]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_pageout.c
Merge ^/vendor/binutils/dist@214571 into contrib/binutils, which brings
[FreeBSD/FreeBSD.git] / sys / vm / vm_pageout.c
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  * Copyright (c) 2005 Yahoo! Technologies Norway AS
9  * All rights reserved.
10  *
11  * This code is derived from software contributed to Berkeley by
12  * The Mach Operating System project at Carnegie-Mellon University.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *      This product includes software developed by the University of
25  *      California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
43  *
44  *
45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46  * All rights reserved.
47  *
48  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49  *
50  * Permission to use, copy, modify and distribute this software and
51  * its documentation is hereby granted, provided that both the copyright
52  * notice and this permission notice appear in all copies of the
53  * software, derivative works or modified versions, and any portions
54  * thereof, and that both notices appear in supporting documentation.
55  *
56  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59  *
60  * Carnegie Mellon requests users of this software to return to
61  *
62  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63  *  School of Computer Science
64  *  Carnegie Mellon University
65  *  Pittsburgh PA 15213-3890
66  *
67  * any improvements or extensions that they make and grant Carnegie the
68  * rights to redistribute these changes.
69  */
70
71 /*
72  *      The proverbial page-out daemon.
73  */
74
75 #include <sys/cdefs.h>
76 __FBSDID("$FreeBSD$");
77
78 #include "opt_vm.h"
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/eventhandler.h>
83 #include <sys/lock.h>
84 #include <sys/mutex.h>
85 #include <sys/proc.h>
86 #include <sys/kthread.h>
87 #include <sys/ktr.h>
88 #include <sys/mount.h>
89 #include <sys/resourcevar.h>
90 #include <sys/sched.h>
91 #include <sys/signalvar.h>
92 #include <sys/vnode.h>
93 #include <sys/vmmeter.h>
94 #include <sys/sx.h>
95 #include <sys/sysctl.h>
96
97 #include <vm/vm.h>
98 #include <vm/vm_param.h>
99 #include <vm/vm_object.h>
100 #include <vm/vm_page.h>
101 #include <vm/vm_map.h>
102 #include <vm/vm_pageout.h>
103 #include <vm/vm_pager.h>
104 #include <vm/swap_pager.h>
105 #include <vm/vm_extern.h>
106 #include <vm/uma.h>
107
108 /*
109  * System initialization
110  */
111
112 /* the kernel process "vm_pageout"*/
113 static void vm_pageout(void);
114 static int vm_pageout_clean(vm_page_t);
115 static void vm_pageout_scan(int pass);
116
117 struct proc *pageproc;
118
119 static struct kproc_desc page_kp = {
120         "pagedaemon",
121         vm_pageout,
122         &pageproc
123 };
124 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start,
125     &page_kp);
126
127 #if !defined(NO_SWAPPING)
128 /* the kernel process "vm_daemon"*/
129 static void vm_daemon(void);
130 static struct   proc *vmproc;
131
132 static struct kproc_desc vm_kp = {
133         "vmdaemon",
134         vm_daemon,
135         &vmproc
136 };
137 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
138 #endif
139
140
141 int vm_pages_needed;            /* Event on which pageout daemon sleeps */
142 int vm_pageout_deficit;         /* Estimated number of pages deficit */
143 int vm_pageout_pages_needed;    /* flag saying that the pageout daemon needs pages */
144
145 #if !defined(NO_SWAPPING)
146 static int vm_pageout_req_swapout;      /* XXX */
147 static int vm_daemon_needed;
148 static struct mtx vm_daemon_mtx;
149 /* Allow for use by vm_pageout before vm_daemon is initialized. */
150 MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
151 #endif
152 static int vm_max_launder = 32;
153 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
154 static int vm_pageout_full_stats_interval = 0;
155 static int vm_pageout_algorithm=0;
156 static int defer_swap_pageouts=0;
157 static int disable_swap_pageouts=0;
158
159 #if defined(NO_SWAPPING)
160 static int vm_swap_enabled=0;
161 static int vm_swap_idle_enabled=0;
162 #else
163 static int vm_swap_enabled=1;
164 static int vm_swap_idle_enabled=0;
165 #endif
166
167 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
168         CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
169
170 SYSCTL_INT(_vm, OID_AUTO, max_launder,
171         CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
172
173 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
174         CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
175
176 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
177         CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
178
179 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
180         CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
181
182 #if defined(NO_SWAPPING)
183 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
184         CTLFLAG_RD, &vm_swap_enabled, 0, "Enable entire process swapout");
185 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
186         CTLFLAG_RD, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
187 #else
188 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
189         CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
190 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
191         CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
192 #endif
193
194 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
195         CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
196
197 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
198         CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
199
200 static int pageout_lock_miss;
201 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
202         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
203
204 #define VM_PAGEOUT_PAGE_COUNT 16
205 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
206
207 int vm_page_max_wired;          /* XXX max # of wired pages system-wide */
208 SYSCTL_INT(_vm, OID_AUTO, max_wired,
209         CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
210
211 #if !defined(NO_SWAPPING)
212 static void vm_pageout_map_deactivate_pages(vm_map_t, long);
213 static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
214 static void vm_req_vmdaemon(int req);
215 #endif
216 static void vm_pageout_page_stats(void);
217
218 static void
219 vm_pageout_init_marker(vm_page_t marker, u_short queue)
220 {
221
222         bzero(marker, sizeof(*marker));
223         marker->flags = PG_FICTITIOUS | PG_MARKER;
224         marker->oflags = VPO_BUSY;
225         marker->queue = queue;
226         marker->wire_count = 1;
227 }
228
229 /*
230  * vm_pageout_fallback_object_lock:
231  * 
232  * Lock vm object currently associated with `m'. VM_OBJECT_TRYLOCK is
233  * known to have failed and page queue must be either PQ_ACTIVE or
234  * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
235  * while locking the vm object.  Use marker page to detect page queue
236  * changes and maintain notion of next page on page queue.  Return
237  * TRUE if no changes were detected, FALSE otherwise.  vm object is
238  * locked on return.
239  * 
240  * This function depends on both the lock portion of struct vm_object
241  * and normal struct vm_page being type stable.
242  */
243 boolean_t
244 vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
245 {
246         struct vm_page marker;
247         boolean_t unchanged;
248         u_short queue;
249         vm_object_t object;
250
251         queue = m->queue;
252         vm_pageout_init_marker(&marker, queue);
253         object = m->object;
254         
255         TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl,
256                            m, &marker, pageq);
257         vm_page_unlock_queues();
258         vm_page_unlock(m);
259         VM_OBJECT_LOCK(object);
260         vm_page_lock(m);
261         vm_page_lock_queues();
262
263         /* Page queue might have changed. */
264         *next = TAILQ_NEXT(&marker, pageq);
265         unchanged = (m->queue == queue &&
266                      m->object == object &&
267                      &marker == TAILQ_NEXT(m, pageq));
268         TAILQ_REMOVE(&vm_page_queues[queue].pl,
269                      &marker, pageq);
270         return (unchanged);
271 }
272
273 /*
274  * Lock the page while holding the page queue lock.  Use marker page
275  * to detect page queue changes and maintain notion of next page on
276  * page queue.  Return TRUE if no changes were detected, FALSE
277  * otherwise.  The page is locked on return. The page queue lock might
278  * be dropped and reacquired.
