]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_pageout.c
MFhead@r291879
[FreeBSD/FreeBSD.git] / sys / vm / vm_pageout.c
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  * Copyright (c) 2005 Yahoo! Technologies Norway AS
9  * All rights reserved.
10  *
11  * This code is derived from software contributed to Berkeley by
12  * The Mach Operating System project at Carnegie-Mellon University.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *      This product includes software developed by the University of
25  *      California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
43  *
44  *
45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46  * All rights reserved.
47  *
48  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49  *
50  * Permission to use, copy, modify and distribute this software and
51  * its documentation is hereby granted, provided that both the copyright
52  * notice and this permission notice appear in all copies of the
53  * software, derivative works or modified versions, and any portions
54  * thereof, and that both notices appear in supporting documentation.
55  *
56  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59  *
60  * Carnegie Mellon requests users of this software to return to
61  *
62  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63  *  School of Computer Science
64  *  Carnegie Mellon University
65  *  Pittsburgh PA 15213-3890
66  *
67  * any improvements or extensions that they make and grant Carnegie the
68  * rights to redistribute these changes.
69  */
70
71 /*
72  *      The proverbial page-out daemon.
73  */
74
75 #include <sys/cdefs.h>
76 __FBSDID("$FreeBSD$");
77
78 #include "opt_vm.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/eventhandler.h>
84 #include <sys/lock.h>
85 #include <sys/mutex.h>
86 #include <sys/proc.h>
87 #include <sys/kthread.h>
88 #include <sys/ktr.h>
89 #include <sys/mount.h>
90 #include <sys/racct.h>
91 #include <sys/resourcevar.h>
92 #include <sys/sched.h>
93 #include <sys/sdt.h>
94 #include <sys/signalvar.h>
95 #include <sys/smp.h>
96 #include <sys/time.h>
97 #include <sys/vnode.h>
98 #include <sys/vmmeter.h>
99 #include <sys/rwlock.h>
100 #include <sys/sx.h>
101 #include <sys/sysctl.h>
102
103 #include <vm/vm.h>
104 #include <vm/vm_param.h>
105 #include <vm/vm_object.h>
106 #include <vm/vm_page.h>
107 #include <vm/vm_map.h>
108 #include <vm/vm_pageout.h>
109 #include <vm/vm_pager.h>
110 #include <vm/vm_phys.h>
111 #include <vm/swap_pager.h>
112 #include <vm/vm_extern.h>
113 #include <vm/uma.h>
114
115 /*
116  * System initialization
117  */
118
119 /* the kernel process "vm_pageout"*/
120 static void vm_pageout(void);
121 static void vm_pageout_init(void);
122 static int vm_pageout_clean(vm_page_t m);
123 static int vm_pageout_cluster(vm_page_t m);
124 static void vm_pageout_scan(struct vm_domain *vmd, int pass);
125 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
126     int starting_page_shortage);
127
128 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init,
129     NULL);
130
131 struct proc *pageproc;
132
133 static struct kproc_desc page_kp = {
134         "pagedaemon",
135         vm_pageout,
136         &pageproc
137 };
138 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start,
139     &page_kp);
140
141 SDT_PROVIDER_DEFINE(vm);
142 SDT_PROBE_DEFINE(vm, , , vm__lowmem_cache);
143 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan);
144
145 #if !defined(NO_SWAPPING)
146 /* the kernel process "vm_daemon"*/
147 static void vm_daemon(void);
148 static struct   proc *vmproc;
149
150 static struct kproc_desc vm_kp = {
151         "vmdaemon",
152         vm_daemon,
153         &vmproc
154 };
155 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
156 #endif
157
158
159 int vm_pages_needed;            /* Event on which pageout daemon sleeps */
160 int vm_pageout_deficit;         /* Estimated number of pages deficit */
161 int vm_pageout_wakeup_thresh;
162 static int vm_pageout_oom_seq = 12;
163
164 #if !defined(NO_SWAPPING)
165 static int vm_pageout_req_swapout;      /* XXX */
166 static int vm_daemon_needed;
167 static struct mtx vm_daemon_mtx;
168 /* Allow for use by vm_pageout before vm_daemon is initialized. */
169 MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
170 #endif
171 static int vm_max_launder = 32;
172 static int vm_pageout_update_period;
173 static int defer_swap_pageouts;
174 static int disable_swap_pageouts;
175 static int lowmem_period = 10;
176 static time_t lowmem_uptime;
177
178 #if defined(NO_SWAPPING)
179 static int vm_swap_enabled = 0;
180 static int vm_swap_idle_enabled = 0;
181 #else
182 static int vm_swap_enabled = 1;
183 static int vm_swap_idle_enabled = 0;
184 #endif
185
186 static int vm_panic_on_oom = 0;
187
188 SYSCTL_INT(_vm, OID_AUTO, panic_on_oom,
189         CTLFLAG_RWTUN, &vm_panic_on_oom, 0,
190         "panic on out of memory instead of killing the largest process");
191
192 SYSCTL_INT(_vm, OID_AUTO, pageout_wakeup_thresh,
193         CTLFLAG_RW, &vm_pageout_wakeup_thresh, 0,
194         "free page threshold for waking up the pageout daemon");
195
196 SYSCTL_INT(_vm, OID_AUTO, max_launder,
197         CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
198
199 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period,
200         CTLFLAG_RW, &vm_pageout_update_period, 0,
201         "Maximum active LRU update period");
202   
203 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RW, &lowmem_period, 0,
204         "Low memory callback period");
205
206 #if defined(NO_SWAPPING)
207 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
208         CTLFLAG_RD, &vm_swap_enabled, 0, "Enable entire process swapout");
209 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
210         CTLFLAG_RD, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
211 #else
212 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
213         CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
214 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
215         CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
216 #endif
217
218 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
219         CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
220
221 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
222         CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
223
224 static int pageout_lock_miss;
225 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
226         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
227
228 SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq,
229         CTLFLAG_RW, &vm_pageout_oom_seq, 0,
230         "back-to-back calls to oom detector to start OOM");
231
232 #define VM_PAGEOUT_PAGE_COUNT 16
233 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
234
235 int vm_page_max_wired;          /* XXX max # of wired pages system-wide */
236 SYSCTL_INT(_vm, OID_AUTO, max_wired,
237         CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
238
239 static boolean_t vm_pageout_fallback_object_lock(vm_page_t, vm_page_t *);
240 static boolean_t vm_pageout_launder(struct vm_pagequeue *pq, int, vm_paddr_t,
241     vm_paddr_t);
242 #if !defined(NO_SWAPPING)
243 static void vm_pageout_map_deactivate_pages(vm_map_t, long);
244 static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
245 static void vm_req_vmdaemon(int req);
246 #endif
247 static boolean_t vm_pageout_page_lock(vm_page_t, vm_page_t *);
248
249 /*
250  * Initialize a dummy page for marking the caller's place in the specified
251  * paging queue.  In principle, this function only needs to set the flag
252  * PG_MARKER.  Nonetheless, it wirte busies and initializes the hold count
253  * to one as safety precautions.
254  */ 
255 static void
256 vm_pageout_init_marker(vm_page_t marker, u_short queue)
257 {
258
259         bzero(marker, sizeof(*marker));
260         marker->flags = PG_MARKER;
261         marker->busy_lock = VPB_SINGLE_EXCLUSIVER;
262         marker->queue = queue;
263         marker->hold_count = 1;
264 }
265
266 /*
267  * vm_pageout_fallback_object_lock:
268  * 
269  * Lock vm object currently associated with `m'. VM_OBJECT_TRYWLOCK is
270  * known to have failed and page queue must be either PQ_ACTIVE or
271  * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
272  * while locking the vm object.  Use marker page to detect page queue
273  * changes and maintain notion of next page on page queue.  Return
274  * TRUE if no changes were detected, FALSE otherwise.  vm object is
275  * locked on return.
276  * 
277  * This function depends on both the lock portion of struct vm_object
278  * and normal struct vm_page being type stable.
279  */
280 static boolean_t
281 vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
282 {
283         struct vm_page marker;
284         struct vm_pagequeue *pq;
285         boolean_t unchanged;
286         u_short queue;
287         vm_object_t object;
288
289         queue = m->queue;
290         vm_pageout_init_marker(&marker, queue);
291         pq = vm_page_pagequeue(m);
292         object = m->object;
293         
294         TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q);
295         vm_pagequeue_unlock(pq);
296         vm_page_unlock(m);
297         VM_OBJECT_WLOCK(object);
298         vm_page_lock(m);
299         vm_pagequeue_lock(pq);
300
301         /*
302          * The page's object might have changed, and/or the page might
303          * have moved from its original position in the queue.  If the
304          * page's object has changed, then the caller should abandon
305          * processing the page because the wrong object lock was
306          * acquired.  Use the marker's plinks.q, not the page's, to
307          * determine if the page has been moved.  The state of the
308          * page's plinks.q can be indeterminate; whereas, the marker's
309          * plinks.q must be valid.
