]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_pageout.c
All the racct_*() calls need to happen with the proc locked. Fixing this
[FreeBSD/FreeBSD.git] / sys / vm / vm_pageout.c
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  * Copyright (c) 2005 Yahoo! Technologies Norway AS
9  * All rights reserved.
10  *
11  * This code is derived from software contributed to Berkeley by
12  * The Mach Operating System project at Carnegie-Mellon University.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *      This product includes software developed by the University of
25  *      California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
43  *
44  *
45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46  * All rights reserved.
47  *
48  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49  *
50  * Permission to use, copy, modify and distribute this software and
51  * its documentation is hereby granted, provided that both the copyright
52  * notice and this permission notice appear in all copies of the
53  * software, derivative works or modified versions, and any portions
54  * thereof, and that both notices appear in supporting documentation.
55  *
56  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59  *
60  * Carnegie Mellon requests users of this software to return to
61  *
62  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63  *  School of Computer Science
64  *  Carnegie Mellon University
65  *  Pittsburgh PA 15213-3890
66  *
67  * any improvements or extensions that they make and grant Carnegie the
68  * rights to redistribute these changes.
69  */
70
71 /*
72  *      The proverbial page-out daemon.
73  */
74
75 #include <sys/cdefs.h>
76 __FBSDID("$FreeBSD$");
77
78 #include "opt_vm.h"
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/eventhandler.h>
83 #include <sys/lock.h>
84 #include <sys/mutex.h>
85 #include <sys/proc.h>
86 #include <sys/kthread.h>
87 #include <sys/ktr.h>
88 #include <sys/mount.h>
89 #include <sys/racct.h>
90 #include <sys/resourcevar.h>
91 #include <sys/sched.h>
92 #include <sys/signalvar.h>
93 #include <sys/vnode.h>
94 #include <sys/vmmeter.h>
95 #include <sys/sx.h>
96 #include <sys/sysctl.h>
97
98 #include <vm/vm.h>
99 #include <vm/vm_param.h>
100 #include <vm/vm_object.h>
101 #include <vm/vm_page.h>
102 #include <vm/vm_map.h>
103 #include <vm/vm_pageout.h>
104 #include <vm/vm_pager.h>
105 #include <vm/swap_pager.h>
106 #include <vm/vm_extern.h>
107 #include <vm/uma.h>
108
109 /*
110  * System initialization
111  */
112
113 /* the kernel process "vm_pageout"*/
114 static void vm_pageout(void);
115 static int vm_pageout_clean(vm_page_t);
116 static void vm_pageout_scan(int pass);
117
118 struct proc *pageproc;
119
120 static struct kproc_desc page_kp = {
121         "pagedaemon",
122         vm_pageout,
123         &pageproc
124 };
125 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start,
126     &page_kp);
127
128 #if !defined(NO_SWAPPING)
129 /* the kernel process "vm_daemon"*/
130 static void vm_daemon(void);
131 static struct   proc *vmproc;
132
133 static struct kproc_desc vm_kp = {
134         "vmdaemon",
135         vm_daemon,
136         &vmproc
137 };
138 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
139 #endif
140
141
142 int vm_pages_needed;            /* Event on which pageout daemon sleeps */
143 int vm_pageout_deficit;         /* Estimated number of pages deficit */
144 int vm_pageout_pages_needed;    /* flag saying that the pageout daemon needs pages */
145
146 #if !defined(NO_SWAPPING)
147 static int vm_pageout_req_swapout;      /* XXX */
148 static int vm_daemon_needed;
149 static struct mtx vm_daemon_mtx;
150 /* Allow for use by vm_pageout before vm_daemon is initialized. */
151 MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
152 #endif
153 static int vm_max_launder = 32;
154 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
155 static int vm_pageout_full_stats_interval = 0;
156 static int vm_pageout_algorithm=0;
157 static int defer_swap_pageouts=0;
158 static int disable_swap_pageouts=0;
159
160 #if defined(NO_SWAPPING)
161 static int vm_swap_enabled=0;
162 static int vm_swap_idle_enabled=0;
163 #else
164 static int vm_swap_enabled=1;
165 static int vm_swap_idle_enabled=0;
166 #endif
167
168 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
169         CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
170
171 SYSCTL_INT(_vm, OID_AUTO, max_launder,
172         CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
173
174 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
175         CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
176
177 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
178         CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
179
180 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
181         CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
182
183 #if defined(NO_SWAPPING)
184 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
185         CTLFLAG_RD, &vm_swap_enabled, 0, "Enable entire process swapout");
186 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
187         CTLFLAG_RD, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
188 #else
189 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
190         CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
191 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
192         CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
193 #endif
194
195 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
196         CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
197
198 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
199         CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
200
201 static int pageout_lock_miss;
202 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
203         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
204
205 #define VM_PAGEOUT_PAGE_COUNT 16
206 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
207
208 int vm_page_max_wired;          /* XXX max # of wired pages system-wide */
209 SYSCTL_INT(_vm, OID_AUTO, max_wired,
210         CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
211
212 #if !defined(NO_SWAPPING)
213 static void vm_pageout_map_deactivate_pages(vm_map_t, long);
214 static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
215 static void vm_req_vmdaemon(int req);
216 #endif
217 static void vm_pageout_page_stats(void);
218
219 /*
220  * Initialize a dummy page for marking the caller's place in the specified
221  * paging queue.  In principle, this function only needs to set the flag
222  * PG_MARKER.  Nonetheless, it sets the flag VPO_BUSY and initializes the hold
223  * count to one as safety precautions.
224  */ 
225 static void
226 vm_pageout_init_marker(vm_page_t marker, u_short queue)
227 {
228
229         bzero(marker, sizeof(*marker));
230         marker->flags = PG_MARKER;
231         marker->oflags = VPO_BUSY;
232         marker->queue = queue;
233         marker->hold_count = 1;
234 }
235
236 /*
237  * vm_pageout_fallback_object_lock:
238  * 
239  * Lock vm object currently associated with `m'. VM_OBJECT_TRYLOCK is
240  * known to have failed and page queue must be either PQ_ACTIVE or
241  * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
242  * while locking the vm object.  Use marker page to detect page queue
243  * changes and maintain notion of next page on page queue.  Return
244  * TRUE if no changes were detected, FALSE otherwise.  vm object is
245  * locked on return.
246  * 
247  * This function depends on both the lock portion of struct vm_object
248  * and normal struct vm_page being type stable.
249  */
250 boolean_t
251 vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
252 {
253         struct vm_page marker;
254         boolean_t unchanged;
255         u_short queue;
256         vm_object_t object;
257
258         queue = m->queue;
259         vm_pageout_init_marker(&marker, queue);
260         object = m->object;
261         
262         TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl,
263                            m, &marker, pageq);
264         vm_page_unlock_queues();
265         vm_page_unlock(m);
266         VM_OBJECT_LOCK(object);
267         vm_page_lock(m);
268         vm_page_lock_queues();
269
270         /* Page queue might have changed. */
271         *next = TAILQ_NEXT(&marker, pageq);
272         unchanged = (m->queue == queue &&
273                      m->object == object &&
274                      &marker == TAILQ_NEXT(m, pageq));
275         TAILQ_REMOVE(&vm_page_queues[queue].pl,
276                      &marker, pageq);
277         return (unchanged);
278 }
279
280 /*
281  * Lock the page while holding the page queue lock.  Use marker page
282  * to detect page queue changes and maintain notion of next page on
283  * page queue.  Return TRUE if no changes were detected, FALSE
284  * otherwise.  The page is locked on return. The page queue lock might
285  * be dropped and reacquired.