279  *
280  * This function depends on normal struct vm_page being type stable.
281  */
282 boolean_t
283 vm_pageout_page_lock(vm_page_t m, vm_page_t *next)
284 {
285         struct vm_page marker;
286         boolean_t unchanged;
287         u_short queue;
288
289         vm_page_lock_assert(m, MA_NOTOWNED);
290         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
291
292         if (vm_page_trylock(m))
293                 return (TRUE);
294
295         queue = m->queue;
296         vm_pageout_init_marker(&marker, queue);
297
298         TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl, m, &marker, pageq);
299         vm_page_unlock_queues();
300         vm_page_lock(m);
301         vm_page_lock_queues();
302
303         /* Page queue might have changed. */
304         *next = TAILQ_NEXT(&marker, pageq);
305         unchanged = (m->queue == queue && &marker == TAILQ_NEXT(m, pageq));
306         TAILQ_REMOVE(&vm_page_queues[queue].pl, &marker, pageq);
307         return (unchanged);
308 }
309
310 /*
311  * vm_pageout_clean:
312  *
313  * Clean the page and remove it from the laundry.
314  * 
315  * We set the busy bit to cause potential page faults on this page to
316  * block.  Note the careful timing, however, the busy bit isn't set till
317  * late and we cannot do anything that will mess with the page.
318  */
319 static int
320 vm_pageout_clean(vm_page_t m)
321 {
322         vm_object_t object;
323         vm_page_t mc[2*vm_pageout_page_count], pb, ps;
324         int pageout_count;
325         int ib, is, page_base;
326         vm_pindex_t pindex = m->pindex;
327
328         vm_page_lock_assert(m, MA_OWNED);
329         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
330
331         /*
332          * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
333          * with the new swapper, but we could have serious problems paging
334          * out other object types if there is insufficient memory.  
335          *
336          * Unfortunately, checking free memory here is far too late, so the
337          * check has been moved up a procedural level.
338          */
339
340         /*
341          * Can't clean the page if it's busy or held.
342          */
343         KASSERT(m->busy == 0 && (m->oflags & VPO_BUSY) == 0,
344             ("vm_pageout_clean: page %p is busy", m));
345         KASSERT(m->hold_count == 0, ("vm_pageout_clean: page %p is held", m));
346
347         mc[vm_pageout_page_count] = pb = ps = m;
348         pageout_count = 1;
349         page_base = vm_pageout_page_count;
350         ib = 1;
351         is = 1;
352
353         /*
354          * Scan object for clusterable pages.
355          *
356          * We can cluster ONLY if: ->> the page is NOT
357          * clean, wired, busy, held, or mapped into a
358          * buffer, and one of the following:
359          * 1) The page is inactive, or a seldom used
360          *    active page.
361          * -or-
362          * 2) we force the issue.
363          *
364          * During heavy mmap/modification loads the pageout
365          * daemon can really fragment the underlying file
366          * due to flushing pages out of order and not trying
367          * align the clusters (which leave sporatic out-of-order
368          * holes).  To solve this problem we do the reverse scan
369          * first and attempt to align our cluster, then do a 
370          * forward scan if room remains.
371          */
372         object = m->object;
373 more:
374         while (ib && pageout_count < vm_pageout_page_count) {
375                 vm_page_t p;
376
377                 if (ib > pindex) {
378                         ib = 0;
379                         break;
380                 }
381
382                 if ((p = vm_page_prev(pb)) == NULL ||
383                     (p->oflags & VPO_BUSY) != 0 || p->busy != 0) {
384                         ib = 0;
385                         break;
386                 }
387                 vm_page_lock(p);
388                 vm_page_test_dirty(p);
389                 if (p->dirty == 0 ||
390                     p->queue != PQ_INACTIVE ||
391                     p->hold_count != 0) {       /* may be undergoing I/O */
392                         vm_page_unlock(p);
393                         ib = 0;
394                         break;
395                 }
396                 vm_page_unlock(p);
397                 mc[--page_base] = pb = p;
398                 ++pageout_count;
399                 ++ib;
400                 /*
401                  * alignment boundry, stop here and switch directions.  Do
402                  * not clear ib.
403                  */
404                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
405                         break;
406         }
407
408         while (pageout_count < vm_pageout_page_count && 
409             pindex + is < object->size) {
410                 vm_page_t p;
411
412                 if ((p = vm_page_next(ps)) == NULL ||
413                     (p->oflags & VPO_BUSY) != 0 || p->busy != 0)
414                         break;
415                 vm_page_lock(p);
416                 vm_page_test_dirty(p);
417                 if (p->dirty == 0 ||
418                     p->queue != PQ_INACTIVE ||
419                     p->hold_count != 0) {       /* may be undergoing I/O */
420                         vm_page_unlock(p);
421                         break;
422                 }
423                 vm_page_unlock(p);
424                 mc[page_base + pageout_count] = ps = p;
425                 ++pageout_count;
426                 ++is;
427         }
428
429         /*
430          * If we exhausted our forward scan, continue with the reverse scan
431          * when possible, even past a page boundry.  This catches boundry
432          * conditions.
433          */
434         if (ib && pageout_count < vm_pageout_page_count)
435                 goto more;
436
437         vm_page_unlock(m);
438         /*
439          * we allow reads during pageouts...
440          */
441         return (vm_pageout_flush(&mc[page_base], pageout_count, 0));
442 }
443
444 /*
445  * vm_pageout_flush() - launder the given pages
446  *
447  *      The given pages are laundered.  Note that we setup for the start of
448  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
449  *      reference count all in here rather then in the parent.  If we want
450  *      the parent to do more sophisticated things we may have to change
451  *      the ordering.
452  */
453 int
454 vm_pageout_flush(vm_page_t *mc, int count, int flags)
455 {
456         vm_object_t object = mc[0]->object;
457         int pageout_status[count];
458         int numpagedout = 0;
459         int i;
460
461         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
462         mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
463
464         /*
465          * Initiate I/O.  Bump the vm_page_t->busy counter and
466          * mark the pages read-only.
467          *
468          * We do not have to fixup the clean/dirty bits here... we can
469          * allow the pager to do it after the I/O completes.
470          *
471          * NOTE! mc[i]->dirty may be partial or fragmented due to an
472          * edge case with file fragments.
473          */
474         for (i = 0; i < count; i++) {
475                 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
476                     ("vm_pageout_flush: partially invalid page %p index %d/%d",
477                         mc[i], i, count));
478                 vm_page_io_start(mc[i]);
479                 pmap_remove_write(mc[i]);
480         }
481         vm_object_pip_add(object, count);
482
483         vm_pager_put_pages(object, mc, count, flags, pageout_status);
484
485         for (i = 0; i < count; i++) {
486                 vm_page_t mt = mc[i];
487
488                 KASSERT(pageout_status[i] == VM_PAGER_PEND ||
489                     (mt->flags & PG_WRITEABLE) == 0,
490                     ("vm_pageout_flush: page %p is not write protected", mt));
491                 switch (pageout_status[i]) {
492                 case VM_PAGER_OK:
493                 case VM_PAGER_PEND:
494                         numpagedout++;
495                         break;
496                 case VM_PAGER_BAD:
497                         /*
498                          * Page outside of range of object. Right now we
499                          * essentially lose the changes by pretending it
500                          * worked.
