]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_pageout.c
MFH
[FreeBSD/FreeBSD.git] / sys / vm / vm_pageout.c
1 /*-
2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  * Copyright (c) 2005 Yahoo! Technologies Norway AS
11  * All rights reserved.
12  *
13  * This code is derived from software contributed to Berkeley by
14  * The Mach Operating System project at Carnegie-Mellon University.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. All advertising materials mentioning features or use of this software
25  *    must display the following acknowledgement:
26  *      This product includes software developed by the University of
27  *      California, Berkeley and its contributors.
28  * 4. Neither the name of the University nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  *
44  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
45  *
46  *
47  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
48  * All rights reserved.
49  *
50  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
51  *
52  * Permission to use, copy, modify and distribute this software and
53  * its documentation is hereby granted, provided that both the copyright
54  * notice and this permission notice appear in all copies of the
55  * software, derivative works or modified versions, and any portions
56  * thereof, and that both notices appear in supporting documentation.
57  *
58  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
59  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
60  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
61  *
62  * Carnegie Mellon requests users of this software to return to
63  *
64  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
65  *  School of Computer Science
66  *  Carnegie Mellon University
67  *  Pittsburgh PA 15213-3890
68  *
69  * any improvements or extensions that they make and grant Carnegie the
70  * rights to redistribute these changes.
71  */
72
73 /*
74  *      The proverbial page-out daemon.
75  */
76
77 #include <sys/cdefs.h>
78 __FBSDID("$FreeBSD$");
79
80 #include "opt_vm.h"
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/blockcount.h>
86 #include <sys/eventhandler.h>
87 #include <sys/lock.h>
88 #include <sys/mutex.h>
89 #include <sys/proc.h>
90 #include <sys/kthread.h>
91 #include <sys/ktr.h>
92 #include <sys/mount.h>
93 #include <sys/racct.h>
94 #include <sys/resourcevar.h>
95 #include <sys/sched.h>
96 #include <sys/sdt.h>
97 #include <sys/signalvar.h>
98 #include <sys/smp.h>
99 #include <sys/time.h>
100 #include <sys/vnode.h>
101 #include <sys/vmmeter.h>
102 #include <sys/rwlock.h>
103 #include <sys/sx.h>
104 #include <sys/sysctl.h>
105
106 #include <vm/vm.h>
107 #include <vm/vm_param.h>
108 #include <vm/vm_object.h>
109 #include <vm/vm_page.h>
110 #include <vm/vm_map.h>
111 #include <vm/vm_pageout.h>
112 #include <vm/vm_pager.h>
113 #include <vm/vm_phys.h>
114 #include <vm/vm_pagequeue.h>
115 #include <vm/swap_pager.h>
116 #include <vm/vm_extern.h>
117 #include <vm/uma.h>
118
119 /*
120  * System initialization
121  */
122
123 /* the kernel process "vm_pageout"*/
124 static void vm_pageout(void);
125 static void vm_pageout_init(void);
126 static int vm_pageout_clean(vm_page_t m, int *numpagedout);
127 static int vm_pageout_cluster(vm_page_t m);
128 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
129     int starting_page_shortage);
130
131 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init,
132     NULL);
133
134 struct proc *pageproc;
135
136 static struct kproc_desc page_kp = {
137         "pagedaemon",
138         vm_pageout,
139         &pageproc
140 };
141 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start,
142     &page_kp);
143
144 SDT_PROVIDER_DEFINE(vm);
145 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan);
146
147 /* Pagedaemon activity rates, in subdivisions of one second. */
148 #define VM_LAUNDER_RATE         10
149 #define VM_INACT_SCAN_RATE      10
150
151 static int vm_pageout_oom_seq = 12;
152
153 static int vm_pageout_update_period;
154 static int disable_swap_pageouts;
155 static int lowmem_period = 10;
156 static int swapdev_enabled;
157
158 static int vm_panic_on_oom = 0;
159
160 SYSCTL_INT(_vm, OID_AUTO, panic_on_oom,
161         CTLFLAG_RWTUN, &vm_panic_on_oom, 0,
162         "Panic on the given number of out-of-memory errors instead of killing the largest process");
163
164 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period,
165         CTLFLAG_RWTUN, &vm_pageout_update_period, 0,
166         "Maximum active LRU update period");
167
168 /* Access with get_pageout_threads_per_domain(). */
169 static int pageout_threads_per_domain = 1;
170 SYSCTL_INT(_vm, OID_AUTO, pageout_threads_per_domain, CTLFLAG_RDTUN,
171     &pageout_threads_per_domain, 0,
172     "Number of worker threads comprising each per-domain pagedaemon");
173   
174 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RWTUN, &lowmem_period, 0,
175         "Low memory callback period");
176
177 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
178         CTLFLAG_RWTUN, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
179
180 static int pageout_lock_miss;
181 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
182         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
183
184 SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq,
185         CTLFLAG_RWTUN, &vm_pageout_oom_seq, 0,
186         "back-to-back calls to oom detector to start OOM");
187
188 static int act_scan_laundry_weight = 3;
189 SYSCTL_INT(_vm, OID_AUTO, act_scan_laundry_weight, CTLFLAG_RWTUN,
190     &act_scan_laundry_weight, 0,
191     "weight given to clean vs. dirty pages in active queue scans");
192
193 static u_int vm_background_launder_rate = 4096;
194 SYSCTL_UINT(_vm, OID_AUTO, background_launder_rate, CTLFLAG_RWTUN,
195     &vm_background_launder_rate, 0,
196     "background laundering rate, in kilobytes per second");
197
198 static u_int vm_background_launder_max = 20 * 1024;
199 SYSCTL_UINT(_vm, OID_AUTO, background_launder_max, CTLFLAG_RWTUN,
200     &vm_background_launder_max, 0, "background laundering cap, in kilobytes");
201
202 int vm_pageout_page_count = 32;
203
204 u_long vm_page_max_user_wired;