310          */
311         *next = TAILQ_NEXT(&marker, plinks.q);
312         unchanged = m->object == object &&
313             m == TAILQ_PREV(&marker, pglist, plinks.q);
314         KASSERT(!unchanged || m->queue == queue,
315             ("page %p queue %d %d", m, queue, m->queue));
316         TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q);
317         return (unchanged);
318 }
319
320 /*
321  * Lock the page while holding the page queue lock.  Use marker page
322  * to detect page queue changes and maintain notion of next page on
323  * page queue.  Return TRUE if no changes were detected, FALSE
324  * otherwise.  The page is locked on return. The page queue lock might
325  * be dropped and reacquired.
326  *
327  * This function depends on normal struct vm_page being type stable.
328  */
329 static boolean_t
330 vm_pageout_page_lock(vm_page_t m, vm_page_t *next)
331 {
332         struct vm_page marker;
333         struct vm_pagequeue *pq;
334         boolean_t unchanged;
335         u_short queue;
336
337         vm_page_lock_assert(m, MA_NOTOWNED);
338         if (vm_page_trylock(m))
339                 return (TRUE);
340
341         queue = m->queue;
342         vm_pageout_init_marker(&marker, queue);
343         pq = vm_page_pagequeue(m);
344
345         TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q);
346         vm_pagequeue_unlock(pq);
347         vm_page_lock(m);
348         vm_pagequeue_lock(pq);
349
350         /* Page queue might have changed. */
351         *next = TAILQ_NEXT(&marker, plinks.q);
352         unchanged = m == TAILQ_PREV(&marker, pglist, plinks.q);
353         KASSERT(!unchanged || m->queue == queue,
354             ("page %p queue %d %d", m, queue, m->queue));
355         TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q);
356         return (unchanged);
357 }
358
359 /*
360  * vm_pageout_clean:
361  *
362  * Clean the page and remove it from the laundry.
363  * 
364  * We set the busy bit to cause potential page faults on this page to
365  * block.  Note the careful timing, however, the busy bit isn't set till
366  * late and we cannot do anything that will mess with the page.
367  */
368 static int
369 vm_pageout_cluster(vm_page_t m)
370 {
371         vm_object_t object;
372         vm_page_t mc[2*vm_pageout_page_count], pb, ps;
373         int pageout_count;
374         int ib, is, page_base;
375         vm_pindex_t pindex = m->pindex;
376
377         vm_page_lock_assert(m, MA_OWNED);
378         object = m->object;
379         VM_OBJECT_ASSERT_WLOCKED(object);
380
381         /*
382          * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
383          * with the new swapper, but we could have serious problems paging
384          * out other object types if there is insufficient memory.  
385          *
386          * Unfortunately, checking free memory here is far too late, so the
387          * check has been moved up a procedural level.
388          */
389
390         /*
391          * Can't clean the page if it's busy or held.
392          */
393         vm_page_assert_unbusied(m);
394         KASSERT(m->hold_count == 0, ("vm_pageout_clean: page %p is held", m));
395         vm_page_unlock(m);
396
397         mc[vm_pageout_page_count] = pb = ps = m;
398         pageout_count = 1;
399         page_base = vm_pageout_page_count;
400         ib = 1;
401         is = 1;
402
403         /*
404          * Scan object for clusterable pages.
405          *
406          * We can cluster ONLY if: ->> the page is NOT
407          * clean, wired, busy, held, or mapped into a
408          * buffer, and one of the following:
409          * 1) The page is inactive, or a seldom used
410          *    active page.
411          * -or-
412          * 2) we force the issue.
413          *
414          * During heavy mmap/modification loads the pageout
415          * daemon can really fragment the underlying file
416          * due to flushing pages out of order and not trying
417          * align the clusters (which leave sporatic out-of-order
418          * holes).  To solve this problem we do the reverse scan
419          * first and attempt to align our cluster, then do a 
420          * forward scan if room remains.
421          */
422 more:
423         while (ib && pageout_count < vm_pageout_page_count) {
424                 vm_page_t p;
425
426                 if (ib > pindex) {
427                         ib = 0;
428                         break;
429                 }
430
431                 if ((p = vm_page_prev(pb)) == NULL || vm_page_busied(p)) {
432                         ib = 0;
433                         break;
434                 }
435                 vm_page_test_dirty(p);
436                 if (p->dirty == 0) {
437                         ib = 0;
438                         break;
439                 }
440                 vm_page_lock(p);
441                 if (p->queue != PQ_INACTIVE ||
442                     p->hold_count != 0) {       /* may be undergoing I/O */
443                         vm_page_unlock(p);
444                         ib = 0;
445                         break;
446                 }
447                 vm_page_unlock(p);
448                 mc[--page_base] = pb = p;
449                 ++pageout_count;
450                 ++ib;
451                 /*
452                  * alignment boundry, stop here and switch directions.  Do
453                  * not clear ib.
454                  */
455                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
456                         break;
457         }
458
459         while (pageout_count < vm_pageout_page_count && 
460             pindex + is < object->size) {
461                 vm_page_t p;
462
463                 if ((p = vm_page_next(ps)) == NULL || vm_page_busied(p))
464                         break;
465                 vm_page_test_dirty(p);
466                 if (p->dirty == 0)
467                         break;
468                 vm_page_lock(p);
469                 if (p->queue != PQ_INACTIVE ||
470                     p->hold_count != 0) {       /* may be undergoing I/O */
471                         vm_page_unlock(p);
472                         break;
473                 }
474                 vm_page_unlock(p);
475                 mc[page_base + pageout_count] = ps = p;
476                 ++pageout_count;
477                 ++is;
478         }
479
480         /*
481          * If we exhausted our forward scan, continue with the reverse scan
482          * when possible, even past a page boundry.  This catches boundry
483          * conditions.
484          */
485         if (ib && pageout_count < vm_pageout_page_count)
486                 goto more;
487
488         /*
489          * we allow reads during pageouts...
490          */
491         return (vm_pageout_flush(&mc[page_base], pageout_count, 0, 0, NULL,
492             NULL));
493 }
494
495 /*
496  * vm_pageout_flush() - launder the given pages
497  *
498  *      The given pages are laundered.  Note that we setup for the start of
499  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
500  *      reference count all in here rather then in the parent.  If we want
501  *      the parent to do more sophisticated things we may have to change
502  *      the ordering.
503  *
504  *      Returned runlen is the count of pages between mreq and first
505  *      page after mreq with status VM_PAGER_AGAIN.
506  *      *eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
507  *      for any page in runlen set.
508  */
509 int
510 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
511     boolean_t *eio)
512 {
513         vm_object_t object = mc[0]->object;
514         int pageout_status[count];
515         int numpagedout = 0;
516         int i, runlen;
517
518         VM_OBJECT_ASSERT_WLOCKED(object);
519
520         /*
521          * Initiate I/O.  Bump the vm_page_t->busy counter and
522          * mark the pages read-only.
523          *
524          * We do not have to fixup the clean/dirty bits here... we can
525          * allow the pager to do it after the I/O completes.
526          *
527          * NOTE! mc[i]->dirty may be partial or fragmented due to an
528          * edge case with file fragments.
529          */
530         for (i = 0; i < count; i++) {
531                 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
532                     ("vm_pageout_flush: partially invalid page %p index %d/%d",
533                         mc[i], i, count));
534                 vm_page_sbusy(mc[i]);
535                 pmap_remove_write(mc[i]);
536         }
537         vm_object_pip_add(object, count);
538
539         vm_pager_put_pages(object, mc, count, flags, pageout_status);
540
541         runlen = count - mreq;
542         if (eio != NULL)
543                 *eio = FALSE;
544         for (i = 0; i < count; i++) {
545                 vm_page_t mt = mc[i];
546
547                 KASSERT(pageout_status[i] == VM_PAGER_PEND ||
548                     !pmap_page_is_write_mapped(mt),
549                     ("vm_pageout_flush: page %p is not write protected", mt));
550                 switch (pageout_status[i]) {
551                 case VM_PAGER_OK:
552                 case VM_PAGER_PEND:
553                         numpagedout++;
554                         break;
555                 case VM_PAGER_BAD:
556                         /*
557                          * Page outside of range of object. Right now we
558                          * essentially lose the changes by pretending it
559                          * worked.
560                          */
561                         vm_page_undirty(mt);
562                         break;
563                 case VM_PAGER_ERROR:
564                 case VM_PAGER_FAIL:
565                         /*
566                          * If page couldn't be paged out, then reactivate the
567                          * page so it doesn't clog the inactive list.  (We
568                          * will try paging out it again later).
569                          */
570                         vm_page_lock(mt);
571                         vm_page_activate(mt);
572                         vm_page_unlock(mt);
573                         if (eio != NULL && i >= mreq && i - mreq < runlen)
574                                 *eio = TRUE;
575                         break;
576                 case VM_PAGER_AGAIN:
577                         if (i >= mreq && i - mreq < runlen)
578                                 runlen = i - mreq;
579                         break;
580                 }
581
582                 /*
583                  * If the operation is still going, leave the page busy to
584                  * block all other accesses. Also, leave the paging in
585                  * progress indicator set so that we don't attempt an object
586                  * collapse.
