]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_pageout.c
MFV r356143:
[FreeBSD/FreeBSD.git] / sys / vm / vm_pageout.c
1 /*-
2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  * Copyright (c) 2005 Yahoo! Technologies Norway AS
11  * All rights reserved.
12  *
13  * This code is derived from software contributed to Berkeley by
14  * The Mach Operating System project at Carnegie-Mellon University.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. All advertising materials mentioning features or use of this software
25  *    must display the following acknowledgement:
26  *      This product includes software developed by the University of
27  *      California, Berkeley and its contributors.
28  * 4. Neither the name of the University nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  *
44  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
45  *
46  *
47  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
48  * All rights reserved.
49  *
50  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
51  *
52  * Permission to use, copy, modify and distribute this software and
53  * its documentation is hereby granted, provided that both the copyright
54  * notice and this permission notice appear in all copies of the
55  * software, derivative works or modified versions, and any portions
56  * thereof, and that both notices appear in supporting documentation.
57  *
58  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
59  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
60  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
61  *
62  * Carnegie Mellon requests users of this software to return to
63  *
64  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
65  *  School of Computer Science
66  *  Carnegie Mellon University
67  *  Pittsburgh PA 15213-3890
68  *
69  * any improvements or extensions that they make and grant Carnegie the
70  * rights to redistribute these changes.
71  */
72
73 /*
74  *      The proverbial page-out daemon.
75  */
76
77 #include <sys/cdefs.h>
78 __FBSDID("$FreeBSD$");
79
80 #include "opt_vm.h"
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/eventhandler.h>
86 #include <sys/lock.h>
87 #include <sys/mutex.h>
88 #include <sys/proc.h>
89 #include <sys/kthread.h>
90 #include <sys/ktr.h>
91 #include <sys/mount.h>
92 #include <sys/racct.h>
93 #include <sys/resourcevar.h>
94 #include <sys/sched.h>
95 #include <sys/sdt.h>
96 #include <sys/signalvar.h>
97 #include <sys/smp.h>
98 #include <sys/time.h>
99 #include <sys/vnode.h>
100 #include <sys/vmmeter.h>
101 #include <sys/rwlock.h>
102 #include <sys/sx.h>
103 #include <sys/sysctl.h>
104
105 #include <vm/vm.h>
106 #include <vm/vm_param.h>
107 #include <vm/vm_object.h>
108 #include <vm/vm_page.h>
109 #include <vm/vm_map.h>
110 #include <vm/vm_pageout.h>
111 #include <vm/vm_pager.h>
112 #include <vm/vm_phys.h>
113 #include <vm/vm_pagequeue.h>
114 #include <vm/swap_pager.h>
115 #include <vm/vm_extern.h>
116 #include <vm/uma.h>
117
118 /*
119  * System initialization
120  */
121
122 /* the kernel process "vm_pageout"*/
123 static void vm_pageout(void);
124 static void vm_pageout_init(void);
125 static int vm_pageout_clean(vm_page_t m, int *numpagedout);
126 static int vm_pageout_cluster(vm_page_t m);
127 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
128     int starting_page_shortage);
129
130 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init,
131     NULL);
132
133 struct proc *pageproc;
134
135 static struct kproc_desc page_kp = {
136         "pagedaemon",
137         vm_pageout,
138         &pageproc
139 };
140 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start,
141     &page_kp);
142
143 SDT_PROVIDER_DEFINE(vm);
144 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan);
145
146 /* Pagedaemon activity rates, in subdivisions of one second. */
147 #define VM_LAUNDER_RATE         10
148 #define VM_INACT_SCAN_RATE      10
149
150 static int vm_pageout_oom_seq = 12;
151
152 static int vm_pageout_update_period;
153 static int disable_swap_pageouts;
154 static int lowmem_period = 10;
155 static int swapdev_enabled;
156
157 static int vm_panic_on_oom = 0;
158
159 SYSCTL_INT(_vm, OID_AUTO, panic_on_oom,
160         CTLFLAG_RWTUN, &vm_panic_on_oom, 0,
161         "panic on out of memory instead of killing the largest process");
162
163 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period,
164         CTLFLAG_RWTUN, &vm_pageout_update_period, 0,
165         "Maximum active LRU update period");
166   
167 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RWTUN, &lowmem_period, 0,
168         "Low memory callback period");
169
170 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
171         CTLFLAG_RWTUN, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
172
173 static int pageout_lock_miss;
174 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
175         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
176
177 SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq,
178         CTLFLAG_RWTUN, &vm_pageout_oom_seq, 0,
179         "back-to-back calls to oom detector to start OOM");
180
181 static int act_scan_laundry_weight = 3;
182 SYSCTL_INT(_vm, OID_AUTO, act_scan_laundry_weight, CTLFLAG_RWTUN,
183     &act_scan_laundry_weight, 0,
184     "weight given to clean vs. dirty pages in active queue scans");
185
186 static u_int vm_background_launder_rate = 4096;
187 SYSCTL_UINT(_vm, OID_AUTO, background_launder_rate, CTLFLAG_RWTUN,
188     &vm_background_launder_rate, 0,
189     "background laundering rate, in kilobytes per second");
190
191 static u_int vm_background_launder_max = 20 * 1024;
192 SYSCTL_UINT(_vm, OID_AUTO, background_launder_max, CTLFLAG_RWTUN,
193     &vm_background_launder_max, 0, "background laundering cap, in kilobytes");
194
195 int vm_pageout_page_count = 32;
196
197 u_long vm_page_max_user_wired;
198 SYSCTL_ULONG(_vm, OID_AUTO, max_user_wired, CTLFLAG_RW,
199     &vm_page_max_user_wired, 0,
200     "system-wide limit to user-wired page count");
201
202 static u_int isqrt(u_int num);
203 static int vm_pageout_launder(struct vm_domain *vmd, int launder,
204     bool in_shortfall);
205 static void vm_pageout_laundry_worker(void *arg);
206
207 struct scan_state {
208         struct vm_batchqueue bq;
209         struct vm_pagequeue *pq;
210         vm_page_t       marker;
211         int             maxscan;
212         int             scanned;
213 };
214
215 static void
216 vm_pageout_init_scan(struct scan_state *ss, struct vm_pagequeue *pq,
217     vm_page_t marker, vm_page_t after, int maxscan)
218 {
219
220         vm_pagequeue_assert_locked(pq);
221         KASSERT((marker->a.flags & PGA_ENQUEUED) == 0,
222             ("marker %p already enqueued", marker));
223
224         if (after == NULL)
225                 TAILQ_INSERT_HEAD(&pq->pq_pl, marker, plinks.q);
226         else
227                 TAILQ_INSERT_AFTER(&pq->pq_pl, after, marker, plinks.q);
228         vm_page_aflag_set(marker, PGA_ENQUEUED);
229
230         vm_batchqueue_init(&ss->bq);
231         ss->pq = pq;
232         ss->marker = marker;
233         ss->maxscan = maxscan;
234         ss->scanned = 0;
235         vm_pagequeue_unlock(pq);
236 }
237
238 static void
239 vm_pageout_end_scan(struct scan_state *ss)
240 {
241         struct vm_pagequeue *pq;
242
243         pq = ss->pq;
244         vm_pagequeue_assert_locked(pq);
245         KASSERT((ss->marker->a.flags & PGA_ENQUEUED) != 0,
246             ("marker %p not enqueued", ss->marker));
247
248         TAILQ_REMOVE(&pq->pq_pl, ss->marker, plinks.q);
249         vm_page_aflag_clear(ss->marker, PGA_ENQUEUED);
250         pq->pq_pdpages += ss->scanned;
251 }
252
253 /*
254  * Add a small number of queued pages to a batch queue for later processing
255  * without the corresponding queue lock held.  The caller must have enqueued a
256  * marker page at the desired start point for the scan.  Pages will be
257  * physically dequeued if the caller so requests.  Otherwise, the returned
258  * batch may contain marker pages, and it is up to the caller to handle them.
259  *
260  * When processing the batch queue, vm_page_queue() must be used to
261  * determine whether the page has been logically dequeued by another thread.
262  * Once this check is performed, the page lock guarantees that the page will
263  * not be disassociated from the queue.
264  */
265 static __always_inline void
266 vm_pageout_collect_batch(struct scan_state *ss, const bool dequeue)
267 {
268         struct vm_pagequeue *pq;
269         vm_page_t m, marker, n;
270
271         marker = ss->marker;
272         pq = ss->pq;
273
274         KASSERT((marker->a.flags & PGA_ENQUEUED) != 0,
275             ("marker %p not enqueued", ss->marker));
276
277         vm_pagequeue_lock(pq);
278         for (m = TAILQ_NEXT(marker, plinks.q); m != NULL &&
279             ss->scanned < ss->maxscan && ss->bq.bq_cnt < VM_BATCHQUEUE_SIZE;
280             m = n, ss->scanned++) {
281                 n = TAILQ_NEXT(m, plinks.q);
282                 if ((m->flags & PG_MARKER) == 0) {
283                         KASSERT((m->a.flags & PGA_ENQUEUED) != 0,
284                             ("page %p not enqueued", m));
285                         KASSERT((m->flags & PG_FICTITIOUS) == 0,
286                             ("Fictitious page %p cannot be in page queue", m));
287                         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
288                             ("Unmanaged page %p cannot be in page queue", m));
289                 } else if (dequeue)
290                         continue;
291
292                 (void)vm_batchqueue_insert(&ss->bq, m);
293                 if (dequeue) {
294                         TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
295                         vm_page_aflag_clear(m, PGA_ENQUEUED);
296                 }
297         }
298         TAILQ_REMOVE(&pq->pq_pl, marker, plinks.q);
299         if (__predict_true(m != NULL))
300                 TAILQ_INSERT_BEFORE(m, marker, plinks.q);
301         else
302                 TAILQ_INSERT_TAIL(&pq->pq_pl, marker, plinks.q);
303         if (dequeue)
304                 vm_pagequeue_cnt_add(pq, -ss->bq.bq_cnt);
305         vm_pagequeue_unlock(pq);
306 }
307
308 /*
309  * Return the next page to be scanned, or NULL if the scan is complete.