205 SYSCTL_ULONG(_vm, OID_AUTO, max_user_wired, CTLFLAG_RW,
206     &vm_page_max_user_wired, 0,
207     "system-wide limit to user-wired page count");
208
209 static u_int isqrt(u_int num);
210 static int vm_pageout_launder(struct vm_domain *vmd, int launder,
211     bool in_shortfall);
212 static void vm_pageout_laundry_worker(void *arg);
213
214 struct scan_state {
215         struct vm_batchqueue bq;
216         struct vm_pagequeue *pq;
217         vm_page_t       marker;
218         int             maxscan;
219         int             scanned;
220 };
221
222 static void
223 vm_pageout_init_scan(struct scan_state *ss, struct vm_pagequeue *pq,
224     vm_page_t marker, vm_page_t after, int maxscan)
225 {
226
227         vm_pagequeue_assert_locked(pq);
228         KASSERT((marker->a.flags & PGA_ENQUEUED) == 0,
229             ("marker %p already enqueued", marker));
230
231         if (after == NULL)
232                 TAILQ_INSERT_HEAD(&pq->pq_pl, marker, plinks.q);
233         else
234                 TAILQ_INSERT_AFTER(&pq->pq_pl, after, marker, plinks.q);
235         vm_page_aflag_set(marker, PGA_ENQUEUED);
236
237         vm_batchqueue_init(&ss->bq);
238         ss->pq = pq;
239         ss->marker = marker;
240         ss->maxscan = maxscan;
241         ss->scanned = 0;
242         vm_pagequeue_unlock(pq);
243 }
244
245 static void
246 vm_pageout_end_scan(struct scan_state *ss)
247 {
248         struct vm_pagequeue *pq;
249
250         pq = ss->pq;
251         vm_pagequeue_assert_locked(pq);
252         KASSERT((ss->marker->a.flags & PGA_ENQUEUED) != 0,
253             ("marker %p not enqueued", ss->marker));
254
255         TAILQ_REMOVE(&pq->pq_pl, ss->marker, plinks.q);
256         vm_page_aflag_clear(ss->marker, PGA_ENQUEUED);
257         pq->pq_pdpages += ss->scanned;
258 }
259
260 /*
261  * Add a small number of queued pages to a batch queue for later processing
262  * without the corresponding queue lock held.  The caller must have enqueued a
263  * marker page at the desired start point for the scan.  Pages will be
264  * physically dequeued if the caller so requests.  Otherwise, the returned
265  * batch may contain marker pages, and it is up to the caller to handle them.
266  *
267  * When processing the batch queue, vm_pageout_defer() must be used to
268  * determine whether the page has been logically dequeued since the batch was
269  * collected.
270  */
271 static __always_inline void
272 vm_pageout_collect_batch(struct scan_state *ss, const bool dequeue)
273 {
274         struct vm_pagequeue *pq;
275         vm_page_t m, marker, n;
276
277         marker = ss->marker;
278         pq = ss->pq;
279
280         KASSERT((marker->a.flags & PGA_ENQUEUED) != 0,
281             ("marker %p not enqueued", ss->marker));
282
283         vm_pagequeue_lock(pq);
284         for (m = TAILQ_NEXT(marker, plinks.q); m != NULL &&
285             ss->scanned < ss->maxscan && ss->bq.bq_cnt < VM_BATCHQUEUE_SIZE;
286             m = n, ss->scanned++) {
287                 n = TAILQ_NEXT(m, plinks.q);
288                 if ((m->flags & PG_MARKER) == 0) {
289                         KASSERT((m->a.flags & PGA_ENQUEUED) != 0,
290                             ("page %p not enqueued", m));
291                         KASSERT((m->flags & PG_FICTITIOUS) == 0,
292                             ("Fictitious page %p cannot be in page queue", m));
293                         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
294                             ("Unmanaged page %p cannot be in page queue", m));
295                 } else if (dequeue)
296                         continue;
297
298                 (void)vm_batchqueue_insert(&ss->bq, m);
299                 if (dequeue) {
300                         TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
301                         vm_page_aflag_clear(m, PGA_ENQUEUED);
302                 }
303         }
304         TAILQ_REMOVE(&pq->pq_pl, marker, plinks.q);
305         if (__predict_true(m != NULL))
306                 TAILQ_INSERT_BEFORE(m, marker, plinks.q);
307         else
308                 TAILQ_INSERT_TAIL(&pq->pq_pl, marker, plinks.q);
309         if (dequeue)
310                 vm_pagequeue_cnt_add(pq, -ss->bq.bq_cnt);
311         vm_pagequeue_unlock(pq);
312 }
313
314 /*
315  * Return the next page to be scanned, or NULL if the scan is complete.
316  */
317 static __always_inline vm_page_t
318 vm_pageout_next(struct scan_state *ss, const bool dequeue)
319 {
320
321         if (ss->bq.bq_cnt == 0)
322                 vm_pageout_collect_batch(ss, dequeue);
323         return (vm_batchqueue_pop(&ss->bq));
324 }
325
326 /*
327  * Determine whether processing of a page should be deferred and ensure that any
328  * outstanding queue operations are processed.
329  */
330 static __always_inline bool
331 vm_pageout_defer(vm_page_t m, const uint8_t queue, const bool enqueued)
332 {
333         vm_page_astate_t as;
334
335         as = vm_page_astate_load(m);
336         if (__predict_false(as.queue != queue ||
337             ((as.flags & PGA_ENQUEUED) != 0) != enqueued))
338                 return (true);
339         if ((as.flags & PGA_QUEUE_OP_MASK) != 0) {
340                 vm_page_pqbatch_submit(m, queue);
341                 return (true);
342         }
343         return (false);
344 }
345
346 /*
347  * Scan for pages at adjacent offsets within the given page's object that are
348  * eligible for laundering, form a cluster of these pages and the given page,
349  * and launder that cluster.
350  */
351 static int
352 vm_pageout_cluster(vm_page_t m)
353 {
354         vm_object_t object;
355         vm_page_t mc[2 * vm_pageout_page_count], p, pb, ps;
356         vm_pindex_t pindex;
357         int ib, is, page_base, pageout_count;
358
359         object = m->object;
360         VM_OBJECT_ASSERT_WLOCKED(object);
361         pindex = m->pindex;
362
363         vm_page_assert_xbusied(m);
364
365         mc[vm_pageout_page_count] = pb = ps = m;
366         pageout_count = 1;
367         page_base = vm_pageout_page_count;
368         ib = 1;
369         is = 1;
370
371         /*
372          * We can cluster only if the page is not clean, busy, or held, and
373          * the page is in the laundry queue.
