we can deactivate. We nominally
1048          * track the per-page activity counter and use it to locate
1049          * deactivation candidates.
1050          */
1051         pcount = cnt.v_active_count;
1052         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1053
1054         while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1055
1056                 KASSERT(VM_PAGE_INQUEUE2(m, PQ_ACTIVE),
1057                     ("vm_pageout_scan: page %p isn't active", m));
1058
1059                 next = TAILQ_NEXT(m, pageq);
1060                 object = m->object;
1061                 if ((m->flags & PG_MARKER) != 0) {
1062                         m = next;
1063                         continue;
1064                 }
1065                 if (!VM_OBJECT_TRYLOCK(object) &&
1066                     !vm_pageout_fallback_object_lock(m, &next)) {
1067                         VM_OBJECT_UNLOCK(object);
1068                         m = next;
1069                         continue;
1070                 }
1071
1072                 /*
1073                  * Don't deactivate pages that are busy.
1074                  */
1075                 if ((m->busy != 0) ||
1076                     (m->oflags & VPO_BUSY) ||
1077                     (m->hold_count != 0)) {
1078                         VM_OBJECT_UNLOCK(object);
1079                         vm_page_requeue(m);
1080                         m = next;
1081                         continue;
1082                 }
1083
1084                 /*
1085                  * The count for pagedaemon pages is done after checking the
1086                  * page for eligibility...
1087                  */
1088                 cnt.v_pdpages++;
1089
1090                 /*
1091                  * Check to see "how much" the page has been used.
1092                  */
1093                 actcount = 0;
1094                 if (object->ref_count != 0) {
1095                         if (m->flags & PG_REFERENCED) {
1096                                 actcount += 1;
1097                         }
1098                         actcount += pmap_ts_referenced(m);
1099                         if (actcount) {
1100                                 m->act_count += ACT_ADVANCE + actcount;
1101                                 if (m->act_count > ACT_MAX)
1102                                         m->act_count = ACT_MAX;
1103                         }
1104                 }
1105
1106                 /*
1107                  * Since we have "tested" this bit, we need to clear it now.
1108                  */
1109                 vm_page_flag_clear(m, PG_REFERENCED);
1110
1111                 /*
1112                  * Only if an object is currently being used, do we use the
1113                  * page activation count stats.
1114                  */
1115                 if (actcount && (object->ref_count != 0)) {
1116                         vm_page_requeue(m);
1117                 } else {
1118                         m->act_count -= min(m->act_count, ACT_DECLINE);
1119                         if (vm_pageout_algorithm ||
1120                             object->ref_count == 0 ||
1121                             m->act_count == 0) {
1122                                 page_shortage--;
1123                                 if (object->ref_count == 0) {
1124                                         pmap_remove_all(m);
1125                                         if (m->dirty == 0)
1126                                                 vm_page_cache(m);
1127                                         else
1128                                                 vm_page_deactivate(m);
1129                                 } else {
1130                                         vm_page_deactivate(m);
1131                                 }
1132                         } else {
1133                                 vm_page_requeue(m);
1134                         }
1135                 }
1136                 VM_OBJECT_UNLOCK(object);
1137                 m = next;
1138         }
1139         vm_page_unlock_queues();
1140 #if !defined(NO_SWAPPING)
1141         /*
1142          * Idle process swapout -- run once per second.
1143          */
1144         if (vm_swap_idle_enabled) {
1145                 static long lsec;
1146                 if (time_second != lsec) {
1147                         vm_req_vmdaemon(VM_SWAP_IDLE);
1148                         lsec = time_second;
1149                 }
1150         }
1151 #endif
1152                 
1153         /*
1154          * If we didn't get enough free pages, and we have skipped a vnode
1155          * in a writeable object, wakeup the sync daemon.  And kick swapout
1156          * if we did not get enough free pages.