310  */
311 static __always_inline vm_page_t
312 vm_pageout_next(struct scan_state *ss, const bool dequeue)
313 {
314
315         if (ss->bq.bq_cnt == 0)
316                 vm_pageout_collect_batch(ss, dequeue);
317         return (vm_batchqueue_pop(&ss->bq));
318 }
319
320 /*
321  * Determine whether processing of a page should be deferred and ensure that any
322  * outstanding queue operations are processed.
323  */
324 static __always_inline bool
325 vm_pageout_defer(vm_page_t m, const uint8_t queue, const bool enqueued)
326 {
327         vm_page_astate_t as;
328
329         as = vm_page_astate_load(m);
330         if (__predict_false(as.queue != queue ||
331             ((as.flags & PGA_ENQUEUED) != 0) != enqueued))
332                 return (true);
333         if ((as.flags & PGA_QUEUE_OP_MASK) != 0) {
334                 vm_page_pqbatch_submit(m, queue);
335                 return (true);
336         }
337         return (false);
338 }
339
340 /*
341  * Scan for pages at adjacent offsets within the given page's object that are
342  * eligible for laundering, form a cluster of these pages and the given page,
343  * and launder that cluster.
344  */
345 static int
346 vm_pageout_cluster(vm_page_t m)
347 {
348         vm_object_t object;
349         vm_page_t mc[2 * vm_pageout_page_count], p, pb, ps;
350         vm_pindex_t pindex;
351         int ib, is, page_base, pageout_count;
352
353         object = m->object;
354         VM_OBJECT_ASSERT_WLOCKED(object);
355         pindex = m->pindex;
356
357         vm_page_assert_xbusied(m);
358
359         mc[vm_pageout_page_count] = pb = ps = m;
360         pageout_count = 1;
361         page_base = vm_pageout_page_count;
362         ib = 1;
363         is = 1;
364
365         /*
366          * We can cluster only if the page is not clean, busy, or held, and
367          * the page is in the laundry queue.
368          *
369          * During heavy mmap/modification loads the pageout
370          * daemon can really fragment the underlying file
371          * due to flushing pages out of order and not trying to
372          * align the clusters (which leaves sporadic out-of-order
373          * holes).  To solve this problem we do the reverse scan
374          * first and attempt to align our cluster, then do a 
375          * forward scan if room remains.
376          */
377 more:
378         while (ib != 0 && pageout_count < vm_pageout_page_count) {
379                 if (ib > pindex) {
380                         ib = 0;
381                         break;
382                 }
383                 if ((p = vm_page_prev(pb)) == NULL ||
384                     vm_page_tryxbusy(p) == 0) {
385                         ib = 0;
386                         break;
387                 }
388                 if (vm_page_wired(p)) {
389                         ib = 0;
390                         vm_page_xunbusy(p);
391                         break;
392                 }
393                 vm_page_test_dirty(p);
394                 if (p->dirty == 0) {
395                         ib = 0;
396                         vm_page_xunbusy(p);
397                         break;
398                 }
399                 if (!vm_page_in_laundry(p) || !vm_page_try_remove_write(p)) {
400                         vm_page_xunbusy(p);
401                         ib = 0;
402                         break;
403                 }
404                 mc[--page_base] = pb = p;
405                 ++pageout_count;
406                 ++ib;
407
408                 /*
409                  * We are at an alignment boundary.  Stop here, and switch
410                  * directions.  Do not clear ib.
411                  */
412                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
413                         break;
414         }
415         while (pageout_count < vm_pageout_page_count && 
416             pindex + is < object->size) {
417                 if ((p = vm_page_next(ps)) == NULL ||
418                     vm_page_tryxbusy(p) == 0)
419                         break;
420                 if (vm_page_wired(p)) {
421                         vm_page_xunbusy(p);
422                         break;
423                 }
424                 vm_page_test_dirty(p);
425                 if (p->dirty == 0) {
426                         vm_page_xunbusy(p);
427                         break;
428                 }
429                 if (!vm_page_in_laundry(p) || !vm_page_try_remove_write(p)) {
430                         vm_page_xunbusy(p);
431                         break;
432                 }
433                 mc[page_base + pageout_count] = ps = p;
434                 ++pageout_count;
435                 ++is;
436         }
437
438         /*
439          * If we exhausted our forward scan, continue with the reverse scan
440          * when possible, even past an alignment boundary.  This catches
441          * boundary conditions.
442          */
443         if (ib != 0 && pageout_count < vm_pageout_page_count)
444                 goto more;
445
446         return (vm_pageout_flush(&mc[page_base], pageout_count,
447             VM_PAGER_PUT_NOREUSE, 0, NULL, NULL));
448 }
449
450 /*
451  * vm_pageout_flush() - launder the given pages
452  *
453  *      The given pages are laundered.  Note that we setup for the start of
454  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
455  *      reference count all in here rather then in the parent.  If we want
456  *      the parent to do more sophisticated things we may have to change
457  *      the ordering.
458  *
459  *      Returned runlen is the count of pages between mreq and first
460  *      page after mreq with status VM_PAGER_AGAIN.
461  *      *eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
462  *      for any page in runlen set.
463  */
464 int
465 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
466     boolean_t *eio)
467 {
468         vm_object_t object = mc[0]->object;
469         int pageout_status[count];
470         int numpagedout = 0;
471         int i, runlen;
472
473         VM_OBJECT_ASSERT_WLOCKED(object);
474
475         /*
476          * Initiate I/O.  Mark the pages shared busy and verify that they're
477          * valid and read-only.
478          *
479          * We do not have to fixup the clean/dirty bits here... we can
480          * allow the pager to do it after the I/O completes.
481          *
482          * NOTE! mc[i]->dirty may be partial or fragmented due to an
483          * edge case with file fragments.
484          */
485         for (i = 0; i < count; i++) {
486                 KASSERT(vm_page_all_valid(mc[i]),
487                     ("vm_pageout_flush: partially invalid page %p index %d/%d",
488                         mc[i], i, count));
489                 KASSERT((mc[i]->a.flags & PGA_WRITEABLE) == 0,
490                     ("vm_pageout_flush: writeable page %p", mc[i]));
491                 vm_page_busy_downgrade(mc[i]);
492         }
493         vm_object_pip_add(object, count);
494
495         vm_pager_put_pages(object, mc, count, flags, pageout_status);
496
497         runlen = count - mreq;
498         if (eio != NULL)
499                 *eio = FALSE;
500         for (i = 0; i < count; i++) {
501                 vm_page_t mt = mc[i];
502
503                 KASSERT(pageout_status[i] == VM_PAGER_PEND ||
504                     !pmap_page_is_write_mapped(mt),
505                     ("vm_pageout_flush: page %p is not write protected", mt));
506                 switch (pageout_status[i]) {
507                 case VM_PAGER_OK:
508                         /*
509                          * The page may have moved since laundering started, in
510                          * which case it should be left alone.
511                          */
512                         if (vm_page_in_laundry(mt))
513                                 vm_page_deactivate_noreuse(mt);
514                         /* FALLTHROUGH */
515                 case VM_PAGER_PEND:
516                         numpagedout++;
517                         break;
518                 case VM_PAGER_BAD:
519                         /*
520                          * The page is outside the object's range.  We pretend
521                          * that the page out worked and clean the page, so the
522                          * changes will be lost if the page is reclaimed by
523                          * the page daemon.
524                          */
525                         vm_page_undirty(mt);
526                         if (vm_page_in_laundry(mt))
527                                 vm_page_deactivate_noreuse(mt);
528                         break;
529                 case VM_PAGER_ERROR:
530                 case VM_PAGER_FAIL:
531                         /*
532                          * If the page couldn't be paged out to swap because the
533                          * pager wasn't able to find space, place the page in
534                          * the PQ_UNSWAPPABLE holding queue.  This is an
535                          * optimization that prevents the page daemon from
536                          * wasting CPU cycles on pages that cannot be reclaimed
537                          * becase no swap device is configured.
538                          *
539                          * Otherwise, reactivate the page so that it doesn't
540                          * clog the laundry and inactive queues.  (We will try
541                          * paging it out again later.)
542                          */
543                         if (object->type == OBJT_SWAP &&
544                             pageout_status[i] == VM_PAGER_FAIL) {
545                                 vm_page_unswappable(mt);
546                                 numpagedout++;
547                         } else
548                                 vm_page_activate(mt);
549                         if (eio != NULL && i >= mreq && i - mreq < runlen)
550                                 *eio = TRUE;
551                         break;
552                 case VM_PAGER_AGAIN:
553                         if (i >= mreq && i - mreq < runlen)
554                                 runlen = i - mreq;
555                         break;
556                 }
557
558                 /*
559                  * If the operation is still going, leave the page busy to
560                  * block all other accesses. Also, leave the paging in
561                  * progress indicator set so that we don't attempt an object
562                  * collapse.
563                  */
564                 if (pageout_status[i] != VM_PAGER_PEND) {
565                         vm_object_pip_wakeup(object);
566                         vm_page_sunbusy(mt);
567                 }
568         }
569         if (prunlen != NULL)
570                 *prunlen = runlen;
571         return (numpagedout);
572 }
573
574 static void
575 vm_pageout_swapon(void *arg __unused, struct swdevt *sp __unused)
576 {
577
578         atomic_store_rel_int(&swapdev_enabled, 1);
579 }
580
581 static void
582 vm_pageout_swapoff(void *arg __unused, struct swdevt *sp __unused)
583 {
584
585         if (swap_pager_nswapdev() == 1)
586                 atomic_store_rel_int(&swapdev_enabled, 0);
587 }
588
589 /*
590  * Attempt to acquire all of the necessary locks to launder a page and
591  * then call through the clustering layer to PUTPAGES.  Wait a short
592  * time for a vnode lock.
593  *
594  * Requires the page and object lock on entry, releases both before return.
595  * Returns 0 on success and an errno otherwise.
596  */
597 static int
598 vm_pageout_clean(vm_page_t m, int *numpagedout)
599 {
600         struct vnode *vp;
601         struct mount *mp;
602         vm_object_t object;
603         vm_pindex_t pindex;
604         int error, lockmode;
605
606         object = m->object;
607         VM_OBJECT_ASSERT_WLOCKED(object);
608         error = 0;
609         vp = NULL;
610         mp = NULL;
611
612         /*
613          * The object is already known NOT to be dead.   It
614          * is possible for the vget() to block the whole
615          * pageout daemon, but the new low-memory handling
616          * code should prevent it.