587                  */
588                 if (pageout_status[i] != VM_PAGER_PEND) {
589                         vm_object_pip_wakeup(object);
590                         vm_page_sunbusy(mt);
591                 }
592         }
593         if (prunlen != NULL)
594                 *prunlen = runlen;
595         return (numpagedout);
596 }
597
598 static boolean_t
599 vm_pageout_launder(struct vm_pagequeue *pq, int tries, vm_paddr_t low,
600     vm_paddr_t high)
601 {
602         struct mount *mp;
603         struct vnode *vp;
604         vm_object_t object;
605         vm_paddr_t pa;
606         vm_page_t m, m_tmp, next;
607         int lockmode;
608
609         vm_pagequeue_lock(pq);
610         TAILQ_FOREACH_SAFE(m, &pq->pq_pl, plinks.q, next) {
611                 if ((m->flags & PG_MARKER) != 0)
612                         continue;
613                 pa = VM_PAGE_TO_PHYS(m);
614                 if (pa < low || pa + PAGE_SIZE > high)
615                         continue;
616                 if (!vm_pageout_page_lock(m, &next) || m->hold_count != 0) {
617                         vm_page_unlock(m);
618                         continue;
619                 }
620                 object = m->object;
621                 if ((!VM_OBJECT_TRYWLOCK(object) &&
622                     (!vm_pageout_fallback_object_lock(m, &next) ||
623                     m->hold_count != 0)) || vm_page_busied(m)) {
624                         vm_page_unlock(m);
625                         VM_OBJECT_WUNLOCK(object);
626                         continue;
627                 }
628                 vm_page_test_dirty(m);
629                 if (m->dirty == 0 && object->ref_count != 0)
630                         pmap_remove_all(m);
631                 if (m->dirty != 0) {
632                         vm_page_unlock(m);
633                         if (tries == 0 || (object->flags & OBJ_DEAD) != 0) {
634                                 VM_OBJECT_WUNLOCK(object);
635                                 continue;
636                         }
637                         if (object->type == OBJT_VNODE) {
638                                 vm_pagequeue_unlock(pq);
639                                 vp = object->handle;
640                                 vm_object_reference_locked(object);
641                                 VM_OBJECT_WUNLOCK(object);
642                                 (void)vn_start_write(vp, &mp, V_WAIT);
643                                 lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
644                                     LK_SHARED : LK_EXCLUSIVE;
645                                 vn_lock(vp, lockmode | LK_RETRY);
646                                 VM_OBJECT_WLOCK(object);
647                                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
648                                 VM_OBJECT_WUNLOCK(object);
649                                 VOP_UNLOCK(vp, 0);
650                                 vm_object_deallocate(object);
651                                 vn_finished_write(mp);
652                                 return (TRUE);
653                         } else if (object->type == OBJT_SWAP ||
654                             object->type == OBJT_DEFAULT) {
655                                 vm_pagequeue_unlock(pq);
656                                 m_tmp = m;
657                                 vm_pageout_flush(&m_tmp, 1, VM_PAGER_PUT_SYNC,
658                                     0, NULL, NULL);
659                                 VM_OBJECT_WUNLOCK(object);
660                                 return (TRUE);
661                         }
662                 } else {
663                         /*
664                          * Dequeue here to prevent lock recursion in
665                          * vm_page_cache().
666                          */
667                         vm_page_dequeue_locked(m);
668                         vm_page_cache(m);
669                         vm_page_unlock(m);
670                 }
671                 VM_OBJECT_WUNLOCK(object);
672         }
673         vm_pagequeue_unlock(pq);
674         return (FALSE);
675 }
676
677 /*
678  * Increase the number of cached pages.  The specified value, "tries",
679  * determines which categories of pages are cached:
680  *
681  *  0: All clean, inactive pages within the specified physical address range
682  *     are cached.  Will not sleep.
683  *  1: The vm_lowmem handlers are called.  All inactive pages within
684  *     the specified physical address range are cached.  May sleep.
685  *  2: The vm_lowmem handlers are called.  All inactive and active pages
686  *     within the specified physical address range are cached.  May sleep.
687  */
688 void
689 vm_pageout_grow_cache(int tries, vm_paddr_t low, vm_paddr_t high)
690 {
691         int actl, actmax, inactl, inactmax, dom, initial_dom;
692         static int start_dom = 0;
693
694         if (tries > 0) {
695                 /*
696                  * Decrease registered cache sizes.  The vm_lowmem handlers
697                  * may acquire locks and/or sleep, so they can only be invoked
698                  * when "tries" is greater than zero.
699                  */
700                 SDT_PROBE0(vm, , , vm__lowmem_cache);
701                 EVENTHANDLER_INVOKE(vm_lowmem, 0);
702
703                 /*
704                  * We do this explicitly after the caches have been drained
705                  * above.
706                  */
707                 uma_reclaim();
708         }
709
710         /*
711          * Make the next scan start on the next domain.
712          */
713         initial_dom = atomic_fetchadd_int(&start_dom, 1) % vm_ndomains;
714
715         inactl = 0;
716         inactmax = vm_cnt.v_inactive_count;
717         actl = 0;
718         actmax = tries < 2 ? 0 : vm_cnt.v_active_count;
719         dom = initial_dom;
720
721         /*
722          * Scan domains in round-robin order, first inactive queues,
723          * then active.  Since domain usually owns large physically
724          * contiguous chunk of memory, it makes sense to completely
725          * exhaust one domain before switching to next, while growing
726          * the pool of contiguous physical pages.
727          *
728          * Do not even start launder a domain which cannot contain
729          * the specified address range, as indicated by segments
730          * constituting the domain.
731          */
732 again_inact:
733         if (inactl < inactmax) {
734                 if (vm_phys_domain_intersects(vm_dom[dom].vmd_segs,
735                     low, high) &&
736                     vm_pageout_launder(&vm_dom[dom].vmd_pagequeues[PQ_INACTIVE],
737                     tries, low, high)) {
738                         inactl++;
739                         goto again_inact;
740                 }
741                 if (++dom == vm_ndomains)
742                         dom = 0;
743                 if (dom != initial_dom)
744                         goto again_inact;
745         }
746 again_act:
747         if (actl < actmax) {
748                 if (vm_phys_domain_intersects(vm_dom[dom].vmd_segs,
749                     low, high) &&
750                     vm_pageout_launder(&vm_dom[dom].vmd_pagequeues[PQ_ACTIVE],
751                       tries, low, high)) {
752                         actl++;
753                         goto again_act;
754                 }
755                 if (++dom == vm_ndomains)
756                         dom = 0;
757                 if (dom != initial_dom)
758                         goto again_act;
759         }
760 }
761
762 #if !defined(NO_SWAPPING)
763 /*
764  *      vm_pageout_object_deactivate_pages
765  *
766  *      Deactivate enough pages to satisfy the inactive target
767  *      requirements.
768  *
769  *      The object and map must be locked.
770  */
771 static void
772 vm_pageout_object_deactivate_pages(pmap_t pmap, vm_object_t first_object,
773     long desired)
774 {
775         vm_object_t backing_object, object;
776         vm_page_t p;
777         int act_delta, remove_mode;
778
779         VM_OBJECT_ASSERT_LOCKED(first_object);
780         if ((first_object->flags & OBJ_FICTITIOUS) != 0)
781                 return;
782         for (object = first_object;; object = backing_object) {
783                 if (pmap_resident_count(pmap) <= desired)
784                         goto unlock_return;
785                 VM_OBJECT_ASSERT_LOCKED(object);
786                 if ((object->flags & OBJ_UNMANAGED) != 0 ||
787                     object->paging_in_progress != 0)
788                         goto unlock_return;
789
790                 remove_mode = 0;
791                 if (object->shadow_count > 1)
792                         remove_mode = 1;
793                 /*
794                  * Scan the object's entire memory queue.