1157          */
1158         if (vm_paging_target() > 0) {
1159                 if (vnodes_skipped && vm_page_count_min())
1160                         (void) speedup_syncer();
1161 #if !defined(NO_SWAPPING)
1162                 if (vm_swap_enabled && vm_page_count_target())
1163                         vm_req_vmdaemon(VM_SWAP_NORMAL);
1164 #endif
1165         }
1166
1167         /*
1168          * If we are critically low on one of RAM or swap and low on
1169          * the other, kill the largest process.  However, we avoid
1170          * doing this on the first pass in order to give ourselves a
1171          * chance to flush out dirty vnode-backed pages and to allow
1172          * active pages to be moved to the inactive queue and reclaimed.
1173          */
1174         if (pass != 0 &&
1175             ((swap_pager_avail < 64 && vm_page_count_min()) ||
1176              (swap_pager_full && vm_paging_target() > 0)))
1177                 vm_pageout_oom(VM_OOM_MEM);
1178 }
1179
1180
1181 void
1182 vm_pageout_oom(int shortage)
1183 {
1184         struct proc *p, *bigproc;
1185         vm_offset_t size, bigsize;
1186         struct thread *td;
1187
1188         /*
1189          * We keep the process bigproc locked once we find it to keep anyone
1190          * from messing with it; however, there is a possibility of
1191          * deadlock if process B is bigproc and one of it's child processes
1192          * attempts to propagate a signal to B while we are waiting for A's
1193          * lock while walking this list.  To avoid this, we don't block on
1194          * the process lock but just skip a process if it is already locked.
1195          */
1196         bigproc = NULL;
1197         bigsize = 0;
1198         sx_slock(&allproc_lock);
1199         FOREACH_PROC_IN_SYSTEM(p) {
1200                 int breakout;
1201
1202                 if (PROC_TRYLOCK(p) == 0)
1203                         continue;
1204                 /*
1205                  * If this is a system or protected process, skip it.
1206                  */
1207                 if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1208                     (p->p_flag & P_PROTECTED) ||
1209                     ((p->p_pid < 48) && (swap_pager_avail != 0))) {
1210                         PROC_UNLOCK(p);
1211                         continue;
1212                 }
1213                 /*
1214                  * If the process is in a non-running type state,
1215                  * don't touch it.  Check all the threads individually.
1216                  */
1217                 breakout = 0;
1218                 FOREACH_THREAD_IN_PROC(p, td) {
1219                         thread_lock(td);
1220                         if (!TD_ON_RUNQ(td) &&
1221                             !TD_IS_RUNNING(td) &&
1222                             !TD_IS_SLEEPING(td)) {
1223                                 thread_unlock(td);
1224                                 breakout = 1;
1225                                 break;
1226                         }
1227                         thread_unlock(td);
1228                 }
1229                 if (breakout) {
1230                         PROC_UNLOCK(p);
1231                         continue;
1232                 }
1233                 /*
1234                  * get the process size
1235                  */
1236                 if (!vm_map_trylock_read(&p->p_vmspace->vm_map)) {
1237                         PROC_UNLOCK(p);
1238                         continue;
1239                 }
1240                 size = vmspace_swap_count(p->p_vmspace);
1241                 vm_map_unlock_read(&p->p_vmspace->vm_map);
1242                 if (shortage == VM_OOM_MEM)
1243                         size += vmspace_resident_count(p->p_vmspace);
1244                 /*
1245                  * if the this process is bigger than the biggest one
1246                  * remember it.
1247                  */
1248                 if (size > bigsize) {
1249                         if (bigproc != NULL)
1250                                 PROC_UNLOCK(bigproc);
1251                         bigproc = p;
1252                         bigsize = size;
1253                 } else
1254                         PROC_UNLOCK(p);
1255         }
1256         sx_sunlock(&allproc_lock);
1257         if (bigproc != NULL) {
1258                 killproc(bigproc, "out of swap space");
1259                 sched_nice(bigproc, PRIO_MIN);
1260                 PROC_UNLOCK(bigproc);
1261                 wakeup(&cnt.v_free_count);
1262         }
1263 }
1264
1265 /*
1266  * This routine tries to maintain the pseudo LRU active queue,
1267  * so that during long periods of time where there is no paging,
1268  * that some statistic accumulation still occurs.  This code
1269  * helps the situation where paging just starts to occur.