617          *
618          * We can't wait forever for the vnode lock, we might
619          * deadlock due to a vn_read() getting stuck in
620          * vm_wait while holding this vnode.  We skip the 
621          * vnode if we can't get it in a reasonable amount
622          * of time.
623          */
624         if (object->type == OBJT_VNODE) {
625                 vm_page_xunbusy(m);
626                 vp = object->handle;
627                 if (vp->v_type == VREG &&
628                     vn_start_write(vp, &mp, V_NOWAIT) != 0) {
629                         mp = NULL;
630                         error = EDEADLK;
631                         goto unlock_all;
632                 }
633                 KASSERT(mp != NULL,
634                     ("vp %p with NULL v_mount", vp));
635                 vm_object_reference_locked(object);
636                 pindex = m->pindex;
637                 VM_OBJECT_WUNLOCK(object);
638                 lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
639                     LK_SHARED : LK_EXCLUSIVE;
640                 if (vget(vp, lockmode | LK_TIMELOCK, curthread)) {
641                         vp = NULL;
642                         error = EDEADLK;
643                         goto unlock_mp;
644                 }
645                 VM_OBJECT_WLOCK(object);
646
647                 /*
648                  * Ensure that the object and vnode were not disassociated
649                  * while locks were dropped.
650                  */
651                 if (vp->v_object != object) {
652                         error = ENOENT;
653                         goto unlock_all;
654                 }
655
656                 /*
657                  * While the object was unlocked, the page may have been:
658                  * (1) moved to a different queue,
659                  * (2) reallocated to a different object,
660                  * (3) reallocated to a different offset, or
661                  * (4) cleaned.
662                  */
663                 if (!vm_page_in_laundry(m) || m->object != object ||
664                     m->pindex != pindex || m->dirty == 0) {
665                         error = ENXIO;
666                         goto unlock_all;
667                 }
668
669                 /*
670                  * The page may have been busied while the object lock was
671                  * released.
672                  */
673                 if (vm_page_tryxbusy(m) == 0) {
674                         error = EBUSY;
675                         goto unlock_all;
676                 }
677         }
678
679         /*
680          * Remove all writeable mappings, failing if the page is wired.
681          */
682         if (!vm_page_try_remove_write(m)) {
683                 vm_page_xunbusy(m);
684                 error = EBUSY;
685                 goto unlock_all;
686         }
687
688         /*
689          * If a page is dirty, then it is either being washed
690          * (but not yet cleaned) or it is still in the
691          * laundry.  If it is still in the laundry, then we
692          * start the cleaning operation. 
693          */
694         if ((*numpagedout = vm_pageout_cluster(m)) == 0)
695                 error = EIO;
696
697 unlock_all:
698         VM_OBJECT_WUNLOCK(object);
699
700 unlock_mp:
701         if (mp != NULL) {
702                 if (vp != NULL)
703                         vput(vp);
704                 vm_object_deallocate(object);
705                 vn_finished_write(mp);
706         }
707
708         return (error);
709 }
710
711 /*
712  * Attempt to launder the specified number of pages.
713  *
714  * Returns the number of pages successfully laundered.
715  */
716 static int
717 vm_pageout_launder(struct vm_domain *vmd, int launder, bool in_shortfall)
718 {
719         struct scan_state ss;
720         struct vm_pagequeue *pq;
721         vm_object_t object;
722         vm_page_t m, marker;
723         vm_page_astate_t new, old;
724         int act_delta, error, numpagedout, queue, refs, starting_target;
725         int vnodes_skipped;
726         bool pageout_ok;
727
728         object = NULL;
729         starting_target = launder;
730         vnodes_skipped = 0;
731
732         /*
733          * Scan the laundry queues for pages eligible to be laundered.  We stop
734          * once the target number of dirty pages have been laundered, or once
735          * we've reached the end of the queue.  A single iteration of this loop
736          * may cause more than one page to be laundered because of clustering.
737          *
738          * As an optimization, we avoid laundering from PQ_UNSWAPPABLE when no
739          * swap devices are configured.
740          */
741         if (atomic_load_acq_int(&swapdev_enabled))
742                 queue = PQ_UNSWAPPABLE;
743         else
744                 queue = PQ_LAUNDRY;
745
746 scan:
747         marker = &vmd->vmd_markers[queue];
748         pq = &vmd->vmd_pagequeues[queue];
749         vm_pagequeue_lock(pq);
750         vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
751         while (launder > 0 && (m = vm_pageout_next(&ss, false)) != NULL) {
752                 if (__predict_false((m->flags & PG_MARKER) != 0))
753                         continue;
754
755                 /*
756                  * Don't touch a page that was removed from the queue after the
757                  * page queue lock was released.  Otherwise, ensure that any
758                  * pending queue operations, such as dequeues for wired pages,
759                  * are handled.
760                  */
761                 if (vm_pageout_defer(m, queue, true))
762                         continue;
763
764                 /*
765                  * Lock the page's object.
766                  */
767                 if (object == NULL || object != m->object) {
768                         if (object != NULL)
769                                 VM_OBJECT_WUNLOCK(object);
770                         object = (vm_object_t)atomic_load_ptr(&m->object);
771                         if (__predict_false(object == NULL))
772                                 /* The page is being freed by another thread. */
773                                 continue;
774
775                         /* Depends on type-stability. */
776                         VM_OBJECT_WLOCK(object);
777                         if (__predict_false(m->object != object)) {
778                                 VM_OBJECT_WUNLOCK(object);
779                                 object = NULL;
780                                 continue;
781                         }
782                 }
783
784                 if (vm_page_tryxbusy(m) == 0)
785                         continue;
786
787                 /*
788                  * Check for wirings now that we hold the object lock and have
789                  * exclusively busied the page.  If the page is mapped, it may
790                  * still be wired by pmap lookups.  The call to
791                  * vm_page_try_remove_all() below atomically checks for such
792                  * wirings and removes mappings.  If the page is unmapped, the
793                  * wire count is guaranteed not to increase after this check.
794                  */
795                 if (__predict_false(vm_page_wired(m)))
796                         goto skip_page;
797
798                 /*
799                  * Invalid pages can be easily freed.  They cannot be
800                  * mapped; vm_page_free() asserts this.
801                  */
802                 if (vm_page_none_valid(m))
803                         goto free_page;
804
805                 refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0;
806
807                 for (old = vm_page_astate_load(m);;) {
808                         /*
809                          * Check to see if the page has been removed from the
810                          * queue since the first such check.  Leave it alone if
811                          * so, discarding any references collected by
812                          * pmap_ts_referenced().
813                          */
814                         if (__predict_false(_vm_page_queue(old) == PQ_NONE))
815                                 goto skip_page;
816
817                         new = old;
818                         act_delta = refs;
819                         if ((old.flags & PGA_REFERENCED) != 0) {
820                                 new.flags &= ~PGA_REFERENCED;
821                                 act_delta++;
822                         }
823                         if (act_delta == 0) {
824                                 ;
825                         } else if (object->ref_count != 0) {
826                                 /*
827                                  * Increase the activation count if the page was
828                                  * referenced while in the laundry queue.  This
829                                  * makes it less likely that the page will be
830                                  * returned prematurely to the laundry queue.
831                                  */
832                                 new.act_count += ACT_ADVANCE +
833                                     act_delta;
834                                 if (new.act_count > ACT_MAX)
835                                         new.act_count = ACT_MAX;
836
837                                 new.flags |= PGA_REQUEUE;
838                                 new.queue = PQ_ACTIVE;
839                                 if (!vm_page_pqstate_commit(m, &old, new))
840                                         continue;
841
842                                 /*
843                                  * If this was a background laundering, count
844                                  * activated pages towards our target.  The
845                                  * purpose of background laundering is to ensure
846                                  * that pages are eventually cycled through the
847                                  * laundry queue, and an activation is a valid
848                                  * way out.
849                                  */
850                                 if (!in_shortfall)
851                                         launder--;
852                                 VM_CNT_INC(v_reactivated);
853                                 goto skip_page;
854                         } else if ((object->flags & OBJ_DEAD) == 0) {
855                                 new.flags |= PGA_REQUEUE;
856                                 if (!vm_page_pqstate_commit(m, &old, new))
857                                         continue;
858                                 goto skip_page;
859                         }
860                         break;
861                 }
862
863                 /*
864                  * If the page appears to be clean at the machine-independent
865                  * layer, then remove all of its mappings from the pmap in
866                  * anticipation of freeing it.  If, however, any of the page's
867                  * mappings allow write access, then the page may still be
868                  * modified until the last of those mappings are removed.
869                  */
870                 if (object->ref_count != 0) {
871                         vm_page_test_dirty(m);
872                         if (m->dirty == 0 && !vm_page_try_remove_all(m))
873                                 goto skip_page;
874                 }
875
876                 /*
877                  * Clean pages are freed, and dirty pages are paged out unless
878                  * they belong to a dead object.  Requeueing dirty pages from
879                  * dead objects is pointless, as they are being paged out and
880                  * freed by the thread that destroyed the object.
881                  */
882                 if (m->dirty == 0) {
883 free_page:
884                         /*
885                          * Now we are guaranteed that no other threads are
886                          * manipulating the page, check for a last-second
887                          * reference.
888                          */
889                         if (vm_pageout_defer(m, queue, true))
890                                 goto skip_page;
891                         vm_page_free(m);
892                         VM_CNT_INC(v_dfree);
893                 } else if ((object->flags & OBJ_DEAD) == 0) {
894                         if (object->type != OBJT_SWAP &&
895                             object->type != OBJT_DEFAULT)
896                                 pageout_ok = true;
897                         else if (disable_swap_pageouts)
898                                 pageout_ok = false;
899                         else
900                                 pageout_ok = true;
901                         if (!pageout_ok) {
902                                 vm_page_launder(m);
903                                 goto skip_page;
904                         }
905
906                         /*
907                          * Form a cluster with adjacent, dirty pages from the
908                          * same object, and page out that entire cluster.
909                          *
910                          * The adjacent, dirty pages must also be in the
911                          * laundry.  However, their mappings are not checked
912                          * for new references.  Consequently, a recently
913                          * referenced page may be paged out.  However, that
914                          * page will not be prematurely reclaimed.  After page
915                          * out, the page will be placed in the inactive queue,
916                          * where any new references will be detected and the
917                          * page reactivated.