374          *
375          * During heavy mmap/modification loads the pageout
376          * daemon can really fragment the underlying file
377          * due to flushing pages out of order and not trying to
378          * align the clusters (which leaves sporadic out-of-order
379          * holes).  To solve this problem we do the reverse scan
380          * first and attempt to align our cluster, then do a 
381          * forward scan if room remains.
382          */
383 more:
384         while (ib != 0 && pageout_count < vm_pageout_page_count) {
385                 if (ib > pindex) {
386                         ib = 0;
387                         break;
388                 }
389                 if ((p = vm_page_prev(pb)) == NULL ||
390                     vm_page_tryxbusy(p) == 0) {
391                         ib = 0;
392                         break;
393                 }
394                 if (vm_page_wired(p)) {
395                         ib = 0;
396                         vm_page_xunbusy(p);
397                         break;
398                 }
399                 vm_page_test_dirty(p);
400                 if (p->dirty == 0) {
401                         ib = 0;
402                         vm_page_xunbusy(p);
403                         break;
404                 }
405                 if (!vm_page_in_laundry(p) || !vm_page_try_remove_write(p)) {
406                         vm_page_xunbusy(p);
407                         ib = 0;
408                         break;
409                 }
410                 mc[--page_base] = pb = p;
411                 ++pageout_count;
412                 ++ib;
413
414                 /*
415                  * We are at an alignment boundary.  Stop here, and switch
416                  * directions.  Do not clear ib.
417                  */
418                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
419                         break;
420         }
421         while (pageout_count < vm_pageout_page_count && 
422             pindex + is < object->size) {
423                 if ((p = vm_page_next(ps)) == NULL ||
424                     vm_page_tryxbusy(p) == 0)
425                         break;
426                 if (vm_page_wired(p)) {
427                         vm_page_xunbusy(p);
428                         break;
429                 }
430                 vm_page_test_dirty(p);
431                 if (p->dirty == 0) {
432                         vm_page_xunbusy(p);
433                         break;
434                 }
435                 if (!vm_page_in_laundry(p) || !vm_page_try_remove_write(p)) {
436                         vm_page_xunbusy(p);
437                         break;
438                 }
439                 mc[page_base + pageout_count] = ps = p;
440                 ++pageout_count;
441                 ++is;
442         }
443
444         /*
445          * If we exhausted our forward scan, continue with the reverse scan
446          * when possible, even past an alignment boundary.  This catches
447          * boundary conditions.
448          */
449         if (ib != 0 && pageout_count < vm_pageout_page_count)
450                 goto more;
451
452         return (vm_pageout_flush(&mc[page_base], pageout_count,
453             VM_PAGER_PUT_NOREUSE, 0, NULL, NULL));
454 }
455
456 /*
457  * vm_pageout_flush() - launder the given pages
458  *
459  *      The given pages are laundered.  Note that we setup for the start of
460  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
461  *      reference count all in here rather then in the parent.  If we want
462  *      the parent to do more sophisticated things we may have to change
463  *      the ordering.
464  *
465  *      Returned runlen is the count of pages between mreq and first
466  *      page after mreq with status VM_PAGER_AGAIN.
467  *      *eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
468  *      for any page in runlen set.
469  */
470 int
471 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
472     boolean_t *eio)
473 {
474         vm_object_t object = mc[0]->object;
475         int pageout_status[count];
476         int numpagedout = 0;
477         int i, runlen;
478
479         VM_OBJECT_ASSERT_WLOCKED(object);
480
481         /*
482          * Initiate I/O.  Mark the pages shared busy and verify that they're
483          * valid and read-only.
484          *
485          * We do not have to fixup the clean/dirty bits here... we can
486          * allow the pager to do it after the I/O completes.
487          *
488          * NOTE! mc[i]->dirty may be partial or fragmented due to an
489          * edge case with file fragments.
490          */
491         for (i = 0; i < count; i++) {
492                 KASSERT(vm_page_all_valid(mc[i]),
493                     ("vm_pageout_flush: partially invalid page %p index %d/%d",
494                         mc[i], i, count));
495                 KASSERT((mc[i]->a.flags & PGA_WRITEABLE) == 0,
496                     ("vm_pageout_flush: writeable page %p", mc[i]));
497                 vm_page_busy_downgrade(mc[i]);
498         }
499         vm_object_pip_add(object, count);
500
501         vm_pager_put_pages(object, mc, count, flags, pageout_status);
502
503         runlen = count - mreq;
504         if (eio != NULL)
505                 *eio = FALSE;
506         for (i = 0; i < count; i++) {
507                 vm_page_t mt = mc[i];
508
509                 KASSERT(pageout_status[i] == VM_PAGER_PEND ||
510                     !pmap_page_is_write_mapped(mt),
511                     ("vm_pageout_flush: page %p is not write protected", mt));
512                 switch (pageout_status[i]) {
513                 case VM_PAGER_OK:
514                         /*
515                          * The page may have moved since laundering started, in
516                          * which case it should be left alone.
517                          */
518                         if (vm_page_in_laundry(mt))
519                                 vm_page_deactivate_noreuse(mt);
520                         /* FALLTHROUGH */
521                 case VM_PAGER_PEND:
522                         numpagedout++;
523                         break;
524                 case VM_PAGER_BAD:
525                         /*
526                          * The page is outside the object's range.  We pretend
527                          * that the page out worked and clean the page, so the
528                          * changes will be lost if the page is reclaimed by
529                          * the page daemon.
530                          */
531                         vm_page_undirty(mt);
532                         if (vm_page_in_laundry(mt))
533                                 vm_page_deactivate_noreuse(mt);
534                         break;
535                 case VM_PAGER_ERROR:
536                 case VM_PAGER_FAIL:
537                         /*
538                          * If the page couldn't be paged out to swap because the
539                          * pager wasn't able to find space, place the page in
540                          * the PQ_UNSWAPPABLE holding queue.  This is an
541                          * optimization that prevents the page daemon from
542                          * wasting CPU cycles on pages that cannot be reclaimed
543                          * becase no swap device is configured.