1270  */
1271 static void
1272 vm_pageout_page_stats()
1273 {
1274         vm_object_t object;
1275         vm_page_t m,next;
1276         int pcount,tpcount;             /* Number of pages to check */
1277         static int fullintervalcount = 0;
1278         int page_shortage;
1279
1280         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1281         page_shortage = 
1282             (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1283             (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1284
1285         if (page_shortage <= 0)
1286                 return;
1287
1288         pcount = cnt.v_active_count;
1289         fullintervalcount += vm_pageout_stats_interval;
1290         if (fullintervalcount < vm_pageout_full_stats_interval) {
1291                 tpcount = (int64_t)vm_pageout_stats_max * cnt.v_active_count /
1292                     cnt.v_page_count;
1293                 if (pcount > tpcount)
1294                         pcount = tpcount;
1295         } else {
1296                 fullintervalcount = 0;
1297         }
1298
1299         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1300         while ((m != NULL) && (pcount-- > 0)) {
1301                 int actcount;
1302
1303                 KASSERT(VM_PAGE_INQUEUE2(m, PQ_ACTIVE),
1304                     ("vm_pageout_page_stats: page %p isn't active", m));
1305
1306                 next = TAILQ_NEXT(m, pageq);
1307                 object = m->object;
1308
1309                 if ((m->flags & PG_MARKER) != 0) {
1310                         m = next;
1311                         continue;
1312                 }
1313                 if (!VM_OBJECT_TRYLOCK(object) &&
1314                     !vm_pageout_fallback_object_lock(m, &next)) {
1315                         VM_OBJECT_UNLOCK(object);
1316                         m = next;
1317                         continue;
1318                 }
1319
1320                 /*
1321                  * Don't deactivate pages that are busy.
1322                  */
1323                 if ((m->busy != 0) ||
1324                     (m->oflags & VPO_BUSY) ||
1325                     (m->hold_count != 0)) {
1326                         VM_OBJECT_UNLOCK(object);
1327                         vm_page_requeue(m);
1328                         m = next;
1329                         continue;
1330                 }
1331
1332                 actcount = 0;
1333                 if (m->flags & PG_REFERENCED) {
1334                         vm_page_flag_clear(m, PG_REFERENCED);
1335                         actcount += 1;
1336                 }
1337
1338                 actcount += pmap_ts_referenced(m);
1339                 if (actcount) {
1340                         m->act_count += ACT_ADVANCE + actcount;
1341                         if (m->act_count > ACT_MAX)
1342                                 m->act_count = ACT_MAX;
1343                         vm_page_requeue(m);
1344                 } else {
1345                         if (m->act_count == 0) {
1346                                 /*
1347                                  * We turn off page access, so that we have
1348                                  * more accurate RSS stats.  We don't do this
1349                                  * in the normal page deactivation when the
1350                                  * system is loaded VM wise, because the
1351                                  * cost of the large number of page protect
1352                                  * operations would be higher than the value
1353                                  * of doing the operation.
1354                                  */
1355                                 pmap_remove_all(m);
1356                                 vm_page_deactivate(m);
1357                         } else {
1358                                 m->act_count -= min(m->act_count, ACT_DECLINE);
1359                                 vm_page_requeue(m);
1360                         }
1361                 }
1362                 VM_OBJECT_UNLOCK(object);
1363                 m = next;
1364         }
1365 }
1366
1367 /*
1368  *      vm_pageout is the high level pageout daemon.
1369  */
1370 static void
1371 vm_pageout()
1372 {
1373         int error, pass;
1374
1375         /*
1376          * Initialize some paging parameters.
1377          */
1378         cnt.v_interrupt_free_min = 2;
1379         if (cnt.v_page_count < 2000)
1380                 vm_pageout_page_count = 8;
1381
1382         /*
1383          * v_free_reserved needs to include enough for the largest
1384          * swap pager structures plus enough for any pv_entry structs
1385          * when paging. 