918                          */
919                         error = vm_pageout_clean(m, &numpagedout);
920                         if (error == 0) {
921                                 launder -= numpagedout;
922                                 ss.scanned += numpagedout;
923                         } else if (error == EDEADLK) {
924                                 pageout_lock_miss++;
925                                 vnodes_skipped++;
926                         }
927                         object = NULL;
928                 } else {
929 skip_page:
930                         vm_page_xunbusy(m);
931                 }
932         }
933         if (object != NULL) {
934                 VM_OBJECT_WUNLOCK(object);
935                 object = NULL;
936         }
937         vm_pagequeue_lock(pq);
938         vm_pageout_end_scan(&ss);
939         vm_pagequeue_unlock(pq);
940
941         if (launder > 0 && queue == PQ_UNSWAPPABLE) {
942                 queue = PQ_LAUNDRY;
943                 goto scan;
944         }
945
946         /*
947          * Wakeup the sync daemon if we skipped a vnode in a writeable object
948          * and we didn't launder enough pages.
949          */
950         if (vnodes_skipped > 0 && launder > 0)
951                 (void)speedup_syncer();
952
953         return (starting_target - launder);
954 }
955
956 /*
957  * Compute the integer square root.
958  */
959 static u_int
960 isqrt(u_int num)
961 {
962         u_int bit, root, tmp;
963
964         bit = num != 0 ? (1u << ((fls(num) - 1) & ~1)) : 0;
965         root = 0;
966         while (bit != 0) {
967                 tmp = root + bit;
968                 root >>= 1;
969                 if (num >= tmp) {
970                         num -= tmp;
971                         root += bit;
972                 }
973                 bit >>= 2;
974         }
975         return (root);
976 }
977
978 /*
979  * Perform the work of the laundry thread: periodically wake up and determine
980  * whether any pages need to be laundered.  If so, determine the number of pages
981  * that need to be laundered, and launder them.
982  */
983 static void
984 vm_pageout_laundry_worker(void *arg)
985 {
986         struct vm_domain *vmd;
987         struct vm_pagequeue *pq;
988         uint64_t nclean, ndirty, nfreed;
989         int domain, last_target, launder, shortfall, shortfall_cycle, target;
990         bool in_shortfall;
991
992         domain = (uintptr_t)arg;
993         vmd = VM_DOMAIN(domain);
994         pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
995         KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
996
997         shortfall = 0;
998         in_shortfall = false;
999         shortfall_cycle = 0;
1000         last_target = target = 0;
1001         nfreed = 0;
1002
1003         /*
1004          * Calls to these handlers are serialized by the swap syscall lock.
1005          */
1006         (void)EVENTHANDLER_REGISTER(swapon, vm_pageout_swapon, vmd,
1007             EVENTHANDLER_PRI_ANY);
1008         (void)EVENTHANDLER_REGISTER(swapoff, vm_pageout_swapoff, vmd,
1009             EVENTHANDLER_PRI_ANY);
1010
1011         /*
1012          * The pageout laundry worker is never done, so loop forever.
1013          */
1014         for (;;) {
1015                 KASSERT(target >= 0, ("negative target %d", target));
1016                 KASSERT(shortfall_cycle >= 0,
1017                     ("negative cycle %d", shortfall_cycle));
1018                 launder = 0;
1019
1020                 /*
1021                  * First determine whether we need to launder pages to meet a
1022                  * shortage of free pages.
1023                  */
1024                 if (shortfall > 0) {
1025                         in_shortfall = true;
1026                         shortfall_cycle = VM_LAUNDER_RATE / VM_INACT_SCAN_RATE;
1027                         target = shortfall;
1028                 } else if (!in_shortfall)
1029                         goto trybackground;
1030                 else if (shortfall_cycle == 0 || vm_laundry_target(vmd) <= 0) {
1031                         /*
1032                          * We recently entered shortfall and began laundering
1033                          * pages.  If we have completed that laundering run
1034                          * (and we are no longer in shortfall) or we have met
1035                          * our laundry target through other activity, then we
1036                          * can stop laundering pages.
1037                          */
1038                         in_shortfall = false;
1039                         target = 0;
1040                         goto trybackground;
1041                 }
1042                 launder = target / shortfall_cycle--;
1043                 goto dolaundry;
1044
1045                 /*
1046                  * There's no immediate need to launder any pages; see if we
1047                  * meet the conditions to perform background laundering:
1048                  *
1049                  * 1. The ratio of dirty to clean inactive pages exceeds the
1050                  *    background laundering threshold, or
1051                  * 2. we haven't yet reached the target of the current
1052                  *    background laundering run.
1053                  *
1054                  * The background laundering threshold is not a constant.
1055                  * Instead, it is a slowly growing function of the number of
1056                  * clean pages freed by the page daemon since the last
1057                  * background laundering.  Thus, as the ratio of dirty to
1058                  * clean inactive pages grows, the amount of memory pressure
1059                  * required to trigger laundering decreases.  We ensure
1060                  * that the threshold is non-zero after an inactive queue
1061                  * scan, even if that scan failed to free a single clean page.
1062                  */
1063 trybackground:
1064                 nclean = vmd->vmd_free_count +
1065                     vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt;
1066                 ndirty = vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt;
1067                 if (target == 0 && ndirty * isqrt(howmany(nfreed + 1,
1068                     vmd->vmd_free_target - vmd->vmd_free_min)) >= nclean) {
1069                         target = vmd->vmd_background_launder_target;
1070                 }
1071
1072                 /*
1073                  * We have a non-zero background laundering target.  If we've
1074                  * laundered up to our maximum without observing a page daemon
1075                  * request, just stop.  This is a safety belt that ensures we
1076                  * don't launder an excessive amount if memory pressure is low
1077                  * and the ratio of dirty to clean pages is large.  Otherwise,
1078                  * proceed at the background laundering rate.
1079                  */
1080                 if (target > 0) {
1081                         if (nfreed > 0) {
1082                                 nfreed = 0;
1083                                 last_target = target;
1084                         } else if (last_target - target >=
1085                             vm_background_launder_max * PAGE_SIZE / 1024) {
1086                                 target = 0;
1087                         }
1088                         launder = vm_background_launder_rate * PAGE_SIZE / 1024;
1089                         launder /= VM_LAUNDER_RATE;
1090                         if (launder > target)
1091                                 launder = target;
1092                 }
1093
1094 dolaundry:
1095                 if (launder > 0) {
1096                         /*
1097                          * Because of I/O clustering, the number of laundered
1098                          * pages could exceed "target" by the maximum size of
1099                          * a cluster minus one. 
1100                          */
1101                         target -= min(vm_pageout_launder(vmd, launder,
1102                             in_shortfall), target);
1103                         pause("laundp", hz / VM_LAUNDER_RATE);
1104                 }
1105
1106                 /*
1107                  * If we're not currently laundering pages and the page daemon
1108                  * hasn't posted a new request, sleep until the page daemon
1109                  * kicks us.
1110                  */
1111                 vm_pagequeue_lock(pq);
1112                 if (target == 0 && vmd->vmd_laundry_request == VM_LAUNDRY_IDLE)
1113                         (void)mtx_sleep(&vmd->vmd_laundry_request,
1114                             vm_pagequeue_lockptr(pq), PVM, "launds", 0);
1115
1116                 /*
1117                  * If the pagedaemon has indicated that it's in shortfall, start
1118                  * a shortfall laundering unless we're already in the middle of
1119                  * one.  This may preempt a background laundering.
1120                  */
1121                 if (vmd->vmd_laundry_request == VM_LAUNDRY_SHORTFALL &&
1122                     (!in_shortfall || shortfall_cycle == 0)) {
1123                         shortfall = vm_laundry_target(vmd) +
1124                             vmd->vmd_pageout_deficit;
1125                         target = 0;
1126                 } else
1127                         shortfall = 0;
1128
1129                 if (target == 0)
1130                         vmd->vmd_laundry_request = VM_LAUNDRY_IDLE;
1131                 nfreed += vmd->vmd_clean_pages_freed;
1132                 vmd->vmd_clean_pages_freed = 0;
1133                 vm_pagequeue_unlock(pq);
1134         }
1135 }
1136
1137 /*
1138  * Compute the number of pages we want to try to move from the
1139  * active queue to either the inactive or laundry queue.
1140  *
1141  * When scanning active pages during a shortage, we make clean pages
1142  * count more heavily towards the page shortage than dirty pages.
1143  * This is because dirty pages must be laundered before they can be
1144  * reused and thus have less utility when attempting to quickly
1145  * alleviate a free page shortage.  However, this weighting also
1146  * causes the scan to deactivate dirty pages more aggressively,
1147  * improving the effectiveness of clustering.
1148  */
1149 static int
1150 vm_pageout_active_target(struct vm_domain *vmd)
1151 {
1152         int shortage;
1153
1154         shortage = vmd->vmd_inactive_target + vm_paging_target(vmd) -
1155             (vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt +
1156             vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt / act_scan_laundry_weight);
1157         shortage *= act_scan_laundry_weight;
1158         return (shortage);
1159 }
1160
1161 /*
1162  * Scan the active queue.  If there is no shortage of inactive pages, scan a
1163  * small portion of the queue in order to maintain quasi-LRU.
1164  */
1165 static void
1166 vm_pageout_scan_active(struct vm_domain *vmd, int page_shortage)
1167 {
1168         struct scan_state ss;
1169         vm_object_t object;
1170         vm_page_t m, marker;
1171         struct vm_pagequeue *pq;
1172         vm_page_astate_t old, new;
1173         long min_scan;
1174         int act_delta, max_scan, ps_delta, refs, scan_tick;
1175         uint8_t nqueue;
1176
1177         marker = &vmd->vmd_markers[PQ_ACTIVE];
1178         pq = &vmd->vmd_pagequeues[PQ_ACTIVE];
1179         vm_pagequeue_lock(pq);
1180
1181         /*
1182          * If we're just idle polling attempt to visit every
1183          * active page within 'update_period' seconds.
1184          */
1185         scan_tick = ticks;
1186         if (vm_pageout_update_period != 0) {
1187                 min_scan = pq->pq_cnt;
1188                 min_scan *= scan_tick - vmd->vmd_last_active_scan;
1189                 min_scan /= hz * vm_pageout_update_period;
1190         } else
1191                 min_scan = 0;
1192         if (min_scan > 0 || (page_shortage > 0 && pq->pq_cnt > 0))
1193                 vmd->vmd_last_active_scan = scan_tick;
1194
1195         /*
1196          * Scan the active queue for pages that can be deactivated.  Update
1197          * the per-page activity counter and use it to identify deactivation
1198          * candidates.  Held pages may be deactivated.
