]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_pageout.c
Update clang to trunk r290819 and resolve conflicts.
[FreeBSD/FreeBSD.git] / sys / vm / vm_pageout.c
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  * Copyright (c) 2005 Yahoo! Technologies Norway AS
9  * All rights reserved.
10  *
11  * This code is derived from software contributed to Berkeley by
12  * The Mach Operating System project at Carnegie-Mellon University.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *      This product includes software developed by the University of
25  *      California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
43  *
44  *
45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46  * All rights reserved.
47  *
48  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49  *
50  * Permission to use, copy, modify and distribute this software and
51  * its documentation is hereby granted, provided that both the copyright
52  * notice and this permission notice appear in all copies of the
53  * software, derivative works or modified versions, and any portions
54  * thereof, and that both notices appear in supporting documentation.
55  *
56  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59  *
60  * Carnegie Mellon requests users of this software to return to
61  *
62  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63  *  School of Computer Science
64  *  Carnegie Mellon University
65  *  Pittsburgh PA 15213-3890
66  *
67  * any improvements or extensions that they make and grant Carnegie the
68  * rights to redistribute these changes.
69  */
70
71 /*
72  *      The proverbial page-out daemon.
73  */
74
75 #include <sys/cdefs.h>
76 __FBSDID("$FreeBSD$");
77
78 #include "opt_vm.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/eventhandler.h>
84 #include <sys/lock.h>
85 #include <sys/mutex.h>
86 #include <sys/proc.h>
87 #include <sys/kthread.h>
88 #include <sys/ktr.h>
89 #include <sys/mount.h>
90 #include <sys/racct.h>
91 #include <sys/resourcevar.h>
92 #include <sys/sched.h>
93 #include <sys/sdt.h>
94 #include <sys/signalvar.h>
95 #include <sys/smp.h>
96 #include <sys/time.h>
97 #include <sys/vnode.h>
98 #include <sys/vmmeter.h>
99 #include <sys/rwlock.h>
100 #include <sys/sx.h>
101 #include <sys/sysctl.h>
102
103 #include <vm/vm.h>
104 #include <vm/vm_param.h>
105 #include <vm/vm_object.h>
106 #include <vm/vm_page.h>
107 #include <vm/vm_map.h>
108 #include <vm/vm_pageout.h>
109 #include <vm/vm_pager.h>
110 #include <vm/vm_phys.h>
111 #include <vm/swap_pager.h>
112 #include <vm/vm_extern.h>
113 #include <vm/uma.h>
114
115 /*
116  * System initialization
117  */
118
119 /* the kernel process "vm_pageout"*/
120 static void vm_pageout(void);
121 static void vm_pageout_init(void);
122 static int vm_pageout_clean(vm_page_t m, int *numpagedout);
123 static int vm_pageout_cluster(vm_page_t m);
124 static bool vm_pageout_scan(struct vm_domain *vmd, int pass);
125 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
126     int starting_page_shortage);
127
128 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init,
129     NULL);
130
131 struct proc *pageproc;
132
133 static struct kproc_desc page_kp = {
134         "pagedaemon",
135         vm_pageout,
136         &pageproc
137 };
138 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start,
139     &page_kp);
140
141 SDT_PROVIDER_DEFINE(vm);
142 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan);
143
144 #if !defined(NO_SWAPPING)
145 /* the kernel process "vm_daemon"*/
146 static void vm_daemon(void);
147 static struct   proc *vmproc;
148
149 static struct kproc_desc vm_kp = {
150         "vmdaemon",
151         vm_daemon,
152         &vmproc
153 };
154 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
155 #endif
156
157 /* Pagedaemon activity rates, in subdivisions of one second. */
158 #define VM_LAUNDER_RATE         10
159 #define VM_INACT_SCAN_RATE      2
160
161 int vm_pageout_deficit;         /* Estimated number of pages deficit */
162 u_int vm_pageout_wakeup_thresh;
163 static int vm_pageout_oom_seq = 12;
164 bool vm_pageout_wanted;         /* Event on which pageout daemon sleeps */
165 bool vm_pages_needed;           /* Are threads waiting for free pages? */
166
167 /* Pending request for dirty page laundering. */
168 static enum {
169         VM_LAUNDRY_IDLE,
170         VM_LAUNDRY_BACKGROUND,
171         VM_LAUNDRY_SHORTFALL
172 } vm_laundry_request = VM_LAUNDRY_IDLE;
173
174 #if !defined(NO_SWAPPING)
175 static int vm_pageout_req_swapout;      /* XXX */
176 static int vm_daemon_needed;
177 static struct mtx vm_daemon_mtx;
178 /* Allow for use by vm_pageout before vm_daemon is initialized. */
179 MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
180 #endif
181 static int vm_pageout_update_period;
182 static int disable_swap_pageouts;
183 static int lowmem_period = 10;
184 static time_t lowmem_uptime;
185
186 #if defined(NO_SWAPPING)
187 static int vm_swap_enabled = 0;
188 static int vm_swap_idle_enabled = 0;
189 #else
190 static int vm_swap_enabled = 1;
191 static int vm_swap_idle_enabled = 0;
192 #endif
193
194 static int vm_panic_on_oom = 0;
195
196 SYSCTL_INT(_vm, OID_AUTO, panic_on_oom,
197         CTLFLAG_RWTUN, &vm_panic_on_oom, 0,
198         "panic on out of memory instead of killing the largest process");
199
200 SYSCTL_INT(_vm, OID_AUTO, pageout_wakeup_thresh,
201         CTLFLAG_RW, &vm_pageout_wakeup_thresh, 0,
202         "free page threshold for waking up the pageout daemon");
203
204 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period,
205         CTLFLAG_RW, &vm_pageout_update_period, 0,
206         "Maximum active LRU update period");
207   
208 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RW, &lowmem_period, 0,
209         "Low memory callback period");
210
211 #if defined(NO_SWAPPING)
212 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
213         CTLFLAG_RD, &vm_swap_enabled, 0, "Enable entire process swapout");
214 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
215         CTLFLAG_RD, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
216 #else
217 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
218         CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
219 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
220         CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
221 #endif
222
223 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
224         CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
225
226 static int pageout_lock_miss;
227 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
228         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
229
230 SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq,
231         CTLFLAG_RW, &vm_pageout_oom_seq, 0,
232         "back-to-back calls to oom detector to start OOM");
233
234 static int act_scan_laundry_weight = 3;
235 SYSCTL_INT(_vm, OID_AUTO, act_scan_laundry_weight, CTLFLAG_RW,
236     &act_scan_laundry_weight, 0,
237     "weight given to clean vs. dirty pages in active queue scans");
238
239 static u_int vm_background_launder_target;
240 SYSCTL_UINT(_vm, OID_AUTO, background_launder_target, CTLFLAG_RW,
241     &vm_background_launder_target, 0,
242     "background laundering target, in pages");
243
244 static u_int vm_background_launder_rate = 4096;
245 SYSCTL_UINT(_vm, OID_AUTO, background_launder_rate, CTLFLAG_RW,
246     &vm_background_launder_rate, 0,
247     "background laundering rate, in kilobytes per second");
248
249 static u_int vm_background_launder_max = 20 * 1024;
250 SYSCTL_UINT(_vm, OID_AUTO, background_launder_max, CTLFLAG_RW,
251     &vm_background_launder_max, 0, "background laundering cap, in kilobytes");
252
253 #define VM_PAGEOUT_PAGE_COUNT 16
254 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
255
256 int vm_page_max_wired;          /* XXX max # of wired pages system-wide */
257 SYSCTL_INT(_vm, OID_AUTO, max_wired,
258         CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
259
260 static u_int isqrt(u_int num);
261 static boolean_t vm_pageout_fallback_object_lock(vm_page_t, vm_page_t *);
262 static int vm_pageout_launder(struct vm_domain *vmd, int launder,
263     bool in_shortfall);
264 static void vm_pageout_laundry_worker(void *arg);
265 #if !defined(NO_SWAPPING)
266 static void vm_pageout_map_deactivate_pages(vm_map_t, long);
267 static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
268 static void vm_req_vmdaemon(int req);
269 #endif
270 static boolean_t vm_pageout_page_lock(vm_page_t, vm_page_t *);
271
272 /*
273  * Initialize a dummy page for marking the caller's place in the specified
274  * paging queue.  In principle, this function only needs to set the flag
275  * PG_MARKER.  Nonetheless, it write busies and initializes the hold count
276  * to one as safety precautions.
277  */ 
278 static void
279 vm_pageout_init_marker(vm_page_t marker, u_short queue)
280 {
281
282         bzero(marker, sizeof(*marker));
283         marker->flags = PG_MARKER;
284         marker->busy_lock = VPB_SINGLE_EXCLUSIVER;
285         marker->queue = queue;
286         marker->hold_count = 1;
287 }
288
289 /*
290  * vm_pageout_fallback_object_lock:
291  * 
292  * Lock vm object currently associated with `m'. VM_OBJECT_TRYWLOCK is
293  * known to have failed and page queue must be either PQ_ACTIVE or
294  * PQ_INACTIVE.  To avoid lock order violation, unlock the page queue
295  * while locking the vm object.  Use marker page to detect page queue
296  * changes and maintain notion of next page on page queue.  Return
297  * TRUE if no changes were detected, FALSE otherwise.  vm object is
298  * locked on return.
299  * 
300  * This function depends on both the lock portion of struct vm_object
301  * and normal struct vm_page being type stable.
302  */
303 static boolean_t
304 vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
305 {
306         struct vm_page marker;
307         struct vm_pagequeue *pq;
308         boolean_t unchanged;
309         u_short queue;
310         vm_object_t object;
311
312         queue = m->queue;
313         vm_pageout_init_marker(&marker, queue);
314         pq = vm_page_pagequeue(m);
315         object = m->object;
316         
317         TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q);
318         vm_pagequeue_unlock(pq);
319         vm_page_unlock(m);
320         VM_OBJECT_WLOCK(object);
321         vm_page_lock(m);
322         vm_pagequeue_lock(pq);
323
324         /*
325          * The page's object might have changed, and/or the page might
326          * have moved from its original position in the queue.  If the
327          * page's object has changed, then the caller should abandon
328          * processing the page because the wrong object lock was
329          * acquired.  Use the marker's plinks.q, not the page's, to
330          * determine if the page has been moved.  The state of the
331          * page's plinks.q can be indeterminate; whereas, the marker's
332          * plinks.q must be valid.