501                          */
502                         vm_page_undirty(mt);
503                         break;
504                 case VM_PAGER_ERROR:
505                 case VM_PAGER_FAIL:
506                         /*
507                          * If page couldn't be paged out, then reactivate the
508                          * page so it doesn't clog the inactive list.  (We
509                          * will try paging out it again later).
510                          */
511                         vm_page_lock(mt);
512                         vm_page_activate(mt);
513                         vm_page_unlock(mt);
514                         break;
515                 case VM_PAGER_AGAIN:
516                         break;
517                 }
518
519                 /*
520                  * If the operation is still going, leave the page busy to
521                  * block all other accesses. Also, leave the paging in
522                  * progress indicator set so that we don't attempt an object
523                  * collapse.
524                  */
525                 if (pageout_status[i] != VM_PAGER_PEND) {
526                         vm_object_pip_wakeup(object);
527                         vm_page_io_finish(mt);
528                         if (vm_page_count_severe()) {
529                                 vm_page_lock(mt);
530                                 vm_page_try_to_cache(mt);
531                                 vm_page_unlock(mt);
532                         }
533                 }
534         }
535         return (numpagedout);
536 }
537
538 #if !defined(NO_SWAPPING)
539 /*
540  *      vm_pageout_object_deactivate_pages
541  *
542  *      Deactivate enough pages to satisfy the inactive target
543  *      requirements.
544  *
545  *      The object and map must be locked.
546  */
547 static void
548 vm_pageout_object_deactivate_pages(pmap_t pmap, vm_object_t first_object,
549     long desired)
550 {
551         vm_object_t backing_object, object;
552         vm_page_t p;
553         int actcount, remove_mode;
554
555         VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
556         if (first_object->type == OBJT_DEVICE ||
557             first_object->type == OBJT_SG)
558                 return;
559         for (object = first_object;; object = backing_object) {
560                 if (pmap_resident_count(pmap) <= desired)
561                         goto unlock_return;
562                 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
563                 if (object->type == OBJT_PHYS || object->paging_in_progress)
564                         goto unlock_return;
565
566                 remove_mode = 0;
567                 if (object->shadow_count > 1)
568                         remove_mode = 1;
569                 /*
570                  * Scan the object's entire memory queue.
571                  */
572                 TAILQ_FOREACH(p, &object->memq, listq) {
573                         if (pmap_resident_count(pmap) <= desired)
574                                 goto unlock_return;
575                         if ((p->oflags & VPO_BUSY) != 0 || p->busy != 0)
576                                 continue;
577                         PCPU_INC(cnt.v_pdpages);
578                         vm_page_lock(p);
579                         if (p->wire_count != 0 || p->hold_count != 0 ||
580                             !pmap_page_exists_quick(pmap, p)) {
581                                 vm_page_unlock(p);
582                                 continue;
583                         }
584                         actcount = pmap_ts_referenced(p);
585                         if ((p->flags & PG_REFERENCED) != 0) {
586                                 if (actcount == 0)
587                                         actcount = 1;
588                                 vm_page_lock_queues();
589                                 vm_page_flag_clear(p, PG_REFERENCED);
590                                 vm_page_unlock_queues();
591                         }
592                         if (p->queue != PQ_ACTIVE && actcount != 0) {
593                                 vm_page_activate(p);
594                                 p->act_count += actcount;
595                         } else if (p->queue == PQ_ACTIVE) {
596                                 if (actcount == 0) {
597                                         p->act_count -= min(p->act_count,
598                                             ACT_DECLINE);
599                                         if (!remove_mode &&
600                                             (vm_pageout_algorithm ||
601                                             p->act_count == 0)) {
602                                                 pmap_remove_all(p);
603                                                 vm_page_deactivate(p);
604                                         } else {
605                                                 vm_page_lock_queues();
606                                                 vm_page_requeue(p);
607                                                 vm_page_unlock_queues();
608                                         }
609                                 } else {
610                                         vm_page_activate(p);
611                                         if (p->act_count < ACT_MAX -
612                                             ACT_ADVANCE)
613                                                 p->act_count += ACT_ADVANCE;
614                                         vm_page_lock_queues();
615                                         vm_page_requeue(p);
616                                         vm_page_unlock_queues();
617                                 }
618                         } else if (p->queue == PQ_INACTIVE)
619                                 pmap_remove_all(p);
620                         vm_page_unlock(p);
621                 }
622                 if ((backing_object = object->backing_object) == NULL)
623                         goto unlock_return;
624                 VM_OBJECT_LOCK(backing_object);
625                 if (object != first_object)
626                         VM_OBJECT_UNLOCK(object);
627         }
628 unlock_return:
629         if (object != first_object)
630                 VM_OBJECT_UNLOCK(object);
631 }
632
633 /*
634  * deactivate some number of pages in a map, try to do it fairly, but
635  * that is really hard to do.
636  */
637 static void
638 vm_pageout_map_deactivate_pages(map, desired)
639         vm_map_t map;
640         long desired;
641 {
642         vm_map_entry_t tmpe;
643         vm_object_t obj, bigobj;
644         int nothingwired;
645
646         if (!vm_map_trylock(map))
647                 return;
648
649         bigobj = NULL;
650         nothingwired = TRUE;
651
652         /*
653          * first, search out the biggest object, and try to free pages from
654          * that.
655          */
656         tmpe = map->header.next;
657         while (tmpe != &map->header) {
658                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
659                         obj = tmpe->object.vm_object;
660                         if (obj != NULL && VM_OBJECT_TRYLOCK(obj)) {
661                                 if (obj->shadow_count <= 1 &&
662                                     (bigobj == NULL ||
663                                      bigobj->resident_page_count < obj->resident_page_count)) {
664                                         if (bigobj != NULL)
665                                                 VM_OBJECT_UNLOCK(bigobj);
666                                         bigobj = obj;
667                                 } else
668                                         VM_OBJECT_UNLOCK(obj);
669                         }
670                 }
671                 if (tmpe->wired_count > 0)
672                         nothingwired = FALSE;
673                 tmpe = tmpe->next;
674         }
675
676         if (bigobj != NULL) {
677                 vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
678                 VM_OBJECT_UNLOCK(bigobj);
679         }
680         /*
681          * Next, hunt around for other pages to deactivate.  We actually
682          * do this search sort of wrong -- .text first is not the best idea.
683          */
684         tmpe = map->header.next;
685         while (tmpe != &map->header) {
686                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
687                         break;
688                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
689                         obj = tmpe->object.vm_object;
690                         if (obj != NULL) {
691                                 VM_OBJECT_LOCK(obj);
692                                 vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
693                                 VM_OBJECT_UNLOCK(obj);
694                         }
695                 }
696                 tmpe = tmpe->next;
697         }
698
699         /*
700          * Remove all mappings if a process is swapped out, this will free page
701          * table pages.