795                  */
796                 TAILQ_FOREACH(p, &object->memq, listq) {
797                         if (pmap_resident_count(pmap) <= desired)
798                                 goto unlock_return;
799                         if (vm_page_busied(p))
800                                 continue;
801                         PCPU_INC(cnt.v_pdpages);
802                         vm_page_lock(p);
803                         if (p->wire_count != 0 || p->hold_count != 0 ||
804                             !pmap_page_exists_quick(pmap, p)) {
805                                 vm_page_unlock(p);
806                                 continue;
807                         }
808                         act_delta = pmap_ts_referenced(p);
809                         if ((p->aflags & PGA_REFERENCED) != 0) {
810                                 if (act_delta == 0)
811                                         act_delta = 1;
812                                 vm_page_aflag_clear(p, PGA_REFERENCED);
813                         }
814                         if (p->queue != PQ_ACTIVE && act_delta != 0) {
815                                 vm_page_activate(p);
816                                 p->act_count += act_delta;
817                         } else if (p->queue == PQ_ACTIVE) {
818                                 if (act_delta == 0) {
819                                         p->act_count -= min(p->act_count,
820                                             ACT_DECLINE);
821                                         if (!remove_mode && p->act_count == 0) {
822                                                 pmap_remove_all(p);
823                                                 vm_page_deactivate(p);
824                                         } else
825                                                 vm_page_requeue(p);
826                                 } else {
827                                         vm_page_activate(p);
828                                         if (p->act_count < ACT_MAX -
829                                             ACT_ADVANCE)
830                                                 p->act_count += ACT_ADVANCE;
831                                         vm_page_requeue(p);
832                                 }
833                         } else if (p->queue == PQ_INACTIVE)
834                                 pmap_remove_all(p);
835                         vm_page_unlock(p);
836                 }
837                 if ((backing_object = object->backing_object) == NULL)
838                         goto unlock_return;
839                 VM_OBJECT_RLOCK(backing_object);
840                 if (object != first_object)
841                         VM_OBJECT_RUNLOCK(object);
842         }
843 unlock_return:
844         if (object != first_object)
845                 VM_OBJECT_RUNLOCK(object);
846 }
847
848 /*
849  * deactivate some number of pages in a map, try to do it fairly, but
850  * that is really hard to do.
851  */
852 static void
853 vm_pageout_map_deactivate_pages(map, desired)
854         vm_map_t map;
855         long desired;
856 {
857         vm_map_entry_t tmpe;
858         vm_object_t obj, bigobj;
859         int nothingwired;
860
861         if (!vm_map_trylock(map))
862                 return;
863
864         bigobj = NULL;
865         nothingwired = TRUE;
866
867         /*
868          * first, search out the biggest object, and try to free pages from
869          * that.
870          */
871         tmpe = map->header.next;
872         while (tmpe != &map->header) {
873                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
874                         obj = tmpe->object.vm_object;
875                         if (obj != NULL && VM_OBJECT_TRYRLOCK(obj)) {
876                                 if (obj->shadow_count <= 1 &&
877                                     (bigobj == NULL ||
878                                      bigobj->resident_page_count < obj->resident_page_count)) {
879                                         if (bigobj != NULL)
880                                                 VM_OBJECT_RUNLOCK(bigobj);
881                                         bigobj = obj;
882                                 } else
883                                         VM_OBJECT_RUNLOCK(obj);
884                         }
885                 }
886                 if (tmpe->wired_count > 0)
887                         nothingwired = FALSE;
888                 tmpe = tmpe->next;
889         }
890
891         if (bigobj != NULL) {
892                 vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
893                 VM_OBJECT_RUNLOCK(bigobj);
894         }
895         /*
896          * Next, hunt around for other pages to deactivate.  We actually
897          * do this search sort of wrong -- .text first is not the best idea.
898          */
899         tmpe = map->header.next;
900         while (tmpe != &map->header) {
901                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
902                         break;
903                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
904                         obj = tmpe->object.vm_object;
905                         if (obj != NULL) {
906                                 VM_OBJECT_RLOCK(obj);
907                                 vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
908                                 VM_OBJECT_RUNLOCK(obj);
909                         }
910                 }
911                 tmpe = tmpe->next;
912         }
913
914         /*
915          * Remove all mappings if a process is swapped out, this will free page
916          * table pages.
917          */
918         if (desired == 0 && nothingwired) {
919                 pmap_remove(vm_map_pmap(map), vm_map_min(map),
920                     vm_map_max(map));
921         }
922
923         vm_map_unlock(map);
924 }
925 #endif          /* !defined(NO_SWAPPING) */
926
927 /*
928  * Attempt to acquire all of the necessary locks to launder a page and
929  * then call through the clustering layer to PUTPAGES.  Wait a short
930  * time for a vnode lock.
931  *
932  * Requires the page and object lock on entry, releases both before return.
933  * Returns 0 on success and an errno otherwise.
934  */
935 static int
936 vm_pageout_clean(vm_page_t m)
937 {
938         struct vnode *vp;
939         struct mount *mp;
940         vm_object_t object;
941         vm_pindex_t pindex;
942         int error, lockmode;
943
944         vm_page_assert_locked(m);
945         object = m->object;
946         VM_OBJECT_ASSERT_WLOCKED(object);
947         error = 0;
948         vp = NULL;
949         mp = NULL;
950
951         /*
952          * The object is already known NOT to be dead.   It
953          * is possible for the vget() to block the whole
954          * pageout daemon, but the new low-memory handling
955          * code should prevent it.
956          *
957          * We can't wait forever for the vnode lock, we might
958          * deadlock due to a vn_read() getting stuck in
959          * vm_wait while holding this vnode.  We skip the 
960          * vnode if we can't get it in a reasonable amount
961          * of time.
962          */
963         if (object->type == OBJT_VNODE) {
964                 vm_page_unlock(m);
965                 vp = object->handle;
966                 if (vp->v_type == VREG &&
967                     vn_start_write(vp, &mp, V_NOWAIT) != 0) {
968                         mp = NULL;
969                         error = EDEADLK;
970                         goto unlock_all;
971                 }
972                 KASSERT(mp != NULL,
973                     ("vp %p with NULL v_mount", vp));
974                 vm_object_reference_locked(object);
975                 pindex = m->pindex;
976                 VM_OBJECT_WUNLOCK(object);
977                 lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
978                     LK_SHARED : LK_EXCLUSIVE;
979                 if (vget(vp, lockmode | LK_TIMELOCK, curthread)) {
980                         vp = NULL;
981                         error = EDEADLK;
982                         goto unlock_mp;
983                 }
984                 VM_OBJECT_WLOCK(object);
985                 vm_page_lock(m);
986                 /*
987                  * While the object and page were unlocked, the page
988                  * may have been:
989                  * (1) moved to a different queue,
990                  * (2) reallocated to a different object,
991                  * (3) reallocated to a different offset, or
992                  * (4) cleaned.
993                  */
994                 if (m->queue != PQ_INACTIVE || m->object != object ||
995                     m->pindex != pindex || m->dirty == 0) {
996                         vm_page_unlock(m);
997                         error = ENXIO;
998                         goto unlock_all;
999                 }
1000
1001                 /*
1002                  * The page may have been busied or held while the object
1003                  * and page locks were released.
1004                  */
1005                 if (vm_page_busied(m) || m->hold_count != 0) {
1006                         vm_page_unlock(m);
1007                         error = EBUSY;
1008                         goto unlock_all;
1009                 }
1010         }
1011
1012         /*
1013          * If a page is dirty, then it is either being washed
1014          * (but not yet cleaned) or it is still in the
1015          * laundry.  If it is still in the laundry, then we
1016          * start the cleaning operation. 
1017          */
1018         if (vm_pageout_cluster(m) == 0)
1019                 error = EIO;
1020
1021 unlock_all:
1022         VM_OBJECT_WUNLOCK(object);
1023
1024 unlock_mp:
1025         vm_page_lock_assert(m, MA_NOTOWNED);
1026         if (mp != NULL) {
1027                 if (vp != NULL)
1028                         vput(vp);
1029                 vm_object_deallocate(object);
1030                 vn_finished_write(mp);
1031         }
1032
1033         return (error);
1034 }
1035
1036 /*
1037  *      vm_pageout_scan does the dirty work for the pageout daemon.
1038  *
1039  *      pass 0 - Update active LRU/deactivate pages
1040  *      pass 1 - Move inactive to cache or free
1041  *      pass 2 - Launder dirty pages
1042  */
1043 static void
1044 vm_pageout_scan(struct vm_domain *vmd, int pass)
1045 {
1046         vm_page_t m, next;
1047         struct vm_pagequeue *pq;
1048         vm_object_t object;
1049         long min_scan;
1050         int act_delta, addl_page_shortage, deficit, error, maxlaunder, maxscan;
1051         int page_shortage, scan_tick, scanned, starting_page_shortage;
1052         int vnodes_skipped;
1053         boolean_t pageout_ok, queues_locked;
1054
1055         /*
1056          * If we need to reclaim memory ask kernel caches to return
1057          * some.  We rate limit to avoid thrashing.
1058          */
1059         if (vmd == &vm_dom[0] && pass > 0 &&
1060             (time_uptime - lowmem_uptime) >= lowmem_period) {
1061                 /*
1062                  * Decrease registered cache sizes.
1063                  */
1064                 SDT_PROBE0(vm, , , vm__lowmem_scan);
1065                 EVENTHANDLER_INVOKE(vm_lowmem, 0);
1066                 /*
1067                  * We do this explicitly after the caches have been
1068                  * drained above.
1069                  */
1070                 uma_reclaim();
1071                 lowmem_uptime = time_uptime;
1072         }
1073
1074         /*
1075          * The addl_page_shortage is the number of temporarily
1076          * stuck pages in the inactive queue.  In other words, the
1077          * number of pages from the inactive count that should be
1078          * discounted in setting the target for the active queue scan.