286  *
287  * This function depends on normal struct vm_page being type stable.
288  */
289 boolean_t
290 vm_pageout_page_lock(vm_page_t m, vm_page_t *next)
291 {
292         struct vm_page marker;
293         boolean_t unchanged;
294         u_short queue;
295
296         vm_page_lock_assert(m, MA_NOTOWNED);
297         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
298
299         if (vm_page_trylock(m))
300                 return (TRUE);
301
302         queue = m->queue;
303         vm_pageout_init_marker(&marker, queue);
304
305         TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl, m, &marker, pageq);
306         vm_page_unlock_queues();
307         vm_page_lock(m);
308         vm_page_lock_queues();
309
310         /* Page queue might have changed. */
311         *next = TAILQ_NEXT(&marker, pageq);
312         unchanged = (m->queue == queue && &marker == TAILQ_NEXT(m, pageq));
313         TAILQ_REMOVE(&vm_page_queues[queue].pl, &marker, pageq);
314         return (unchanged);
315 }
316
317 /*
318  * vm_pageout_clean:
319  *
320  * Clean the page and remove it from the laundry.
321  * 
322  * We set the busy bit to cause potential page faults on this page to
323  * block.  Note the careful timing, however, the busy bit isn't set till
324  * late and we cannot do anything that will mess with the page.
325  */
326 static int
327 vm_pageout_clean(vm_page_t m)
328 {
329         vm_object_t object;
330         vm_page_t mc[2*vm_pageout_page_count], pb, ps;
331         int pageout_count;
332         int ib, is, page_base;
333         vm_pindex_t pindex = m->pindex;
334
335         vm_page_lock_assert(m, MA_OWNED);
336         object = m->object;
337         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
338
339         /*
340          * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
341          * with the new swapper, but we could have serious problems paging
342          * out other object types if there is insufficient memory.  
343          *
344          * Unfortunately, checking free memory here is far too late, so the
345          * check has been moved up a procedural level.
346          */
347
348         /*
349          * Can't clean the page if it's busy or held.
350          */
351         KASSERT(m->busy == 0 && (m->oflags & VPO_BUSY) == 0,
352             ("vm_pageout_clean: page %p is busy", m));
353         KASSERT(m->hold_count == 0, ("vm_pageout_clean: page %p is held", m));
354         vm_page_unlock(m);
355
356         mc[vm_pageout_page_count] = pb = ps = m;
357         pageout_count = 1;
358         page_base = vm_pageout_page_count;
359         ib = 1;
360         is = 1;
361
362         /*
363          * Scan object for clusterable pages.
364          *
365          * We can cluster ONLY if: ->> the page is NOT
366          * clean, wired, busy, held, or mapped into a
367          * buffer, and one of the following:
368          * 1) The page is inactive, or a seldom used
369          *    active page.
370          * -or-
371          * 2) we force the issue.
372          *
373          * During heavy mmap/modification loads the pageout
374          * daemon can really fragment the underlying file
375          * due to flushing pages out of order and not trying
376          * align the clusters (which leave sporatic out-of-order
377          * holes).  To solve this problem we do the reverse scan
378          * first and attempt to align our cluster, then do a 
379          * forward scan if room remains.
380          */
381 more:
382         while (ib && pageout_count < vm_pageout_page_count) {
383                 vm_page_t p;
384
385                 if (ib > pindex) {
386                         ib = 0;
387                         break;
388                 }
389
390                 if ((p = vm_page_prev(pb)) == NULL ||
391                     (p->oflags & VPO_BUSY) != 0 || p->busy != 0) {
392                         ib = 0;
393                         break;
394                 }
395                 vm_page_lock(p);
396                 vm_page_test_dirty(p);
397                 if (p->dirty == 0 ||
398                     p->queue != PQ_INACTIVE ||
399                     p->hold_count != 0) {       /* may be undergoing I/O */
400                         vm_page_unlock(p);
401                         ib = 0;
402                         break;
403                 }
404                 vm_page_unlock(p);
405                 mc[--page_base] = pb = p;
406                 ++pageout_count;
407                 ++ib;
408                 /*
409                  * alignment boundry, stop here and switch directions.  Do
410                  * not clear ib.
411                  */
412                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
413                         break;
414         }
415
416         while (pageout_count < vm_pageout_page_count && 
417             pindex + is < object->size) {
418                 vm_page_t p;
419
420                 if ((p = vm_page_next(ps)) == NULL ||
421                     (p->oflags & VPO_BUSY) != 0 || p->busy != 0)
422                         break;
423                 vm_page_lock(p);
424                 vm_page_test_dirty(p);
425                 if (p->dirty == 0 ||
426                     p->queue != PQ_INACTIVE ||
427                     p->hold_count != 0) {       /* may be undergoing I/O */
428                         vm_page_unlock(p);
429                         break;
430                 }
431                 vm_page_unlock(p);
432                 mc[page_base + pageout_count] = ps = p;
433                 ++pageout_count;
434                 ++is;
435         }
436
437         /*
438          * If we exhausted our forward scan, continue with the reverse scan
439          * when possible, even past a page boundry.  This catches boundry
440          * conditions.
441          */
442         if (ib && pageout_count < vm_pageout_page_count)
443                 goto more;
444
445         /*
446          * we allow reads during pageouts...
447          */
448         return (vm_pageout_flush(&mc[page_base], pageout_count, 0, 0, NULL));
449 }
450
451 /*
452  * vm_pageout_flush() - launder the given pages
453  *
454  *      The given pages are laundered.  Note that we setup for the start of
455  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
456  *      reference count all in here rather then in the parent.  If we want
457  *      the parent to do more sophisticated things we may have to change
458  *      the ordering.
459  *
460  *      Returned runlen is the count of pages between mreq and first
461  *      page after mreq with status VM_PAGER_AGAIN.
462  */
463 int
464 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen)
465 {
466         vm_object_t object = mc[0]->object;
467         int pageout_status[count];
468         int numpagedout = 0;
469         int i, runlen;
470
471         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
472         mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
473
474         /*
475          * Initiate I/O.  Bump the vm_page_t->busy counter and
476          * mark the pages read-only.
477          *
478          * We do not have to fixup the clean/dirty bits here... we can
479          * allow the pager to do it after the I/O completes.
480          *
481          * NOTE! mc[i]->dirty may be partial or fragmented due to an
482          * edge case with file fragments.
483          */
484         for (i = 0; i < count; i++) {
485                 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
486                     ("vm_pageout_flush: partially invalid page %p index %d/%d",
487                         mc[i], i, count));
488                 vm_page_io_start(mc[i]);
489                 pmap_remove_write(mc[i]);
490         }
491         vm_object_pip_add(object, count);
492
493         vm_pager_put_pages(object, mc, count, flags, pageout_status);
494
495         runlen = count - mreq;
496         for (i = 0; i < count; i++) {
497                 vm_page_t mt = mc[i];
498
499                 KASSERT(pageout_status[i] == VM_PAGER_PEND ||
500                     (mt->flags & PG_WRITEABLE) == 0,
501                     ("vm_pageout_flush: page %p is not write protected", mt));
502                 switch (pageout_status[i]) {
503                 case VM_PAGER_OK:
504                 case VM_PAGER_PEND:
505                         numpagedout++;
506                         break;
507                 case VM_PAGER_BAD:
508                         /*
509                          * Page outside of range of object. Right now we
510                          * essentially lose the changes by pretending it
511                          * worked.