1199          *
1200          * To avoid requeuing each page that remains in the active queue, we
1201          * implement the CLOCK algorithm.  To keep the implementation of the
1202          * enqueue operation consistent for all page queues, we use two hands,
1203          * represented by marker pages. Scans begin at the first hand, which
1204          * precedes the second hand in the queue.  When the two hands meet,
1205          * they are moved back to the head and tail of the queue, respectively,
1206          * and scanning resumes.
1207          */
1208         max_scan = page_shortage > 0 ? pq->pq_cnt : min_scan;
1209 act_scan:
1210         vm_pageout_init_scan(&ss, pq, marker, &vmd->vmd_clock[0], max_scan);
1211         while ((m = vm_pageout_next(&ss, false)) != NULL) {
1212                 if (__predict_false(m == &vmd->vmd_clock[1])) {
1213                         vm_pagequeue_lock(pq);
1214                         TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
1215                         TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[1], plinks.q);
1216                         TAILQ_INSERT_HEAD(&pq->pq_pl, &vmd->vmd_clock[0],
1217                             plinks.q);
1218                         TAILQ_INSERT_TAIL(&pq->pq_pl, &vmd->vmd_clock[1],
1219                             plinks.q);
1220                         max_scan -= ss.scanned;
1221                         vm_pageout_end_scan(&ss);
1222                         goto act_scan;
1223                 }
1224                 if (__predict_false((m->flags & PG_MARKER) != 0))
1225                         continue;
1226
1227                 /*
1228                  * Don't touch a page that was removed from the queue after the
1229                  * page queue lock was released.  Otherwise, ensure that any
1230                  * pending queue operations, such as dequeues for wired pages,
1231                  * are handled.
1232                  */
1233                 if (vm_pageout_defer(m, PQ_ACTIVE, true))
1234                         continue;
1235
1236                 /*
1237                  * A page's object pointer may be set to NULL before
1238                  * the object lock is acquired.
1239                  */
1240                 object = (vm_object_t)atomic_load_ptr(&m->object);
1241                 if (__predict_false(object == NULL))
1242                         /*
1243                          * The page has been removed from its object.
1244                          */
1245                         continue;
1246
1247                 /* Deferred free of swap space. */
1248                 if ((m->a.flags & PGA_SWAP_FREE) != 0 &&
1249                     VM_OBJECT_TRYWLOCK(object)) {
1250                         if (m->object == object)
1251                                 vm_pager_page_unswapped(m);
1252                         VM_OBJECT_WUNLOCK(object);
1253                 }
1254
1255                 /*
1256                  * Check to see "how much" the page has been used.
1257                  *
1258                  * Test PGA_REFERENCED after calling pmap_ts_referenced() so
1259                  * that a reference from a concurrently destroyed mapping is
1260                  * observed here and now.
1261                  *
1262                  * Perform an unsynchronized object ref count check.  While
1263                  * the page lock ensures that the page is not reallocated to
1264                  * another object, in particular, one with unmanaged mappings
1265                  * that cannot support pmap_ts_referenced(), two races are,
1266                  * nonetheless, possible:
1267                  * 1) The count was transitioning to zero, but we saw a non-
1268                  *    zero value.  pmap_ts_referenced() will return zero
1269                  *    because the page is not mapped.
1270                  * 2) The count was transitioning to one, but we saw zero.
1271                  *    This race delays the detection of a new reference.  At
1272                  *    worst, we will deactivate and reactivate the page.
1273                  */
1274                 refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0;
1275
1276                 old = vm_page_astate_load(m);
1277                 do {
1278                         /*
1279                          * Check to see if the page has been removed from the
1280                          * queue since the first such check.  Leave it alone if
1281                          * so, discarding any references collected by
1282                          * pmap_ts_referenced().
1283                          */
1284                         if (__predict_false(_vm_page_queue(old) == PQ_NONE))
1285                                 break;
1286
1287                         /*
1288                          * Advance or decay the act_count based on recent usage.
1289                          */
1290                         new = old;
1291                         act_delta = refs;
1292                         if ((old.flags & PGA_REFERENCED) != 0) {
1293                                 new.flags &= ~PGA_REFERENCED;
1294                                 act_delta++;
1295                         }
1296                         if (act_delta != 0) {
1297                                 new.act_count += ACT_ADVANCE + act_delta;
1298                                 if (new.act_count > ACT_MAX)
1299                                         new.act_count = ACT_MAX;
1300                         } else {
1301                                 new.act_count -= min(new.act_count,
1302                                     ACT_DECLINE);
1303                         }
1304
1305                         if (new.act_count > 0) {
1306                                 /*
1307                                  * Adjust the activation count and keep the page
1308                                  * in the active queue.  The count might be left
1309                                  * unchanged if it is saturated.  The page may
1310                                  * have been moved to a different queue since we
1311                                  * started the scan, in which case we move it
1312                                  * back.
1313                                  */
1314                                 ps_delta = 0;
1315                                 if (old.queue != PQ_ACTIVE) {
1316                                         old.queue = PQ_ACTIVE;
1317                                         old.flags |= PGA_REQUEUE;
1318                                 }
1319                         } else {
1320                                 /*
1321                                  * When not short for inactive pages, let dirty
1322                                  * pages go through the inactive queue before
1323                                  * moving to the laundry queue.  This gives them
1324                                  * some extra time to be reactivated,
1325                                  * potentially avoiding an expensive pageout.
1326                                  * However, during a page shortage, the inactive
1327                                  * queue is necessarily small, and so dirty
1328                                  * pages would only spend a trivial amount of
1329                                  * time in the inactive queue.  Therefore, we
1330                                  * might as well place them directly in the
1331                                  * laundry queue to reduce queuing overhead.
1332                                  *
1333                                  * Calling vm_page_test_dirty() here would
1334                                  * require acquisition of the object's write
1335                                  * lock.  However, during a page shortage,
1336                                  * directing dirty pages into the laundry queue
1337                                  * is only an optimization and not a
1338                                  * requirement.  Therefore, we simply rely on
1339                                  * the opportunistic updates to the page's dirty
1340                                  * field by the pmap.
1341                                  */
1342                                 if (page_shortage <= 0) {
1343                                         nqueue = PQ_INACTIVE;
1344                                         ps_delta = 0;
1345                                 } else if (m->dirty == 0) {
1346                                         nqueue = PQ_INACTIVE;
1347                                         ps_delta = act_scan_laundry_weight;
1348                                 } else {
1349                                         nqueue = PQ_LAUNDRY;
1350                                         ps_delta = 1;
1351                                 }
1352
1353                                 new.flags |= PGA_REQUEUE;
1354                                 new.queue = nqueue;
1355                         }
1356                 } while (!vm_page_pqstate_commit(m, &old, new));
1357
1358                 page_shortage -= ps_delta;
1359         }
1360         vm_pagequeue_lock(pq);
1361         TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
1362         TAILQ_INSERT_AFTER(&pq->pq_pl, marker, &vmd->vmd_clock[0], plinks.q);
1363         vm_pageout_end_scan(&ss);
1364         vm_pagequeue_unlock(pq);
1365 }
1366
1367 static int
1368 vm_pageout_reinsert_inactive_page(struct vm_pagequeue *pq, vm_page_t marker,
1369     vm_page_t m)
1370 {
1371         vm_page_astate_t as;
1372
1373         vm_pagequeue_assert_locked(pq);
1374
1375         as = vm_page_astate_load(m);
1376         if (as.queue != PQ_INACTIVE || (as.flags & PGA_ENQUEUED) != 0)
1377                 return (0);
1378         vm_page_aflag_set(m, PGA_ENQUEUED);
1379         TAILQ_INSERT_BEFORE(marker, m, plinks.q);
1380         return (1);
1381 }
1382
1383 /*
1384  * Re-add stuck pages to the inactive queue.  We will examine them again
1385  * during the next scan.  If the queue state of a page has changed since
1386  * it was physically removed from the page queue in
1387  * vm_pageout_collect_batch(), don't do anything with that page.
1388  */
1389 static void
1390 vm_pageout_reinsert_inactive(struct scan_state *ss, struct vm_batchqueue *bq,
1391     vm_page_t m)
1392 {
1393         struct vm_pagequeue *pq;
1394         vm_page_t marker;
1395         int delta;
1396
1397         delta = 0;
1398         marker = ss->marker;
1399         pq = ss->pq;
1400
1401         if (m != NULL) {
1402                 if (vm_batchqueue_insert(bq, m))
1403                         return;
1404                 vm_pagequeue_lock(pq);
1405                 delta += vm_pageout_reinsert_inactive_page(pq, marker, m);
1406         } else
1407                 vm_pagequeue_lock(pq);
1408         while ((m = vm_batchqueue_pop(bq)) != NULL)
1409                 delta += vm_pageout_reinsert_inactive_page(pq, marker, m);
1410         vm_pagequeue_cnt_add(pq, delta);
1411         vm_pagequeue_unlock(pq);
1412         vm_batchqueue_init(bq);
1413 }
1414
1415 /*
1416  * Attempt to reclaim the requested number of pages from the inactive queue.
1417  * Returns true if the shortage was addressed.
1418  */
1419 static int
1420 vm_pageout_scan_inactive(struct vm_domain *vmd, int shortage,
1421     int *addl_shortage)
1422 {
1423         struct scan_state ss;
1424         struct vm_batchqueue rq;
1425         vm_page_t m, marker;
1426         struct vm_pagequeue *pq;
1427         vm_object_t object;
1428         vm_page_astate_t old, new;
1429         int act_delta, addl_page_shortage, deficit, page_shortage, refs;
1430         int starting_page_shortage;
1431
1432         /*
1433          * The addl_page_shortage is an estimate of the number of temporarily
1434          * stuck pages in the inactive queue.  In other words, the
1435          * number of pages from the inactive count that should be
1436          * discounted in setting the target for the active queue scan.
1437          */
1438         addl_page_shortage = 0;
1439
1440         /*
1441          * vmd_pageout_deficit counts the number of pages requested in
1442          * allocations that failed because of a free page shortage.  We assume
1443          * that the allocations will be reattempted and thus include the deficit
1444          * in our scan target.