1079          */
1080         addl_page_shortage = 0;
1081
1082         /*
1083          * Calculate the number of pages we want to either free or move
1084          * to the cache.
1085          */
1086         if (pass > 0) {
1087                 deficit = atomic_readandclear_int(&vm_pageout_deficit);
1088                 page_shortage = vm_paging_target() + deficit;
1089         } else
1090                 page_shortage = deficit = 0;
1091         starting_page_shortage = page_shortage;
1092
1093         /*
1094          * maxlaunder limits the number of dirty pages we flush per scan.
1095          * For most systems a smaller value (16 or 32) is more robust under
1096          * extreme memory and disk pressure because any unnecessary writes
1097          * to disk can result in extreme performance degredation.  However,
1098          * systems with excessive dirty pages (especially when MAP_NOSYNC is
1099          * used) will die horribly with limited laundering.  If the pageout
1100          * daemon cannot clean enough pages in the first pass, we let it go
1101          * all out in succeeding passes.
1102          */
1103         if ((maxlaunder = vm_max_launder) <= 1)
1104                 maxlaunder = 1;
1105         if (pass > 1)
1106                 maxlaunder = 10000;
1107
1108         vnodes_skipped = 0;
1109
1110         /*
1111          * Start scanning the inactive queue for pages we can move to the
1112          * cache or free.  The scan will stop when the target is reached or
1113          * we have scanned the entire inactive queue.  Note that m->act_count
1114          * is not used to form decisions for the inactive queue, only for the
1115          * active queue.
1116          */
1117         pq = &vmd->vmd_pagequeues[PQ_INACTIVE];
1118         maxscan = pq->pq_cnt;
1119         vm_pagequeue_lock(pq);
1120         queues_locked = TRUE;
1121         for (m = TAILQ_FIRST(&pq->pq_pl);
1122              m != NULL && maxscan-- > 0 && page_shortage > 0;
1123              m = next) {
1124                 vm_pagequeue_assert_locked(pq);
1125                 KASSERT(queues_locked, ("unlocked queues"));
1126                 KASSERT(m->queue == PQ_INACTIVE, ("Inactive queue %p", m));
1127
1128                 PCPU_INC(cnt.v_pdpages);
1129                 next = TAILQ_NEXT(m, plinks.q);
1130
1131                 /*
1132                  * skip marker pages
1133                  */
1134                 if (m->flags & PG_MARKER)
1135                         continue;
1136
1137                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
1138                     ("Fictitious page %p cannot be in inactive queue", m));
1139                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1140                     ("Unmanaged page %p cannot be in inactive queue", m));
1141
1142                 /*
1143                  * The page or object lock acquisitions fail if the
1144                  * page was removed from the queue or moved to a
1145                  * different position within the queue.  In either
1146                  * case, addl_page_shortage should not be incremented.
1147                  */
1148                 if (!vm_pageout_page_lock(m, &next))
1149                         goto unlock_page;
1150                 else if (m->hold_count != 0) {
1151                         /*
1152                          * Held pages are essentially stuck in the
1153                          * queue.  So, they ought to be discounted
1154                          * from the inactive count.  See the
1155                          * calculation of the page_shortage for the
1156                          * loop over the active queue below.
1157                          */
1158                         addl_page_shortage++;
1159                         goto unlock_page;
1160                 }
1161                 object = m->object;
1162                 if (!VM_OBJECT_TRYWLOCK(object)) {
1163                         if (!vm_pageout_fallback_object_lock(m, &next))
1164                                 goto unlock_object;
1165                         else if (m->hold_count != 0) {
1166                                 addl_page_shortage++;
1167                                 goto unlock_object;
1168                         }
1169                 }
1170                 if (vm_page_busied(m)) {
1171                         /*
1172                          * Don't mess with busy pages.  Leave them at
1173                          * the front of the queue.  Most likely, they
1174                          * are being paged out and will leave the
1175                          * queue shortly after the scan finishes.  So,
1176                          * they ought to be discounted from the
1177                          * inactive count.
1178                          */
1179                         addl_page_shortage++;
1180 unlock_object:
1181                         VM_OBJECT_WUNLOCK(object);
1182 unlock_page:
1183                         vm_page_unlock(m);
1184                         continue;
1185                 }
1186                 KASSERT(m->hold_count == 0, ("Held page %p", m));
1187
1188                 /*
1189                  * We unlock the inactive page queue, invalidating the
1190                  * 'next' pointer.  Use our marker to remember our
1191                  * place.
1192                  */
1193                 TAILQ_INSERT_AFTER(&pq->pq_pl, m, &vmd->vmd_marker, plinks.q);
1194                 vm_pagequeue_unlock(pq);
1195                 queues_locked = FALSE;
1196
1197                 /*
1198                  * Invalid pages can be easily freed. They cannot be
1199                  * mapped, vm_page_free() asserts this.
1200                  */
1201                 if (m->valid == 0)
1202                         goto free_page;
1203
1204                 /*
1205                  * If the page has been referenced and the object is not dead,
1206                  * reactivate or requeue the page depending on whether the
1207                  * object is mapped.
1208                  */
1209                 if ((m->aflags & PGA_REFERENCED) != 0) {
1210                         vm_page_aflag_clear(m, PGA_REFERENCED);
1211                         act_delta = 1;
1212                 } else
1213                         act_delta = 0;
1214                 if (object->ref_count != 0) {
1215                         act_delta += pmap_ts_referenced(m);
1216                 } else {
1217                         KASSERT(!pmap_page_is_mapped(m),
1218                             ("vm_pageout_scan: page %p is mapped", m));
1219                 }
1220                 if (act_delta != 0) {
1221                         if (object->ref_count != 0) {
1222                                 vm_page_activate(m);
1223
1224                                 /*
1225                                  * Increase the activation count if the page
1226                                  * was referenced while in the inactive queue.
1227                                  * This makes it less likely that the page will
1228                                  * be returned prematurely to the inactive
1229                                  * queue.
1230                                  */
1231                                 m->act_count += act_delta + ACT_ADVANCE;
1232                                 goto drop_page;
1233                         } else if ((object->flags & OBJ_DEAD) == 0)
1234                                 goto requeue_page;
1235                 }
1236
1237                 /*
1238                  * If the page appears to be clean at the machine-independent
1239                  * layer, then remove all of its mappings from the pmap in
1240                  * anticipation of placing it onto the cache queue.  If,
1241                  * however, any of the page's mappings allow write access,
1242                  * then the page may still be modified until the last of those
1243                  * mappings are removed.
1244                  */
1245                 if (object->ref_count != 0) {
1246                         vm_page_test_dirty(m);
1247                         if (m->dirty == 0)
1248                                 pmap_remove_all(m);
1249                 }
1250
1251                 if (m->dirty == 0) {
1252                         /*
1253                          * Clean pages can be freed.
1254                          */
1255 free_page:
1256                         vm_page_free(m);
1257                         PCPU_INC(cnt.v_dfree);
1258                         --page_shortage;
1259                 } else if ((object->flags & OBJ_DEAD) != 0) {
1260                         /*
1261                          * Leave dirty pages from dead objects at the front of
1262                          * the queue.  They are being paged out and freed by
1263                          * the thread that destroyed the object.  They will
1264                          * leave the queue shortly after the scan finishes, so 
1265                          * they should be discounted from the inactive count.
1266                          */
1267                         addl_page_shortage++;
1268                 } else if ((m->flags & PG_WINATCFLS) == 0 && pass < 2) {
1269                         /*
1270                          * Dirty pages need to be paged out, but flushing
1271                          * a page is extremely expensive versus freeing
1272                          * a clean page.  Rather then artificially limiting
1273                          * the number of pages we can flush, we instead give
1274                          * dirty pages extra priority on the inactive queue
1275                          * by forcing them to be cycled through the queue
1276                          * twice before being flushed, after which the
1277                          * (now clean) page will cycle through once more
1278                          * before being freed.  This significantly extends
1279                          * the thrash point for a heavily loaded machine.
1280                          */
1281                         m->flags |= PG_WINATCFLS;
1282 requeue_page:
1283                         vm_pagequeue_lock(pq);
1284                         queues_locked = TRUE;
1285                         vm_page_requeue_locked(m);
1286                 } else if (maxlaunder > 0) {
1287                         /*
1288                          * We always want to try to flush some dirty pages if
1289                          * we encounter them, to keep the system stable.
1290                          * Normally this number is small, but under extreme
1291                          * pressure where there are insufficient clean pages
1292                          * on the inactive queue, we may have to go all out.
1293                          */
1294
1295                         if (object->type != OBJT_SWAP &&
1296                             object->type != OBJT_DEFAULT)
1297                                 pageout_ok = TRUE;
1298                         else if (disable_swap_pageouts)
1299                                 pageout_ok = FALSE;
1300                         else if (defer_swap_pageouts)
1301                                 pageout_ok = vm_page_count_min();
1302                         else
1303                                 pageout_ok = TRUE;
1304                         if (!pageout_ok)
1305                                 goto requeue_page;
1306                         error = vm_pageout_clean(m);
1307                         /*
1308                          * Decrement page_shortage on success to account for
1309                          * the (future) cleaned page.  Otherwise we could wind
1310                          * up laundering or cleaning too many pages.