512                          */
513                         vm_page_undirty(mt);
514                         break;
515                 case VM_PAGER_ERROR:
516                 case VM_PAGER_FAIL:
517                         /*
518                          * If page couldn't be paged out, then reactivate the
519                          * page so it doesn't clog the inactive list.  (We
520                          * will try paging out it again later).
521                          */
522                         vm_page_lock(mt);
523                         vm_page_activate(mt);
524                         vm_page_unlock(mt);
525                         break;
526                 case VM_PAGER_AGAIN:
527                         if (i >= mreq && i - mreq < runlen)
528                                 runlen = i - mreq;
529                         break;
530                 }
531
532                 /*
533                  * If the operation is still going, leave the page busy to
534                  * block all other accesses. Also, leave the paging in
535                  * progress indicator set so that we don't attempt an object
536                  * collapse.
537                  */
538                 if (pageout_status[i] != VM_PAGER_PEND) {
539                         vm_object_pip_wakeup(object);
540                         vm_page_io_finish(mt);
541                         if (vm_page_count_severe()) {
542                                 vm_page_lock(mt);
543                                 vm_page_try_to_cache(mt);
544                                 vm_page_unlock(mt);
545                         }
546                 }
547         }
548         if (prunlen != NULL)
549                 *prunlen = runlen;
550         return (numpagedout);
551 }
552
553 #if !defined(NO_SWAPPING)
554 /*
555  *      vm_pageout_object_deactivate_pages
556  *
557  *      Deactivate enough pages to satisfy the inactive target
558  *      requirements.
559  *
560  *      The object and map must be locked.
561  */
562 static void
563 vm_pageout_object_deactivate_pages(pmap_t pmap, vm_object_t first_object,
564     long desired)
565 {
566         vm_object_t backing_object, object;
567         vm_page_t p;
568         int actcount, remove_mode;
569
570         VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
571         if (first_object->type == OBJT_DEVICE ||
572             first_object->type == OBJT_SG)
573                 return;
574         for (object = first_object;; object = backing_object) {
575                 if (pmap_resident_count(pmap) <= desired)
576                         goto unlock_return;
577                 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
578                 if (object->type == OBJT_PHYS || object->paging_in_progress)
579                         goto unlock_return;
580
581                 remove_mode = 0;
582                 if (object->shadow_count > 1)
583                         remove_mode = 1;
584                 /*
585                  * Scan the object's entire memory queue.
586                  */
587                 TAILQ_FOREACH(p, &object->memq, listq) {
588                         if (pmap_resident_count(pmap) <= desired)
589                                 goto unlock_return;
590                         if ((p->oflags & VPO_BUSY) != 0 || p->busy != 0)
591                                 continue;
592                         PCPU_INC(cnt.v_pdpages);
593                         vm_page_lock(p);
594                         if (p->wire_count != 0 || p->hold_count != 0 ||
595                             !pmap_page_exists_quick(pmap, p)) {
596                                 vm_page_unlock(p);
597                                 continue;
598                         }
599                         actcount = pmap_ts_referenced(p);
600                         if ((p->flags & PG_REFERENCED) != 0) {
601                                 if (actcount == 0)
602                                         actcount = 1;
603                                 vm_page_lock_queues();
604                                 vm_page_flag_clear(p, PG_REFERENCED);
605                                 vm_page_unlock_queues();
606                         }
607                         if (p->queue != PQ_ACTIVE && actcount != 0) {
608                                 vm_page_activate(p);
609                                 p->act_count += actcount;
610                         } else if (p->queue == PQ_ACTIVE) {
611                                 if (actcount == 0) {
612                                         p->act_count -= min(p->act_count,
613                                             ACT_DECLINE);
614                                         if (!remove_mode &&
615                                             (vm_pageout_algorithm ||
616                                             p->act_count == 0)) {
617                                                 pmap_remove_all(p);
618                                                 vm_page_deactivate(p);
619                                         } else {
620                                                 vm_page_lock_queues();
621                                                 vm_page_requeue(p);
622                                                 vm_page_unlock_queues();
623                                         }
624                                 } else {
625                                         vm_page_activate(p);
626                                         if (p->act_count < ACT_MAX -
627                                             ACT_ADVANCE)
628                                                 p->act_count += ACT_ADVANCE;
629                                         vm_page_lock_queues();
630                                         vm_page_requeue(p);
631                                         vm_page_unlock_queues();
632                                 }
633                         } else if (p->queue == PQ_INACTIVE)
634                                 pmap_remove_all(p);
635                         vm_page_unlock(p);
636                 }
637                 if ((backing_object = object->backing_object) == NULL)
638                         goto unlock_return;
639                 VM_OBJECT_LOCK(backing_object);
640                 if (object != first_object)
641                         VM_OBJECT_UNLOCK(object);
642         }
643 unlock_return:
644         if (object != first_object)
645                 VM_OBJECT_UNLOCK(object);
646 }
647
648 /*
649  * deactivate some number of pages in a map, try to do it fairly, but
650  * that is really hard to do.
651  */
652 static void
653 vm_pageout_map_deactivate_pages(map, desired)
654         vm_map_t map;
655         long desired;
656 {
657         vm_map_entry_t tmpe;
658         vm_object_t obj, bigobj;
659         int nothingwired;
660
661         if (!vm_map_trylock(map))
662                 return;
663
664         bigobj = NULL;
665         nothingwired = TRUE;
666
667         /*
668          * first, search out the biggest object, and try to free pages from
669          * that.
670          */
671         tmpe = map->header.next;
672         while (tmpe != &map->header) {
673                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
674                         obj = tmpe->object.vm_object;
675                         if (obj != NULL && VM_OBJECT_TRYLOCK(obj)) {
676                                 if (obj->shadow_count <= 1 &&
677                                     (bigobj == NULL ||
678                                      bigobj->resident_page_count < obj->resident_page_count)) {
679                                         if (bigobj != NULL)
680                                                 VM_OBJECT_UNLOCK(bigobj);
681                                         bigobj = obj;
682                                 } else
683                                         VM_OBJECT_UNLOCK(obj);
684                         }
685                 }
686                 if (tmpe->wired_count > 0)
687                         nothingwired = FALSE;
688                 tmpe = tmpe->next;
689         }
690
691         if (bigobj != NULL) {
692                 vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
693                 VM_OBJECT_UNLOCK(bigobj);
694         }
695         /*
696          * Next, hunt around for other pages to deactivate.  We actually
697          * do this search sort of wrong -- .text first is not the best idea.
698          */
699         tmpe = map->header.next;
700         while (tmpe != &map->header) {
701                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
702                         break;
703                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
704                         obj = tmpe->object.vm_object;
705                         if (obj != NULL) {
706                                 VM_OBJECT_LOCK(obj);
707                                 vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
708                                 VM_OBJECT_UNLOCK(obj);
709                         }
710                 }
711                 tmpe = tmpe->next;
712         }
713
714         /*
715          * Remove all mappings if a process is swapped out, this will free page
716          * table pages.
717          */
718         if (desired == 0 && nothingwired) {
719                 tmpe = map->header.next;
720                 while (tmpe != &map->header) {
721                         pmap_remove(vm_map_pmap(map), tmpe->start, tmpe->end);
722                         tmpe = tmpe->next;
723                 }
724         }
725         vm_map_unlock(map);
726 }
727 #endif          /* !defined(NO_SWAPPING) */
728
729 /*
730  *      vm_pageout_scan does the dirty work for the pageout daemon.