544                          *
545                          * Otherwise, reactivate the page so that it doesn't
546                          * clog the laundry and inactive queues.  (We will try
547                          * paging it out again later.)
548                          */
549                         if (object->type == OBJT_SWAP &&
550                             pageout_status[i] == VM_PAGER_FAIL) {
551                                 vm_page_unswappable(mt);
552                                 numpagedout++;
553                         } else
554                                 vm_page_activate(mt);
555                         if (eio != NULL && i >= mreq && i - mreq < runlen)
556                                 *eio = TRUE;
557                         break;
558                 case VM_PAGER_AGAIN:
559                         if (i >= mreq && i - mreq < runlen)
560                                 runlen = i - mreq;
561                         break;
562                 }
563
564                 /*
565                  * If the operation is still going, leave the page busy to
566                  * block all other accesses. Also, leave the paging in
567                  * progress indicator set so that we don't attempt an object
568                  * collapse.
569                  */
570                 if (pageout_status[i] != VM_PAGER_PEND) {
571                         vm_object_pip_wakeup(object);
572                         vm_page_sunbusy(mt);
573                 }
574         }
575         if (prunlen != NULL)
576                 *prunlen = runlen;
577         return (numpagedout);
578 }
579
580 static void
581 vm_pageout_swapon(void *arg __unused, struct swdevt *sp __unused)
582 {
583
584         atomic_store_rel_int(&swapdev_enabled, 1);
585 }
586
587 static void
588 vm_pageout_swapoff(void *arg __unused, struct swdevt *sp __unused)
589 {
590
591         if (swap_pager_nswapdev() == 1)
592                 atomic_store_rel_int(&swapdev_enabled, 0);
593 }
594
595 /*
596  * Attempt to acquire all of the necessary locks to launder a page and
597  * then call through the clustering layer to PUTPAGES.  Wait a short
598  * time for a vnode lock.
599  *
600  * Requires the page and object lock on entry, releases both before return.
601  * Returns 0 on success and an errno otherwise.
602  */
603 static int
604 vm_pageout_clean(vm_page_t m, int *numpagedout)
605 {
606         struct vnode *vp;
607         struct mount *mp;
608         vm_object_t object;
609         vm_pindex_t pindex;
610         int error, lockmode;
611
612         object = m->object;
613         VM_OBJECT_ASSERT_WLOCKED(object);
614         error = 0;
615         vp = NULL;
616         mp = NULL;
617
618         /*
619          * The object is already known NOT to be dead.   It
620          * is possible for the vget() to block the whole
621          * pageout daemon, but the new low-memory handling
622          * code should prevent it.
623          *
624          * We can't wait forever for the vnode lock, we might
625          * deadlock due to a vn_read() getting stuck in
626          * vm_wait while holding this vnode.  We skip the 
627          * vnode if we can't get it in a reasonable amount
628          * of time.
629          */
630         if (object->type == OBJT_VNODE) {
631                 vm_page_xunbusy(m);
632                 vp = object->handle;
633                 if (vp->v_type == VREG &&
634                     vn_start_write(vp, &mp, V_NOWAIT) != 0) {
635                         mp = NULL;
636                         error = EDEADLK;
637                         goto unlock_all;
638                 }
639                 KASSERT(mp != NULL,
640                     ("vp %p with NULL v_mount", vp));
641                 vm_object_reference_locked(object);
642                 pindex = m->pindex;
643                 VM_OBJECT_WUNLOCK(object);
644                 lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
645                     LK_SHARED : LK_EXCLUSIVE;
646                 if (vget(vp, lockmode | LK_TIMELOCK, curthread)) {
647                         vp = NULL;
648                         error = EDEADLK;
649                         goto unlock_mp;
650                 }
651                 VM_OBJECT_WLOCK(object);
652
653                 /*
654                  * Ensure that the object and vnode were not disassociated
655                  * while locks were dropped.
656                  */
657                 if (vp->v_object != object) {
658                         error = ENOENT;
659                         goto unlock_all;
660                 }
661
662                 /*
663                  * While the object was unlocked, the page may have been:
664                  * (1) moved to a different queue,
665                  * (2) reallocated to a different object,
666                  * (3) reallocated to a different offset, or
667                  * (4) cleaned.
668                  */
669                 if (!vm_page_in_laundry(m) || m->object != object ||
670                     m->pindex != pindex || m->dirty == 0) {
671                         error = ENXIO;
672                         goto unlock_all;
673                 }
674
675                 /*
676                  * The page may have been busied while the object lock was
677                  * released.
678                  */
679                 if (vm_page_tryxbusy(m) == 0) {
680                         error = EBUSY;
681                         goto unlock_all;
682                 }
683         }
684
685         /*
686          * Remove all writeable mappings, failing if the page is wired.
687          */
688         if (!vm_page_try_remove_write(m)) {
689                 vm_page_xunbusy(m);
690                 error = EBUSY;
691                 goto unlock_all;
692         }
693
694         /*
695          * If a page is dirty, then it is either being washed
696          * (but not yet cleaned) or it is still in the
697          * laundry.  If it is still in the laundry, then we
698          * start the cleaning operation. 
699          */
700         if ((*numpagedout = vm_pageout_cluster(m)) == 0)
701                 error = EIO;
702
703 unlock_all:
704         VM_OBJECT_WUNLOCK(object);
705
706 unlock_mp:
707         if (mp != NULL) {
708                 if (vp != NULL)
709                         vput(vp);
710                 vm_object_deallocate(object);
711                 vn_finished_write(mp);
712         }
713
714         return (error);
715 }
716
717 /*
718  * Attempt to launder the specified number of pages.
719  *
720  * Returns the number of pages successfully laundered.