333          */
334         *next = TAILQ_NEXT(&marker, plinks.q);
335         unchanged = m->object == object &&
336             m == TAILQ_PREV(&marker, pglist, plinks.q);
337         KASSERT(!unchanged || m->queue == queue,
338             ("page %p queue %d %d", m, queue, m->queue));
339         TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q);
340         return (unchanged);
341 }
342
343 /*
344  * Lock the page while holding the page queue lock.  Use marker page
345  * to detect page queue changes and maintain notion of next page on
346  * page queue.  Return TRUE if no changes were detected, FALSE
347  * otherwise.  The page is locked on return. The page queue lock might
348  * be dropped and reacquired.
349  *
350  * This function depends on normal struct vm_page being type stable.
351  */
352 static boolean_t
353 vm_pageout_page_lock(vm_page_t m, vm_page_t *next)
354 {
355         struct vm_page marker;
356         struct vm_pagequeue *pq;
357         boolean_t unchanged;
358         u_short queue;
359
360         vm_page_lock_assert(m, MA_NOTOWNED);
361         if (vm_page_trylock(m))
362                 return (TRUE);
363
364         queue = m->queue;
365         vm_pageout_init_marker(&marker, queue);
366         pq = vm_page_pagequeue(m);
367
368         TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q);
369         vm_pagequeue_unlock(pq);
370         vm_page_lock(m);
371         vm_pagequeue_lock(pq);
372
373         /* Page queue might have changed. */
374         *next = TAILQ_NEXT(&marker, plinks.q);
375         unchanged = m == TAILQ_PREV(&marker, pglist, plinks.q);
376         KASSERT(!unchanged || m->queue == queue,
377             ("page %p queue %d %d", m, queue, m->queue));
378         TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q);
379         return (unchanged);
380 }
381
382 /*
383  * Scan for pages at adjacent offsets within the given page's object that are
384  * eligible for laundering, form a cluster of these pages and the given page,
385  * and launder that cluster.
386  */
387 static int
388 vm_pageout_cluster(vm_page_t m)
389 {
390         vm_object_t object;
391         vm_page_t mc[2 * vm_pageout_page_count], p, pb, ps;
392         vm_pindex_t pindex;
393         int ib, is, page_base, pageout_count;
394
395         vm_page_assert_locked(m);
396         object = m->object;
397         VM_OBJECT_ASSERT_WLOCKED(object);
398         pindex = m->pindex;
399
400         /*
401          * We can't clean the page if it is busy or held.
402          */
403         vm_page_assert_unbusied(m);
404         KASSERT(m->hold_count == 0, ("page %p is held", m));
405         vm_page_unlock(m);
406
407         mc[vm_pageout_page_count] = pb = ps = m;
408         pageout_count = 1;
409         page_base = vm_pageout_page_count;
410         ib = 1;
411         is = 1;
412
413         /*
414          * We can cluster only if the page is not clean, busy, or held, and
415          * the page is in the laundry queue.
416          *
417          * During heavy mmap/modification loads the pageout
418          * daemon can really fragment the underlying file
419          * due to flushing pages out of order and not trying to
420          * align the clusters (which leaves sporadic out-of-order
421          * holes).  To solve this problem we do the reverse scan
422          * first and attempt to align our cluster, then do a 
423          * forward scan if room remains.
424          */
425 more:
426         while (ib != 0 && pageout_count < vm_pageout_page_count) {
427                 if (ib > pindex) {
428                         ib = 0;
429                         break;
430                 }
431                 if ((p = vm_page_prev(pb)) == NULL || vm_page_busied(p)) {
432                         ib = 0;
433                         break;
434                 }
435                 vm_page_test_dirty(p);
436                 if (p->dirty == 0) {
437                         ib = 0;
438                         break;
439                 }
440                 vm_page_lock(p);
441                 if (!vm_page_in_laundry(p) ||
442                     p->hold_count != 0) {       /* may be undergoing I/O */
443                         vm_page_unlock(p);
444                         ib = 0;
445                         break;
446                 }
447                 vm_page_unlock(p);
448                 mc[--page_base] = pb = p;
449                 ++pageout_count;
450                 ++ib;
451
452                 /*
453                  * We are at an alignment boundary.  Stop here, and switch
454                  * directions.  Do not clear ib.
455                  */
456                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
457                         break;
458         }
459         while (pageout_count < vm_pageout_page_count && 
460             pindex + is < object->size) {
461                 if ((p = vm_page_next(ps)) == NULL || vm_page_busied(p))
462                         break;
463                 vm_page_test_dirty(p);
464                 if (p->dirty == 0)
465                         break;
466                 vm_page_lock(p);
467                 if (!vm_page_in_laundry(p) ||
468                     p->hold_count != 0) {       /* may be undergoing I/O */
469                         vm_page_unlock(p);
470                         break;
471                 }
472                 vm_page_unlock(p);
473                 mc[page_base + pageout_count] = ps = p;
474                 ++pageout_count;
475                 ++is;
476         }
477
478         /*
479          * If we exhausted our forward scan, continue with the reverse scan
480          * when possible, even past an alignment boundary.  This catches
481          * boundary conditions.
482          */
483         if (ib != 0 && pageout_count < vm_pageout_page_count)
484                 goto more;
485
486         return (vm_pageout_flush(&mc[page_base], pageout_count,
487             VM_PAGER_PUT_NOREUSE, 0, NULL, NULL));
488 }
489
490 /*
491  * vm_pageout_flush() - launder the given pages
492  *
493  *      The given pages are laundered.  Note that we setup for the start of
494  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
495  *      reference count all in here rather then in the parent.  If we want
496  *      the parent to do more sophisticated things we may have to change
497  *      the ordering.
498  *
499  *      Returned runlen is the count of pages between mreq and first
500  *      page after mreq with status VM_PAGER_AGAIN.
501  *      *eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
502  *      for any page in runlen set.
503  */
504 int
505 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
506     boolean_t *eio)
507 {
508         vm_object_t object = mc[0]->object;
509         int pageout_status[count];
510         int numpagedout = 0;
511         int i, runlen;
512
513         VM_OBJECT_ASSERT_WLOCKED(object);
514
515         /*
516          * Initiate I/O.  Bump the vm_page_t->busy counter and
517          * mark the pages read-only.
518          *
519          * We do not have to fixup the clean/dirty bits here... we can
520          * allow the pager to do it after the I/O completes.
521          *
522          * NOTE! mc[i]->dirty may be partial or fragmented due to an
523          * edge case with file fragments.
524          */
525         for (i = 0; i < count; i++) {
526                 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
527                     ("vm_pageout_flush: partially invalid page %p index %d/%d",
528                         mc[i], i, count));
529                 vm_page_sbusy(mc[i]);
530                 pmap_remove_write(mc[i]);
531         }
532         vm_object_pip_add(object, count);
533
534         vm_pager_put_pages(object, mc, count, flags, pageout_status);
535
536         runlen = count - mreq;
537         if (eio != NULL)
538                 *eio = FALSE;
539         for (i = 0; i < count; i++) {
540                 vm_page_t mt = mc[i];
541
542                 KASSERT(pageout_status[i] == VM_PAGER_PEND ||
543                     !pmap_page_is_write_mapped(mt),
544                     ("vm_pageout_flush: page %p is not write protected", mt));
545                 switch (pageout_status[i]) {
546                 case VM_PAGER_OK:
547                         vm_page_lock(mt);
548                         if (vm_page_in_laundry(mt))
549                                 vm_page_deactivate_noreuse(mt);
550                         vm_page_unlock(mt);
551                         /* FALLTHROUGH */
552                 case VM_PAGER_PEND:
553                         numpagedout++;
554                         break;
555                 case VM_PAGER_BAD:
556                         /*
557                          * The page is outside the object's range.  We pretend
558                          * that the page out worked and clean the page, so the
559                          * changes will be lost if the page is reclaimed by
560                          * the page daemon.
561                          */
562                         vm_page_undirty(mt);
563                         vm_page_lock(mt);
564                         if (vm_page_in_laundry(mt))
565                                 vm_page_deactivate_noreuse(mt);
566                         vm_page_unlock(mt);
567                         break;
568                 case VM_PAGER_ERROR:
569                 case VM_PAGER_FAIL:
570                         /*
571                          * If the page couldn't be paged out, then reactivate
572                          * it so that it doesn't clog the laundry and inactive
573                          * queues.  (We will try paging it out again later).
574                          */
575                         vm_page_lock(mt);
576                         vm_page_activate(mt);
577                         vm_page_unlock(mt);
578                         if (eio != NULL && i >= mreq && i - mreq < runlen)
579                                 *eio = TRUE;
580                         break;
581                 case VM_PAGER_AGAIN:
582                         if (i >= mreq && i - mreq < runlen)
583                                 runlen = i - mreq;
584                         break;
585                 }
586
587                 /*
588                  * If the operation is still going, leave the page busy to
589                  * block all other accesses. Also, leave the paging in
590                  * progress indicator set so that we don't attempt an object
591                  * collapse.
592                  */
593                 if (pageout_status[i] != VM_PAGER_PEND) {
594                         vm_object_pip_wakeup(object);
595                         vm_page_sunbusy(mt);
596                 }
597         }
598         if (prunlen != NULL)
599                 *prunlen = runlen;
600         return (numpagedout);
601 }
602
603 #if !defined(NO_SWAPPING)
604 /*
605  *      vm_pageout_object_deactivate_pages
606  *
607  *      Deactivate enough pages to satisfy the inactive target
608  *      requirements.
609  *
610  *      The object and map must be locked.
611  */
612 static void
613 vm_pageout_object_deactivate_pages(pmap_t pmap, vm_object_t first_object,
614     long desired)
615 {
616         vm_object_t backing_object, object;
617         vm_page_t p;
618         int act_delta, remove_mode;
619
620         VM_OBJECT_ASSERT_LOCKED(first_object);
621         if ((first_object->flags & OBJ_FICTITIOUS) != 0)
622                 return;
623         for (object = first_object;; object = backing_object) {
624                 if (pmap_resident_count(pmap) <= desired)
625                         goto unlock_return;
626                 VM_OBJECT_ASSERT_LOCKED(object);
627                 if ((object->flags & OBJ_UNMANAGED) != 0 ||
628                     object->paging_in_progress != 0)
629                         goto unlock_return;
630
631                 remove_mode = 0;
632                 if (object->shadow_count > 1)
633                         remove_mode = 1;
634                 /*
635                  * Scan the object's entire memory queue.