731  */
732 static void
733 vm_pageout_scan(int pass)
734 {
735         vm_page_t m, next;
736         struct vm_page marker;
737         int page_shortage, maxscan, pcount;
738         int addl_page_shortage, addl_page_shortage_init;
739         vm_object_t object;
740         int actcount;
741         int vnodes_skipped = 0;
742         int maxlaunder;
743
744         /*
745          * Decrease registered cache sizes.
746          */
747         EVENTHANDLER_INVOKE(vm_lowmem, 0);
748         /*
749          * We do this explicitly after the caches have been drained above.
750          */
751         uma_reclaim();
752
753         addl_page_shortage_init = atomic_readandclear_int(&vm_pageout_deficit);
754
755         /*
756          * Calculate the number of pages we want to either free or move
757          * to the cache.
758          */
759         page_shortage = vm_paging_target() + addl_page_shortage_init;
760
761         vm_pageout_init_marker(&marker, PQ_INACTIVE);
762
763         /*
764          * Start scanning the inactive queue for pages we can move to the
765          * cache or free.  The scan will stop when the target is reached or
766          * we have scanned the entire inactive queue.  Note that m->act_count
767          * is not used to form decisions for the inactive queue, only for the
768          * active queue.
769          *
770          * maxlaunder limits the number of dirty pages we flush per scan.
771          * For most systems a smaller value (16 or 32) is more robust under
772          * extreme memory and disk pressure because any unnecessary writes
773          * to disk can result in extreme performance degredation.  However,
774          * systems with excessive dirty pages (especially when MAP_NOSYNC is
775          * used) will die horribly with limited laundering.  If the pageout
776          * daemon cannot clean enough pages in the first pass, we let it go
777          * all out in succeeding passes.
778          */
779         if ((maxlaunder = vm_max_launder) <= 1)
780                 maxlaunder = 1;
781         if (pass)
782                 maxlaunder = 10000;
783         vm_page_lock_queues();
784 rescan0:
785         addl_page_shortage = addl_page_shortage_init;
786         maxscan = cnt.v_inactive_count;
787
788         for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
789              m != NULL && maxscan-- > 0 && page_shortage > 0;
790              m = next) {
791
792                 cnt.v_pdpages++;
793
794                 if (m->queue != PQ_INACTIVE)
795                         goto rescan0;
796
797                 next = TAILQ_NEXT(m, pageq);
798
799                 /*
800                  * skip marker pages
801                  */
802                 if (m->flags & PG_MARKER)
803                         continue;
804
805                 /*
806                  * Lock the page.
807                  */
808                 if (!vm_pageout_page_lock(m, &next)) {
809                         vm_page_unlock(m);
810                         addl_page_shortage++;
811                         continue;
812                 }
813
814                 /*
815                  * A held page may be undergoing I/O, so skip it.
816                  */
817                 if (m->hold_count) {
818                         vm_page_unlock(m);
819                         vm_page_requeue(m);
820                         addl_page_shortage++;
821                         continue;
822                 }
823
824                 /*
825                  * Don't mess with busy pages, keep in the front of the
826                  * queue, most likely are being paged out.
827                  */
828                 object = m->object;
829                 if (!VM_OBJECT_TRYLOCK(object) &&
830                     (!vm_pageout_fallback_object_lock(m, &next) ||
831                         m->hold_count != 0)) {
832                         VM_OBJECT_UNLOCK(object);
833                         vm_page_unlock(m);
834                         addl_page_shortage++;
835                         continue;
836                 }
837                 if (m->busy || (m->oflags & VPO_BUSY)) {
838                         vm_page_unlock(m);
839                         VM_OBJECT_UNLOCK(object);
840                         addl_page_shortage++;
841                         continue;
842                 }
843
844                 /*
845                  * If the object is not being used, we ignore previous 
846                  * references.
847                  */
848                 if (object->ref_count == 0) {
849                         vm_page_flag_clear(m, PG_REFERENCED);
850                         KASSERT(!pmap_page_is_mapped(m),
851                             ("vm_pageout_scan: page %p is mapped", m));
852
853                 /*
854                  * Otherwise, if the page has been referenced while in the 
855                  * inactive queue, we bump the "activation count" upwards, 
856                  * making it less likely that the page will be added back to 
857                  * the inactive queue prematurely again.  Here we check the 
858                  * page tables (or emulated bits, if any), given the upper 
859                  * level VM system not knowing anything about existing 
860                  * references.
861                  */
862                 } else if (((m->flags & PG_REFERENCED) == 0) &&
863                         (actcount = pmap_ts_referenced(m))) {
864                         vm_page_activate(m);
865                         vm_page_unlock(m);
866                         m->act_count += actcount + ACT_ADVANCE;
867                         VM_OBJECT_UNLOCK(object);
868                         continue;
869                 }
870
871                 /*
872                  * If the upper level VM system knows about any page 
873                  * references, we activate the page.  We also set the 
874                  * "activation count" higher than normal so that we will less 
875                  * likely place pages back onto the inactive queue again.
876                  */
877                 if ((m->flags & PG_REFERENCED) != 0) {
878                         vm_page_flag_clear(m, PG_REFERENCED);
879                         actcount = pmap_ts_referenced(m);
880                         vm_page_activate(m);
881                         vm_page_unlock(m);
882                         m->act_count += actcount + ACT_ADVANCE + 1;
883                         VM_OBJECT_UNLOCK(object);
884                         continue;
885                 }
886
887                 /*
888                  * If the upper level VM system does not believe that the page
889                  * is fully dirty, but it is mapped for write access, then we
890                  * consult the pmap to see if the page's dirty status should
891                  * be updated.
892                  */
893                 if (m->dirty != VM_PAGE_BITS_ALL &&
894                     (m->flags & PG_WRITEABLE) != 0) {
895                         /*
896                          * Avoid a race condition: Unless write access is
897                          * removed from the page, another processor could
898                          * modify it before all access is removed by the call
899                          * to vm_page_cache() below.  If vm_page_cache() finds
900                          * that the page has been modified when it removes all
901                          * access, it panics because it cannot cache dirty
902                          * pages.  In principle, we could eliminate just write
903                          * access here rather than all access.  In the expected
904                          * case, when there are no last instant modifications
905                          * to the page, removing all access will be cheaper
906                          * overall.
907                          */
908                         if (pmap_is_modified(m))
909                                 vm_page_dirty(m);
910                         else if (m->dirty == 0)
911                                 pmap_remove_all(m);
912                 }
913
914                 if (m->valid == 0) {
915                         /*
916                          * Invalid pages can be easily freed
917                          */
918                         vm_page_free(m);
919                         cnt.v_dfree++;
920                         --page_shortage;
921                 } else if (m->dirty == 0) {
922                         /*
923                          * Clean pages can be placed onto the cache queue.
924                          * This effectively frees them.
925                          */
926                         vm_page_cache(m);
927                         --page_shortage;
928                 } else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
929                         /*
930                          * Dirty pages need to be paged out, but flushing
931                          * a page is extremely expensive verses freeing
932                          * a clean page.  Rather then artificially limiting
933                          * the number of pages we can flush, we instead give
934                          * dirty pages extra priority on the inactive queue
935                          * by forcing them to be cycled through the queue
936                          * twice before being flushed, after which the
937                          * (now clean) page will cycle through once more
938                          * before being freed.  This significantly extends
939                          * the thrash point for a heavily loaded machine.
940                          */
941                         vm_page_flag_set(m, PG_WINATCFLS);
942                         vm_page_requeue(m);
943                 } else if (maxlaunder > 0) {
944                         /*
945                          * We always want to try to flush some dirty pages if
946                          * we encounter them, to keep the system stable.