702          */
703         if (desired == 0 && nothingwired) {
704                 tmpe = map->header.next;
705                 while (tmpe != &map->header) {
706                         pmap_remove(vm_map_pmap(map), tmpe->start, tmpe->end);
707                         tmpe = tmpe->next;
708                 }
709         }
710         vm_map_unlock(map);
711 }
712 #endif          /* !defined(NO_SWAPPING) */
713
714 /*
715  *      vm_pageout_scan does the dirty work for the pageout daemon.
716  */
717 static void
718 vm_pageout_scan(int pass)
719 {
720         vm_page_t m, next;
721         struct vm_page marker;
722         int page_shortage, maxscan, pcount;
723         int addl_page_shortage, addl_page_shortage_init;
724         vm_object_t object;
725         int actcount;
726         int vnodes_skipped = 0;
727         int maxlaunder;
728
729         /*
730          * Decrease registered cache sizes.
731          */
732         EVENTHANDLER_INVOKE(vm_lowmem, 0);
733         /*
734          * We do this explicitly after the caches have been drained above.
735          */
736         uma_reclaim();
737
738         addl_page_shortage_init = atomic_readandclear_int(&vm_pageout_deficit);
739
740         /*
741          * Calculate the number of pages we want to either free or move
742          * to the cache.
743          */
744         page_shortage = vm_paging_target() + addl_page_shortage_init;
745
746         vm_pageout_init_marker(&marker, PQ_INACTIVE);
747
748         /*
749          * Start scanning the inactive queue for pages we can move to the
750          * cache or free.  The scan will stop when the target is reached or
751          * we have scanned the entire inactive queue.  Note that m->act_count
752          * is not used to form decisions for the inactive queue, only for the
753          * active queue.
754          *
755          * maxlaunder limits the number of dirty pages we flush per scan.
756          * For most systems a smaller value (16 or 32) is more robust under
757          * extreme memory and disk pressure because any unnecessary writes
758          * to disk can result in extreme performance degredation.  However,
759          * systems with excessive dirty pages (especially when MAP_NOSYNC is
760          * used) will die horribly with limited laundering.  If the pageout
761          * daemon cannot clean enough pages in the first pass, we let it go
762          * all out in succeeding passes.
763          */
764         if ((maxlaunder = vm_max_launder) <= 1)
765                 maxlaunder = 1;
766         if (pass)
767                 maxlaunder = 10000;
768         vm_page_lock_queues();
769 rescan0:
770         addl_page_shortage = addl_page_shortage_init;
771         maxscan = cnt.v_inactive_count;
772
773         for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
774              m != NULL && maxscan-- > 0 && page_shortage > 0;
775              m = next) {
776
777                 cnt.v_pdpages++;
778
779                 if (m->queue != PQ_INACTIVE)
780                         goto rescan0;
781
782                 next = TAILQ_NEXT(m, pageq);
783
784                 /*
785                  * skip marker pages
786                  */
787                 if (m->flags & PG_MARKER)
788                         continue;
789
790                 /*
791                  * Lock the page.
792                  */
793                 if (!vm_pageout_page_lock(m, &next)) {
794                         vm_page_unlock(m);
795                         addl_page_shortage++;
796                         continue;
797                 }
798
799                 /*
800                  * A held page may be undergoing I/O, so skip it.
801                  */
802                 if (m->hold_count) {
803                         vm_page_unlock(m);
804                         vm_page_requeue(m);
805                         addl_page_shortage++;
806                         continue;
807                 }
808
809                 /*
810                  * Don't mess with busy pages, keep in the front of the
811                  * queue, most likely are being paged out.
812                  */
813                 object = m->object;
814                 if (!VM_OBJECT_TRYLOCK(object) &&
815                     (!vm_pageout_fallback_object_lock(m, &next) ||
816                         m->hold_count != 0)) {
817                         VM_OBJECT_UNLOCK(object);
818                         vm_page_unlock(m);
819                         addl_page_shortage++;
820                         continue;
821                 }
822                 if (m->busy || (m->oflags & VPO_BUSY)) {
823                         vm_page_unlock(m);
824                         VM_OBJECT_UNLOCK(object);
825                         addl_page_shortage++;
826                         continue;
827                 }
828
829                 /*
830                  * If the object is not being used, we ignore previous 
831                  * references.
832                  */
833                 if (object->ref_count == 0) {
834                         vm_page_flag_clear(m, PG_REFERENCED);
835                         KASSERT(!pmap_page_is_mapped(m),
836                             ("vm_pageout_scan: page %p is mapped", m));
837
838                 /*
839                  * Otherwise, if the page has been referenced while in the 
840                  * inactive queue, we bump the "activation count" upwards, 
841                  * making it less likely that the page will be added back to 
842                  * the inactive queue prematurely again.  Here we check the 
843                  * page tables (or emulated bits, if any), given the upper 
844                  * level VM system not knowing anything about existing 
845                  * references.
846                  */
847                 } else if (((m->flags & PG_REFERENCED) == 0) &&
848                         (actcount = pmap_ts_referenced(m))) {
849                         vm_page_activate(m);
850                         VM_OBJECT_UNLOCK(object);
851                         m->act_count += (actcount + ACT_ADVANCE);
852                         vm_page_unlock(m);
853                         continue;
854                 }
855
856                 /*
857                  * If the upper level VM system knows about any page 
858                  * references, we activate the page.  We also set the 
859                  * "activation count" higher than normal so that we will less 
860                  * likely place pages back onto the inactive queue again.
861                  */
862                 if ((m->flags & PG_REFERENCED) != 0) {
863                         vm_page_flag_clear(m, PG_REFERENCED);
864                         actcount = pmap_ts_referenced(m);
865                         vm_page_activate(m);
866                         VM_OBJECT_UNLOCK(object);
867                         m->act_count += (actcount + ACT_ADVANCE + 1);
868                         vm_page_unlock(m);
869                         continue;
870                 }
871
872                 /*
873                  * If the upper level VM system does not believe that the page
874                  * is fully dirty, but it is mapped for write access, then we
875                  * consult the pmap to see if the page's dirty status should
876                  * be updated.
877                  */
878                 if (m->dirty != VM_PAGE_BITS_ALL &&
879                     (m->flags & PG_WRITEABLE) != 0) {
880                         /*
881                          * Avoid a race condition: Unless write access is
882                          * removed from the page, another processor could
883                          * modify it before all access is removed by the call
884                          * to vm_page_cache() below.  If vm_page_cache() finds
885                          * that the page has been modified when it removes all
886                          * access, it panics because it cannot cache dirty
887                          * pages.  In principle, we could eliminate just write
888                          * access here rather than all access.  In the expected
889                          * case, when there are no last instant modifications
890                          * to the page, removing all access will be cheaper
891                          * overall.
892                          */
893                         if (pmap_is_modified(m))
894                                 vm_page_dirty(m);
895                         else if (m->dirty == 0)
896                                 pmap_remove_all(m);
897                 }
898
899                 if (m->valid == 0) {
900                         /*
901                          * Invalid pages can be easily freed
902                          */
903                         vm_page_free(m);
904                         cnt.v_dfree++;
905                         --page_shortage;
906                 } else if (m->dirty == 0) {
907                         /*
908                          * Clean pages can be placed onto the cache queue.
909                          * This effectively frees them.