636                  */
637                 TAILQ_FOREACH(p, &object->memq, listq) {
638                         if (pmap_resident_count(pmap) <= desired)
639                                 goto unlock_return;
640                         if (vm_page_busied(p))
641                                 continue;
642                         PCPU_INC(cnt.v_pdpages);
643                         vm_page_lock(p);
644                         if (p->wire_count != 0 || p->hold_count != 0 ||
645                             !pmap_page_exists_quick(pmap, p)) {
646                                 vm_page_unlock(p);
647                                 continue;
648                         }
649                         act_delta = pmap_ts_referenced(p);
650                         if ((p->aflags & PGA_REFERENCED) != 0) {
651                                 if (act_delta == 0)
652                                         act_delta = 1;
653                                 vm_page_aflag_clear(p, PGA_REFERENCED);
654                         }
655                         if (!vm_page_active(p) && act_delta != 0) {
656                                 vm_page_activate(p);
657                                 p->act_count += act_delta;
658                         } else if (vm_page_active(p)) {
659                                 if (act_delta == 0) {
660                                         p->act_count -= min(p->act_count,
661                                             ACT_DECLINE);
662                                         if (!remove_mode && p->act_count == 0) {
663                                                 pmap_remove_all(p);
664                                                 vm_page_deactivate(p);
665                                         } else
666                                                 vm_page_requeue(p);
667                                 } else {
668                                         vm_page_activate(p);
669                                         if (p->act_count < ACT_MAX -
670                                             ACT_ADVANCE)
671                                                 p->act_count += ACT_ADVANCE;
672                                         vm_page_requeue(p);
673                                 }
674                         } else if (vm_page_inactive(p))
675                                 pmap_remove_all(p);
676                         vm_page_unlock(p);
677                 }
678                 if ((backing_object = object->backing_object) == NULL)
679                         goto unlock_return;
680                 VM_OBJECT_RLOCK(backing_object);
681                 if (object != first_object)
682                         VM_OBJECT_RUNLOCK(object);
683         }
684 unlock_return:
685         if (object != first_object)
686                 VM_OBJECT_RUNLOCK(object);
687 }
688
689 /*
690  * deactivate some number of pages in a map, try to do it fairly, but
691  * that is really hard to do.
692  */
693 static void
694 vm_pageout_map_deactivate_pages(map, desired)
695         vm_map_t map;
696         long desired;
697 {
698         vm_map_entry_t tmpe;
699         vm_object_t obj, bigobj;
700         int nothingwired;
701
702         if (!vm_map_trylock(map))
703                 return;
704
705         bigobj = NULL;
706         nothingwired = TRUE;
707
708         /*
709          * first, search out the biggest object, and try to free pages from
710          * that.
711          */
712         tmpe = map->header.next;
713         while (tmpe != &map->header) {
714                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
715                         obj = tmpe->object.vm_object;
716                         if (obj != NULL && VM_OBJECT_TRYRLOCK(obj)) {
717                                 if (obj->shadow_count <= 1 &&
718                                     (bigobj == NULL ||
719                                      bigobj->resident_page_count < obj->resident_page_count)) {
720                                         if (bigobj != NULL)
721                                                 VM_OBJECT_RUNLOCK(bigobj);
722                                         bigobj = obj;
723                                 } else
724                                         VM_OBJECT_RUNLOCK(obj);
725                         }
726                 }
727                 if (tmpe->wired_count > 0)
728                         nothingwired = FALSE;
729                 tmpe = tmpe->next;
730         }
731
732         if (bigobj != NULL) {
733                 vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
734                 VM_OBJECT_RUNLOCK(bigobj);
735         }
736         /*
737          * Next, hunt around for other pages to deactivate.  We actually
738          * do this search sort of wrong -- .text first is not the best idea.
739          */
740         tmpe = map->header.next;
741         while (tmpe != &map->header) {
742                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
743                         break;
744                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
745                         obj = tmpe->object.vm_object;
746                         if (obj != NULL) {
747                                 VM_OBJECT_RLOCK(obj);
748                                 vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
749                                 VM_OBJECT_RUNLOCK(obj);
750                         }
751                 }
752                 tmpe = tmpe->next;
753         }
754
755         /*
756          * Remove all mappings if a process is swapped out, this will free page
757          * table pages.
758          */
759         if (desired == 0 && nothingwired) {
760                 pmap_remove(vm_map_pmap(map), vm_map_min(map),
761                     vm_map_max(map));
762         }
763
764         vm_map_unlock(map);
765 }
766 #endif          /* !defined(NO_SWAPPING) */
767
768 /*
769  * Attempt to acquire all of the necessary locks to launder a page and
770  * then call through the clustering layer to PUTPAGES.  Wait a short
771  * time for a vnode lock.
772  *
773  * Requires the page and object lock on entry, releases both before return.
774  * Returns 0 on success and an errno otherwise.
775  */
776 static int
777 vm_pageout_clean(vm_page_t m, int *numpagedout)
778 {
779         struct vnode *vp;
780         struct mount *mp;
781         vm_object_t object;
782         vm_pindex_t pindex;
783         int error, lockmode;
784
785         vm_page_assert_locked(m);
786         object = m->object;
787         VM_OBJECT_ASSERT_WLOCKED(object);
788         error = 0;
789         vp = NULL;
790         mp = NULL;
791
792         /*
793          * The object is already known NOT to be dead.   It
794          * is possible for the vget() to block the whole
795          * pageout daemon, but the new low-memory handling
796          * code should prevent it.
797          *
798          * We can't wait forever for the vnode lock, we might
799          * deadlock due to a vn_read() getting stuck in
800          * vm_wait while holding this vnode.  We skip the 
801          * vnode if we can't get it in a reasonable amount
802          * of time.
803          */
804         if (object->type == OBJT_VNODE) {
805                 vm_page_unlock(m);
806                 vp = object->handle;
807                 if (vp->v_type == VREG &&
808                     vn_start_write(vp, &mp, V_NOWAIT) != 0) {
809                         mp = NULL;
810                         error = EDEADLK;
811                         goto unlock_all;
812                 }
813                 KASSERT(mp != NULL,
814                     ("vp %p with NULL v_mount", vp));
815                 vm_object_reference_locked(object);
816                 pindex = m->pindex;
817                 VM_OBJECT_WUNLOCK(object);
818                 lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
819                     LK_SHARED : LK_EXCLUSIVE;
820                 if (vget(vp, lockmode | LK_TIMELOCK, curthread)) {
821                         vp = NULL;
822                         error = EDEADLK;
823                         goto unlock_mp;
824                 }
825                 VM_OBJECT_WLOCK(object);
826                 vm_page_lock(m);
827                 /*
828                  * While the object and page were unlocked, the page
829                  * may have been:
830                  * (1) moved to a different queue,
831                  * (2) reallocated to a different object,
832                  * (3) reallocated to a different offset, or
833                  * (4) cleaned.
834                  */
835                 if (!vm_page_in_laundry(m) || m->object != object ||
836                     m->pindex != pindex || m->dirty == 0) {
837                         vm_page_unlock(m);
838                         error = ENXIO;
839                         goto unlock_all;
840                 }
841
842                 /*
843                  * The page may have been busied or held while the object
844                  * and page locks were released.
845                  */
846                 if (vm_page_busied(m) || m->hold_count != 0) {
847                         vm_page_unlock(m);
848                         error = EBUSY;
849                         goto unlock_all;
850                 }
851         }
852
853         /*
854          * If a page is dirty, then it is either being washed
855          * (but not yet cleaned) or it is still in the
856          * laundry.  If it is still in the laundry, then we
857          * start the cleaning operation. 
858          */
859         if ((*numpagedout = vm_pageout_cluster(m)) == 0)
860                 error = EIO;
861
862 unlock_all:
863         VM_OBJECT_WUNLOCK(object);
864
865 unlock_mp:
866         vm_page_lock_assert(m, MA_NOTOWNED);
867         if (mp != NULL) {
868                 if (vp != NULL)
869                         vput(vp);
870                 vm_object_deallocate(object);
871                 vn_finished_write(mp);
872         }
873
874         return (error);
875 }
876
877 /*
878  * Attempt to launder the specified number of pages.
879  *
880  * Returns the number of pages successfully laundered.
881  */
882 static int
883 vm_pageout_launder(struct vm_domain *vmd, int launder, bool in_shortfall)
884 {
885         struct vm_pagequeue *pq;
886         vm_object_t object;
887         vm_page_t m, next;
888         int act_delta, error, maxscan, numpagedout, starting_target;
889         int vnodes_skipped;
890         bool pageout_ok, queue_locked;
891
892         starting_target = launder;
893         vnodes_skipped = 0;
894
895         /*
896          * Scan the laundry queue for pages eligible to be laundered.  We stop
897          * once the target number of dirty pages have been laundered, or once
898          * we've reached the end of the queue.  A single iteration of this loop
899          * may cause more than one page to be laundered because of clustering.
900          *
901          * maxscan ensures that we don't re-examine requeued pages.  Any
902          * additional pages written as part of a cluster are subtracted from
903          * maxscan since they must be taken from the laundry queue.
904          */
905         pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
906         maxscan = pq->pq_cnt;
907
908         vm_pagequeue_lock(pq);
909         queue_locked = true;
910         for (m = TAILQ_FIRST(&pq->pq_pl);
911             m != NULL && maxscan-- > 0 && launder > 0;
912             m = next) {
913                 vm_pagequeue_assert_locked(pq);
914                 KASSERT(queue_locked, ("unlocked laundry queue"));
915                 KASSERT(vm_page_in_laundry(m),
916                     ("page %p has an inconsistent queue", m));
917                 next = TAILQ_NEXT(m, plinks.q);
918                 if ((m->flags & PG_MARKER) != 0)
919                         continue;
920                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
921                     ("PG_FICTITIOUS page %p cannot be in laundry queue", m));
922                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
923                     ("VPO_UNMANAGED page %p cannot be in laundry queue", m));
924                 if (!vm_pageout_page_lock(m, &next) || m->hold_count != 0) {
925                         vm_page_unlock(m);
926                         continue;
927                 }
928                 object = m->object;
929                 if ((!VM_OBJECT_TRYWLOCK(object) &&
930                     (!vm_pageout_fallback_object_lock(m, &next) ||
931                     m->hold_count != 0)) || vm_page_busied(m)) {
932                         VM_OBJECT_WUNLOCK(object);
933                         vm_page_unlock(m);
934                         continue;
935                 }
936
937                 /*
938                  * Unlock the laundry queue, invalidating the 'next' pointer.