947                          * Normally this number is small, but under extreme
948                          * pressure where there are insufficient clean pages
949                          * on the inactive queue, we may have to go all out.
950                          */
951                         int swap_pageouts_ok, vfslocked = 0;
952                         struct vnode *vp = NULL;
953                         struct mount *mp = NULL;
954
955                         if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
956                                 swap_pageouts_ok = 1;
957                         } else {
958                                 swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
959                                 swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
960                                 vm_page_count_min());
961                                                                                 
962                         }
963
964                         /*
965                          * We don't bother paging objects that are "dead".  
966                          * Those objects are in a "rundown" state.
967                          */
968                         if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
969                                 vm_page_unlock(m);
970                                 VM_OBJECT_UNLOCK(object);
971                                 vm_page_requeue(m);
972                                 continue;
973                         }
974
975                         /*
976                          * Following operations may unlock
977                          * vm_page_queue_mtx, invalidating the 'next'
978                          * pointer.  To prevent an inordinate number
979                          * of restarts we use our marker to remember
980                          * our place.
981                          *
982                          */
983                         TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl,
984                                            m, &marker, pageq);
985                         /*
986                          * The object is already known NOT to be dead.   It
987                          * is possible for the vget() to block the whole
988                          * pageout daemon, but the new low-memory handling
989                          * code should prevent it.
990                          *
991                          * The previous code skipped locked vnodes and, worse,
992                          * reordered pages in the queue.  This results in
993                          * completely non-deterministic operation and, on a
994                          * busy system, can lead to extremely non-optimal
995                          * pageouts.  For example, it can cause clean pages
996                          * to be freed and dirty pages to be moved to the end
997                          * of the queue.  Since dirty pages are also moved to
998                          * the end of the queue once-cleaned, this gives
999                          * way too large a weighting to defering the freeing
1000                          * of dirty pages.
1001                          *
1002                          * We can't wait forever for the vnode lock, we might
1003                          * deadlock due to a vn_read() getting stuck in
1004                          * vm_wait while holding this vnode.  We skip the 
1005                          * vnode if we can't get it in a reasonable amount
1006                          * of time.
1007                          */
1008                         if (object->type == OBJT_VNODE) {
1009                                 vm_page_unlock_queues();
1010                                 vm_page_unlock(m);
1011                                 vp = object->handle;
1012                                 if (vp->v_type == VREG &&
1013                                     vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1014                                         mp = NULL;
1015                                         ++pageout_lock_miss;
1016                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1017                                                 vnodes_skipped++;
1018                                         vm_page_lock_queues();
1019                                         goto unlock_and_continue;
1020                                 }
1021                                 KASSERT(mp != NULL,
1022                                     ("vp %p with NULL v_mount", vp));
1023                                 vm_object_reference_locked(object);
1024                                 VM_OBJECT_UNLOCK(object);
1025                                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1026                                 if (vget(vp, LK_EXCLUSIVE | LK_TIMELOCK,
1027                                     curthread)) {
1028                                         VM_OBJECT_LOCK(object);
1029                                         vm_page_lock_queues();
1030                                         ++pageout_lock_miss;
1031                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1032                                                 vnodes_skipped++;
1033                                         vp = NULL;
1034                                         goto unlock_and_continue;
1035                                 }
1036                                 VM_OBJECT_LOCK(object);
1037                                 vm_page_lock(m);
1038                                 vm_page_lock_queues();
1039                                 /*
1040                                  * The page might have been moved to another
1041                                  * queue during potential blocking in vget()
1042                                  * above.  The page might have been freed and
1043                                  * reused for another vnode.
1044                                  */
1045                                 if (m->queue != PQ_INACTIVE ||
1046                                     m->object != object ||
1047                                     TAILQ_NEXT(m, pageq) != &marker) {
1048                                         vm_page_unlock(m);
1049                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1050                                                 vnodes_skipped++;
1051                                         goto unlock_and_continue;
1052                                 }
1053         
1054                                 /*
1055                                  * The page may have been busied during the
1056                                  * blocking in vget().  We don't move the
1057                                  * page back onto the end of the queue so that
1058                                  * statistics are more correct if we don't.
1059                                  */
1060                                 if (m->busy || (m->oflags & VPO_BUSY)) {
1061                                         vm_page_unlock(m);
1062                                         goto unlock_and_continue;
1063                                 }
1064
1065                                 /*
1066                                  * If the page has become held it might
1067                                  * be undergoing I/O, so skip it
1068                                  */
1069                                 if (m->hold_count) {
1070                                         vm_page_unlock(m);
1071                                         vm_page_requeue(m);
1072                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1073                                                 vnodes_skipped++;
1074                                         goto unlock_and_continue;
1075                                 }
1076                         }
1077
1078                         /*
1079                          * If a page is dirty, then it is either being washed
1080                          * (but not yet cleaned) or it is still in the
1081                          * laundry.  If it is still in the laundry, then we
1082                          * start the cleaning operation. 
1083                          *
1084                          * decrement page_shortage on success to account for
1085                          * the (future) cleaned page.  Otherwise we could wind
1086                          * up laundering or cleaning too many pages.
1087                          */
1088                         vm_page_unlock_queues();
1089                         if (vm_pageout_clean(m) != 0) {
1090                                 --page_shortage;
1091                                 --maxlaunder;
1092                         }
1093                         vm_page_lock_queues();
1094 unlock_and_continue:
1095                         vm_page_lock_assert(m, MA_NOTOWNED);
1096                         VM_OBJECT_UNLOCK(object);
1097                         if (mp != NULL) {
1098                                 vm_page_unlock_queues();
1099                                 if (vp != NULL)
1100                                         vput(vp);
1101                                 VFS_UNLOCK_GIANT(vfslocked);
1102                                 vm_object_deallocate(object);
1103                                 vn_finished_write(mp);
1104                                 vm_page_lock_queues();
1105                         }
1106                         next = TAILQ_NEXT(&marker, pageq);
1107                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl,
1108                                      &marker, pageq);
1109                         vm_page_lock_assert(m, MA_NOTOWNED);
1110                         continue;
1111                 }
1112                 vm_page_unlock(m);
1113                 VM_OBJECT_UNLOCK(object);
1114         }
1115
1116         /*
1117          * Compute the number of pages we want to try to move from the
1118          * active queue to the inactive queue.
1119          */
1120         page_shortage = vm_paging_target() +
1121                 cnt.v_inactive_target - cnt.v_inactive_count;
1122         page_shortage += addl_page_shortage;
1123
1124         /*
1125          * Scan the active queue for things we can deactivate. We nominally
1126          * track the per-page activity counter and use it to locate
1127          * deactivation candidates.
1128          */
1129         pcount = cnt.v_active_count;
1130         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1131         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1132
1133         while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1134
1135                 KASSERT(m->queue == PQ_ACTIVE,
1136                     ("vm_pageout_scan: page %p isn't active", m));
1137
1138                 next = TAILQ_NEXT(m, pageq);
1139                 if ((m->flags & PG_MARKER) != 0) {
1140                         m = next;
1141                         continue;
1142                 }
1143                 if (!vm_pageout_page_lock(m, &next)) {
1144                         vm_page_unlock(m);
1145                         m = next;
1146                         continue;
1147                 }
1148                 object = m->object;
1149                 if (!VM_OBJECT_TRYLOCK(object) &&
1150                     !vm_pageout_fallback_object_lock(m, &next)) {
1151                         VM_OBJECT_UNLOCK(object);
1152                         vm_page_unlock(m);
1153                         m = next;
1154                         continue;
1155                 }
1156
1157                 /*
1158                  * Don't deactivate pages that are busy.