1445          */
1446         deficit = atomic_readandclear_int(&vmd->vmd_pageout_deficit);
1447         starting_page_shortage = page_shortage = shortage + deficit;
1448
1449         object = NULL;
1450         vm_batchqueue_init(&rq);
1451
1452         /*
1453          * Start scanning the inactive queue for pages that we can free.  The
1454          * scan will stop when we reach the target or we have scanned the
1455          * entire queue.  (Note that m->a.act_count is not used to make
1456          * decisions for the inactive queue, only for the active queue.)
1457          */
1458         marker = &vmd->vmd_markers[PQ_INACTIVE];
1459         pq = &vmd->vmd_pagequeues[PQ_INACTIVE];
1460         vm_pagequeue_lock(pq);
1461         vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
1462         while (page_shortage > 0 && (m = vm_pageout_next(&ss, true)) != NULL) {
1463                 KASSERT((m->flags & PG_MARKER) == 0,
1464                     ("marker page %p was dequeued", m));
1465
1466                 /*
1467                  * Don't touch a page that was removed from the queue after the
1468                  * page queue lock was released.  Otherwise, ensure that any
1469                  * pending queue operations, such as dequeues for wired pages,
1470                  * are handled.
1471                  */
1472                 if (vm_pageout_defer(m, PQ_INACTIVE, false))
1473                         continue;
1474
1475                 /*
1476                  * Lock the page's object.
1477                  */
1478                 if (object == NULL || object != m->object) {
1479                         if (object != NULL)
1480                                 VM_OBJECT_WUNLOCK(object);
1481                         object = (vm_object_t)atomic_load_ptr(&m->object);
1482                         if (__predict_false(object == NULL))
1483                                 /* The page is being freed by another thread. */
1484                                 continue;
1485
1486                         /* Depends on type-stability. */
1487                         VM_OBJECT_WLOCK(object);
1488                         if (__predict_false(m->object != object)) {
1489                                 VM_OBJECT_WUNLOCK(object);
1490                                 object = NULL;
1491                                 goto reinsert;
1492                         }
1493                 }
1494
1495                 if (vm_page_tryxbusy(m) == 0) {
1496                         /*
1497                          * Don't mess with busy pages.  Leave them at
1498                          * the front of the queue.  Most likely, they
1499                          * are being paged out and will leave the
1500                          * queue shortly after the scan finishes.  So,
1501                          * they ought to be discounted from the
1502                          * inactive count.
1503                          */
1504                         addl_page_shortage++;
1505                         goto reinsert;
1506                 }
1507
1508                 /* Deferred free of swap space. */
1509                 if ((m->a.flags & PGA_SWAP_FREE) != 0)
1510                         vm_pager_page_unswapped(m);
1511
1512                 /*
1513                  * Check for wirings now that we hold the object lock and have
1514                  * exclusively busied the page.  If the page is mapped, it may
1515                  * still be wired by pmap lookups.  The call to
1516                  * vm_page_try_remove_all() below atomically checks for such
1517                  * wirings and removes mappings.  If the page is unmapped, the
1518                  * wire count is guaranteed not to increase after this check.
1519                  */
1520                 if (__predict_false(vm_page_wired(m)))
1521                         goto skip_page;
1522
1523                 /*
1524                  * Invalid pages can be easily freed. They cannot be
1525                  * mapped, vm_page_free() asserts this.
1526                  */
1527                 if (vm_page_none_valid(m))
1528                         goto free_page;
1529
1530                 refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0;
1531
1532                 for (old = vm_page_astate_load(m);;) {
1533                         /*
1534                          * Check to see if the page has been removed from the
1535                          * queue since the first such check.  Leave it alone if
1536                          * so, discarding any references collected by
1537                          * pmap_ts_referenced().
1538                          */
1539                         if (__predict_false(_vm_page_queue(old) == PQ_NONE))
1540                                 goto skip_page;
1541
1542                         new = old;
1543                         act_delta = refs;
1544                         if ((old.flags & PGA_REFERENCED) != 0) {
1545                                 new.flags &= ~PGA_REFERENCED;
1546                                 act_delta++;
1547                         }
1548                         if (act_delta == 0) {
1549                                 ;
1550                         } else if (object->ref_count != 0) {
1551                                 /*
1552                                  * Increase the activation count if the
1553                                  * page was referenced while in the
1554                                  * inactive queue.  This makes it less
1555                                  * likely that the page will be returned
1556                                  * prematurely to the inactive queue.
1557                                  */
1558                                 new.act_count += ACT_ADVANCE +
1559                                     act_delta;
1560                                 if (new.act_count > ACT_MAX)
1561                                         new.act_count = ACT_MAX;
1562
1563                                 new.flags |= PGA_REQUEUE;
1564                                 new.queue = PQ_ACTIVE;
1565                                 if (!vm_page_pqstate_commit(m, &old, new))
1566                                         continue;
1567
1568                                 VM_CNT_INC(v_reactivated);
1569                                 goto skip_page;
1570                         } else if ((object->flags & OBJ_DEAD) == 0) {
1571                                 new.queue = PQ_INACTIVE;
1572                                 new.flags |= PGA_REQUEUE;
1573                                 if (!vm_page_pqstate_commit(m, &old, new))
1574                                         continue;
1575                                 goto skip_page;
1576                         }
1577                         break;
1578                 }
1579
1580                 /*
1581                  * If the page appears to be clean at the machine-independent
1582                  * layer, then remove all of its mappings from the pmap in
1583                  * anticipation of freeing it.  If, however, any of the page's
1584                  * mappings allow write access, then the page may still be
1585                  * modified until the last of those mappings are removed.
1586                  */
1587                 if (object->ref_count != 0) {
1588                         vm_page_test_dirty(m);
1589                         if (m->dirty == 0 && !vm_page_try_remove_all(m))
1590                                 goto skip_page;
1591                 }
1592
1593                 /*
1594                  * Clean pages can be freed, but dirty pages must be sent back
1595                  * to the laundry, unless they belong to a dead object.
1596                  * Requeueing dirty pages from dead objects is pointless, as
1597                  * they are being paged out and freed by the thread that
1598                  * destroyed the object.
1599                  */
1600                 if (m->dirty == 0) {
1601 free_page:
1602                         /*
1603                          * Now we are guaranteed that no other threads are
1604                          * manipulating the page, check for a last-second
1605                          * reference that would save it from doom.
1606                          */
1607                         if (vm_pageout_defer(m, PQ_INACTIVE, false))
1608                                 goto skip_page;
1609
1610                         /*
1611                          * Because we dequeued the page and have already checked
1612                          * for pending dequeue and enqueue requests, we can
1613                          * safely disassociate the page from the inactive queue
1614                          * without holding the queue lock.
1615                          */
1616                         m->a.queue = PQ_NONE;
1617                         vm_page_free(m);
1618                         page_shortage--;
1619                         continue;
1620                 }
1621                 if ((object->flags & OBJ_DEAD) == 0)
1622                         vm_page_launder(m);
1623 skip_page:
1624                 vm_page_xunbusy(m);
1625                 continue;
1626 reinsert:
1627                 vm_pageout_reinsert_inactive(&ss, &rq, m);
1628         }
1629         if (object != NULL)
1630                 VM_OBJECT_WUNLOCK(object);
1631         vm_pageout_reinsert_inactive(&ss, &rq, NULL);
1632         vm_pageout_reinsert_inactive(&ss, &ss.bq, NULL);
1633         vm_pagequeue_lock(pq);
1634         vm_pageout_end_scan(&ss);
1635         vm_pagequeue_unlock(pq);
1636
1637         VM_CNT_ADD(v_dfree, starting_page_shortage - page_shortage);
1638
1639         /*
1640          * Wake up the laundry thread so that it can perform any needed
1641          * laundering.  If we didn't meet our target, we're in shortfall and
1642          * need to launder more aggressively.  If PQ_LAUNDRY is empty and no
1643          * swap devices are configured, the laundry thread has no work to do, so
1644          * don't bother waking it up.
1645          *
1646          * The laundry thread uses the number of inactive queue scans elapsed
1647          * since the last laundering to determine whether to launder again, so
1648          * keep count.
1649          */
1650         if (starting_page_shortage > 0) {
1651                 pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
1652                 vm_pagequeue_lock(pq);
1653                 if (vmd->vmd_laundry_request == VM_LAUNDRY_IDLE &&
1654                     (pq->pq_cnt > 0 || atomic_load_acq_int(&swapdev_enabled))) {
1655                         if (page_shortage > 0) {
1656                                 vmd->vmd_laundry_request = VM_LAUNDRY_SHORTFALL;
1657                                 VM_CNT_INC(v_pdshortfalls);
1658                         } else if (vmd->vmd_laundry_request !=
1659                             VM_LAUNDRY_SHORTFALL)
1660                                 vmd->vmd_laundry_request =
1661                                     VM_LAUNDRY_BACKGROUND;
1662                         wakeup(&vmd->vmd_laundry_request);
1663                 }
1664                 vmd->vmd_clean_pages_freed +=
1665                     starting_page_shortage - page_shortage;
1666                 vm_pagequeue_unlock(pq);
1667         }
1668
1669         /*
1670          * Wakeup the swapout daemon if we didn't free the targeted number of
1671          * pages.
1672          */
1673         if (page_shortage > 0)
1674                 vm_swapout_run();
1675
1676         /*
1677          * If the inactive queue scan fails repeatedly to meet its
1678          * target, kill the largest process.
1679          */
1680         vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage);
1681
1682         /*
1683          * Reclaim pages by swapping out idle processes, if configured to do so.
1684          */
1685         vm_swapout_run_idle();
1686
1687         /*
1688          * See the description of addl_page_shortage above.
1689          */
1690         *addl_shortage = addl_page_shortage + deficit;
1691
1692         return (page_shortage <= 0);
1693 }
1694
1695 static int vm_pageout_oom_vote;
1696
1697 /*
1698  * The pagedaemon threads randlomly select one to perform the
1699  * OOM.  Trying to kill processes before all pagedaemons
1700  * failed to reach free target is premature.