910                          */
911                         vm_page_cache(m);
912                         --page_shortage;
913                 } else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
914                         /*
915                          * Dirty pages need to be paged out, but flushing
916                          * a page is extremely expensive verses freeing
917                          * a clean page.  Rather then artificially limiting
918                          * the number of pages we can flush, we instead give
919                          * dirty pages extra priority on the inactive queue
920                          * by forcing them to be cycled through the queue
921                          * twice before being flushed, after which the
922                          * (now clean) page will cycle through once more
923                          * before being freed.  This significantly extends
924                          * the thrash point for a heavily loaded machine.
925                          */
926                         vm_page_flag_set(m, PG_WINATCFLS);
927                         vm_page_requeue(m);
928                 } else if (maxlaunder > 0) {
929                         /*
930                          * We always want to try to flush some dirty pages if
931                          * we encounter them, to keep the system stable.
932                          * Normally this number is small, but under extreme
933                          * pressure where there are insufficient clean pages
934                          * on the inactive queue, we may have to go all out.
935                          */
936                         int swap_pageouts_ok, vfslocked = 0;
937                         struct vnode *vp = NULL;
938                         struct mount *mp = NULL;
939
940                         if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
941                                 swap_pageouts_ok = 1;
942                         } else {
943                                 swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
944                                 swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
945                                 vm_page_count_min());
946                                                                                 
947                         }
948
949                         /*
950                          * We don't bother paging objects that are "dead".  
951                          * Those objects are in a "rundown" state.
952                          */
953                         if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
954                                 vm_page_unlock(m);
955                                 VM_OBJECT_UNLOCK(object);
956                                 vm_page_requeue(m);
957                                 continue;
958                         }
959
960                         /*
961                          * Following operations may unlock
962                          * vm_page_queue_mtx, invalidating the 'next'
963                          * pointer.  To prevent an inordinate number
964                          * of restarts we use our marker to remember
965                          * our place.
966                          *
967                          */
968                         TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl,
969                                            m, &marker, pageq);
970                         /*
971                          * The object is already known NOT to be dead.   It
972                          * is possible for the vget() to block the whole
973                          * pageout daemon, but the new low-memory handling
974                          * code should prevent it.
975                          *
976                          * The previous code skipped locked vnodes and, worse,
977                          * reordered pages in the queue.  This results in
978                          * completely non-deterministic operation and, on a
979                          * busy system, can lead to extremely non-optimal
980                          * pageouts.  For example, it can cause clean pages
981                          * to be freed and dirty pages to be moved to the end
982                          * of the queue.  Since dirty pages are also moved to
983                          * the end of the queue once-cleaned, this gives
984                          * way too large a weighting to defering the freeing
985                          * of dirty pages.
986                          *
987                          * We can't wait forever for the vnode lock, we might
988                          * deadlock due to a vn_read() getting stuck in
989                          * vm_wait while holding this vnode.  We skip the 
990                          * vnode if we can't get it in a reasonable amount
991                          * of time.
992                          */
993                         if (object->type == OBJT_VNODE) {
994                                 vm_page_unlock_queues();
995                                 vm_page_unlock(m);
996                                 vp = object->handle;
997                                 if (vp->v_type == VREG &&
998                                     vn_start_write(vp, &mp, V_NOWAIT) != 0) {
999                                         mp = NULL;
1000                                         ++pageout_lock_miss;
1001                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1002                                                 vnodes_skipped++;
1003                                         vm_page_lock_queues();
1004                                         goto unlock_and_continue;
1005                                 }
1006                                 KASSERT(mp != NULL,
1007                                     ("vp %p with NULL v_mount", vp));
1008                                 vm_object_reference_locked(object);
1009                                 VM_OBJECT_UNLOCK(object);
1010                                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1011                                 if (vget(vp, LK_EXCLUSIVE | LK_TIMELOCK,
1012                                     curthread)) {
1013                                         VM_OBJECT_LOCK(object);
1014                                         vm_page_lock_queues();
1015                                         ++pageout_lock_miss;
1016                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1017                                                 vnodes_skipped++;
1018                                         vp = NULL;
1019                                         goto unlock_and_continue;
1020                                 }
1021                                 VM_OBJECT_LOCK(object);
1022                                 vm_page_lock(m);
1023                                 vm_page_lock_queues();
1024                                 /*
1025                                  * The page might have been moved to another
1026                                  * queue during potential blocking in vget()
1027                                  * above.  The page might have been freed and
1028                                  * reused for another vnode.
1029                                  */
1030                                 if (m->queue != PQ_INACTIVE ||
1031                                     m->object != object ||
1032                                     TAILQ_NEXT(m, pageq) != &marker) {
1033                                         vm_page_unlock(m);
1034                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1035                                                 vnodes_skipped++;
1036                                         goto unlock_and_continue;
1037                                 }
1038         
1039                                 /*
1040                                  * The page may have been busied during the
1041                                  * blocking in vget().  We don't move the
1042                                  * page back onto the end of the queue so that
1043                                  * statistics are more correct if we don't.
1044                                  */
1045                                 if (m->busy || (m->oflags & VPO_BUSY)) {
1046                                         vm_page_unlock(m);
1047                                         goto unlock_and_continue;
1048                                 }
1049
1050                                 /*
1051                                  * If the page has become held it might
1052                                  * be undergoing I/O, so skip it
1053                                  */
1054                                 if (m->hold_count) {
1055                                         vm_page_unlock(m);
1056                                         vm_page_requeue(m);
1057                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1058                                                 vnodes_skipped++;
1059                                         goto unlock_and_continue;
1060                                 }
1061                         }
1062
1063                         /*
1064                          * If a page is dirty, then it is either being washed
1065                          * (but not yet cleaned) or it is still in the
1066                          * laundry.  If it is still in the laundry, then we
1067                          * start the cleaning operation. 
1068                          *
1069                          * decrement page_shortage on success to account for
1070                          * the (future) cleaned page.  Otherwise we could wind
1071                          * up laundering or cleaning too many pages.
1072                          */
1073                         vm_page_unlock_queues();
1074                         if (vm_pageout_clean(m) != 0) {
1075                                 --page_shortage;
1076                                 --maxlaunder;
1077                         }
1078                         vm_page_lock_queues();
1079 unlock_and_continue:
1080                         vm_page_lock_assert(m, MA_NOTOWNED);
1081                         VM_OBJECT_UNLOCK(object);
1082                         if (mp != NULL) {
1083                                 vm_page_unlock_queues();
1084                                 if (vp != NULL)
1085                                         vput(vp);
1086                                 VFS_UNLOCK_GIANT(vfslocked);
1087                                 vm_object_deallocate(object);
1088                                 vn_finished_write(mp);
1089                                 vm_page_lock_queues();
1090                         }
1091                         next = TAILQ_NEXT(&marker, pageq);
1092                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl,
1093                                      &marker, pageq);
1094                         vm_page_lock_assert(m, MA_NOTOWNED);
1095                         continue;
1096                 }
1097                 vm_page_unlock(m);
1098                 VM_OBJECT_UNLOCK(object);
1099         }
1100
1101         /*
1102          * Compute the number of pages we want to try to move from the
1103          * active queue to the inactive queue.