1386          */
1387         if (cnt.v_page_count > 1024)
1388                 cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1389         else
1390                 cnt.v_free_min = 4;
1391         cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1392             cnt.v_interrupt_free_min;
1393         cnt.v_free_reserved = vm_pageout_page_count +
1394             cnt.v_pageout_free_min + (cnt.v_page_count / 768);
1395         cnt.v_free_severe = cnt.v_free_min / 2;
1396         cnt.v_free_min += cnt.v_free_reserved;
1397         cnt.v_free_severe += cnt.v_free_reserved;
1398
1399         /*
1400          * v_free_target and v_cache_min control pageout hysteresis.  Note
1401          * that these are more a measure of the VM cache queue hysteresis
1402          * then the VM free queue.  Specifically, v_free_target is the
1403          * high water mark (free+cache pages).
1404          *
1405          * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1406          * low water mark, while v_free_min is the stop.  v_cache_min must
1407          * be big enough to handle memory needs while the pageout daemon
1408          * is signalled and run to free more pages.
1409          */
1410         if (cnt.v_free_count > 6144)
1411                 cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1412         else
1413                 cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1414
1415         if (cnt.v_free_count > 2048) {
1416                 cnt.v_cache_min = cnt.v_free_target;
1417                 cnt.v_cache_max = 2 * cnt.v_cache_min;
1418                 cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1419         } else {
1420                 cnt.v_cache_min = 0;
1421                 cnt.v_cache_max = 0;
1422                 cnt.v_inactive_target = cnt.v_free_count / 4;
1423         }
1424         if (cnt.v_inactive_target > cnt.v_free_count / 3)
1425                 cnt.v_inactive_target = cnt.v_free_count / 3;
1426
1427         /* XXX does not really belong here */
1428         if (vm_page_max_wired == 0)
1429                 vm_page_max_wired = cnt.v_free_count / 3;
1430
1431         if (vm_pageout_stats_max == 0)
1432                 vm_pageout_stats_max = cnt.v_free_target;
1433
1434         /*
1435          * Set interval in seconds for stats scan.
1436          */
1437         if (vm_pageout_stats_interval == 0)
1438                 vm_pageout_stats_interval = 5;
1439         if (vm_pageout_full_stats_interval == 0)
1440                 vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1441
1442         swap_pager_swap_init();
1443         pass = 0;
1444         /*
1445          * The pageout daemon is never done, so loop forever.
1446          */
1447         while (TRUE) {
1448                 /*
1449                  * If we have enough free memory, wakeup waiters.  Do
1450                  * not clear vm_pages_needed until we reach our target,
1451                  * otherwise we may be woken up over and over again and
1452                  * waste a lot of cpu.
1453                  */
1454                 mtx_lock(&vm_page_queue_free_mtx);
1455                 if (vm_pages_needed && !vm_page_count_min()) {
1456                         if (!vm_paging_needed())
1457                                 vm_pages_needed = 0;
1458                         wakeup(&cnt.v_free_count);
1459                 }
1460                 if (vm_pages_needed) {
1461                         /*
1462                          * Still not done, take a second pass without waiting
1463                          * (unlimited dirty cleaning), otherwise sleep a bit
1464                          * and try again.
1465                          */
1466                         ++pass;
1467                         if (pass > 1)
1468                                 msleep(&vm_pages_needed,
1469                                     &vm_page_queue_free_mtx, PVM, "psleep",
1470                                     hz / 2);
1471                 } else {
1472                         /*
1473                          * Good enough, sleep & handle stats.  Prime the pass
1474                          * for the next run.
1475                          */
1476                         if (pass > 1)
1477                                 pass = 1;
1478                         else
1479                                 pass = 0;
1480                         error = msleep(&vm_pages_needed,
1481                             &vm_page_queue_free_mtx, PVM, "psleep",
1482                             vm_pageout_stats_interval * hz);
1483                         if (error && !vm_pages_needed) {
1484                                 mtx_unlock(&vm_page_queue_free_mtx);
1485                                 pass = 0;
1486                                 vm_page_lock_queues();
1487                                 vm_pageout_page_stats();
1488                                 vm_page_unlock_queues();
1489                                 continue;
1490                         }
1491                 }
1492                 if (vm_pages_needed)
1493                         cnt.v_pdwakeups++;
1494                 mtx_unlock(&vm_page_queue_free_mtx);
1495                 vm_pageout_scan(pass);
1496         }
1497 }
1498
1499 /*
1500  * Unless the free page queue lock is held by the caller, this function
1501  * should be regarded as advisory.  Specifically, the caller should
1502  * not msleep() on &cnt.v_free_count following this function unless
1503  * the free page queue lock is held until the msleep() is performed.