1311                          */
1312                         if (error == 0) {
1313                                 page_shortage--;
1314                                 maxlaunder--;
1315                         } else if (error == EDEADLK) {
1316                                 pageout_lock_miss++;
1317                                 vnodes_skipped++;
1318                         } else if (error == EBUSY) {
1319                                 addl_page_shortage++;
1320                         }
1321                         vm_page_lock_assert(m, MA_NOTOWNED);
1322                         goto relock_queues;
1323                 }
1324 drop_page:
1325                 vm_page_unlock(m);
1326                 VM_OBJECT_WUNLOCK(object);
1327 relock_queues:
1328                 if (!queues_locked) {
1329                         vm_pagequeue_lock(pq);
1330                         queues_locked = TRUE;
1331                 }
1332                 next = TAILQ_NEXT(&vmd->vmd_marker, plinks.q);
1333                 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_marker, plinks.q);
1334         }
1335         vm_pagequeue_unlock(pq);
1336
1337 #if !defined(NO_SWAPPING)
1338         /*
1339          * Wakeup the swapout daemon if we didn't cache or free the targeted
1340          * number of pages. 
1341          */
1342         if (vm_swap_enabled && page_shortage > 0)
1343                 vm_req_vmdaemon(VM_SWAP_NORMAL);
1344 #endif
1345
1346         /*
1347          * Wakeup the sync daemon if we skipped a vnode in a writeable object
1348          * and we didn't cache or free enough pages.
1349          */
1350         if (vnodes_skipped > 0 && page_shortage > vm_cnt.v_free_target -
1351             vm_cnt.v_free_min)
1352                 (void)speedup_syncer();
1353
1354         /*
1355          * If the inactive queue scan fails repeatedly to meet its
1356          * target, kill the largest process.
1357          */
1358         vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage);
1359
1360         /*
1361          * Compute the number of pages we want to try to move from the
1362          * active queue to the inactive queue.
1363          */
1364         page_shortage = vm_cnt.v_inactive_target - vm_cnt.v_inactive_count +
1365             vm_paging_target() + deficit + addl_page_shortage;
1366
1367         pq = &vmd->vmd_pagequeues[PQ_ACTIVE];
1368         vm_pagequeue_lock(pq);
1369         maxscan = pq->pq_cnt;
1370
1371         /*
1372          * If we're just idle polling attempt to visit every
1373          * active page within 'update_period' seconds.
1374          */
1375         scan_tick = ticks;
1376         if (vm_pageout_update_period != 0) {
1377                 min_scan = pq->pq_cnt;
1378                 min_scan *= scan_tick - vmd->vmd_last_active_scan;
1379                 min_scan /= hz * vm_pageout_update_period;
1380         } else
1381                 min_scan = 0;
1382         if (min_scan > 0 || (page_shortage > 0 && maxscan > 0))
1383                 vmd->vmd_last_active_scan = scan_tick;
1384
1385         /*
1386          * Scan the active queue for pages that can be deactivated.  Update
1387          * the per-page activity counter and use it to identify deactivation
1388          * candidates.
1389          */
1390         for (m = TAILQ_FIRST(&pq->pq_pl), scanned = 0; m != NULL && (scanned <
1391             min_scan || (page_shortage > 0 && scanned < maxscan)); m = next,
1392             scanned++) {
1393
1394                 KASSERT(m->queue == PQ_ACTIVE,
1395                     ("vm_pageout_scan: page %p isn't active", m));
1396
1397                 next = TAILQ_NEXT(m, plinks.q);
1398                 if ((m->flags & PG_MARKER) != 0)
1399                         continue;
1400                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
1401                     ("Fictitious page %p cannot be in active queue", m));
1402                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1403                     ("Unmanaged page %p cannot be in active queue", m));
1404                 if (!vm_pageout_page_lock(m, &next)) {
1405                         vm_page_unlock(m);
1406                         continue;
1407                 }
1408
1409                 /*
1410                  * The count for pagedaemon pages is done after checking the
1411                  * page for eligibility...
1412                  */
1413                 PCPU_INC(cnt.v_pdpages);
1414
1415                 /*
1416                  * Check to see "how much" the page has been used.
1417                  */
1418                 if ((m->aflags & PGA_REFERENCED) != 0) {
1419                         vm_page_aflag_clear(m, PGA_REFERENCED);
1420                         act_delta = 1;
1421                 } else
1422                         act_delta = 0;
1423
1424                 /*
1425                  * Unlocked object ref count check.  Two races are possible.
1426                  * 1) The ref was transitioning to zero and we saw non-zero,
1427                  *    the pmap bits will be checked unnecessarily.
1428                  * 2) The ref was transitioning to one and we saw zero. 
1429                  *    The page lock prevents a new reference to this page so
1430                  *    we need not check the reference bits.
1431                  */
1432                 if (m->object->ref_count != 0)
1433                         act_delta += pmap_ts_referenced(m);
1434
1435                 /*
1436                  * Advance or decay the act_count based on recent usage.
1437                  */
1438                 if (act_delta != 0) {
1439                         m->act_count += ACT_ADVANCE + act_delta;
1440                         if (m->act_count > ACT_MAX)
1441                                 m->act_count = ACT_MAX;
1442                 } else
1443                         m->act_count -= min(m->act_count, ACT_DECLINE);
1444
1445                 /*
1446                  * Move this page to the tail of the active or inactive
1447                  * queue depending on usage.
1448                  */
1449                 if (m->act_count == 0) {
1450                         /* Dequeue to avoid later lock recursion. */
1451                         vm_page_dequeue_locked(m);
1452                         vm_page_deactivate(m);
1453                         page_shortage--;
1454                 } else
1455                         vm_page_requeue_locked(m);
1456                 vm_page_unlock(m);
1457         }
1458         vm_pagequeue_unlock(pq);
1459 #if !defined(NO_SWAPPING)
1460         /*
1461          * Idle process swapout -- run once per second.
1462          */
1463         if (vm_swap_idle_enabled) {
1464                 static long lsec;
1465                 if (time_second != lsec) {
1466                         vm_req_vmdaemon(VM_SWAP_IDLE);
1467                         lsec = time_second;
1468                 }
1469         }
1470 #endif
1471 }
1472
1473 static int vm_pageout_oom_vote;
1474
1475 /*
1476  * The pagedaemon threads randlomly select one to perform the
1477  * OOM.  Trying to kill processes before all pagedaemons
1478  * failed to reach free target is premature.
1479  */
1480 static void
1481 vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
1482     int starting_page_shortage)
1483 {
1484         int old_vote;
1485
1486         if (starting_page_shortage <= 0 || starting_page_shortage !=
1487             page_shortage)
1488                 vmd->vmd_oom_seq = 0;
1489         else
1490                 vmd->vmd_oom_seq++;
1491         if (vmd->vmd_oom_seq < vm_pageout_oom_seq) {
1492                 if (vmd->vmd_oom) {
1493                         vmd->vmd_oom = FALSE;
1494                         atomic_subtract_int(&vm_pageout_oom_vote, 1);
1495                 }
1496                 return;
1497         }
1498
1499         /*
1500          * Do not follow the call sequence until OOM condition is
1501          * cleared.
1502          */
1503         vmd->vmd_oom_seq = 0;
1504
1505         if (vmd->vmd_oom)
1506                 return;
1507
1508         vmd->vmd_oom = TRUE;
1509         old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1);
1510         if (old_vote != vm_ndomains - 1)
1511                 return;
1512
1513         /*
1514          * The current pagedaemon thread is the last in the quorum to
1515          * start OOM.  Initiate the selection and signaling of the
1516          * victim.
1517          */
1518         vm_pageout_oom(VM_OOM_MEM);
1519
1520         /*
1521          * After one round of OOM terror, recall our vote.  On the
1522          * next pass, current pagedaemon would vote again if the low
1523          * memory condition is still there, due to vmd_oom being
1524          * false.
1525          */
1526         vmd->vmd_oom = FALSE;
1527         atomic_subtract_int(&vm_pageout_oom_vote, 1);
1528 }
1529
1530 /*
1531  * The OOM killer is the page daemon's action of last resort when
1532  * memory allocation requests have been stalled for a prolonged period
1533  * of time because it cannot reclaim memory.  This function computes
1534  * the approximate number of physical pages that could be reclaimed if
1535  * the specified address space is destroyed.
1536  *
1537  * Private, anonymous memory owned by the address space is the
1538  * principal resource that we expect to recover after an OOM kill.
1539  * Since the physical pages mapped by the address space's COW entries
1540  * are typically shared pages, they are unlikely to be released and so
1541  * they are not counted.