1159                  */
1160                 if ((m->busy != 0) ||
1161                     (m->oflags & VPO_BUSY) ||
1162                     (m->hold_count != 0)) {
1163                         vm_page_unlock(m);
1164                         VM_OBJECT_UNLOCK(object);
1165                         vm_page_requeue(m);
1166                         m = next;
1167                         continue;
1168                 }
1169
1170                 /*
1171                  * The count for pagedaemon pages is done after checking the
1172                  * page for eligibility...
1173                  */
1174                 cnt.v_pdpages++;
1175
1176                 /*
1177                  * Check to see "how much" the page has been used.
1178                  */
1179                 actcount = 0;
1180                 if (object->ref_count != 0) {
1181                         if (m->flags & PG_REFERENCED) {
1182                                 actcount += 1;
1183                         }
1184                         actcount += pmap_ts_referenced(m);
1185                         if (actcount) {
1186                                 m->act_count += ACT_ADVANCE + actcount;
1187                                 if (m->act_count > ACT_MAX)
1188                                         m->act_count = ACT_MAX;
1189                         }
1190                 }
1191
1192                 /*
1193                  * Since we have "tested" this bit, we need to clear it now.
1194                  */
1195                 vm_page_flag_clear(m, PG_REFERENCED);
1196
1197                 /*
1198                  * Only if an object is currently being used, do we use the
1199                  * page activation count stats.
1200                  */
1201                 if (actcount && (object->ref_count != 0)) {
1202                         vm_page_requeue(m);
1203                 } else {
1204                         m->act_count -= min(m->act_count, ACT_DECLINE);
1205                         if (vm_pageout_algorithm ||
1206                             object->ref_count == 0 ||
1207                             m->act_count == 0) {
1208                                 page_shortage--;
1209                                 if (object->ref_count == 0) {
1210                                         KASSERT(!pmap_page_is_mapped(m),
1211                                     ("vm_pageout_scan: page %p is mapped", m));
1212                                         if (m->dirty == 0)
1213                                                 vm_page_cache(m);
1214                                         else
1215                                                 vm_page_deactivate(m);
1216                                 } else {
1217                                         vm_page_deactivate(m);
1218                                 }
1219                         } else {
1220                                 vm_page_requeue(m);
1221                         }
1222                 }
1223                 vm_page_unlock(m);
1224                 VM_OBJECT_UNLOCK(object);
1225                 m = next;
1226         }
1227         vm_page_unlock_queues();
1228 #if !defined(NO_SWAPPING)
1229         /*
1230          * Idle process swapout -- run once per second.
1231          */
1232         if (vm_swap_idle_enabled) {
1233                 static long lsec;
1234                 if (time_second != lsec) {
1235                         vm_req_vmdaemon(VM_SWAP_IDLE);
1236                         lsec = time_second;
1237                 }
1238         }
1239 #endif
1240                 
1241         /*
1242          * If we didn't get enough free pages, and we have skipped a vnode
1243          * in a writeable object, wakeup the sync daemon.  And kick swapout
1244          * if we did not get enough free pages.
1245          */
1246         if (vm_paging_target() > 0) {
1247                 if (vnodes_skipped && vm_page_count_min())
1248                         (void) speedup_syncer();
1249 #if !defined(NO_SWAPPING)
1250                 if (vm_swap_enabled && vm_page_count_target())
1251                         vm_req_vmdaemon(VM_SWAP_NORMAL);
1252 #endif
1253         }
1254
1255         /*
1256          * If we are critically low on one of RAM or swap and low on
1257          * the other, kill the largest process.  However, we avoid
1258          * doing this on the first pass in order to give ourselves a
1259          * chance to flush out dirty vnode-backed pages and to allow
1260          * active pages to be moved to the inactive queue and reclaimed.
1261          */
1262         if (pass != 0 &&
1263             ((swap_pager_avail < 64 && vm_page_count_min()) ||
1264              (swap_pager_full && vm_paging_target() > 0)))
1265                 vm_pageout_oom(VM_OOM_MEM);
1266 }
1267
1268
1269 void
1270 vm_pageout_oom(int shortage)
1271 {
1272         struct proc *p, *bigproc;
1273         vm_offset_t size, bigsize;
1274         struct thread *td;
1275         struct vmspace *vm;
1276
1277         /*
1278          * We keep the process bigproc locked once we find it to keep anyone
1279          * from messing with it; however, there is a possibility of
1280          * deadlock if process B is bigproc and one of it's child processes
1281          * attempts to propagate a signal to B while we are waiting for A's
1282          * lock while walking this list.  To avoid this, we don't block on
1283          * the process lock but just skip a process if it is already locked.
1284          */
1285         bigproc = NULL;
1286         bigsize = 0;
1287         sx_slock(&allproc_lock);
1288         FOREACH_PROC_IN_SYSTEM(p) {
1289                 int breakout;
1290
1291                 if (PROC_TRYLOCK(p) == 0)
1292                         continue;
1293                 /*
1294                  * If this is a system, protected or killed process, skip it.
1295                  */
1296                 if (p->p_state != PRS_NORMAL ||
1297                     (p->p_flag & (P_INEXEC | P_PROTECTED | P_SYSTEM)) ||
1298                     (p->p_pid == 1) || P_KILLED(p) ||
1299                     ((p->p_pid < 48) && (swap_pager_avail != 0))) {
1300                         PROC_UNLOCK(p);
1301                         continue;
1302                 }
1303                 /*
1304                  * If the process is in a non-running type state,
1305                  * don't touch it.  Check all the threads individually.
1306                  */
1307                 breakout = 0;
1308                 FOREACH_THREAD_IN_PROC(p, td) {
1309                         thread_lock(td);
1310                         if (!TD_ON_RUNQ(td) &&
1311                             !TD_IS_RUNNING(td) &&
1312                             !TD_IS_SLEEPING(td) &&
1313                             !TD_IS_SUSPENDED(td)) {
1314                                 thread_unlock(td);
1315                                 breakout = 1;
1316                                 break;
1317                         }
1318                         thread_unlock(td);
1319                 }
1320                 if (breakout) {
1321                         PROC_UNLOCK(p);
1322                         continue;
1323                 }
1324                 /*
1325                  * get the process size
1326                  */
1327                 vm = vmspace_acquire_ref(p);
1328                 if (vm == NULL) {
1329                         PROC_UNLOCK(p);
1330                         continue;
1331                 }
1332                 if (!vm_map_trylock_read(&vm->vm_map)) {
1333                         vmspace_free(vm);
1334                         PROC_UNLOCK(p);
1335                         continue;
1336                 }
1337                 size = vmspace_swap_count(vm);
1338                 vm_map_unlock_read(&vm->vm_map);
1339                 if (shortage == VM_OOM_MEM)
1340                         size += vmspace_resident_count(vm);
1341                 vmspace_free(vm);
1342                 /*
1343                  * if the this process is bigger than the biggest one
1344                  * remember it.