1504  */
1505 void
1506 pagedaemon_wakeup()
1507 {
1508
1509         if (!vm_pages_needed && curthread->td_proc != pageproc) {
1510                 vm_pages_needed = 1;
1511                 wakeup(&vm_pages_needed);
1512         }
1513 }
1514
1515 #if !defined(NO_SWAPPING)
1516 static void
1517 vm_req_vmdaemon(int req)
1518 {
1519         static int lastrun = 0;
1520
1521         mtx_lock(&vm_daemon_mtx);
1522         vm_pageout_req_swapout |= req;
1523         if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1524                 wakeup(&vm_daemon_needed);
1525                 lastrun = ticks;
1526         }
1527         mtx_unlock(&vm_daemon_mtx);
1528 }
1529
1530 static void
1531 vm_daemon()
1532 {
1533         struct rlimit rsslim;
1534         struct proc *p;
1535         struct thread *td;
1536         int breakout, swapout_flags;
1537
1538         while (TRUE) {
1539                 mtx_lock(&vm_daemon_mtx);
1540                 msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", 0);
1541                 swapout_flags = vm_pageout_req_swapout;
1542                 vm_pageout_req_swapout = 0;
1543                 mtx_unlock(&vm_daemon_mtx);
1544                 if (swapout_flags)
1545                         swapout_procs(swapout_flags);
1546
1547                 /*
1548                  * scan the processes for exceeding their rlimits or if
1549                  * process is swapped out -- deactivate pages
1550                  */
1551                 sx_slock(&allproc_lock);
1552                 FOREACH_PROC_IN_SYSTEM(p) {
1553                         vm_pindex_t limit, size;
1554
1555                         /*
1556                          * if this is a system process or if we have already
1557                          * looked at this process, skip it.
1558                          */
1559                         PROC_LOCK(p);
1560                         if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
1561                                 PROC_UNLOCK(p);
1562                                 continue;
1563                         }
1564                         /*
1565                          * if the process is in a non-running type state,
1566                          * don't touch it.
1567                          */
1568                         breakout = 0;
1569                         FOREACH_THREAD_IN_PROC(p, td) {
1570                                 thread_lock(td);
1571                                 if (!TD_ON_RUNQ(td) &&
1572                                     !TD_IS_RUNNING(td) &&
1573                                     !TD_IS_SLEEPING(td)) {
1574                                         thread_unlock(td);
1575                                         breakout = 1;
1576                                         break;
1577                                 }
1578                                 thread_unlock(td);
1579                         }
1580                         if (breakout) {
1581                                 PROC_UNLOCK(p);
1582                                 continue;
1583                         }
1584                         /*
1585                          * get a limit
1586                          */
1587                         lim_rlimit(p, RLIMIT_RSS, &rsslim);
1588                         limit = OFF_TO_IDX(
1589                             qmin(rsslim.rlim_cur, rsslim.rlim_max));
1590
1591                         /*
1592                          * let processes that are swapped out really be
1593                          * swapped out set the limit to nothing (will force a
1594                          * swap-out.)
1595                          */
1596                         if ((p->p_flag & P_INMEM) == 0)
1597                                 limit = 0;      /* XXX */
1598                         PROC_UNLOCK(p);
1599
1600                         size = vmspace_resident_count(p->p_vmspace);
1601                         if (limit >= 0 && size >= limit) {
1602                                 vm_pageout_map_deactivate_pages(
1603                                     &p->p_vmspace->vm_map, limit);
1604                         }
1605                 }
1606                 sx_sunlock(&allproc_lock);
1607         }
1608 }
1609 #endif                  /* !defined(NO_SWAPPING) */