1542  *
1543  * To get to the point where the page daemon runs the OOM killer, its
1544  * efforts to write-back vnode-backed pages may have stalled.  This
1545  * could be caused by a memory allocation deadlock in the write path
1546  * that might be resolved by an OOM kill.  Therefore, physical pages
1547  * belonging to vnode-backed objects are counted, because they might
1548  * be freed without being written out first if the address space holds
1549  * the last reference to an unlinked vnode.
1550  *
1551  * Similarly, physical pages belonging to OBJT_PHYS objects are
1552  * counted because the address space might hold the last reference to
1553  * the object.
1554  */
1555 static long
1556 vm_pageout_oom_pagecount(struct vmspace *vmspace)
1557 {
1558         vm_map_t map;
1559         vm_map_entry_t entry;
1560         vm_object_t obj;
1561         long res;
1562
1563         map = &vmspace->vm_map;
1564         KASSERT(!map->system_map, ("system map"));
1565         sx_assert(&map->lock, SA_LOCKED);
1566         res = 0;
1567         for (entry = map->header.next; entry != &map->header;
1568             entry = entry->next) {
1569                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
1570                         continue;
1571                 obj = entry->object.vm_object;
1572                 if (obj == NULL)
1573                         continue;
1574                 if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 &&
1575                     obj->ref_count != 1)
1576                         continue;
1577                 switch (obj->type) {
1578                 case OBJT_DEFAULT:
1579                 case OBJT_SWAP:
1580                 case OBJT_PHYS:
1581                 case OBJT_VNODE:
1582                         res += obj->resident_page_count;
1583                         break;
1584                 }
1585         }
1586         return (res);
1587 }
1588
1589 void
1590 vm_pageout_oom(int shortage)
1591 {
1592         struct proc *p, *bigproc;
1593         vm_offset_t size, bigsize;
1594         struct thread *td;
1595         struct vmspace *vm;
1596
1597         /*
1598          * We keep the process bigproc locked once we find it to keep anyone
1599          * from messing with it; however, there is a possibility of
1600          * deadlock if process B is bigproc and one of it's child processes
1601          * attempts to propagate a signal to B while we are waiting for A's
1602          * lock while walking this list.  To avoid this, we don't block on
1603          * the process lock but just skip a process if it is already locked.
1604          */
1605         bigproc = NULL;
1606         bigsize = 0;
1607         sx_slock(&allproc_lock);
1608         FOREACH_PROC_IN_SYSTEM(p) {
1609                 int breakout;
1610
1611                 PROC_LOCK(p);
1612
1613                 /*
1614                  * If this is a system, protected or killed process, skip it.
1615                  */
1616                 if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC |
1617                     P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 ||
1618                     p->p_pid == 1 || P_KILLED(p) ||
1619                     (p->p_pid < 48 && swap_pager_avail != 0)) {
1620                         PROC_UNLOCK(p);
1621                         continue;
1622                 }
1623                 /*
1624                  * If the process is in a non-running type state,
1625                  * don't touch it.  Check all the threads individually.
1626                  */
1627                 breakout = 0;
1628                 FOREACH_THREAD_IN_PROC(p, td) {
1629                         thread_lock(td);
1630                         if (!TD_ON_RUNQ(td) &&
1631                             !TD_IS_RUNNING(td) &&
1632                             !TD_IS_SLEEPING(td) &&
1633                             !TD_IS_SUSPENDED(td) &&
1634                             !TD_IS_SWAPPED(td)) {
1635                                 thread_unlock(td);
1636                                 breakout = 1;
1637                                 break;
1638                         }
1639                         thread_unlock(td);
1640                 }
1641                 if (breakout) {
1642                         PROC_UNLOCK(p);
1643                         continue;
1644                 }
1645                 /*
1646                  * get the process size
1647                  */
1648                 vm = vmspace_acquire_ref(p);
1649                 if (vm == NULL) {
1650                         PROC_UNLOCK(p);
1651                         continue;
1652                 }
1653                 _PHOLD(p);
1654                 if (!vm_map_trylock_read(&vm->vm_map)) {
1655                         _PRELE(p);
1656                         PROC_UNLOCK(p);
1657                         vmspace_free(vm);
1658                         continue;
1659                 }
1660                 PROC_UNLOCK(p);
1661                 size = vmspace_swap_count(vm);
1662                 if (shortage == VM_OOM_MEM)
1663                         size += vm_pageout_oom_pagecount(vm);
1664                 vm_map_unlock_read(&vm->vm_map);
1665                 vmspace_free(vm);
1666
1667                 /*
1668                  * If this process is bigger than the biggest one,
1669                  * remember it.
1670                  */
1671                 if (size > bigsize) {
1672                         if (bigproc != NULL)
1673                                 PRELE(bigproc);
1674                         bigproc = p;
1675                         bigsize = size;
1676                 } else {
1677                         PRELE(p);
1678                 }
1679         }
1680         sx_sunlock(&allproc_lock);
1681         if (bigproc != NULL) {
1682                 if (vm_panic_on_oom != 0)
1683                         panic("out of swap space");
1684                 PROC_LOCK(bigproc);
1685                 killproc(bigproc, "out of swap space");
1686                 sched_nice(bigproc, PRIO_MIN);
1687                 _PRELE(bigproc);
1688                 PROC_UNLOCK(bigproc);
1689                 wakeup(&vm_cnt.v_free_count);
1690         }
1691 }
1692
1693 static void
1694 vm_pageout_worker(void *arg)
1695 {
1696         struct vm_domain *domain;
1697         int domidx;
1698
1699         domidx = (uintptr_t)arg;
1700         domain = &vm_dom[domidx];
1701
1702         /*
1703          * XXXKIB It could be useful to bind pageout daemon threads to
1704          * the cores belonging to the domain, from which vm_page_array
1705          * is allocated.
1706          */
1707
1708         KASSERT(domain->vmd_segs != 0, ("domain without segments"));
1709         domain->vmd_last_active_scan = ticks;
1710         vm_pageout_init_marker(&domain->vmd_marker, PQ_INACTIVE);
1711         vm_pageout_init_marker(&domain->vmd_inacthead, PQ_INACTIVE);
1712         TAILQ_INSERT_HEAD(&domain->vmd_pagequeues[PQ_INACTIVE].pq_pl,
1713             &domain->vmd_inacthead, plinks.q);
1714
1715         /*
1716          * The pageout daemon worker is never done, so loop forever.
1717          */
1718         while (TRUE) {
1719                 /*
1720                  * If we have enough free memory, wakeup waiters.  Do
1721                  * not clear vm_pages_needed until we reach our target,
1722                  * otherwise we may be woken up over and over again and
1723                  * waste a lot of cpu.
1724                  */
1725                 mtx_lock(&vm_page_queue_free_mtx);
1726                 if (vm_pages_needed && !vm_page_count_min()) {
1727                         if (!vm_paging_needed())
1728                                 vm_pages_needed = 0;
1729                         wakeup(&vm_cnt.v_free_count);
1730                 }
1731                 if (vm_pages_needed) {
1732                         /*
1733                          * We're still not done.  Either vm_pages_needed was
1734                          * set by another thread during the previous scan
1735                          * (typically, this happens during a level 0 scan) or
1736                          * vm_pages_needed was already set and the scan failed
1737                          * to free enough pages.  If we haven't yet performed
1738                          * a level >= 2 scan (unlimited dirty cleaning), then
1739                          * upgrade the level and scan again now.  Otherwise,
1740                          * sleep a bit and try again later.  While sleeping,
1741                          * vm_pages_needed can be cleared.
1742                          */
1743                         if (domain->vmd_pass > 1)
1744                                 msleep(&vm_pages_needed,
1745                                     &vm_page_queue_free_mtx, PVM, "psleep",
1746                                     hz / 2);
1747                 } else {
1748                         /*
1749                          * Good enough, sleep until required to refresh
1750                          * stats.
1751                          */
1752                         msleep(&vm_pages_needed, &vm_page_queue_free_mtx,
1753                             PVM, "psleep", hz);
1754                 }
1755                 if (vm_pages_needed) {
1756                         vm_cnt.v_pdwakeups++;
1757                         domain->vmd_pass++;
1758                 } else
1759                         domain->vmd_pass = 0;
1760                 mtx_unlock(&vm_page_queue_free_mtx);
1761                 vm_pageout_scan(domain, domain->vmd_pass);
1762         }
1763 }
1764
1765 /*
1766  *      vm_pageout_init initialises basic pageout daemon settings.
1767  */
1768 static void
1769 vm_pageout_init(void)
1770 {
1771         /*
1772          * Initialize some paging parameters.
1773          */
1774         vm_cnt.v_interrupt_free_min = 2;
1775         if (vm_cnt.v_page_count < 2000)
1776                 vm_pageout_page_count = 8;
1777
1778         /*
1779          * v_free_reserved needs to include enough for the largest
1780          * swap pager structures plus enough for any pv_entry structs
1781          * when paging. 