721  */
722 static int
723 vm_pageout_launder(struct vm_domain *vmd, int launder, bool in_shortfall)
724 {
725         struct scan_state ss;
726         struct vm_pagequeue *pq;
727         vm_object_t object;
728         vm_page_t m, marker;
729         vm_page_astate_t new, old;
730         int act_delta, error, numpagedout, queue, refs, starting_target;
731         int vnodes_skipped;
732         bool pageout_ok;
733
734         object = NULL;
735         starting_target = launder;
736         vnodes_skipped = 0;
737
738         /*
739          * Scan the laundry queues for pages eligible to be laundered.  We stop
740          * once the target number of dirty pages have been laundered, or once
741          * we've reached the end of the queue.  A single iteration of this loop
742          * may cause more than one page to be laundered because of clustering.
743          *
744          * As an optimization, we avoid laundering from PQ_UNSWAPPABLE when no
745          * swap devices are configured.
746          */
747         if (atomic_load_acq_int(&swapdev_enabled))
748                 queue = PQ_UNSWAPPABLE;
749         else
750                 queue = PQ_LAUNDRY;
751
752 scan:
753         marker = &vmd->vmd_markers[queue];
754         pq = &vmd->vmd_pagequeues[queue];
755         vm_pagequeue_lock(pq);
756         vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
757         while (launder > 0 && (m = vm_pageout_next(&ss, false)) != NULL) {
758                 if (__predict_false((m->flags & PG_MARKER) != 0))
759                         continue;
760
761                 /*
762                  * Don't touch a page that was removed from the queue after the
763                  * page queue lock was released.  Otherwise, ensure that any
764                  * pending queue operations, such as dequeues for wired pages,
765                  * are handled.
766                  */
767                 if (vm_pageout_defer(m, queue, true))
768                         continue;
769
770                 /*
771                  * Lock the page's object.
772                  */
773                 if (object == NULL || object != m->object) {
774                         if (object != NULL)
775                                 VM_OBJECT_WUNLOCK(object);
776                         object = atomic_load_ptr(&m->object);
777                         if (__predict_false(object == NULL))
778                                 /* The page is being freed by another thread. */
779                                 continue;
780
781                         /* Depends on type-stability. */
782                         VM_OBJECT_WLOCK(object);
783                         if (__predict_false(m->object != object)) {
784                                 VM_OBJECT_WUNLOCK(object);
785                                 object = NULL;
786                                 continue;
787                         }
788                 }
789
790                 if (vm_page_tryxbusy(m) == 0)
791                         continue;
792
793                 /*
794                  * Check for wirings now that we hold the object lock and have
795                  * exclusively busied the page.  If the page is mapped, it may
796                  * still be wired by pmap lookups.  The call to
797                  * vm_page_try_remove_all() below atomically checks for such
798                  * wirings and removes mappings.  If the page is unmapped, the
799                  * wire count is guaranteed not to increase after this check.
800                  */
801                 if (__predict_false(vm_page_wired(m)))
802                         goto skip_page;
803
804                 /*
805                  * Invalid pages can be easily freed.  They cannot be
806                  * mapped; vm_page_free() asserts this.
807                  */
808                 if (vm_page_none_valid(m))
809                         goto free_page;
810
811                 refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0;
812
813                 for (old = vm_page_astate_load(m);;) {
814                         /*
815                          * Check to see if the page has been removed from the
816                          * queue since the first such check.  Leave it alone if
817                          * so, discarding any references collected by
818                          * pmap_ts_referenced().
819                          */
820                         if (__predict_false(_vm_page_queue(old) == PQ_NONE))
821                                 goto skip_page;
822
823                         new = old;
824                         act_delta = refs;
825                         if ((old.flags & PGA_REFERENCED) != 0) {
826                                 new.flags &= ~PGA_REFERENCED;
827                                 act_delta++;
828                         }
829                         if (act_delta == 0) {
830                                 ;
831                         } else if (object->ref_count != 0) {
832                                 /*
833                                  * Increase the activation count if the page was
834                                  * referenced while in the laundry queue.  This
835                                  * makes it less likely that the page will be
836                                  * returned prematurely to the laundry queue.
837                                  */
838                                 new.act_count += ACT_ADVANCE +
839                                     act_delta;
840                                 if (new.act_count > ACT_MAX)
841                                         new.act_count = ACT_MAX;
842
843                                 new.flags &= ~PGA_QUEUE_OP_MASK;
844                                 new.flags |= PGA_REQUEUE;
845                                 new.queue = PQ_ACTIVE;
846                                 if (!vm_page_pqstate_commit(m, &old, new))
847                                         continue;
848
849                                 /*
850                                  * If this was a background laundering, count
851                                  * activated pages towards our target.  The
852                                  * purpose of background laundering is to ensure
853                                  * that pages are eventually cycled through the
854                                  * laundry queue, and an activation is a valid
855                                  * way out.
856                                  */
857                                 if (!in_shortfall)
858                                         launder--;
859                                 VM_CNT_INC(v_reactivated);
860                                 goto skip_page;
861                         } else if ((object->flags & OBJ_DEAD) == 0) {
862                                 new.flags |= PGA_REQUEUE;
863                                 if (!vm_page_pqstate_commit(m, &old, new))
864                                         continue;
865                                 goto skip_page;
866                         }
867                         break;
868                 }
869
870                 /*
871                  * If the page appears to be clean at the machine-independent
872                  * layer, then remove all of its mappings from the pmap in
873                  * anticipation of freeing it.  If, however, any of the page's
874                  * mappings allow write access, then the page may still be
875                  * modified until the last of those mappings are removed.
876                  */
877                 if (object->ref_count != 0) {
878                         vm_page_test_dirty(m);
879                         if (m->dirty == 0 && !vm_page_try_remove_all(m))
880                                 goto skip_page;
881                 }
882
883                 /*
884                  * Clean pages are freed, and dirty pages are paged out unless
885                  * they belong to a dead object.  Requeueing dirty pages from
886                  * dead objects is pointless, as they are being paged out and
887                  * freed by the thread that destroyed the object.
888                  */
889                 if (m->dirty == 0) {
890 free_page:
891                         /*
892                          * Now we are guaranteed that no other threads are
893                          * manipulating the page, check for a last-second
894                          * reference.