939                  * Use a marker to remember our place in the laundry queue.
940                  */
941                 TAILQ_INSERT_AFTER(&pq->pq_pl, m, &vmd->vmd_laundry_marker,
942                     plinks.q);
943                 vm_pagequeue_unlock(pq);
944                 queue_locked = false;
945
946                 /*
947                  * Invalid pages can be easily freed.  They cannot be
948                  * mapped; vm_page_free() asserts this.
949                  */
950                 if (m->valid == 0)
951                         goto free_page;
952
953                 /*
954                  * If the page has been referenced and the object is not dead,
955                  * reactivate or requeue the page depending on whether the
956                  * object is mapped.
957                  */
958                 if ((m->aflags & PGA_REFERENCED) != 0) {
959                         vm_page_aflag_clear(m, PGA_REFERENCED);
960                         act_delta = 1;
961                 } else
962                         act_delta = 0;
963                 if (object->ref_count != 0)
964                         act_delta += pmap_ts_referenced(m);
965                 else {
966                         KASSERT(!pmap_page_is_mapped(m),
967                             ("page %p is mapped", m));
968                 }
969                 if (act_delta != 0) {
970                         if (object->ref_count != 0) {
971                                 PCPU_INC(cnt.v_reactivated);
972                                 vm_page_activate(m);
973
974                                 /*
975                                  * Increase the activation count if the page
976                                  * was referenced while in the laundry queue.
977                                  * This makes it less likely that the page will
978                                  * be returned prematurely to the inactive
979                                  * queue.
980                                  */
981                                 m->act_count += act_delta + ACT_ADVANCE;
982
983                                 /*
984                                  * If this was a background laundering, count
985                                  * activated pages towards our target.  The
986                                  * purpose of background laundering is to ensure
987                                  * that pages are eventually cycled through the
988                                  * laundry queue, and an activation is a valid
989                                  * way out.
990                                  */
991                                 if (!in_shortfall)
992                                         launder--;
993                                 goto drop_page;
994                         } else if ((object->flags & OBJ_DEAD) == 0)
995                                 goto requeue_page;
996                 }
997
998                 /*
999                  * If the page appears to be clean at the machine-independent
1000                  * layer, then remove all of its mappings from the pmap in
1001                  * anticipation of freeing it.  If, however, any of the page's
1002                  * mappings allow write access, then the page may still be
1003                  * modified until the last of those mappings are removed.
1004                  */
1005                 if (object->ref_count != 0) {
1006                         vm_page_test_dirty(m);
1007                         if (m->dirty == 0)
1008                                 pmap_remove_all(m);
1009                 }
1010
1011                 /*
1012                  * Clean pages are freed, and dirty pages are paged out unless
1013                  * they belong to a dead object.  Requeueing dirty pages from
1014                  * dead objects is pointless, as they are being paged out and
1015                  * freed by the thread that destroyed the object.
1016                  */
1017                 if (m->dirty == 0) {
1018 free_page:
1019                         vm_page_free(m);
1020                         PCPU_INC(cnt.v_dfree);
1021                 } else if ((object->flags & OBJ_DEAD) == 0) {
1022                         if (object->type != OBJT_SWAP &&
1023                             object->type != OBJT_DEFAULT)
1024                                 pageout_ok = true;
1025                         else if (disable_swap_pageouts)
1026                                 pageout_ok = false;
1027                         else
1028                                 pageout_ok = true;
1029                         if (!pageout_ok) {
1030 requeue_page:
1031                                 vm_pagequeue_lock(pq);
1032                                 queue_locked = true;
1033                                 vm_page_requeue_locked(m);
1034                                 goto drop_page;
1035                         }
1036
1037                         /*
1038                          * Form a cluster with adjacent, dirty pages from the
1039                          * same object, and page out that entire cluster.
1040                          *
1041                          * The adjacent, dirty pages must also be in the
1042                          * laundry.  However, their mappings are not checked
1043                          * for new references.  Consequently, a recently
1044                          * referenced page may be paged out.  However, that
1045                          * page will not be prematurely reclaimed.  After page
1046                          * out, the page will be placed in the inactive queue,
1047                          * where any new references will be detected and the
1048                          * page reactivated.
1049                          */
1050                         error = vm_pageout_clean(m, &numpagedout);
1051                         if (error == 0) {
1052                                 launder -= numpagedout;
1053                                 maxscan -= numpagedout - 1;
1054                         } else if (error == EDEADLK) {
1055                                 pageout_lock_miss++;
1056                                 vnodes_skipped++;
1057                         }
1058                         goto relock_queue;
1059                 }
1060 drop_page:
1061                 vm_page_unlock(m);
1062                 VM_OBJECT_WUNLOCK(object);
1063 relock_queue:
1064                 if (!queue_locked) {
1065                         vm_pagequeue_lock(pq);
1066                         queue_locked = true;
1067                 }
1068                 next = TAILQ_NEXT(&vmd->vmd_laundry_marker, plinks.q);
1069                 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_laundry_marker, plinks.q);
1070         }
1071         vm_pagequeue_unlock(pq);
1072
1073         /*
1074          * Wakeup the sync daemon if we skipped a vnode in a writeable object
1075          * and we didn't launder enough pages.
1076          */
1077         if (vnodes_skipped > 0 && launder > 0)
1078                 (void)speedup_syncer();
1079
1080         return (starting_target - launder);
1081 }
1082
1083 /*
1084  * Compute the integer square root.
1085  */
1086 static u_int
1087 isqrt(u_int num)
1088 {
1089         u_int bit, root, tmp;
1090
1091         bit = 1u << ((NBBY * sizeof(u_int)) - 2);
1092         while (bit > num)
1093                 bit >>= 2;
1094         root = 0;
1095         while (bit != 0) {
1096                 tmp = root + bit;
1097                 root >>= 1;
1098                 if (num >= tmp) {
1099                         num -= tmp;
1100                         root += bit;
1101                 }
1102                 bit >>= 2;
1103         }
1104         return (root);
1105 }
1106
1107 /*
1108  * Perform the work of the laundry thread: periodically wake up and determine
1109  * whether any pages need to be laundered.  If so, determine the number of pages
1110  * that need to be laundered, and launder them.
1111  */
1112 static void
1113 vm_pageout_laundry_worker(void *arg)
1114 {
1115         struct vm_domain *domain;
1116         struct vm_pagequeue *pq;
1117         uint64_t nclean, ndirty;
1118         u_int last_launder, wakeups;
1119         int domidx, last_target, launder, shortfall, shortfall_cycle, target;
1120         bool in_shortfall;
1121
1122         domidx = (uintptr_t)arg;
1123         domain = &vm_dom[domidx];
1124         pq = &domain->vmd_pagequeues[PQ_LAUNDRY];
1125         KASSERT(domain->vmd_segs != 0, ("domain without segments"));
1126         vm_pageout_init_marker(&domain->vmd_laundry_marker, PQ_LAUNDRY);
1127
1128         shortfall = 0;
1129         in_shortfall = false;
1130         shortfall_cycle = 0;
1131         target = 0;
1132         last_launder = 0;
1133
1134         /*
1135          * The pageout laundry worker is never done, so loop forever.
1136          */
1137         for (;;) {
1138                 KASSERT(target >= 0, ("negative target %d", target));
1139                 KASSERT(shortfall_cycle >= 0,
1140                     ("negative cycle %d", shortfall_cycle));
1141                 launder = 0;
1142                 wakeups = VM_METER_PCPU_CNT(v_pdwakeups);
1143
1144                 /*
1145                  * First determine whether we need to launder pages to meet a
1146                  * shortage of free pages.
1147                  */
1148                 if (shortfall > 0) {
1149                         in_shortfall = true;
1150                         shortfall_cycle = VM_LAUNDER_RATE / VM_INACT_SCAN_RATE;
1151                         target = shortfall;
1152                 } else if (!in_shortfall)
1153                         goto trybackground;
1154                 else if (shortfall_cycle == 0 || vm_laundry_target() <= 0) {
1155                         /*
1156                          * We recently entered shortfall and began laundering
1157                          * pages.  If we have completed that laundering run
1158                          * (and we are no longer in shortfall) or we have met
1159                          * our laundry target through other activity, then we
1160                          * can stop laundering pages.
1161                          */
1162                         in_shortfall = false;
1163                         target = 0;
1164                         goto trybackground;
1165                 }
1166                 last_launder = wakeups;
1167                 launder = target / shortfall_cycle--;
1168                 goto dolaundry;
1169
1170                 /*
1171                  * There's no immediate need to launder any pages; see if we
1172                  * meet the conditions to perform background laundering:
1173                  *
1174                  * 1. The ratio of dirty to clean inactive pages exceeds the
1175                  *    background laundering threshold and the pagedaemon has
1176                  *    been woken up to reclaim pages since our last
1177                  *    laundering, or
1178                  * 2. we haven't yet reached the target of the current
1179                  *    background laundering run.
1180                  *
1181                  * The background laundering threshold is not a constant.
1182                  * Instead, it is a slowly growing function of the number of
1183                  * page daemon wakeups since the last laundering.  Thus, as the
1184                  * ratio of dirty to clean inactive pages grows, the amount of
1185                  * memory pressure required to trigger laundering decreases.
1186                  */
1187 trybackground:
1188                 nclean = vm_cnt.v_inactive_count + vm_cnt.v_free_count;
1189                 ndirty = vm_cnt.v_laundry_count;
1190                 if (target == 0 && wakeups != last_launder &&
1191                     ndirty * isqrt(wakeups - last_launder) >= nclean) {
1192                         target = vm_background_launder_target;
1193                 }
1194
1195                 /*
1196                  * We have a non-zero background laundering target.  If we've
1197                  * laundered up to our maximum without observing a page daemon
1198                  * wakeup, just stop.  This is a safety belt that ensures we
1199                  * don't launder an excessive amount if memory pressure is low
1200                  * and the ratio of dirty to clean pages is large.  Otherwise,
1201                  * proceed at the background laundering rate.