1701  */
1702 static void
1703 vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
1704     int starting_page_shortage)
1705 {
1706         int old_vote;
1707
1708         if (starting_page_shortage <= 0 || starting_page_shortage !=
1709             page_shortage)
1710                 vmd->vmd_oom_seq = 0;
1711         else
1712                 vmd->vmd_oom_seq++;
1713         if (vmd->vmd_oom_seq < vm_pageout_oom_seq) {
1714                 if (vmd->vmd_oom) {
1715                         vmd->vmd_oom = FALSE;
1716                         atomic_subtract_int(&vm_pageout_oom_vote, 1);
1717                 }
1718                 return;
1719         }
1720
1721         /*
1722          * Do not follow the call sequence until OOM condition is
1723          * cleared.
1724          */
1725         vmd->vmd_oom_seq = 0;
1726
1727         if (vmd->vmd_oom)
1728                 return;
1729
1730         vmd->vmd_oom = TRUE;
1731         old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1);
1732         if (old_vote != vm_ndomains - 1)
1733                 return;
1734
1735         /*
1736          * The current pagedaemon thread is the last in the quorum to
1737          * start OOM.  Initiate the selection and signaling of the
1738          * victim.
1739          */
1740         vm_pageout_oom(VM_OOM_MEM);
1741
1742         /*
1743          * After one round of OOM terror, recall our vote.  On the
1744          * next pass, current pagedaemon would vote again if the low
1745          * memory condition is still there, due to vmd_oom being
1746          * false.
1747          */
1748         vmd->vmd_oom = FALSE;
1749         atomic_subtract_int(&vm_pageout_oom_vote, 1);
1750 }
1751
1752 /*
1753  * The OOM killer is the page daemon's action of last resort when
1754  * memory allocation requests have been stalled for a prolonged period
1755  * of time because it cannot reclaim memory.  This function computes
1756  * the approximate number of physical pages that could be reclaimed if
1757  * the specified address space is destroyed.
1758  *
1759  * Private, anonymous memory owned by the address space is the
1760  * principal resource that we expect to recover after an OOM kill.
1761  * Since the physical pages mapped by the address space's COW entries
1762  * are typically shared pages, they are unlikely to be released and so
1763  * they are not counted.
1764  *
1765  * To get to the point where the page daemon runs the OOM killer, its
1766  * efforts to write-back vnode-backed pages may have stalled.  This
1767  * could be caused by a memory allocation deadlock in the write path
1768  * that might be resolved by an OOM kill.  Therefore, physical pages
1769  * belonging to vnode-backed objects are counted, because they might
1770  * be freed without being written out first if the address space holds
1771  * the last reference to an unlinked vnode.
1772  *
1773  * Similarly, physical pages belonging to OBJT_PHYS objects are
1774  * counted because the address space might hold the last reference to
1775  * the object.
1776  */
1777 static long
1778 vm_pageout_oom_pagecount(struct vmspace *vmspace)
1779 {
1780         vm_map_t map;
1781         vm_map_entry_t entry;
1782         vm_object_t obj;
1783         long res;
1784
1785         map = &vmspace->vm_map;
1786         KASSERT(!map->system_map, ("system map"));
1787         sx_assert(&map->lock, SA_LOCKED);
1788         res = 0;
1789         VM_MAP_ENTRY_FOREACH(entry, map) {
1790                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
1791                         continue;
1792                 obj = entry->object.vm_object;
1793                 if (obj == NULL)
1794                         continue;
1795                 if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 &&
1796                     obj->ref_count != 1)
1797                         continue;
1798                 switch (obj->type) {
1799                 case OBJT_DEFAULT:
1800                 case OBJT_SWAP:
1801                 case OBJT_PHYS:
1802                 case OBJT_VNODE:
1803                         res += obj->resident_page_count;
1804                         break;
1805                 }
1806         }
1807         return (res);
1808 }
1809
1810 static int vm_oom_ratelim_last;
1811 static int vm_oom_pf_secs = 10;
1812 SYSCTL_INT(_vm, OID_AUTO, oom_pf_secs, CTLFLAG_RWTUN, &vm_oom_pf_secs, 0,
1813     "");
1814 static struct mtx vm_oom_ratelim_mtx;
1815
1816 void
1817 vm_pageout_oom(int shortage)
1818 {
1819         struct proc *p, *bigproc;
1820         vm_offset_t size, bigsize;
1821         struct thread *td;
1822         struct vmspace *vm;
1823         int now;
1824         bool breakout;
1825
1826         /*
1827          * For OOM requests originating from vm_fault(), there is a high
1828          * chance that a single large process faults simultaneously in
1829          * several threads.  Also, on an active system running many
1830          * processes of middle-size, like buildworld, all of them
1831          * could fault almost simultaneously as well.
1832          *
1833          * To avoid killing too many processes, rate-limit OOMs
1834          * initiated by vm_fault() time-outs on the waits for free
1835          * pages.
1836          */
1837         mtx_lock(&vm_oom_ratelim_mtx);
1838         now = ticks;
1839         if (shortage == VM_OOM_MEM_PF &&
1840             (u_int)(now - vm_oom_ratelim_last) < hz * vm_oom_pf_secs) {
1841                 mtx_unlock(&vm_oom_ratelim_mtx);
1842                 return;
1843         }
1844         vm_oom_ratelim_last = now;
1845         mtx_unlock(&vm_oom_ratelim_mtx);
1846
1847         /*
1848          * We keep the process bigproc locked once we find it to keep anyone
1849          * from messing with it; however, there is a possibility of
1850          * deadlock if process B is bigproc and one of its child processes
1851          * attempts to propagate a signal to B while we are waiting for A's
1852          * lock while walking this list.  To avoid this, we don't block on
1853          * the process lock but just skip a process if it is already locked.
1854          */
1855         bigproc = NULL;
1856         bigsize = 0;
1857         sx_slock(&allproc_lock);
1858         FOREACH_PROC_IN_SYSTEM(p) {
1859                 PROC_LOCK(p);
1860
1861                 /*
1862                  * If this is a system, protected or killed process, skip it.
1863                  */
1864                 if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC |
1865                     P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 ||
1866                     p->p_pid == 1 || P_KILLED(p) ||
1867                     (p->p_pid < 48 && swap_pager_avail != 0)) {
1868                         PROC_UNLOCK(p);
1869                         continue;
1870                 }
1871                 /*
1872                  * If the process is in a non-running type state,
1873                  * don't touch it.  Check all the threads individually.
1874                  */
1875                 breakout = false;
1876                 FOREACH_THREAD_IN_PROC(p, td) {
1877                         thread_lock(td);
1878                         if (!TD_ON_RUNQ(td) &&
1879                             !TD_IS_RUNNING(td) &&
1880                             !TD_IS_SLEEPING(td) &&
1881                             !TD_IS_SUSPENDED(td) &&
1882                             !TD_IS_SWAPPED(td)) {
1883                                 thread_unlock(td);
1884                                 breakout = true;
1885                                 break;
1886                         }
1887                         thread_unlock(td);
1888                 }
1889                 if (breakout) {
1890                         PROC_UNLOCK(p);
1891                         continue;
1892                 }
1893                 /*
1894                  * get the process size
1895                  */
1896                 vm = vmspace_acquire_ref(p);
1897                 if (vm == NULL) {
1898                         PROC_UNLOCK(p);
1899                         continue;
1900                 }
1901                 _PHOLD_LITE(p);
1902                 PROC_UNLOCK(p);
1903                 sx_sunlock(&allproc_lock);
1904                 if (!vm_map_trylock_read(&vm->vm_map)) {
1905                         vmspace_free(vm);
1906                         sx_slock(&allproc_lock);
1907                         PRELE(p);
1908                         continue;
1909                 }
1910                 size = vmspace_swap_count(vm);
1911                 if (shortage == VM_OOM_MEM || shortage == VM_OOM_MEM_PF)
1912                         size += vm_pageout_oom_pagecount(vm);
1913                 vm_map_unlock_read(&vm->vm_map);
1914                 vmspace_free(vm);
1915                 sx_slock(&allproc_lock);
1916
1917                 /*
1918                  * If this process is bigger than the biggest one,
1919                  * remember it.
1920                  */
1921                 if (size > bigsize) {
1922                         if (bigproc != NULL)
1923                                 PRELE(bigproc);
1924                         bigproc = p;
1925                         bigsize = size;
1926                 } else {
1927                         PRELE(p);
1928                 }
1929         }
1930         sx_sunlock(&allproc_lock);
1931         if (bigproc != NULL) {
1932                 if (vm_panic_on_oom != 0)
1933                         panic("out of swap space");
1934                 PROC_LOCK(bigproc);
1935                 killproc(bigproc, "out of swap space");
1936                 sched_nice(bigproc, PRIO_MIN);
1937                 _PRELE(bigproc);
1938                 PROC_UNLOCK(bigproc);
1939         }
1940 }
1941
1942 /*
1943  * Signal a free page shortage to subsystems that have registered an event
1944  * handler.  Reclaim memory from UMA in the event of a severe shortage.
1945  * Return true if the free page count should be re-evaluated.
1946  */
1947 static bool
1948 vm_pageout_lowmem(void)
1949 {
1950         static int lowmem_ticks = 0;
1951         int last;
1952         bool ret;
1953
1954         ret = false;
1955
1956         last = atomic_load_int(&lowmem_ticks);
1957         while ((u_int)(ticks - last) / hz >= lowmem_period) {
1958                 if (atomic_fcmpset_int(&lowmem_ticks, &last, ticks) == 0)
1959                         continue;
1960
1961                 /*
1962                  * Decrease registered cache sizes.
1963                  */
1964                 SDT_PROBE0(vm, , , vm__lowmem_scan);
1965                 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_PAGES);
1966
1967                 /*
1968                  * We do this explicitly after the caches have been
1969                  * drained above.
1970                  */
1971                 uma_reclaim(UMA_RECLAIM_TRIM);
1972                 ret = true;
1973         }
1974
1975         /*
1976          * Kick off an asynchronous reclaim of cached memory if one of the
1977          * page daemons is failing to keep up with demand.  Use the "severe"
1978          * threshold instead of "min" to ensure that we do not blow away the
1979          * caches if a subset of the NUMA domains are depleted by kernel memory
1980          * allocations; the domainset iterators automatically skip domains
1981          * below the "min" threshold on the first pass.
1982          *
1983          * UMA reclaim worker has its own rate-limiting mechanism, so don't
1984          * worry about kicking it too often.