895                          */
896                         if (vm_pageout_defer(m, queue, true))
897                                 goto skip_page;
898                         vm_page_free(m);
899                         VM_CNT_INC(v_dfree);
900                 } else if ((object->flags & OBJ_DEAD) == 0) {
901                         if (object->type != OBJT_SWAP &&
902                             object->type != OBJT_DEFAULT)
903                                 pageout_ok = true;
904                         else if (disable_swap_pageouts)
905                                 pageout_ok = false;
906                         else
907                                 pageout_ok = true;
908                         if (!pageout_ok) {
909                                 vm_page_launder(m);
910                                 goto skip_page;
911                         }
912
913                         /*
914                          * Form a cluster with adjacent, dirty pages from the
915                          * same object, and page out that entire cluster.
916                          *
917                          * The adjacent, dirty pages must also be in the
918                          * laundry.  However, their mappings are not checked
919                          * for new references.  Consequently, a recently
920                          * referenced page may be paged out.  However, that
921                          * page will not be prematurely reclaimed.  After page
922                          * out, the page will be placed in the inactive queue,
923                          * where any new references will be detected and the
924                          * page reactivated.
925                          */
926                         error = vm_pageout_clean(m, &numpagedout);
927                         if (error == 0) {
928                                 launder -= numpagedout;
929                                 ss.scanned += numpagedout;
930                         } else if (error == EDEADLK) {
931                                 pageout_lock_miss++;
932                                 vnodes_skipped++;
933                         }
934                         object = NULL;
935                 } else {
936 skip_page:
937                         vm_page_xunbusy(m);
938                 }
939         }
940         if (object != NULL) {
941                 VM_OBJECT_WUNLOCK(object);
942                 object = NULL;
943         }
944         vm_pagequeue_lock(pq);
945         vm_pageout_end_scan(&ss);
946         vm_pagequeue_unlock(pq);
947
948         if (launder > 0 && queue == PQ_UNSWAPPABLE) {
949                 queue = PQ_LAUNDRY;
950                 goto scan;
951         }
952
953         /*
954          * Wakeup the sync daemon if we skipped a vnode in a writeable object
955          * and we didn't launder enough pages.
956          */
957         if (vnodes_skipped > 0 && launder > 0)
958                 (void)speedup_syncer();
959
960         return (starting_target - launder);
961 }
962
963 /*
964  * Compute the integer square root.
965  */
966 static u_int
967 isqrt(u_int num)
968 {
969         u_int bit, root, tmp;
970
971         bit = num != 0 ? (1u << ((fls(num) - 1) & ~1)) : 0;
972         root = 0;
973         while (bit != 0) {
974                 tmp = root + bit;
975                 root >>= 1;
976                 if (num >= tmp) {
977                         num -= tmp;
978                         root += bit;
979                 }
980                 bit >>= 2;
981         }
982         return (root);
983 }
984
985 /*
986  * Perform the work of the laundry thread: periodically wake up and determine
987  * whether any pages need to be laundered.  If so, determine the number of pages
988  * that need to be laundered, and launder them.
989  */
990 static void
991 vm_pageout_laundry_worker(void *arg)
992 {
993         struct vm_domain *vmd;
994         struct vm_pagequeue *pq;
995         uint64_t nclean, ndirty, nfreed;
996         int domain, last_target, launder, shortfall, shortfall_cycle, target;
997         bool in_shortfall;
998
999         domain = (uintptr_t)arg;
1000         vmd = VM_DOMAIN(domain);
1001         pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
1002         KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
1003
1004         shortfall = 0;
1005         in_shortfall = false;
1006         shortfall_cycle = 0;
1007         last_target = target = 0;
1008         nfreed = 0;
1009
1010         /*
1011          * Calls to these handlers are serialized by the swap syscall lock.
1012          */
1013         (void)EVENTHANDLER_REGISTER(swapon, vm_pageout_swapon, vmd,
1014             EVENTHANDLER_PRI_ANY);
1015         (void)EVENTHANDLER_REGISTER(swapoff, vm_pageout_swapoff, vmd,
1016             EVENTHANDLER_PRI_ANY);
1017
1018         /*
1019          * The pageout laundry worker is never done, so loop forever.
1020          */
1021         for (;;) {
1022                 KASSERT(target >= 0, ("negative target %d", target));
1023                 KASSERT(shortfall_cycle >= 0,
1024                     ("negative cycle %d", shortfall_cycle));
1025                 launder = 0;
1026
1027                 /*
1028                  * First determine whether we need to launder pages to meet a
1029                  * shortage of free pages.
1030                  */
1031                 if (shortfall > 0) {
1032                         in_shortfall = true;
1033                         shortfall_cycle = VM_LAUNDER_RATE / VM_INACT_SCAN_RATE;
1034                         target = shortfall;
1035                 } else if (!in_shortfall)
1036                         goto trybackground;
1037                 else if (shortfall_cycle == 0 || vm_laundry_target(vmd) <= 0) {
1038                         /*
1039                          * We recently entered shortfall and began laundering
1040                          * pages.  If we have completed that laundering run
1041                          * (and we are no longer in shortfall) or we have met
1042                          * our laundry target through other activity, then we
1043                          * can stop laundering pages.
1044                          */
1045                         in_shortfall = false;
1046                         target = 0;
1047                         goto trybackground;
1048                 }
1049                 launder = target / shortfall_cycle--;
1050                 goto dolaundry;
1051
1052                 /*
1053                  * There's no immediate need to launder any pages; see if we
1054                  * meet the conditions to perform background laundering:
1055                  *
1056                  * 1. The ratio of dirty to clean inactive pages exceeds the
1057                  *    background laundering threshold, or
1058                  * 2. we haven't yet reached the target of the current
1059                  *    background laundering run.
1060                  *
1061                  * The background laundering threshold is not a constant.
1062                  * Instead, it is a slowly growing function of the number of
1063                  * clean pages freed by the page daemon since the last
1064                  * background laundering.  Thus, as the ratio of dirty to
1065                  * clean inactive pages grows, the amount of memory pressure
1066                  * required to trigger laundering decreases.  We ensure
1067                  * that the threshold is non-zero after an inactive queue
1068                  * scan, even if that scan failed to free a single clean page.