1202                  */
1203                 if (target > 0) {
1204                         if (wakeups != last_launder) {
1205                                 last_launder = wakeups;
1206                                 last_target = target;
1207                         } else if (last_target - target >=
1208                             vm_background_launder_max * PAGE_SIZE / 1024) {
1209                                 target = 0;
1210                         }
1211                         launder = vm_background_launder_rate * PAGE_SIZE / 1024;
1212                         launder /= VM_LAUNDER_RATE;
1213                         if (launder > target)
1214                                 launder = target;
1215                 }
1216
1217 dolaundry:
1218                 if (launder > 0) {
1219                         /*
1220                          * Because of I/O clustering, the number of laundered
1221                          * pages could exceed "target" by the maximum size of
1222                          * a cluster minus one. 
1223                          */
1224                         target -= min(vm_pageout_launder(domain, launder,
1225                             in_shortfall), target);
1226                         pause("laundp", hz / VM_LAUNDER_RATE);
1227                 }
1228
1229                 /*
1230                  * If we're not currently laundering pages and the page daemon
1231                  * hasn't posted a new request, sleep until the page daemon
1232                  * kicks us.
1233                  */
1234                 vm_pagequeue_lock(pq);
1235                 if (target == 0 && vm_laundry_request == VM_LAUNDRY_IDLE)
1236                         (void)mtx_sleep(&vm_laundry_request,
1237                             vm_pagequeue_lockptr(pq), PVM, "launds", 0);
1238
1239                 /*
1240                  * If the pagedaemon has indicated that it's in shortfall, start
1241                  * a shortfall laundering unless we're already in the middle of
1242                  * one.  This may preempt a background laundering.
1243                  */
1244                 if (vm_laundry_request == VM_LAUNDRY_SHORTFALL &&
1245                     (!in_shortfall || shortfall_cycle == 0)) {
1246                         shortfall = vm_laundry_target() + vm_pageout_deficit;
1247                         target = 0;
1248                 } else
1249                         shortfall = 0;
1250
1251                 if (target == 0)
1252                         vm_laundry_request = VM_LAUNDRY_IDLE;
1253                 vm_pagequeue_unlock(pq);
1254         }
1255 }
1256
1257 /*
1258  *      vm_pageout_scan does the dirty work for the pageout daemon.
1259  *
1260  *      pass == 0: Update active LRU/deactivate pages
1261  *      pass >= 1: Free inactive pages
1262  *
1263  * Returns true if pass was zero or enough pages were freed by the inactive
1264  * queue scan to meet the target.
1265  */
1266 static bool
1267 vm_pageout_scan(struct vm_domain *vmd, int pass)
1268 {
1269         vm_page_t m, next;
1270         struct vm_pagequeue *pq;
1271         vm_object_t object;
1272         long min_scan;
1273         int act_delta, addl_page_shortage, deficit, inactq_shortage, maxscan;
1274         int page_shortage, scan_tick, scanned, starting_page_shortage;
1275         boolean_t queue_locked;
1276
1277         /*
1278          * If we need to reclaim memory ask kernel caches to return
1279          * some.  We rate limit to avoid thrashing.
1280          */
1281         if (vmd == &vm_dom[0] && pass > 0 &&
1282             (time_uptime - lowmem_uptime) >= lowmem_period) {
1283                 /*
1284                  * Decrease registered cache sizes.
1285                  */
1286                 SDT_PROBE0(vm, , , vm__lowmem_scan);
1287                 EVENTHANDLER_INVOKE(vm_lowmem, 0);
1288                 /*
1289                  * We do this explicitly after the caches have been
1290                  * drained above.
1291                  */
1292                 uma_reclaim();
1293                 lowmem_uptime = time_uptime;
1294         }
1295
1296         /*
1297          * The addl_page_shortage is the number of temporarily
1298          * stuck pages in the inactive queue.  In other words, the
1299          * number of pages from the inactive count that should be
1300          * discounted in setting the target for the active queue scan.
1301          */
1302         addl_page_shortage = 0;
1303
1304         /*
1305          * Calculate the number of pages that we want to free.  This number
1306          * can be negative if many pages are freed between the wakeup call to
1307          * the page daemon and this calculation.
1308          */
1309         if (pass > 0) {
1310                 deficit = atomic_readandclear_int(&vm_pageout_deficit);
1311                 page_shortage = vm_paging_target() + deficit;
1312         } else
1313                 page_shortage = deficit = 0;
1314         starting_page_shortage = page_shortage;
1315
1316         /*
1317          * Start scanning the inactive queue for pages that we can free.  The
1318          * scan will stop when we reach the target or we have scanned the
1319          * entire queue.  (Note that m->act_count is not used to make
1320          * decisions for the inactive queue, only for the active queue.)
1321          */
1322         pq = &vmd->vmd_pagequeues[PQ_INACTIVE];
1323         maxscan = pq->pq_cnt;
1324         vm_pagequeue_lock(pq);
1325         queue_locked = TRUE;
1326         for (m = TAILQ_FIRST(&pq->pq_pl);
1327              m != NULL && maxscan-- > 0 && page_shortage > 0;
1328              m = next) {
1329                 vm_pagequeue_assert_locked(pq);
1330                 KASSERT(queue_locked, ("unlocked inactive queue"));
1331                 KASSERT(vm_page_inactive(m), ("Inactive queue %p", m));
1332
1333                 PCPU_INC(cnt.v_pdpages);
1334                 next = TAILQ_NEXT(m, plinks.q);
1335
1336                 /*
1337                  * skip marker pages
1338                  */
1339                 if (m->flags & PG_MARKER)
1340                         continue;
1341
1342                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
1343                     ("Fictitious page %p cannot be in inactive queue", m));
1344                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1345                     ("Unmanaged page %p cannot be in inactive queue", m));
1346
1347                 /*
1348                  * The page or object lock acquisitions fail if the
1349                  * page was removed from the queue or moved to a
1350                  * different position within the queue.  In either
1351                  * case, addl_page_shortage should not be incremented.
1352                  */
1353                 if (!vm_pageout_page_lock(m, &next))
1354                         goto unlock_page;
1355                 else if (m->hold_count != 0) {
1356                         /*
1357                          * Held pages are essentially stuck in the
1358                          * queue.  So, they ought to be discounted
1359                          * from the inactive count.  See the
1360                          * calculation of inactq_shortage before the
1361                          * loop over the active queue below.
1362                          */
1363                         addl_page_shortage++;
1364                         goto unlock_page;
1365                 }
1366                 object = m->object;
1367                 if (!VM_OBJECT_TRYWLOCK(object)) {
1368                         if (!vm_pageout_fallback_object_lock(m, &next))
1369                                 goto unlock_object;
1370                         else if (m->hold_count != 0) {
1371                                 addl_page_shortage++;
1372                                 goto unlock_object;
1373                         }
1374                 }
1375                 if (vm_page_busied(m)) {
1376                         /*
1377                          * Don't mess with busy pages.  Leave them at
1378                          * the front of the queue.  Most likely, they
1379                          * are being paged out and will leave the
1380                          * queue shortly after the scan finishes.  So,
1381                          * they ought to be discounted from the
1382                          * inactive count.
1383                          */
1384                         addl_page_shortage++;
1385 unlock_object:
1386                         VM_OBJECT_WUNLOCK(object);
1387 unlock_page:
1388                         vm_page_unlock(m);
1389                         continue;
1390                 }
1391                 KASSERT(m->hold_count == 0, ("Held page %p", m));
1392
1393                 /*
1394                  * Dequeue the inactive page and unlock the inactive page
1395                  * queue, invalidating the 'next' pointer.  Dequeueing the
1396                  * page here avoids a later reacquisition (and release) of
1397                  * the inactive page queue lock when vm_page_activate(),
1398                  * vm_page_free(), or vm_page_launder() is called.  Use a
1399                  * marker to remember our place in the inactive queue.
1400                  */
1401                 TAILQ_INSERT_AFTER(&pq->pq_pl, m, &vmd->vmd_marker, plinks.q);
1402                 vm_page_dequeue_locked(m);
1403                 vm_pagequeue_unlock(pq);
1404                 queue_locked = FALSE;
1405
1406                 /*
1407                  * Invalid pages can be easily freed. They cannot be
1408                  * mapped, vm_page_free() asserts this.
1409                  */
1410                 if (m->valid == 0)
1411                         goto free_page;
1412
1413                 /*
1414                  * If the page has been referenced and the object is not dead,
1415                  * reactivate or requeue the page depending on whether the
1416                  * object is mapped.
1417                  */
1418                 if ((m->aflags & PGA_REFERENCED) != 0) {
1419                         vm_page_aflag_clear(m, PGA_REFERENCED);
1420                         act_delta = 1;
1421                 } else
1422                         act_delta = 0;
1423                 if (object->ref_count != 0) {
1424                         act_delta += pmap_ts_referenced(m);
1425                 } else {
1426                         KASSERT(!pmap_page_is_mapped(m),
1427                             ("vm_pageout_scan: page %p is mapped", m));
1428                 }
1429                 if (act_delta != 0) {
1430                         if (object->ref_count != 0) {
1431                                 PCPU_INC(cnt.v_reactivated);
1432                                 vm_page_activate(m);
1433
1434                                 /*
1435                                  * Increase the activation count if the page
1436                                  * was referenced while in the inactive queue.
1437                                  * This makes it less likely that the page will
1438                                  * be returned prematurely to the inactive
1439                                  * queue.
1440                                  */
1441                                 m->act_count += act_delta + ACT_ADVANCE;
1442                                 goto drop_page;
1443                         } else if ((object->flags & OBJ_DEAD) == 0) {
1444                                 vm_pagequeue_lock(pq);
1445                                 queue_locked = TRUE;
1446                                 m->queue = PQ_INACTIVE;
1447                                 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
1448                                 vm_pagequeue_cnt_inc(pq);
1449                                 goto drop_page;
1450                         }
1451                 }
1452
1453                 /*
1454                  * If the page appears to be clean at the machine-independent
1455                  * layer, then remove all of its mappings from the pmap in
1456                  * anticipation of freeing it.  If, however, any of the page's
1457                  * mappings allow write access, then the page may still be
1458                  * modified until the last of those mappings are removed.