1345                  */
1346                 if (size > bigsize) {
1347                         if (bigproc != NULL)
1348                                 PROC_UNLOCK(bigproc);
1349                         bigproc = p;
1350                         bigsize = size;
1351                 } else
1352                         PROC_UNLOCK(p);
1353         }
1354         sx_sunlock(&allproc_lock);
1355         if (bigproc != NULL) {
1356                 killproc(bigproc, "out of swap space");
1357                 sched_nice(bigproc, PRIO_MIN);
1358                 PROC_UNLOCK(bigproc);
1359                 wakeup(&cnt.v_free_count);
1360         }
1361 }
1362
1363 /*
1364  * This routine tries to maintain the pseudo LRU active queue,
1365  * so that during long periods of time where there is no paging,
1366  * that some statistic accumulation still occurs.  This code
1367  * helps the situation where paging just starts to occur.
1368  */
1369 static void
1370 vm_pageout_page_stats()
1371 {
1372         vm_object_t object;
1373         vm_page_t m,next;
1374         int pcount,tpcount;             /* Number of pages to check */
1375         static int fullintervalcount = 0;
1376         int page_shortage;
1377
1378         page_shortage = 
1379             (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1380             (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1381
1382         if (page_shortage <= 0)
1383                 return;
1384
1385         vm_page_lock_queues();
1386         pcount = cnt.v_active_count;
1387         fullintervalcount += vm_pageout_stats_interval;
1388         if (fullintervalcount < vm_pageout_full_stats_interval) {
1389                 tpcount = (int64_t)vm_pageout_stats_max * cnt.v_active_count /
1390                     cnt.v_page_count;
1391                 if (pcount > tpcount)
1392                         pcount = tpcount;
1393         } else {
1394                 fullintervalcount = 0;
1395         }
1396
1397         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1398         while ((m != NULL) && (pcount-- > 0)) {
1399                 int actcount;
1400
1401                 KASSERT(m->queue == PQ_ACTIVE,
1402                     ("vm_pageout_page_stats: page %p isn't active", m));
1403
1404                 next = TAILQ_NEXT(m, pageq);
1405                 if ((m->flags & PG_MARKER) != 0) {
1406                         m = next;
1407                         continue;
1408                 }
1409                 vm_page_lock_assert(m, MA_NOTOWNED);
1410                 if (!vm_pageout_page_lock(m, &next)) {
1411                         vm_page_unlock(m);
1412                         m = next;
1413                         continue;
1414                 }
1415                 object = m->object;
1416                 if (!VM_OBJECT_TRYLOCK(object) &&
1417                     !vm_pageout_fallback_object_lock(m, &next)) {
1418                         VM_OBJECT_UNLOCK(object);
1419                         vm_page_unlock(m);
1420                         m = next;
1421                         continue;
1422                 }
1423
1424                 /*
1425                  * Don't deactivate pages that are busy.
1426                  */
1427                 if ((m->busy != 0) ||
1428                     (m->oflags & VPO_BUSY) ||
1429                     (m->hold_count != 0)) {
1430                         vm_page_unlock(m);
1431                         VM_OBJECT_UNLOCK(object);
1432                         vm_page_requeue(m);
1433                         m = next;
1434                         continue;
1435                 }
1436
1437                 actcount = 0;
1438                 if (m->flags & PG_REFERENCED) {
1439                         vm_page_flag_clear(m, PG_REFERENCED);
1440                         actcount += 1;
1441                 }
1442
1443                 actcount += pmap_ts_referenced(m);
1444                 if (actcount) {
1445                         m->act_count += ACT_ADVANCE + actcount;
1446                         if (m->act_count > ACT_MAX)
1447                                 m->act_count = ACT_MAX;
1448                         vm_page_requeue(m);
1449                 } else {
1450                         if (m->act_count == 0) {
1451                                 /*
1452                                  * We turn off page access, so that we have
1453                                  * more accurate RSS stats.  We don't do this
1454                                  * in the normal page deactivation when the
1455                                  * system is loaded VM wise, because the
1456                                  * cost of the large number of page protect
1457                                  * operations would be higher than the value
1458                                  * of doing the operation.
1459                                  */
1460                                 pmap_remove_all(m);
1461                                 vm_page_deactivate(m);
1462                         } else {
1463                                 m->act_count -= min(m->act_count, ACT_DECLINE);
1464                                 vm_page_requeue(m);
1465                         }
1466                 }
1467                 vm_page_unlock(m);
1468                 VM_OBJECT_UNLOCK(object);
1469                 m = next;
1470         }
1471         vm_page_unlock_queues();
1472 }
1473
1474 /*
1475  *      vm_pageout is the high level pageout daemon.
1476  */
1477 static void
1478 vm_pageout()
1479 {
1480         int error, pass;
1481
1482         /*
1483          * Initialize some paging parameters.
1484          */
1485         cnt.v_interrupt_free_min = 2;
1486         if (cnt.v_page_count < 2000)
1487                 vm_pageout_page_count = 8;
1488
1489         /*
1490          * v_free_reserved needs to include enough for the largest
1491          * swap pager structures plus enough for any pv_entry structs
1492          * when paging. 
1493          */
1494         if (cnt.v_page_count > 1024)
1495                 cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1496         else
1497                 cnt.v_free_min = 4;
1498         cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1499             cnt.v_interrupt_free_min;
1500         cnt.v_free_reserved = vm_pageout_page_count +
1501             cnt.v_pageout_free_min + (cnt.v_page_count / 768);
1502         cnt.v_free_severe = cnt.v_free_min / 2;
1503         cnt.v_free_min += cnt.v_free_reserved;
1504         cnt.v_free_severe += cnt.v_free_reserved;
1505
1506         /*
1507          * v_free_target and v_cache_min control pageout hysteresis.  Note
1508          * that these are more a measure of the VM cache queue hysteresis
1509          * then the VM free queue.  Specifically, v_free_target is the
1510          * high water mark (free+cache pages).
1511          *
1512          * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1513          * low water mark, while v_free_min is the stop.  v_cache_min must
1514          * be big enough to handle memory needs while the pageout daemon
1515          * is signalled and run to free more pages.
1516          */
1517         if (cnt.v_free_count > 6144)
1518                 cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1519         else
1520                 cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1521
1522         if (cnt.v_free_count > 2048) {
1523                 cnt.v_cache_min = cnt.v_free_target;
1524                 cnt.v_cache_max = 2 * cnt.v_cache_min;
1525                 cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1526         } else {
1527                 cnt.v_cache_min = 0;
1528                 cnt.v_cache_max = 0;
1529                 cnt.v_inactive_target = cnt.v_free_count / 4;
1530         }
1531         if (cnt.v_inactive_target > cnt.v_free_count / 3)
1532                 cnt.v_inactive_target = cnt.v_free_count / 3;
1533
1534         /* XXX does not really belong here */
1535         if (vm_page_max_wired == 0)
1536                 vm_page_max_wired = cnt.v_free_count / 3;
1537
1538         if (vm_pageout_stats_max == 0)
1539                 vm_pageout_stats_max = cnt.v_free_target;
1540
1541         /*
1542          * Set interval in seconds for stats scan.
1543          */
1544         if (vm_pageout_stats_interval == 0)
1545                 vm_pageout_stats_interval = 5;
1546         if (vm_pageout_full_stats_interval == 0)
1547                 vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1548
1549         swap_pager_swap_init();
1550         pass = 0;
1551         /*
1552          * The pageout daemon is never done, so loop forever.
1553          */
1554         while (TRUE) {
1555                 /*
1556                  * If we have enough free memory, wakeup waiters.  Do
1557                  * not clear vm_pages_needed until we reach our target,
1558                  * otherwise we may be woken up over and over again and
1559                  * waste a lot of cpu.