1069                  */
1070 trybackground:
1071                 nclean = vmd->vmd_free_count +
1072                     vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt;
1073                 ndirty = vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt;
1074                 if (target == 0 && ndirty * isqrt(howmany(nfreed + 1,
1075                     vmd->vmd_free_target - vmd->vmd_free_min)) >= nclean) {
1076                         target = vmd->vmd_background_launder_target;
1077                 }
1078
1079                 /*
1080                  * We have a non-zero background laundering target.  If we've
1081                  * laundered up to our maximum without observing a page daemon
1082                  * request, just stop.  This is a safety belt that ensures we
1083                  * don't launder an excessive amount if memory pressure is low
1084                  * and the ratio of dirty to clean pages is large.  Otherwise,
1085                  * proceed at the background laundering rate.
1086                  */
1087                 if (target > 0) {
1088                         if (nfreed > 0) {
1089                                 nfreed = 0;
1090                                 last_target = target;
1091                         } else if (last_target - target >=
1092                             vm_background_launder_max * PAGE_SIZE / 1024) {
1093                                 target = 0;
1094                         }
1095                         launder = vm_background_launder_rate * PAGE_SIZE / 1024;
1096                         launder /= VM_LAUNDER_RATE;
1097                         if (launder > target)
1098                                 launder = target;
1099                 }
1100
1101 dolaundry:
1102                 if (launder > 0) {
1103                         /*
1104                          * Because of I/O clustering, the number of laundered
1105                          * pages could exceed "target" by the maximum size of
1106                          * a cluster minus one. 
1107                          */
1108                         target -= min(vm_pageout_launder(vmd, launder,
1109                             in_shortfall), target);
1110                         pause("laundp", hz / VM_LAUNDER_RATE);
1111                 }
1112
1113                 /*
1114                  * If we're not currently laundering pages and the page daemon
1115                  * hasn't posted a new request, sleep until the page daemon
1116                  * kicks us.
1117                  */
1118                 vm_pagequeue_lock(pq);
1119                 if (target == 0 && vmd->vmd_laundry_request == VM_LAUNDRY_IDLE)
1120                         (void)mtx_sleep(&vmd->vmd_laundry_request,
1121                             vm_pagequeue_lockptr(pq), PVM, "launds", 0);
1122
1123                 /*
1124                  * If the pagedaemon has indicated that it's in shortfall, start
1125                  * a shortfall laundering unless we're already in the middle of
1126                  * one.  This may preempt a background laundering.
1127                  */
1128                 if (vmd->vmd_laundry_request == VM_LAUNDRY_SHORTFALL &&
1129                     (!in_shortfall || shortfall_cycle == 0)) {
1130                         shortfall = vm_laundry_target(vmd) +
1131                             vmd->vmd_pageout_deficit;
1132                         target = 0;
1133                 } else
1134                         shortfall = 0;
1135
1136                 if (target == 0)
1137                         vmd->vmd_laundry_request = VM_LAUNDRY_IDLE;
1138                 nfreed += vmd->vmd_clean_pages_freed;
1139                 vmd->vmd_clean_pages_freed = 0;
1140                 vm_pagequeue_unlock(pq);
1141         }
1142 }
1143
1144 /*
1145  * Compute the number of pages we want to try to move from the
1146  * active queue to either the inactive or laundry queue.
1147  *
1148  * When scanning active pages during a shortage, we make clean pages
1149  * count more heavily towards the page shortage than dirty pages.
1150  * This is because dirty pages must be laundered before they can be
1151  * reused and thus have less utility when attempting to quickly
1152  * alleviate a free page shortage.  However, this weighting also
1153  * causes the scan to deactivate dirty pages more aggressively,
1154  * improving the effectiveness of clustering.
1155  */
1156 static int
1157 vm_pageout_active_target(struct vm_domain *vmd)
1158 {
1159         int shortage;
1160
1161         shortage = vmd->vmd_inactive_target + vm_paging_target(vmd) -
1162             (vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt +
1163             vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt / act_scan_laundry_weight);
1164         shortage *= act_scan_laundry_weight;
1165         return (shortage);
1166 }
1167
1168 /*
1169  * Scan the active queue.  If there is no shortage of inactive pages, scan a
1170  * small portion of the queue in order to maintain quasi-LRU.
1171  */
1172 static void
1173 vm_pageout_scan_active(struct vm_domain *vmd, int page_shortage)
1174 {
1175         struct scan_state ss;
1176         vm_object_t object;
1177         vm_page_t m, marker;
1178         struct vm_pagequeue *pq;
1179         vm_page_astate_t old, new;
1180         long min_scan;
1181         int act_delta, max_scan, ps_delta, refs, scan_tick;
1182         uint8_t nqueue;
1183
1184         marker = &vmd->vmd_markers[PQ_ACTIVE];
1185         pq = &vmd->vmd_pagequeues[PQ_ACTIVE];
1186         vm_pagequeue_lock(pq);
1187
1188         /*
1189          * If we're just idle polling attempt to visit every
1190          * active page within 'update_period' seconds.
1191          */
1192         scan_tick = ticks;
1193         if (vm_pageout_update_period != 0) {
1194                 min_scan = pq->pq_cnt;
1195                 min_scan *= scan_tick - vmd->vmd_last_active_scan;
1196                 min_scan /= hz * vm_pageout_update_period;
1197         } else
1198                 min_scan = 0;
1199         if (min_scan > 0 || (page_shortage > 0 && pq->pq_cnt > 0))
1200                 vmd->vmd_last_active_scan = scan_tick;
1201
1202         /*
1203          * Scan the active queue for pages that can be deactivated.  Update
1204          * the per-page activity counter and use it to identify deactivation
1205          * candidates.  Held pages may be deactivated.
1206          *
1207          * To avoid requeuing each page that remains in the active queue, we
1208          * implement the CLOCK algorithm.  To keep the implementation of the
1209          * enqueue operation consistent for all page queues, we use two hands,
1210          * represented by marker pages. Scans begin at the first hand, which
1211          * precedes the second hand in the queue.  When the two hands meet,
1212          * they are moved back to the head and tail of the queue, respectively,
1213          * and scanning resumes.