1104          */
1105         page_shortage = vm_paging_target() +
1106                 cnt.v_inactive_target - cnt.v_inactive_count;
1107         page_shortage += addl_page_shortage;
1108
1109         /*
1110          * Scan the active queue for things we can deactivate. We nominally
1111          * track the per-page activity counter and use it to locate
1112          * deactivation candidates.
1113          */
1114         pcount = cnt.v_active_count;
1115         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1116         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1117
1118         while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1119
1120                 KASSERT(m->queue == PQ_ACTIVE,
1121                     ("vm_pageout_scan: page %p isn't active", m));
1122
1123                 next = TAILQ_NEXT(m, pageq);
1124                 if ((m->flags & PG_MARKER) != 0) {
1125                         m = next;
1126                         continue;
1127                 }
1128                 if (!vm_pageout_page_lock(m, &next)) {
1129                         vm_page_unlock(m);
1130                         m = next;
1131                         continue;
1132                 }
1133                 object = m->object;
1134                 if (!VM_OBJECT_TRYLOCK(object) &&
1135                     !vm_pageout_fallback_object_lock(m, &next)) {
1136                         VM_OBJECT_UNLOCK(object);
1137                         vm_page_unlock(m);
1138                         m = next;
1139                         continue;
1140                 }
1141
1142                 /*
1143                  * Don't deactivate pages that are busy.
1144                  */
1145                 if ((m->busy != 0) ||
1146                     (m->oflags & VPO_BUSY) ||
1147                     (m->hold_count != 0)) {
1148                         vm_page_unlock(m);
1149                         VM_OBJECT_UNLOCK(object);
1150                         vm_page_requeue(m);
1151                         m = next;
1152                         continue;
1153                 }
1154
1155                 /*
1156                  * The count for pagedaemon pages is done after checking the
1157                  * page for eligibility...
1158                  */
1159                 cnt.v_pdpages++;
1160
1161                 /*
1162                  * Check to see "how much" the page has been used.
1163                  */
1164                 actcount = 0;
1165                 if (object->ref_count != 0) {
1166                         if (m->flags & PG_REFERENCED) {
1167                                 actcount += 1;
1168                         }
1169                         actcount += pmap_ts_referenced(m);
1170                         if (actcount) {
1171                                 m->act_count += ACT_ADVANCE + actcount;
1172                                 if (m->act_count > ACT_MAX)
1173                                         m->act_count = ACT_MAX;
1174                         }
1175                 }
1176
1177                 /*
1178                  * Since we have "tested" this bit, we need to clear it now.
1179                  */
1180                 vm_page_flag_clear(m, PG_REFERENCED);
1181
1182                 /*
1183                  * Only if an object is currently being used, do we use the
1184                  * page activation count stats.
1185                  */
1186                 if (actcount && (object->ref_count != 0)) {
1187                         vm_page_requeue(m);
1188                 } else {
1189                         m->act_count -= min(m->act_count, ACT_DECLINE);
1190                         if (vm_pageout_algorithm ||
1191                             object->ref_count == 0 ||
1192                             m->act_count == 0) {
1193                                 page_shortage--;
1194                                 if (object->ref_count == 0) {
1195                                         KASSERT(!pmap_page_is_mapped(m),
1196                                     ("vm_pageout_scan: page %p is mapped", m));
1197                                         if (m->dirty == 0)
1198                                                 vm_page_cache(m);
1199                                         else
1200                                                 vm_page_deactivate(m);
1201                                 } else {
1202                                         vm_page_deactivate(m);
1203                                 }
1204                         } else {
1205                                 vm_page_requeue(m);
1206                         }
1207                 }
1208                 vm_page_unlock(m);
1209                 VM_OBJECT_UNLOCK(object);
1210                 m = next;
1211         }
1212         vm_page_unlock_queues();
1213 #if !defined(NO_SWAPPING)
1214         /*
1215          * Idle process swapout -- run once per second.
1216          */
1217         if (vm_swap_idle_enabled) {
1218                 static long lsec;
1219                 if (time_second != lsec) {
1220                         vm_req_vmdaemon(VM_SWAP_IDLE);
1221                         lsec = time_second;
1222                 }
1223         }
1224 #endif
1225                 
1226         /*
1227          * If we didn't get enough free pages, and we have skipped a vnode
1228          * in a writeable object, wakeup the sync daemon.  And kick swapout
1229          * if we did not get enough free pages.
1230          */
1231         if (vm_paging_target() > 0) {
1232                 if (vnodes_skipped && vm_page_count_min())
1233                         (void) speedup_syncer();
1234 #if !defined(NO_SWAPPING)
1235                 if (vm_swap_enabled && vm_page_count_target())
1236                         vm_req_vmdaemon(VM_SWAP_NORMAL);
1237 #endif
1238         }
1239
1240         /*
1241          * If we are critically low on one of RAM or swap and low on
1242          * the other, kill the largest process.  However, we avoid
1243          * doing this on the first pass in order to give ourselves a
1244          * chance to flush out dirty vnode-backed pages and to allow
1245          * active pages to be moved to the inactive queue and reclaimed.
1246          */
1247         if (pass != 0 &&
1248             ((swap_pager_avail < 64 && vm_page_count_min()) ||
1249              (swap_pager_full && vm_paging_target() > 0)))
1250                 vm_pageout_oom(VM_OOM_MEM);
1251 }
1252
1253
1254 void
1255 vm_pageout_oom(int shortage)
1256 {
1257         struct proc *p, *bigproc;
1258         vm_offset_t size, bigsize;
1259         struct thread *td;
1260         struct vmspace *vm;
1261
1262         /*
1263          * We keep the process bigproc locked once we find it to keep anyone
1264          * from messing with it; however, there is a possibility of
1265          * deadlock if process B is bigproc and one of it's child processes
1266          * attempts to propagate a signal to B while we are waiting for A's
1267          * lock while walking this list.  To avoid this, we don't block on
1268          * the process lock but just skip a process if it is already locked.
1269          */
1270         bigproc = NULL;
1271         bigsize = 0;
1272         sx_slock(&allproc_lock);
1273         FOREACH_PROC_IN_SYSTEM(p) {
1274                 int breakout;
1275
1276                 if (PROC_TRYLOCK(p) == 0)
1277                         continue;
1278                 /*
1279                  * If this is a system, protected or killed process, skip it.
1280                  */
1281                 if ((p->p_flag & (P_INEXEC | P_PROTECTED | P_SYSTEM)) ||
1282                     (p->p_pid == 1) || P_KILLED(p) ||
1283                     ((p->p_pid < 48) && (swap_pager_avail != 0))) {
1284                         PROC_UNLOCK(p);
1285                         continue;
1286                 }
1287                 /*
1288                  * If the process is in a non-running type state,
1289                  * don't touch it.  Check all the threads individually.