1560                  */
1561                 mtx_lock(&vm_page_queue_free_mtx);
1562                 if (vm_pages_needed && !vm_page_count_min()) {
1563                         if (!vm_paging_needed())
1564                                 vm_pages_needed = 0;
1565                         wakeup(&cnt.v_free_count);
1566                 }
1567                 if (vm_pages_needed) {
1568                         /*
1569                          * Still not done, take a second pass without waiting
1570                          * (unlimited dirty cleaning), otherwise sleep a bit
1571                          * and try again.
1572                          */
1573                         ++pass;
1574                         if (pass > 1)
1575                                 msleep(&vm_pages_needed,
1576                                     &vm_page_queue_free_mtx, PVM, "psleep",
1577                                     hz / 2);
1578                 } else {
1579                         /*
1580                          * Good enough, sleep & handle stats.  Prime the pass
1581                          * for the next run.
1582                          */
1583                         if (pass > 1)
1584                                 pass = 1;
1585                         else
1586                                 pass = 0;
1587                         error = msleep(&vm_pages_needed,
1588                             &vm_page_queue_free_mtx, PVM, "psleep",
1589                             vm_pageout_stats_interval * hz);
1590                         if (error && !vm_pages_needed) {
1591                                 mtx_unlock(&vm_page_queue_free_mtx);
1592                                 pass = 0;
1593                                 vm_pageout_page_stats();
1594                                 continue;
1595                         }
1596                 }
1597                 if (vm_pages_needed)
1598                         cnt.v_pdwakeups++;
1599                 mtx_unlock(&vm_page_queue_free_mtx);
1600                 vm_pageout_scan(pass);
1601         }
1602 }
1603
1604 /*
1605  * Unless the free page queue lock is held by the caller, this function
1606  * should be regarded as advisory.  Specifically, the caller should
1607  * not msleep() on &cnt.v_free_count following this function unless
1608  * the free page queue lock is held until the msleep() is performed.
1609  */
1610 void
1611 pagedaemon_wakeup()
1612 {
1613
1614         if (!vm_pages_needed && curthread->td_proc != pageproc) {
1615                 vm_pages_needed = 1;
1616                 wakeup(&vm_pages_needed);
1617         }
1618 }
1619
1620 #if !defined(NO_SWAPPING)
1621 static void
1622 vm_req_vmdaemon(int req)
1623 {
1624         static int lastrun = 0;
1625
1626         mtx_lock(&vm_daemon_mtx);
1627         vm_pageout_req_swapout |= req;
1628         if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1629                 wakeup(&vm_daemon_needed);
1630                 lastrun = ticks;
1631         }
1632         mtx_unlock(&vm_daemon_mtx);
1633 }
1634
1635 static void
1636 vm_daemon()
1637 {
1638         struct rlimit rsslim;
1639         struct proc *p;
1640         struct thread *td;
1641         struct vmspace *vm;
1642         int breakout, swapout_flags, tryagain, attempts;
1643 #ifdef RACCT
1644         uint64_t rsize, ravailable;
1645 #endif
1646
1647         while (TRUE) {
1648                 mtx_lock(&vm_daemon_mtx);
1649 #ifdef RACCT
1650                 msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", hz);
1651 #else
1652                 msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", 0);
1653 #endif
1654                 swapout_flags = vm_pageout_req_swapout;
1655                 vm_pageout_req_swapout = 0;
1656                 mtx_unlock(&vm_daemon_mtx);
1657                 if (swapout_flags)
1658                         swapout_procs(swapout_flags);
1659
1660                 /*
1661                  * scan the processes for exceeding their rlimits or if
1662                  * process is swapped out -- deactivate pages
1663                  */
1664                 tryagain = 0;
1665                 attempts = 0;
1666 again:
1667                 attempts++;
1668                 sx_slock(&allproc_lock);
1669                 FOREACH_PROC_IN_SYSTEM(p) {
1670                         vm_pindex_t limit, size;
1671
1672                         /*
1673                          * if this is a system process or if we have already
1674                          * looked at this process, skip it.
1675                          */
1676                         PROC_LOCK(p);
1677                         if (p->p_state != PRS_NORMAL ||
1678                             p->p_flag & (P_INEXEC | P_SYSTEM | P_WEXIT)) {
1679                                 PROC_UNLOCK(p);
1680                                 continue;
1681                         }
1682                         /*
1683                          * if the process is in a non-running type state,
1684                          * don't touch it.
1685                          */
1686                         breakout = 0;
1687                         FOREACH_THREAD_IN_PROC(p, td) {
1688                                 thread_lock(td);
1689                                 if (!TD_ON_RUNQ(td) &&
1690                                     !TD_IS_RUNNING(td) &&
1691                                     !TD_IS_SLEEPING(td) &&
1692                                     !TD_IS_SUSPENDED(td)) {
1693                                         thread_unlock(td);
1694                                         breakout = 1;
1695                                         break;
1696                                 }
1697                                 thread_unlock(td);
1698                         }
1699                         if (breakout) {
1700                                 PROC_UNLOCK(p);
1701                                 continue;
1702                         }
1703                         /*
1704                          * get a limit
1705                          */
1706                         lim_rlimit(p, RLIMIT_RSS, &rsslim);
1707                         limit = OFF_TO_IDX(
1708                             qmin(rsslim.rlim_cur, rsslim.rlim_max));
1709
1710                         /*
1711                          * let processes that are swapped out really be
1712                          * swapped out set the limit to nothing (will force a
1713                          * swap-out.)
1714                          */
1715                         if ((p->p_flag & P_INMEM) == 0)
1716                                 limit = 0;      /* XXX */
1717                         vm = vmspace_acquire_ref(p);
1718                         PROC_UNLOCK(p);
1719                         if (vm == NULL)
1720                                 continue;
1721
1722                         size = vmspace_resident_count(vm);
1723                         if (limit >= 0 && size >= limit) {
1724                                 vm_pageout_map_deactivate_pages(
1725                                     &vm->vm_map, limit);
1726                         }
1727 #ifdef RACCT
1728                         rsize = IDX_TO_OFF(size);
1729                         PROC_LOCK(p);
1730                         racct_set(p, RACCT_RSS, rsize);
1731                         ravailable = racct_get_available(p, RACCT_RSS);
1732                         PROC_UNLOCK(p);
1733                         if (rsize > ravailable) {
1734                                 /*
1735                                  * Don't be overly aggressive; this might be
1736                                  * an innocent process, and the limit could've
1737                                  * been exceeded by some memory hog.  Don't
1738                                  * try to deactivate more than 1/4th of process'
1739                                  * resident set size.
1740                                  */
1741                                 if (attempts <= 8) {
1742                                         if (ravailable < rsize - (rsize / 4))
1743                                                 ravailable = rsize - (rsize / 4);
1744                                 }
1745                                 vm_pageout_map_deactivate_pages(
1746                                     &vm->vm_map, OFF_TO_IDX(ravailable));
1747                                 /* Update RSS usage after paging out. */
1748                                 size = vmspace_resident_count(vm);
1749                                 rsize = IDX_TO_OFF(size);
1750                                 PROC_LOCK(p);
1751                                 racct_set(p, RACCT_RSS, rsize);
1752                                 PROC_UNLOCK(p);
1753                                 if (rsize > ravailable)
1754                                         tryagain = 1;
1755                         }
1756 #endif
1757                         vmspace_free(vm);
1758                 }
1759                 sx_sunlock(&allproc_lock);
1760                 if (tryagain != 0 && attempts <= 10)
1761                         goto again;
1762         }
1763 }
1764 #endif                  /* !defined(NO_SWAPPING) */