1782          */
1783         if (vm_cnt.v_page_count > 1024)
1784                 vm_cnt.v_free_min = 4 + (vm_cnt.v_page_count - 1024) / 200;
1785         else
1786                 vm_cnt.v_free_min = 4;
1787         vm_cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1788             vm_cnt.v_interrupt_free_min;
1789         vm_cnt.v_free_reserved = vm_pageout_page_count +
1790             vm_cnt.v_pageout_free_min + (vm_cnt.v_page_count / 768);
1791         vm_cnt.v_free_severe = vm_cnt.v_free_min / 2;
1792         vm_cnt.v_free_target = 4 * vm_cnt.v_free_min + vm_cnt.v_free_reserved;
1793         vm_cnt.v_free_min += vm_cnt.v_free_reserved;
1794         vm_cnt.v_free_severe += vm_cnt.v_free_reserved;
1795         vm_cnt.v_inactive_target = (3 * vm_cnt.v_free_target) / 2;
1796         if (vm_cnt.v_inactive_target > vm_cnt.v_free_count / 3)
1797                 vm_cnt.v_inactive_target = vm_cnt.v_free_count / 3;
1798
1799         /*
1800          * Set the default wakeup threshold to be 10% above the minimum
1801          * page limit.  This keeps the steady state out of shortfall.
1802          */
1803         vm_pageout_wakeup_thresh = (vm_cnt.v_free_min / 10) * 11;
1804
1805         /*
1806          * Set interval in seconds for active scan.  We want to visit each
1807          * page at least once every ten minutes.  This is to prevent worst
1808          * case paging behaviors with stale active LRU.
1809          */
1810         if (vm_pageout_update_period == 0)
1811                 vm_pageout_update_period = 600;
1812
1813         /* XXX does not really belong here */
1814         if (vm_page_max_wired == 0)
1815                 vm_page_max_wired = vm_cnt.v_free_count / 3;
1816 }
1817
1818 /*
1819  *     vm_pageout is the high level pageout daemon.
1820  */
1821 static void
1822 vm_pageout(void)
1823 {
1824         int error;
1825 #if MAXMEMDOM > 1
1826         int i;
1827 #endif
1828
1829         swap_pager_swap_init();
1830 #if MAXMEMDOM > 1
1831         for (i = 1; i < vm_ndomains; i++) {
1832                 error = kthread_add(vm_pageout_worker, (void *)(uintptr_t)i,
1833                     curproc, NULL, 0, 0, "dom%d", i);
1834                 if (error != 0) {
1835                         panic("starting pageout for domain %d, error %d\n",
1836                             i, error);
1837                 }
1838         }
1839 #endif
1840         error = kthread_add(uma_reclaim_worker, NULL, curproc, NULL,
1841             0, 0, "uma");
1842         if (error != 0)
1843                 panic("starting uma_reclaim helper, error %d\n", error);
1844         vm_pageout_worker((void *)(uintptr_t)0);
1845 }
1846
1847 /*
1848  * Unless the free page queue lock is held by the caller, this function
1849  * should be regarded as advisory.  Specifically, the caller should
1850  * not msleep() on &vm_cnt.v_free_count following this function unless
1851  * the free page queue lock is held until the msleep() is performed.
1852  */
1853 void
1854 pagedaemon_wakeup(void)
1855 {
1856
1857         if (!vm_pages_needed && curthread->td_proc != pageproc) {
1858                 vm_pages_needed = 1;
1859                 wakeup(&vm_pages_needed);
1860         }
1861 }
1862
1863 #if !defined(NO_SWAPPING)
1864 static void
1865 vm_req_vmdaemon(int req)
1866 {
1867         static int lastrun = 0;
1868
1869         mtx_lock(&vm_daemon_mtx);
1870         vm_pageout_req_swapout |= req;
1871         if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1872                 wakeup(&vm_daemon_needed);
1873                 lastrun = ticks;
1874         }
1875         mtx_unlock(&vm_daemon_mtx);
1876 }
1877
1878 static void
1879 vm_daemon(void)
1880 {
1881         struct rlimit rsslim;
1882         struct proc *p;
1883         struct thread *td;
1884         struct vmspace *vm;
1885         int breakout, swapout_flags, tryagain, attempts;
1886 #ifdef RACCT
1887         uint64_t rsize, ravailable;
1888 #endif
1889
1890         while (TRUE) {
1891                 mtx_lock(&vm_daemon_mtx);
1892                 msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep",
1893 #ifdef RACCT
1894                     racct_enable ? hz : 0
1895 #else
1896                     0
1897 #endif
1898                 );
1899                 swapout_flags = vm_pageout_req_swapout;
1900                 vm_pageout_req_swapout = 0;
1901                 mtx_unlock(&vm_daemon_mtx);
1902                 if (swapout_flags)
1903                         swapout_procs(swapout_flags);
1904
1905                 /*
1906                  * scan the processes for exceeding their rlimits or if
1907                  * process is swapped out -- deactivate pages
1908                  */
1909                 tryagain = 0;
1910                 attempts = 0;
1911 again:
1912                 attempts++;
1913                 sx_slock(&allproc_lock);
1914                 FOREACH_PROC_IN_SYSTEM(p) {
1915                         vm_pindex_t limit, size;
1916
1917                         /*
1918                          * if this is a system process or if we have already
1919                          * looked at this process, skip it.
1920                          */
1921                         PROC_LOCK(p);
1922                         if (p->p_state != PRS_NORMAL ||
1923                             p->p_flag & (P_INEXEC | P_SYSTEM | P_WEXIT)) {
1924                                 PROC_UNLOCK(p);
1925                                 continue;
1926                         }
1927                         /*
1928                          * if the process is in a non-running type state,
1929                          * don't touch it.
1930                          */
1931                         breakout = 0;
1932                         FOREACH_THREAD_IN_PROC(p, td) {
1933                                 thread_lock(td);
1934                                 if (!TD_ON_RUNQ(td) &&
1935                                     !TD_IS_RUNNING(td) &&
1936                                     !TD_IS_SLEEPING(td) &&
1937                                     !TD_IS_SUSPENDED(td)) {
1938                                         thread_unlock(td);
1939                                         breakout = 1;
1940                                         break;
1941                                 }
1942                                 thread_unlock(td);
1943                         }
1944                         if (breakout) {
1945                                 PROC_UNLOCK(p);
1946                                 continue;
1947                         }
1948                         /*
1949                          * get a limit
1950                          */
1951                         lim_rlimit_proc(p, RLIMIT_RSS, &rsslim);
1952                         limit = OFF_TO_IDX(
1953                             qmin(rsslim.rlim_cur, rsslim.rlim_max));
1954
1955                         /*
1956                          * let processes that are swapped out really be
1957                          * swapped out set the limit to nothing (will force a
1958                          * swap-out.)
1959                          */
1960                         if ((p->p_flag & P_INMEM) == 0)
1961                                 limit = 0;      /* XXX */
1962                         vm = vmspace_acquire_ref(p);
1963                         PROC_UNLOCK(p);
1964                         if (vm == NULL)
1965                                 continue;
1966
1967                         size = vmspace_resident_count(vm);
1968                         if (size >= limit) {
1969                                 vm_pageout_map_deactivate_pages(
1970                                     &vm->vm_map, limit);
1971                         }
1972 #ifdef RACCT
1973                         if (racct_enable) {
1974                                 rsize = IDX_TO_OFF(size);
1975                                 PROC_LOCK(p);
1976                                 racct_set(p, RACCT_RSS, rsize);
1977                                 ravailable = racct_get_available(p, RACCT_RSS);
1978                                 PROC_UNLOCK(p);
1979                                 if (rsize > ravailable) {
1980                                         /*
1981                                          * Don't be overly aggressive; this
1982                                          * might be an innocent process,
1983                                          * and the limit could've been exceeded
1984                                          * by some memory hog.  Don't try
1985                                          * to deactivate more than 1/4th
1986                                          * of process' resident set size.
1987                                          */
1988                                         if (attempts <= 8) {
1989                                                 if (ravailable < rsize -
1990                                                     (rsize / 4)) {
1991                                                         ravailable = rsize -
1992                                                             (rsize / 4);
1993                                                 }
1994                                         }
1995                                         vm_pageout_map_deactivate_pages(
1996                                             &vm->vm_map,
1997                                             OFF_TO_IDX(ravailable));
1998                                         /* Update RSS usage after paging out. */
1999                                         size = vmspace_resident_count(vm);
2000                                         rsize = IDX_TO_OFF(size);
2001                                         PROC_LOCK(p);
2002                                         racct_set(p, RACCT_RSS, rsize);
2003                                         PROC_UNLOCK(p);
2004                                         if (rsize > ravailable)
2005                                                 tryagain = 1;
2006                                 }
2007                         }
2008 #endif
2009                         vmspace_free(vm);
2010                 }
2011                 sx_sunlock(&allproc_lock);
2012                 if (tryagain != 0 && attempts <= 10)
2013                         goto again;
2014         }
2015 }
2016 #endif                  /* !defined(NO_SWAPPING) */