1290                  */
1291                 breakout = 0;
1292                 FOREACH_THREAD_IN_PROC(p, td) {
1293                         thread_lock(td);
1294                         if (!TD_ON_RUNQ(td) &&
1295                             !TD_IS_RUNNING(td) &&
1296                             !TD_IS_SLEEPING(td)) {
1297                                 thread_unlock(td);
1298                                 breakout = 1;
1299                                 break;
1300                         }
1301                         thread_unlock(td);
1302                 }
1303                 if (breakout) {
1304                         PROC_UNLOCK(p);
1305                         continue;
1306                 }
1307                 /*
1308                  * get the process size
1309                  */
1310                 vm = vmspace_acquire_ref(p);
1311                 if (vm == NULL) {
1312                         PROC_UNLOCK(p);
1313                         continue;
1314                 }
1315                 if (!vm_map_trylock_read(&vm->vm_map)) {
1316                         vmspace_free(vm);
1317                         PROC_UNLOCK(p);
1318                         continue;
1319                 }
1320                 size = vmspace_swap_count(vm);
1321                 vm_map_unlock_read(&vm->vm_map);
1322                 if (shortage == VM_OOM_MEM)
1323                         size += vmspace_resident_count(vm);
1324                 vmspace_free(vm);
1325                 /*
1326                  * if the this process is bigger than the biggest one
1327                  * remember it.
1328                  */
1329                 if (size > bigsize) {
1330                         if (bigproc != NULL)
1331                                 PROC_UNLOCK(bigproc);
1332                         bigproc = p;
1333                         bigsize = size;
1334                 } else
1335                         PROC_UNLOCK(p);
1336         }
1337         sx_sunlock(&allproc_lock);
1338         if (bigproc != NULL) {
1339                 killproc(bigproc, "out of swap space");
1340                 sched_nice(bigproc, PRIO_MIN);
1341                 PROC_UNLOCK(bigproc);
1342                 wakeup(&cnt.v_free_count);
1343         }
1344 }
1345
1346 /*
1347  * This routine tries to maintain the pseudo LRU active queue,
1348  * so that during long periods of time where there is no paging,
1349  * that some statistic accumulation still occurs.  This code
1350  * helps the situation where paging just starts to occur.
1351  */
1352 static void
1353 vm_pageout_page_stats()
1354 {
1355         vm_object_t object;
1356         vm_page_t m,next;
1357         int pcount,tpcount;             /* Number of pages to check */
1358         static int fullintervalcount = 0;
1359         int page_shortage;
1360
1361         page_shortage = 
1362             (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1363             (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1364
1365         if (page_shortage <= 0)
1366                 return;
1367
1368         vm_page_lock_queues();
1369         pcount = cnt.v_active_count;
1370         fullintervalcount += vm_pageout_stats_interval;
1371         if (fullintervalcount < vm_pageout_full_stats_interval) {
1372                 tpcount = (int64_t)vm_pageout_stats_max * cnt.v_active_count /
1373                     cnt.v_page_count;
1374                 if (pcount > tpcount)
1375                         pcount = tpcount;
1376         } else {
1377                 fullintervalcount = 0;
1378         }
1379
1380         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1381         while ((m != NULL) && (pcount-- > 0)) {
1382                 int actcount;
1383
1384                 KASSERT(m->queue == PQ_ACTIVE,
1385                     ("vm_pageout_page_stats: page %p isn't active", m));
1386
1387                 next = TAILQ_NEXT(m, pageq);
1388                 if ((m->flags & PG_MARKER) != 0) {
1389                         m = next;
1390                         continue;
1391                 }
1392                 vm_page_lock_assert(m, MA_NOTOWNED);
1393                 if (!vm_pageout_page_lock(m, &next)) {
1394                         vm_page_unlock(m);
1395                         m = next;
1396                         continue;
1397                 }
1398                 object = m->object;
1399                 if (!VM_OBJECT_TRYLOCK(object) &&
1400                     !vm_pageout_fallback_object_lock(m, &next)) {
1401                         VM_OBJECT_UNLOCK(object);
1402                         vm_page_unlock(m);
1403                         m = next;
1404                         continue;
1405                 }
1406
1407                 /*
1408                  * Don't deactivate pages that are busy.
1409                  */
1410                 if ((m->busy != 0) ||
1411                     (m->oflags & VPO_BUSY) ||
1412                     (m->hold_count != 0)) {
1413                         vm_page_unlock(m);
1414                         VM_OBJECT_UNLOCK(object);
1415                         vm_page_requeue(m);
1416                         m = next;
1417                         continue;
1418                 }
1419
1420                 actcount = 0;
1421                 if (m->flags & PG_REFERENCED) {
1422                         vm_page_flag_clear(m, PG_REFERENCED);
1423                         actcount += 1;
1424                 }
1425
1426                 actcount += pmap_ts_referenced(m);
1427                 if (actcount) {
1428                         m->act_count += ACT_ADVANCE + actcount;
1429                         if (m->act_count > ACT_MAX)
1430                                 m->act_count = ACT_MAX;
1431                         vm_page_requeue(m);
1432                 } else {
1433                         if (m->act_count == 0) {
1434                                 /*
1435                                  * We turn off page access, so that we have
1436                                  * more accurate RSS stats.  We don't do this
1437                                  * in the normal page deactivation when the
1438                                  * system is loaded VM wise, because the
1439                                  * cost of the large number of page protect
1440                                  * operations would be higher than the value
1441                                  * of doing the operation.
1442                                  */
1443                                 pmap_remove_all(m);
1444                                 vm_page_deactivate(m);
1445                         } else {
1446                                 m->act_count -= min(m->act_count, ACT_DECLINE);
1447                                 vm_page_requeue(m);
1448                         }
1449                 }
1450                 vm_page_unlock(m);
1451                 VM_OBJECT_UNLOCK(object);
1452                 m = next;
1453         }
1454         vm_page_unlock_queues();
1455 }
1456
1457 /*
1458  *      vm_pageout is the high level pageout daemon.
1459  */
1460 static void
1461 vm_pageout()
1462 {
1463         int error, pass;
1464
1465         /*
1466          * Initialize some paging parameters.
1467          */
1468         cnt.v_interrupt_free_min = 2;
1469         if (cnt.v_page_count < 2000)
1470                 vm_pageout_page_count = 8;
1471
1472         /*
1473          * v_free_reserved needs to include enough for the largest
1474          * swap pager structures plus enough for any pv_entry structs
1475          * when paging. 
1476          */
1477         if (cnt.v_page_count > 1024)
1478                 cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1479         else
1480                 cnt.v_free_min = 4;
1481         cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1482             cnt.v_interrupt_free_min;
1483         cnt.v_free_reserved = vm_pageout_page_count +
1484             cnt.v_pageout_free_min + (cnt.v_page_count / 768);
1485         cnt.v_free_severe = cnt.v_free_min / 2;
1486         cnt.v_free_min += cnt.v_free_reserved;
1487         cnt.v_free_severe += cnt.v_free_reserved;
1488
1489         /*
1490          * v_free_target and v_cache_min control pageout hysteresis.  Note
1491          * that these are more a measure of the VM cache queue hysteresis
1492          * then the VM free queue.  Specifically, v_free_target is the
1493          * high water mark (free+cache pages).
1494          *
1495          * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1496          * low water mark, while v_free_min is the stop.  v_cache_min must
1497          * be big enough to handle memory needs while the pageout daemon
1498          * is signalled and run to free more pages.