1985          */
1986         if (vm_page_count_severe())
1987                 uma_reclaim_wakeup();
1988
1989         return (ret);
1990 }
1991
1992 static void
1993 vm_pageout_worker(void *arg)
1994 {
1995         struct vm_domain *vmd;
1996         u_int ofree;
1997         int addl_shortage, domain, shortage;
1998         bool target_met;
1999
2000         domain = (uintptr_t)arg;
2001         vmd = VM_DOMAIN(domain);
2002         shortage = 0;
2003         target_met = true;
2004
2005         /*
2006          * XXXKIB It could be useful to bind pageout daemon threads to
2007          * the cores belonging to the domain, from which vm_page_array
2008          * is allocated.
2009          */
2010
2011         KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
2012         vmd->vmd_last_active_scan = ticks;
2013
2014         /*
2015          * The pageout daemon worker is never done, so loop forever.
2016          */
2017         while (TRUE) {
2018                 vm_domain_pageout_lock(vmd);
2019
2020                 /*
2021                  * We need to clear wanted before we check the limits.  This
2022                  * prevents races with wakers who will check wanted after they
2023                  * reach the limit.
2024                  */
2025                 atomic_store_int(&vmd->vmd_pageout_wanted, 0);
2026
2027                 /*
2028                  * Might the page daemon need to run again?
2029                  */
2030                 if (vm_paging_needed(vmd, vmd->vmd_free_count)) {
2031                         /*
2032                          * Yes.  If the scan failed to produce enough free
2033                          * pages, sleep uninterruptibly for some time in the
2034                          * hope that the laundry thread will clean some pages.
2035                          */
2036                         vm_domain_pageout_unlock(vmd);
2037                         if (!target_met)
2038                                 pause("pwait", hz / VM_INACT_SCAN_RATE);
2039                 } else {
2040                         /*
2041                          * No, sleep until the next wakeup or until pages
2042                          * need to have their reference stats updated.
2043                          */
2044                         if (mtx_sleep(&vmd->vmd_pageout_wanted,
2045                             vm_domain_pageout_lockptr(vmd), PDROP | PVM,
2046                             "psleep", hz / VM_INACT_SCAN_RATE) == 0)
2047                                 VM_CNT_INC(v_pdwakeups);
2048                 }
2049
2050                 /* Prevent spurious wakeups by ensuring that wanted is set. */
2051                 atomic_store_int(&vmd->vmd_pageout_wanted, 1);
2052
2053                 /*
2054                  * Use the controller to calculate how many pages to free in
2055                  * this interval, and scan the inactive queue.  If the lowmem
2056                  * handlers appear to have freed up some pages, subtract the
2057                  * difference from the inactive queue scan target.
2058                  */
2059                 shortage = pidctrl_daemon(&vmd->vmd_pid, vmd->vmd_free_count);
2060                 if (shortage > 0) {
2061                         ofree = vmd->vmd_free_count;
2062                         if (vm_pageout_lowmem() && vmd->vmd_free_count > ofree)
2063                                 shortage -= min(vmd->vmd_free_count - ofree,
2064                                     (u_int)shortage);
2065                         target_met = vm_pageout_scan_inactive(vmd, shortage,
2066                             &addl_shortage);
2067                 } else
2068                         addl_shortage = 0;
2069
2070                 /*
2071                  * Scan the active queue.  A positive value for shortage
2072                  * indicates that we must aggressively deactivate pages to avoid
2073                  * a shortfall.
2074                  */
2075                 shortage = vm_pageout_active_target(vmd) + addl_shortage;
2076                 vm_pageout_scan_active(vmd, shortage);
2077         }
2078 }
2079
2080 /*
2081  * Initialize basic pageout daemon settings.  See the comment above the
2082  * definition of vm_domain for some explanation of how these thresholds are
2083  * used.
2084  */
2085 static void
2086 vm_pageout_init_domain(int domain)
2087 {
2088         struct vm_domain *vmd;
2089         struct sysctl_oid *oid;
2090
2091         vmd = VM_DOMAIN(domain);
2092         vmd->vmd_interrupt_free_min = 2;
2093
2094         /*
2095          * v_free_reserved needs to include enough for the largest
2096          * swap pager structures plus enough for any pv_entry structs
2097          * when paging. 
2098          */
2099         vmd->vmd_pageout_free_min = 2 * MAXBSIZE / PAGE_SIZE +
2100             vmd->vmd_interrupt_free_min;
2101         vmd->vmd_free_reserved = vm_pageout_page_count +
2102             vmd->vmd_pageout_free_min + vmd->vmd_page_count / 768;
2103         vmd->vmd_free_min = vmd->vmd_page_count / 200;
2104         vmd->vmd_free_severe = vmd->vmd_free_min / 2;
2105         vmd->vmd_free_target = 4 * vmd->vmd_free_min + vmd->vmd_free_reserved;
2106         vmd->vmd_free_min += vmd->vmd_free_reserved;
2107         vmd->vmd_free_severe += vmd->vmd_free_reserved;
2108         vmd->vmd_inactive_target = (3 * vmd->vmd_free_target) / 2;
2109         if (vmd->vmd_inactive_target > vmd->vmd_free_count / 3)
2110                 vmd->vmd_inactive_target = vmd->vmd_free_count / 3;
2111
2112         /*
2113          * Set the default wakeup threshold to be 10% below the paging
2114          * target.  This keeps the steady state out of shortfall.
2115          */
2116         vmd->vmd_pageout_wakeup_thresh = (vmd->vmd_free_target / 10) * 9;
2117
2118         /*
2119          * Target amount of memory to move out of the laundry queue during a
2120          * background laundering.  This is proportional to the amount of system
2121          * memory.
2122          */
2123         vmd->vmd_background_launder_target = (vmd->vmd_free_target -
2124             vmd->vmd_free_min) / 10;
2125
2126         /* Initialize the pageout daemon pid controller. */
2127         pidctrl_init(&vmd->vmd_pid, hz / VM_INACT_SCAN_RATE,
2128             vmd->vmd_free_target, PIDCTRL_BOUND,
2129             PIDCTRL_KPD, PIDCTRL_KID, PIDCTRL_KDD);
2130         oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(vmd->vmd_oid), OID_AUTO,
2131             "pidctrl", CTLFLAG_RD, NULL, "");
2132         pidctrl_init_sysctl(&vmd->vmd_pid, SYSCTL_CHILDREN(oid));
2133 }
2134
2135 static void
2136 vm_pageout_init(void)
2137 {
2138         u_int freecount;
2139         int i;
2140
2141         /*
2142          * Initialize some paging parameters.
2143          */
2144         if (vm_cnt.v_page_count < 2000)
2145                 vm_pageout_page_count = 8;
2146
2147         freecount = 0;
2148         for (i = 0; i < vm_ndomains; i++) {
2149                 struct vm_domain *vmd;
2150
2151                 vm_pageout_init_domain(i);
2152                 vmd = VM_DOMAIN(i);
2153                 vm_cnt.v_free_reserved += vmd->vmd_free_reserved;
2154                 vm_cnt.v_free_target += vmd->vmd_free_target;
2155                 vm_cnt.v_free_min += vmd->vmd_free_min;
2156                 vm_cnt.v_inactive_target += vmd->vmd_inactive_target;
2157                 vm_cnt.v_pageout_free_min += vmd->vmd_pageout_free_min;
2158                 vm_cnt.v_interrupt_free_min += vmd->vmd_interrupt_free_min;
2159                 vm_cnt.v_free_severe += vmd->vmd_free_severe;
2160                 freecount += vmd->vmd_free_count;
2161         }
2162
2163         /*
2164          * Set interval in seconds for active scan.  We want to visit each
2165          * page at least once every ten minutes.  This is to prevent worst
2166          * case paging behaviors with stale active LRU.
2167          */
2168         if (vm_pageout_update_period == 0)
2169                 vm_pageout_update_period = 600;
2170
2171         if (vm_page_max_user_wired == 0)
2172                 vm_page_max_user_wired = freecount / 3;
2173 }
2174
2175 /*
2176  *     vm_pageout is the high level pageout daemon.
2177  */
2178 static void
2179 vm_pageout(void)
2180 {
2181         struct proc *p;
2182         struct thread *td;
2183         int error, first, i;
2184
2185         p = curproc;
2186         td = curthread;
2187
2188         mtx_init(&vm_oom_ratelim_mtx, "vmoomr", NULL, MTX_DEF);
2189         swap_pager_swap_init();
2190         for (first = -1, i = 0; i < vm_ndomains; i++) {
2191                 if (VM_DOMAIN_EMPTY(i)) {
2192                         if (bootverbose)
2193                                 printf("domain %d empty; skipping pageout\n",
2194                                     i);
2195                         continue;
2196                 }
2197                 if (first == -1)
2198                         first = i;
2199                 else {
2200                         error = kthread_add(vm_pageout_worker,
2201                             (void *)(uintptr_t)i, p, NULL, 0, 0, "dom%d", i);
2202                         if (error != 0)
2203                                 panic("starting pageout for domain %d: %d\n",
2204                                     i, error);
2205                 }
2206                 error = kthread_add(vm_pageout_laundry_worker,
2207                     (void *)(uintptr_t)i, p, NULL, 0, 0, "laundry: dom%d", i);
2208                 if (error != 0)
2209                         panic("starting laundry for domain %d: %d", i, error);
2210         }
2211         error = kthread_add(uma_reclaim_worker, NULL, p, NULL, 0, 0, "uma");
2212         if (error != 0)
2213                 panic("starting uma_reclaim helper, error %d\n", error);
2214
2215         snprintf(td->td_name, sizeof(td->td_name), "dom%d", first);
2216         vm_pageout_worker((void *)(uintptr_t)first);
2217 }
2218
2219 /*
2220  * Perform an advisory wakeup of the page daemon.
2221  */
2222 void
2223 pagedaemon_wakeup(int domain)
2224 {
2225         struct vm_domain *vmd;
2226
2227         vmd = VM_DOMAIN(domain);
2228         vm_domain_pageout_assert_unlocked(vmd);
2229         if (curproc == pageproc)
2230                 return;
2231
2232         if (atomic_fetchadd_int(&vmd->vmd_pageout_wanted, 1) == 0) {
2233                 vm_domain_pageout_lock(vmd);
2234                 atomic_store_int(&vmd->vmd_pageout_wanted, 1);
2235                 wakeup(&vmd->vmd_pageout_wanted);
2236                 vm_domain_pageout_unlock(vmd);
2237         }
2238 }