1459                  */
1460                 if (object->ref_count != 0) {
1461                         vm_page_test_dirty(m);
1462                         if (m->dirty == 0)
1463                                 pmap_remove_all(m);
1464                 }
1465
1466                 /*
1467                  * Clean pages can be freed, but dirty pages must be sent back
1468                  * to the laundry, unless they belong to a dead object.
1469                  * Requeueing dirty pages from dead objects is pointless, as
1470                  * they are being paged out and freed by the thread that
1471                  * destroyed the object.
1472                  */
1473                 if (m->dirty == 0) {
1474 free_page:
1475                         vm_page_free(m);
1476                         PCPU_INC(cnt.v_dfree);
1477                         --page_shortage;
1478                 } else if ((object->flags & OBJ_DEAD) == 0)
1479                         vm_page_launder(m);
1480 drop_page:
1481                 vm_page_unlock(m);
1482                 VM_OBJECT_WUNLOCK(object);
1483                 if (!queue_locked) {
1484                         vm_pagequeue_lock(pq);
1485                         queue_locked = TRUE;
1486                 }
1487                 next = TAILQ_NEXT(&vmd->vmd_marker, plinks.q);
1488                 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_marker, plinks.q);
1489         }
1490         vm_pagequeue_unlock(pq);
1491
1492         /*
1493          * Wake up the laundry thread so that it can perform any needed
1494          * laundering.  If we didn't meet our target, we're in shortfall and
1495          * need to launder more aggressively.
1496          */
1497         if (vm_laundry_request == VM_LAUNDRY_IDLE &&
1498             starting_page_shortage > 0) {
1499                 pq = &vm_dom[0].vmd_pagequeues[PQ_LAUNDRY];
1500                 vm_pagequeue_lock(pq);
1501                 if (page_shortage > 0) {
1502                         vm_laundry_request = VM_LAUNDRY_SHORTFALL;
1503                         PCPU_INC(cnt.v_pdshortfalls);
1504                 } else if (vm_laundry_request != VM_LAUNDRY_SHORTFALL)
1505                         vm_laundry_request = VM_LAUNDRY_BACKGROUND;
1506                 wakeup(&vm_laundry_request);
1507                 vm_pagequeue_unlock(pq);
1508         }
1509
1510 #if !defined(NO_SWAPPING)
1511         /*
1512          * Wakeup the swapout daemon if we didn't free the targeted number of
1513          * pages.
1514          */
1515         if (vm_swap_enabled && page_shortage > 0)
1516                 vm_req_vmdaemon(VM_SWAP_NORMAL);
1517 #endif
1518
1519         /*
1520          * If the inactive queue scan fails repeatedly to meet its
1521          * target, kill the largest process.
1522          */
1523         vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage);
1524
1525         /*
1526          * Compute the number of pages we want to try to move from the
1527          * active queue to either the inactive or laundry queue.
1528          *
1529          * When scanning active pages, we make clean pages count more heavily
1530          * towards the page shortage than dirty pages.  This is because dirty
1531          * pages must be laundered before they can be reused and thus have less
1532          * utility when attempting to quickly alleviate a shortage.  However,
1533          * this weighting also causes the scan to deactivate dirty pages more
1534          * more aggressively, improving the effectiveness of clustering and
1535          * ensuring that they can eventually be reused.
1536          */
1537         inactq_shortage = vm_cnt.v_inactive_target - (vm_cnt.v_inactive_count +
1538             vm_cnt.v_laundry_count / act_scan_laundry_weight) +
1539             vm_paging_target() + deficit + addl_page_shortage;
1540         page_shortage *= act_scan_laundry_weight;
1541
1542         pq = &vmd->vmd_pagequeues[PQ_ACTIVE];
1543         vm_pagequeue_lock(pq);
1544         maxscan = pq->pq_cnt;
1545
1546         /*
1547          * If we're just idle polling attempt to visit every
1548          * active page within 'update_period' seconds.
1549          */
1550         scan_tick = ticks;
1551         if (vm_pageout_update_period != 0) {
1552                 min_scan = pq->pq_cnt;
1553                 min_scan *= scan_tick - vmd->vmd_last_active_scan;
1554                 min_scan /= hz * vm_pageout_update_period;
1555         } else
1556                 min_scan = 0;
1557         if (min_scan > 0 || (inactq_shortage > 0 && maxscan > 0))
1558                 vmd->vmd_last_active_scan = scan_tick;
1559
1560         /*
1561          * Scan the active queue for pages that can be deactivated.  Update
1562          * the per-page activity counter and use it to identify deactivation
1563          * candidates.  Held pages may be deactivated.
1564          */
1565         for (m = TAILQ_FIRST(&pq->pq_pl), scanned = 0; m != NULL && (scanned <
1566             min_scan || (inactq_shortage > 0 && scanned < maxscan)); m = next,
1567             scanned++) {
1568                 KASSERT(m->queue == PQ_ACTIVE,
1569                     ("vm_pageout_scan: page %p isn't active", m));
1570                 next = TAILQ_NEXT(m, plinks.q);
1571                 if ((m->flags & PG_MARKER) != 0)
1572                         continue;
1573                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
1574                     ("Fictitious page %p cannot be in active queue", m));
1575                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1576                     ("Unmanaged page %p cannot be in active queue", m));
1577                 if (!vm_pageout_page_lock(m, &next)) {
1578                         vm_page_unlock(m);
1579                         continue;
1580                 }
1581
1582                 /*
1583                  * The count for page daemon pages is updated after checking
1584                  * the page for eligibility.
1585                  */
1586                 PCPU_INC(cnt.v_pdpages);
1587
1588                 /*
1589                  * Check to see "how much" the page has been used.
1590                  */
1591                 if ((m->aflags & PGA_REFERENCED) != 0) {
1592                         vm_page_aflag_clear(m, PGA_REFERENCED);
1593                         act_delta = 1;
1594                 } else
1595                         act_delta = 0;
1596
1597                 /*
1598                  * Perform an unsynchronized object ref count check.  While
1599                  * the page lock ensures that the page is not reallocated to
1600                  * another object, in particular, one with unmanaged mappings
1601                  * that cannot support pmap_ts_referenced(), two races are,
1602                  * nonetheless, possible:
1603                  * 1) The count was transitioning to zero, but we saw a non-
1604                  *    zero value.  pmap_ts_referenced() will return zero
1605                  *    because the page is not mapped.
1606                  * 2) The count was transitioning to one, but we saw zero. 
1607                  *    This race delays the detection of a new reference.  At
1608                  *    worst, we will deactivate and reactivate the page.
1609                  */
1610                 if (m->object->ref_count != 0)
1611                         act_delta += pmap_ts_referenced(m);
1612
1613                 /*
1614                  * Advance or decay the act_count based on recent usage.
1615                  */
1616                 if (act_delta != 0) {
1617                         m->act_count += ACT_ADVANCE + act_delta;
1618                         if (m->act_count > ACT_MAX)
1619                                 m->act_count = ACT_MAX;
1620                 } else
1621                         m->act_count -= min(m->act_count, ACT_DECLINE);
1622
1623                 /*
1624                  * Move this page to the tail of the active, inactive or laundry
1625                  * queue depending on usage.
1626                  */
1627                 if (m->act_count == 0) {
1628                         /* Dequeue to avoid later lock recursion. */
1629                         vm_page_dequeue_locked(m);
1630
1631                         /*
1632                          * When not short for inactive pages, let dirty pages go
1633                          * through the inactive queue before moving to the
1634                          * laundry queues.  This gives them some extra time to
1635                          * be reactivated, potentially avoiding an expensive
1636                          * pageout.  During a page shortage, the inactive queue
1637                          * is necessarily small, so we may move dirty pages
1638                          * directly to the laundry queue.
1639                          */
1640                         if (inactq_shortage <= 0)
1641                                 vm_page_deactivate(m);
1642                         else {
1643                                 /*
1644                                  * Calling vm_page_test_dirty() here would
1645                                  * require acquisition of the object's write
1646                                  * lock.  However, during a page shortage,
1647                                  * directing dirty pages into the laundry
1648                                  * queue is only an optimization and not a
1649                                  * requirement.  Therefore, we simply rely on
1650                                  * the opportunistic updates to the page's
1651                                  * dirty field by the pmap.
1652                                  */
1653                                 if (m->dirty == 0) {
1654                                         vm_page_deactivate(m);
1655                                         inactq_shortage -=
1656                                             act_scan_laundry_weight;
1657                                 } else {
1658                                         vm_page_launder(m);
1659                                         inactq_shortage--;
1660                                 }
1661                         }
1662                 } else
1663                         vm_page_requeue_locked(m);
1664                 vm_page_unlock(m);
1665         }
1666         vm_pagequeue_unlock(pq);
1667 #if !defined(NO_SWAPPING)
1668         /*
1669          * Idle process swapout -- run once per second when we are reclaiming
1670          * pages.
1671          */
1672         if (vm_swap_idle_enabled && pass > 0) {
1673                 static long lsec;
1674                 if (time_second != lsec) {
1675                         vm_req_vmdaemon(VM_SWAP_IDLE);
1676                         lsec = time_second;
1677                 }
1678         }
1679 #endif
1680         return (page_shortage <= 0);
1681 }
1682
1683 static int vm_pageout_oom_vote;
1684
1685 /*
1686  * The pagedaemon threads randlomly select one to perform the
1687  * OOM.  Trying to kill processes before all pagedaemons
1688  * failed to reach free target is premature.
1689  */
1690 static void
1691 vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
1692     int starting_page_shortage)
1693 {
1694         int old_vote;
1695
1696         if (starting_page_shortage <= 0 || starting_page_shortage !=
1697             page_shortage)
1698                 vmd->vmd_oom_seq = 0;
1699         else
1700                 vmd->vmd_oom_seq++;
1701         if (vmd->vmd_oom_seq < vm_pageout_oom_seq) {
1702                 if (vmd->vmd_oom) {
1703                         vmd->vmd_oom = FALSE;
1704                         atomic_subtract_int(&vm_pageout_oom_vote, 1);
1705                 }
1706                 return;
1707         }
1708
1709         /*
1710          * Do not follow the call sequence until OOM condition is
1711          * cleared.
1712          */
1713         vmd->vmd_oom_seq = 0;
1714
1715         if (vmd->vmd_oom)
1716                 return;
1717
1718         vmd->vmd_oom = TRUE;
1719         old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1);
1720         if (old_vote != vm_ndomains - 1)
1721                 return;
1722
1723         /*
1724          * The current pagedaemon thread is the last in the quorum to
1725          * start OOM.  Initiate the selection and signaling of the
1726          * victim.