1499          */
1500         if (cnt.v_free_count > 6144)
1501                 cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1502         else
1503                 cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1504
1505         if (cnt.v_free_count > 2048) {
1506                 cnt.v_cache_min = cnt.v_free_target;
1507                 cnt.v_cache_max = 2 * cnt.v_cache_min;
1508                 cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1509         } else {
1510                 cnt.v_cache_min = 0;
1511                 cnt.v_cache_max = 0;
1512                 cnt.v_inactive_target = cnt.v_free_count / 4;
1513         }
1514         if (cnt.v_inactive_target > cnt.v_free_count / 3)
1515                 cnt.v_inactive_target = cnt.v_free_count / 3;
1516
1517         /* XXX does not really belong here */
1518         if (vm_page_max_wired == 0)
1519                 vm_page_max_wired = cnt.v_free_count / 3;
1520
1521         if (vm_pageout_stats_max == 0)
1522                 vm_pageout_stats_max = cnt.v_free_target;
1523
1524         /*
1525          * Set interval in seconds for stats scan.
1526          */
1527         if (vm_pageout_stats_interval == 0)
1528                 vm_pageout_stats_interval = 5;
1529         if (vm_pageout_full_stats_interval == 0)
1530                 vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1531
1532         swap_pager_swap_init();
1533         pass = 0;
1534         /*
1535          * The pageout daemon is never done, so loop forever.
1536          */
1537         while (TRUE) {
1538                 /*
1539                  * If we have enough free memory, wakeup waiters.  Do
1540                  * not clear vm_pages_needed until we reach our target,
1541                  * otherwise we may be woken up over and over again and
1542                  * waste a lot of cpu.
1543                  */
1544                 mtx_lock(&vm_page_queue_free_mtx);
1545                 if (vm_pages_needed && !vm_page_count_min()) {
1546                         if (!vm_paging_needed())
1547                                 vm_pages_needed = 0;
1548                         wakeup(&cnt.v_free_count);
1549                 }
1550                 if (vm_pages_needed) {
1551                         /*
1552                          * Still not done, take a second pass without waiting
1553                          * (unlimited dirty cleaning), otherwise sleep a bit
1554                          * and try again.
1555                          */
1556                         ++pass;
1557                         if (pass > 1)
1558                                 msleep(&vm_pages_needed,
1559                                     &vm_page_queue_free_mtx, PVM, "psleep",
1560                                     hz / 2);
1561                 } else {
1562                         /*
1563                          * Good enough, sleep & handle stats.  Prime the pass
1564                          * for the next run.
1565                          */
1566                         if (pass > 1)
1567                                 pass = 1;
1568                         else
1569                                 pass = 0;
1570                         error = msleep(&vm_pages_needed,
1571                             &vm_page_queue_free_mtx, PVM, "psleep",
1572                             vm_pageout_stats_interval * hz);
1573                         if (error && !vm_pages_needed) {
1574                                 mtx_unlock(&vm_page_queue_free_mtx);
1575                                 pass = 0;
1576                                 vm_pageout_page_stats();
1577                                 continue;
1578                         }
1579                 }
1580                 if (vm_pages_needed)
1581                         cnt.v_pdwakeups++;
1582                 mtx_unlock(&vm_page_queue_free_mtx);
1583                 vm_pageout_scan(pass);
1584         }
1585 }
1586
1587 /*
1588  * Unless the free page queue lock is held by the caller, this function
1589  * should be regarded as advisory.  Specifically, the caller should
1590  * not msleep() on &cnt.v_free_count following this function unless
1591  * the free page queue lock is held until the msleep() is performed.
1592  */
1593 void
1594 pagedaemon_wakeup()
1595 {
1596
1597         if (!vm_pages_needed && curthread->td_proc != pageproc) {
1598                 vm_pages_needed = 1;
1599                 wakeup(&vm_pages_needed);
1600         }
1601 }
1602
1603 #if !defined(NO_SWAPPING)
1604 static void
1605 vm_req_vmdaemon(int req)
1606 {
1607         static int lastrun = 0;
1608
1609         mtx_lock(&vm_daemon_mtx);
1610         vm_pageout_req_swapout |= req;
1611         if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1612                 wakeup(&vm_daemon_needed);
1613                 lastrun = ticks;
1614         }
1615         mtx_unlock(&vm_daemon_mtx);
1616 }
1617
1618 static void
1619 vm_daemon()
1620 {
1621         struct rlimit rsslim;
1622         struct proc *p;
1623         struct thread *td;
1624         struct vmspace *vm;
1625         int breakout, swapout_flags;
1626
1627         while (TRUE) {
1628                 mtx_lock(&vm_daemon_mtx);
1629                 msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", 0);
1630                 swapout_flags = vm_pageout_req_swapout;
1631                 vm_pageout_req_swapout = 0;
1632                 mtx_unlock(&vm_daemon_mtx);
1633                 if (swapout_flags)
1634                         swapout_procs(swapout_flags);
1635
1636                 /*
1637                  * scan the processes for exceeding their rlimits or if
1638                  * process is swapped out -- deactivate pages
1639                  */
1640                 sx_slock(&allproc_lock);
1641                 FOREACH_PROC_IN_SYSTEM(p) {
1642                         vm_pindex_t limit, size;
1643
1644                         /*
1645                          * if this is a system process or if we have already
1646                          * looked at this process, skip it.
1647                          */
1648                         PROC_LOCK(p);
1649                         if (p->p_flag & (P_INEXEC | P_SYSTEM | P_WEXIT)) {
1650                                 PROC_UNLOCK(p);
1651                                 continue;
1652                         }
1653                         /*
1654                          * if the process is in a non-running type state,
1655                          * don't touch it.
1656                          */
1657                         breakout = 0;
1658                         FOREACH_THREAD_IN_PROC(p, td) {
1659                                 thread_lock(td);
1660                                 if (!TD_ON_RUNQ(td) &&
1661                                     !TD_IS_RUNNING(td) &&
1662                                     !TD_IS_SLEEPING(td)) {
1663                                         thread_unlock(td);
1664                                         breakout = 1;
1665                                         break;
1666                                 }
1667                                 thread_unlock(td);
1668                         }
1669                         if (breakout) {
1670                                 PROC_UNLOCK(p);
1671                                 continue;
1672                         }
1673                         /*
1674                          * get a limit
1675                          */
1676                         lim_rlimit(p, RLIMIT_RSS, &rsslim);
1677                         limit = OFF_TO_IDX(
1678                             qmin(rsslim.rlim_cur, rsslim.rlim_max));
1679
1680                         /*
1681                          * let processes that are swapped out really be
1682                          * swapped out set the limit to nothing (will force a
1683                          * swap-out.)
1684                          */
1685                         if ((p->p_flag & P_INMEM) == 0)
1686                                 limit = 0;      /* XXX */
1687                         vm = vmspace_acquire_ref(p);
1688                         PROC_UNLOCK(p);
1689                         if (vm == NULL)
1690                                 continue;
1691
1692                         size = vmspace_resident_count(vm);
1693                         if (limit >= 0 && size >= limit) {
1694                                 vm_pageout_map_deactivate_pages(
1695                                     &vm->vm_map, limit);
1696                         }
1697                         vmspace_free(vm);
1698                 }
1699                 sx_sunlock(&allproc_lock);
1700         }
1701 }
1702 #endif                  /* !defined(NO_SWAPPING) */