1727          */
1728         vm_pageout_oom(VM_OOM_MEM);
1729
1730         /*
1731          * After one round of OOM terror, recall our vote.  On the
1732          * next pass, current pagedaemon would vote again if the low
1733          * memory condition is still there, due to vmd_oom being
1734          * false.
1735          */
1736         vmd->vmd_oom = FALSE;
1737         atomic_subtract_int(&vm_pageout_oom_vote, 1);
1738 }
1739
1740 /*
1741  * The OOM killer is the page daemon's action of last resort when
1742  * memory allocation requests have been stalled for a prolonged period
1743  * of time because it cannot reclaim memory.  This function computes
1744  * the approximate number of physical pages that could be reclaimed if
1745  * the specified address space is destroyed.
1746  *
1747  * Private, anonymous memory owned by the address space is the
1748  * principal resource that we expect to recover after an OOM kill.
1749  * Since the physical pages mapped by the address space's COW entries
1750  * are typically shared pages, they are unlikely to be released and so
1751  * they are not counted.
1752  *
1753  * To get to the point where the page daemon runs the OOM killer, its
1754  * efforts to write-back vnode-backed pages may have stalled.  This
1755  * could be caused by a memory allocation deadlock in the write path
1756  * that might be resolved by an OOM kill.  Therefore, physical pages
1757  * belonging to vnode-backed objects are counted, because they might
1758  * be freed without being written out first if the address space holds
1759  * the last reference to an unlinked vnode.
1760  *
1761  * Similarly, physical pages belonging to OBJT_PHYS objects are
1762  * counted because the address space might hold the last reference to
1763  * the object.
1764  */
1765 static long
1766 vm_pageout_oom_pagecount(struct vmspace *vmspace)
1767 {
1768         vm_map_t map;
1769         vm_map_entry_t entry;
1770         vm_object_t obj;
1771         long res;
1772
1773         map = &vmspace->vm_map;
1774         KASSERT(!map->system_map, ("system map"));
1775         sx_assert(&map->lock, SA_LOCKED);
1776         res = 0;
1777         for (entry = map->header.next; entry != &map->header;
1778             entry = entry->next) {
1779                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
1780                         continue;
1781                 obj = entry->object.vm_object;
1782                 if (obj == NULL)
1783                         continue;
1784                 if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 &&
1785                     obj->ref_count != 1)
1786                         continue;
1787                 switch (obj->type) {
1788                 case OBJT_DEFAULT:
1789                 case OBJT_SWAP:
1790                 case OBJT_PHYS:
1791                 case OBJT_VNODE:
1792                         res += obj->resident_page_count;
1793                         break;
1794                 }
1795         }
1796         return (res);
1797 }
1798
1799 void
1800 vm_pageout_oom(int shortage)
1801 {
1802         struct proc *p, *bigproc;
1803         vm_offset_t size, bigsize;
1804         struct thread *td;
1805         struct vmspace *vm;
1806
1807         /*
1808          * We keep the process bigproc locked once we find it to keep anyone
1809          * from messing with it; however, there is a possibility of
1810          * deadlock if process B is bigproc and one of its child processes
1811          * attempts to propagate a signal to B while we are waiting for A's
1812          * lock while walking this list.  To avoid this, we don't block on
1813          * the process lock but just skip a process if it is already locked.
1814          */
1815         bigproc = NULL;
1816         bigsize = 0;
1817         sx_slock(&allproc_lock);
1818         FOREACH_PROC_IN_SYSTEM(p) {
1819                 int breakout;
1820
1821                 PROC_LOCK(p);
1822
1823                 /*
1824                  * If this is a system, protected or killed process, skip it.
1825                  */
1826                 if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC |
1827                     P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 ||
1828                     p->p_pid == 1 || P_KILLED(p) ||
1829                     (p->p_pid < 48 && swap_pager_avail != 0)) {
1830                         PROC_UNLOCK(p);
1831                         continue;
1832                 }
1833                 /*
1834                  * If the process is in a non-running type state,
1835                  * don't touch it.  Check all the threads individually.
1836                  */
1837                 breakout = 0;
1838                 FOREACH_THREAD_IN_PROC(p, td) {
1839                         thread_lock(td);
1840                         if (!TD_ON_RUNQ(td) &&
1841                             !TD_IS_RUNNING(td) &&
1842                             !TD_IS_SLEEPING(td) &&
1843                             !TD_IS_SUSPENDED(td) &&
1844                             !TD_IS_SWAPPED(td)) {
1845                                 thread_unlock(td);
1846                                 breakout = 1;
1847                                 break;
1848                         }
1849                         thread_unlock(td);
1850                 }
1851                 if (breakout) {
1852                         PROC_UNLOCK(p);
1853                         continue;
1854                 }
1855                 /*
1856                  * get the process size
1857                  */
1858                 vm = vmspace_acquire_ref(p);
1859                 if (vm == NULL) {
1860                         PROC_UNLOCK(p);
1861                         continue;
1862                 }
1863                 _PHOLD_LITE(p);
1864                 PROC_UNLOCK(p);
1865                 sx_sunlock(&allproc_lock);
1866                 if (!vm_map_trylock_read(&vm->vm_map)) {
1867                         vmspace_free(vm);
1868                         sx_slock(&allproc_lock);
1869                         PRELE(p);
1870                         continue;
1871                 }
1872                 size = vmspace_swap_count(vm);
1873                 if (shortage == VM_OOM_MEM)
1874                         size += vm_pageout_oom_pagecount(vm);
1875                 vm_map_unlock_read(&vm->vm_map);
1876                 vmspace_free(vm);
1877                 sx_slock(&allproc_lock);
1878
1879                 /*
1880                  * If this process is bigger than the biggest one,
1881                  * remember it.
1882                  */
1883                 if (size > bigsize) {
1884                         if (bigproc != NULL)
1885                                 PRELE(bigproc);
1886                         bigproc = p;
1887                         bigsize = size;
1888                 } else {
1889                         PRELE(p);
1890                 }
1891         }
1892         sx_sunlock(&allproc_lock);
1893         if (bigproc != NULL) {
1894                 if (vm_panic_on_oom != 0)
1895                         panic("out of swap space");
1896                 PROC_LOCK(bigproc);
1897                 killproc(bigproc, "out of swap space");
1898                 sched_nice(bigproc, PRIO_MIN);
1899                 _PRELE(bigproc);
1900                 PROC_UNLOCK(bigproc);
1901                 wakeup(&vm_cnt.v_free_count);
1902         }
1903 }
1904
1905 static void
1906 vm_pageout_worker(void *arg)
1907 {
1908         struct vm_domain *domain;
1909         int domidx, pass;
1910         bool target_met;
1911
1912         domidx = (uintptr_t)arg;
1913         domain = &vm_dom[domidx];
1914         pass = 0;
1915         target_met = true;
1916
1917         /*
1918          * XXXKIB It could be useful to bind pageout daemon threads to
1919          * the cores belonging to the domain, from which vm_page_array
1920          * is allocated.
1921          */
1922
1923         KASSERT(domain->vmd_segs != 0, ("domain without segments"));
1924         domain->vmd_last_active_scan = ticks;
1925         vm_pageout_init_marker(&domain->vmd_marker, PQ_INACTIVE);
1926         vm_pageout_init_marker(&domain->vmd_inacthead, PQ_INACTIVE);
1927         TAILQ_INSERT_HEAD(&domain->vmd_pagequeues[PQ_INACTIVE].pq_pl,
1928             &domain->vmd_inacthead, plinks.q);
1929
1930         /*
1931          * The pageout daemon worker is never done, so loop forever.
1932          */
1933         while (TRUE) {
1934                 mtx_lock(&vm_page_queue_free_mtx);
1935
1936                 /*
1937                  * Generally, after a level >= 1 scan, if there are enough
1938                  * free pages to wakeup the waiters, then they are already
1939                  * awake.  A call to vm_page_free() during the scan awakened
1940                  * them.  However, in the following case, this wakeup serves
1941                  * to bound the amount of time that a thread might wait.
1942                  * Suppose a thread's call to vm_page_alloc() fails, but
1943                  * before that thread calls VM_WAIT, enough pages are freed by
1944                  * other threads to alleviate the free page shortage.  The
1945                  * thread will, nonetheless, wait until another page is freed
1946                  * or this wakeup is performed.
1947                  */
1948                 if (vm_pages_needed && !vm_page_count_min()) {
1949                         vm_pages_needed = false;
1950                         wakeup(&vm_cnt.v_free_count);
1951                 }
1952
1953                 /*
1954                  * Do not clear vm_pageout_wanted until we reach our free page
1955                  * target.  Otherwise, we may be awakened over and over again,
1956                  * wasting CPU time.
1957                  */
1958                 if (vm_pageout_wanted && target_met)
1959                         vm_pageout_wanted = false;
1960
1961                 /*
1962                  * Might the page daemon receive a wakeup call?
1963                  */
1964                 if (vm_pageout_wanted) {
1965                         /*
1966                          * No.  Either vm_pageout_wanted was set by another
1967                          * thread during the previous scan, which must have
1968                          * been a level 0 scan, or vm_pageout_wanted was
1969                          * already set and the scan failed to free enough
1970                          * pages.  If we haven't yet performed a level >= 1
1971                          * (page reclamation) scan, then increase the level
1972                          * and scan again now.  Otherwise, sleep a bit and
1973                          * try again later.
1974                          */
1975                         mtx_unlock(&vm_page_queue_free_mtx);
1976                         if (pass >= 1)
1977                                 pause("psleep", hz / VM_INACT_SCAN_RATE);
1978                         pass++;
1979                 } else {
1980                         /*
1981                          * Yes.  Sleep until pages need to be reclaimed or
1982                          * have their reference stats updated.
1983                          */
1984                         if (mtx_sleep(&vm_pageout_wanted,
1985                             &vm_page_queue_free_mtx, PDROP | PVM, "psleep",
1986                             hz) == 0) {
1987                                 PCPU_INC(cnt.v_pdwakeups);
1988                                 pass = 1;
1989                         } else
1990                                 pass = 0;
1991                 }
1992
1993                 target_met = vm_pageout_scan(domain, pass);
1994         }
1995 }
1996
1997 /*
1998  *      vm_pageout_init initialises basic pageout daemon settings.
1999  */
2000 static void
2001 vm_pageout_init(void)
2002 {
2003         /*
2004          * Initialize some paging parameters.
2005          */
2006         vm_cnt.v_interrupt_free_min = 2;
2007         if (vm_cnt.v_page_count < 2000)
2008                 vm_pageout_page_count = 8;
2009
2010         /*
2011          * v_free_reserved needs to include enough for the largest
2012          * swap pager structures plus enough for any pv_entry structs
2013          * when paging. 
2014          */
2015         if (vm_cnt.v_page_count > 1024)
2016                 vm_cnt.v_free_min = 4 + (vm_cnt.v_page_count - 1024) / 200;
2017         else
2018                 vm_cnt.v_free_min = 4;
2019         vm_cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
2020             vm_cnt.v_interrupt_free_min;
2021         vm_cnt.v_free_reserved = vm_pageout_page_count +
2022             vm_cnt.v_pageout_free_min + (vm_cnt.v_page_count / 768);
2023         vm_cnt.v_free_severe = vm_cnt.v_free_min / 2;
2024         vm_cnt.v_free_target = 4 * vm_cnt.v_free_min + vm_cnt.v_free_reserved;
2025         vm_cnt.v_free_min += vm_cnt.v_free_reserved;
2026         vm_cnt.v_free_severe += vm_cnt.v_free_reserved;
2027         vm_cnt.v_inactive_target = (3 * vm_cnt.v_free_target) / 2;
2028         if (vm_cnt.v_inactive_target > vm_cnt.v_free_count / 3)
2029                 vm_cnt.v_inactive_target = vm_cnt.v_free_count / 3;
2030
2031         /*
2032          * Set the default wakeup threshold to be 10% above the minimum
2033          * page limit.  This keeps the steady state out of shortfall.
2034          */
2035         vm_pageout_wakeup_thresh = (vm_cnt.v_free_min / 10) * 11;
2036
2037         /*
2038          * Set interval in seconds for active scan.  We want to visit each
2039          * page at least once every ten minutes.  This is to prevent worst
2040          * case paging behaviors with stale active LRU.
2041          */
2042         if (vm_pageout_update_period == 0)
2043                 vm_pageout_update_period = 600;
2044
2045         /* XXX does not really belong here */
2046         if (vm_page_max_wired == 0)
2047                 vm_page_max_wired = vm_cnt.v_free_count / 3;
2048
2049         /*
2050          * Target amount of memory to move out of the laundry queue during a
2051          * background laundering.  This is proportional to the amount of system
2052          * memory.
2053          */
2054         vm_background_launder_target = (vm_cnt.v_free_target -
2055             vm_cnt.v_free_min) / 10;
2056 }
2057
2058 /*
2059  *     vm_pageout is the high level pageout daemon.
2060  */
2061 static void
2062 vm_pageout(void)
2063 {
2064         int error;
2065 #ifdef VM_NUMA_ALLOC
2066         int i;
2067 #endif
2068
2069         swap_pager_swap_init();
2070         error = kthread_add(vm_pageout_laundry_worker, NULL, curproc, NULL,
2071             0, 0, "laundry: dom0");
2072         if (error != 0)
2073                 panic("starting laundry for domain 0, error %d", error);
2074 #ifdef VM_NUMA_ALLOC
2075         for (i = 1; i < vm_ndomains; i++) {
2076                 error = kthread_add(vm_pageout_worker, (void *)(uintptr_t)i,
2077                     curproc, NULL, 0, 0, "dom%d", i);
2078                 if (error != 0) {
2079                         panic("starting pageout for domain %d, error %d\n",
2080                             i, error);
2081                 }
2082         }
2083 #endif
2084         error = kthread_add(uma_reclaim_worker, NULL, curproc, NULL,
2085             0, 0, "uma");
2086         if (error != 0)
2087                 panic("starting uma_reclaim helper, error %d\n", error);
2088         vm_pageout_worker((void *)(uintptr_t)0);
2089 }
2090
2091 /*
2092  * Unless the free page queue lock is held by the caller, this function
2093  * should be regarded as advisory.  Specifically, the caller should
2094  * not msleep() on &vm_cnt.v_free_count following this function unless
2095  * the free page queue lock is held until the msleep() is performed.
2096  */
2097 void
2098 pagedaemon_wakeup(void)
2099 {
2100
2101         if (!vm_pageout_wanted && curthread->td_proc != pageproc) {
2102                 vm_pageout_wanted = true;
2103                 wakeup(&vm_pageout_wanted);
2104         }
2105 }
2106
2107 #if !defined(NO_SWAPPING)
2108 static void
2109 vm_req_vmdaemon(int req)
2110 {
2111         static int lastrun = 0;
2112
2113         mtx_lock(&vm_daemon_mtx);
2114         vm_pageout_req_swapout |= req;
2115         if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
2116                 wakeup(&vm_daemon_needed);
2117                 lastrun = ticks;
2118         }
2119         mtx_unlock(&vm_daemon_mtx);
2120 }
2121
2122 static void
2123 vm_daemon(void)
2124 {
2125         struct rlimit rsslim;
2126         struct proc *p;
2127         struct thread *td;
2128         struct vmspace *vm;
2129         int breakout, swapout_flags, tryagain, attempts;
2130 #ifdef RACCT
2131         uint64_t rsize, ravailable;
2132 #endif
2133
2134         while (TRUE) {
2135                 mtx_lock(&vm_daemon_mtx);
2136                 msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep",
2137 #ifdef RACCT
2138                     racct_enable ? hz : 0
2139 #else
2140                     0
2141 #endif
2142                 );
2143                 swapout_flags = vm_pageout_req_swapout;
2144                 vm_pageout_req_swapout = 0;
2145                 mtx_unlock(&vm_daemon_mtx);
2146                 if (swapout_flags)
2147                         swapout_procs(swapout_flags);
2148
2149                 /*
2150                  * scan the processes for exceeding their rlimits or if
2151                  * process is swapped out -- deactivate pages
2152                  */
2153                 tryagain = 0;
2154                 attempts = 0;
2155 again:
2156                 attempts++;
2157                 sx_slock(&allproc_lock);
2158                 FOREACH_PROC_IN_SYSTEM(p) {
2159                         vm_pindex_t limit, size;
2160
2161                         /*
2162                          * if this is a system process or if we have already
2163                          * looked at this process, skip it.
2164                          */
2165                         PROC_LOCK(p);
2166                         if (p->p_state != PRS_NORMAL ||
2167                             p->p_flag & (P_INEXEC | P_SYSTEM | P_WEXIT)) {
2168                                 PROC_UNLOCK(p);
2169                                 continue;
2170                         }
2171                         /*
2172                          * if the process is in a non-running type state,
2173                          * don't touch it.
2174                          */
2175                         breakout = 0;
2176                         FOREACH_THREAD_IN_PROC(p, td) {
2177                                 thread_lock(td);
2178                                 if (!TD_ON_RUNQ(td) &&
2179                                     !TD_IS_RUNNING(td) &&
2180                                     !TD_IS_SLEEPING(td) &&
2181                                     !TD_IS_SUSPENDED(td)) {
2182                                         thread_unlock(td);
2183                                         breakout = 1;
2184                                         break;
2185                                 }
2186                                 thread_unlock(td);
2187                         }
2188                         if (breakout) {
2189                                 PROC_UNLOCK(p);
2190                                 continue;
2191                         }
2192                         /*
2193                          * get a limit
2194                          */
2195                         lim_rlimit_proc(p, RLIMIT_RSS, &rsslim);
2196                         limit = OFF_TO_IDX(
2197                             qmin(rsslim.rlim_cur, rsslim.rlim_max));
2198
2199                         /*
2200                          * let processes that are swapped out really be
2201                          * swapped out set the limit to nothing (will force a
2202                          * swap-out.)
2203                          */
2204                         if ((p->p_flag & P_INMEM) == 0)
2205                                 limit = 0;      /* XXX */
2206                         vm = vmspace_acquire_ref(p);
2207                         _PHOLD_LITE(p);
2208                         PROC_UNLOCK(p);
2209                         if (vm == NULL) {
2210                                 PRELE(p);
2211                                 continue;
2212                         }
2213                         sx_sunlock(&allproc_lock);
2214
2215                         size = vmspace_resident_count(vm);
2216                         if (size >= limit) {
2217                                 vm_pageout_map_deactivate_pages(
2218                                     &vm->vm_map, limit);
2219                         }
2220 #ifdef RACCT
2221                         if (racct_enable) {
2222                                 rsize = IDX_TO_OFF(size);
2223                                 PROC_LOCK(p);
2224                                 racct_set(p, RACCT_RSS, rsize);
2225                                 ravailable = racct_get_available(p, RACCT_RSS);
2226                                 PROC_UNLOCK(p);
2227                                 if (rsize > ravailable) {
2228                                         /*
2229                                          * Don't be overly aggressive; this
2230                                          * might be an innocent process,
2231                                          * and the limit could've been exceeded
2232                                          * by some memory hog.  Don't try
2233                                          * to deactivate more than 1/4th
2234                                          * of process' resident set size.
2235                                          */
2236                                         if (attempts <= 8) {
2237                                                 if (ravailable < rsize -
2238                                                     (rsize / 4)) {
2239                                                         ravailable = rsize -
2240                                                             (rsize / 4);
2241                                                 }
2242                                         }
2243                                         vm_pageout_map_deactivate_pages(
2244                                             &vm->vm_map,
2245                                             OFF_TO_IDX(ravailable));
2246                                         /* Update RSS usage after paging out. */
2247                                         size = vmspace_resident_count(vm);
2248                                         rsize = IDX_TO_OFF(size);
2249                                         PROC_LOCK(p);
2250                                         racct_set(p, RACCT_RSS, rsize);
2251                                         PROC_UNLOCK(p);
2252                                         if (rsize > ravailable)
2253                                                 tryagain = 1;
2254                                 }
2255                         }
2256 #endif
2257                         vmspace_free(vm);
2258                         sx_slock(&allproc_lock);
2259                         PRELE(p);
2260                 }
2261                 sx_sunlock(&allproc_lock);
2262                 if (tryagain != 0 && attempts <= 10)
2263                         goto again;
2264         }
2265 }
2266 #endif                  /* !defined(NO_SWAPPING) */