1214          */
1215         max_scan = page_shortage > 0 ? pq->pq_cnt : min_scan;
1216 act_scan:
1217         vm_pageout_init_scan(&ss, pq, marker, &vmd->vmd_clock[0], max_scan);
1218         while ((m = vm_pageout_next(&ss, false)) != NULL) {
1219                 if (__predict_false(m == &vmd->vmd_clock[1])) {
1220                         vm_pagequeue_lock(pq);
1221                         TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
1222                         TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[1], plinks.q);
1223                         TAILQ_INSERT_HEAD(&pq->pq_pl, &vmd->vmd_clock[0],
1224                             plinks.q);
1225                         TAILQ_INSERT_TAIL(&pq->pq_pl, &vmd->vmd_clock[1],
1226                             plinks.q);
1227                         max_scan -= ss.scanned;
1228                         vm_pageout_end_scan(&ss);
1229                         goto act_scan;
1230                 }
1231                 if (__predict_false((m->flags & PG_MARKER) != 0))
1232                         continue;
1233
1234                 /*
1235                  * Don't touch a page that was removed from the queue after the
1236                  * page queue lock was released.  Otherwise, ensure that any
1237                  * pending queue operations, such as dequeues for wired pages,
1238                  * are handled.
1239                  */
1240                 if (vm_pageout_defer(m, PQ_ACTIVE, true))
1241                         continue;
1242
1243                 /*
1244                  * A page's object pointer may be set to NULL before
1245                  * the object lock is acquired.
1246                  */
1247                 object = atomic_load_ptr(&m->object);
1248                 if (__predict_false(object == NULL))
1249                         /*
1250                          * The page has been removed from its object.
1251                          */
1252                         continue;
1253
1254                 /* Deferred free of swap space. */
1255                 if ((m->a.flags & PGA_SWAP_FREE) != 0 &&
1256                     VM_OBJECT_TRYWLOCK(object)) {
1257                         if (m->object == object)
1258                                 vm_pager_page_unswapped(m);
1259                         VM_OBJECT_WUNLOCK(object);
1260                 }
1261
1262                 /*
1263                  * Check to see "how much" the page has been used.
1264                  *
1265                  * Test PGA_REFERENCED after calling pmap_ts_referenced() so
1266                  * that a reference from a concurrently destroyed mapping is
1267                  * observed here and now.
1268                  *
1269                  * Perform an unsynchronized object ref count check.  While
1270                  * the page lock ensures that the page is not reallocated to
1271                  * another object, in particular, one with unmanaged mappings
1272                  * that cannot support pmap_ts_referenced(), two races are,
1273                  * nonetheless, possible:
1274                  * 1) The count was transitioning to zero, but we saw a non-
1275                  *    zero value.  pmap_ts_referenced() will return zero
1276                  *    because the page is not mapped.
1277                  * 2) The count was transitioning to one, but we saw zero.
1278                  *    This race delays the detection of a new reference.  At
1279                  *    worst, we will deactivate and reactivate the page.
1280                  */
1281                 refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0;
1282
1283                 old = vm_page_astate_load(m);
1284                 do {
1285                         /*
1286                          * Check to see if the page has been removed from the
1287                          * queue since the first such check.  Leave it alone if
1288                          * so, discarding any references collected by
1289                          * pmap_ts_referenced().
1290                          */
1291                         if (__predict_false(_vm_page_queue(old) == PQ_NONE))
1292                                 break;
1293
1294                         /*
1295                          * Advance or decay the act_count based on recent usage.
1296                          */
1297                         new = old;
1298                         act_delta = refs;
1299                         if ((old.flags & PGA_REFERENCED) != 0) {
1300                                 new.flags &= ~PGA_REFERENCED;
1301                                 act_delta++;
1302                         }
1303                         if (act_delta != 0) {
1304                                 new.act_count += ACT_ADVANCE + act_delta;
1305                                 if (new.act_count > ACT_MAX)
1306                                         new.act_count = ACT_MAX;
1307                         } else {
1308                                 new.act_count -= min(new.act_count,
1309                                     ACT_DECLINE);
1310                         }
1311
1312                         if (new.act_count > 0) {
1313                                 /*
1314                                  * Adjust the activation count and keep the page
1315                                  * in the active queue.  The count might be left
1316                                  * unchanged if it is saturated.  The page may
1317                                  * have been moved to a different queue since we
1318                                  * started the scan, in which case we move it
1319                                  * back.
1320                                  */
1321                                 ps_delta = 0;
1322                                 if (old.queue != PQ_ACTIVE) {
1323                                         new.flags &= ~PGA_QUEUE_OP_MASK;
1324                                         new.flags |= PGA_REQUEUE;
1325                                         new.queue = PQ_ACTIVE;
1326                                 }
1327                         } else {
1328                                 /*
1329                                  * When not short for inactive pages, let dirty
1330                                  * pages go through the inactive queue before
1331                                  * moving to the laundry queue.  This gives them
1332                                  * some extra time to be reactivated,
1333                                  * potentially avoiding an expensive pageout.
1334                                  * However, during a page shortage, the inactive
1335                                  * queue is necessarily small, and so dirty
1336                                  * pages would only spend a trivial amount of
1337                                  * time in the inactive queue.  Therefore, we
1338                                  * might as well place them directly in the
1339                                  * laundry queue to reduce queuing overhead.
1340                                  *
1341                                  * Calling vm_page_test_dirty() here would
1342                                  * require acquisition of the object's write
1343                                  * lock.  However, during a page shortage,
1344                                  * directing dirty pages into the laundry queue
1345                                  * is only an optimization and not a
1346                                  * requirement.  Therefore, we simply rely on
1347                                  * the opportunistic updates to the page's dirty
1348                                  * field by the pmap.
1349                                  */
1350                                 if (page_shortage <= 0) {
1351                                         nqueue = PQ_INACTIVE;
1352                                         ps_delta = 0;
1353                                 } else if (m->dirty == 0) {
1354                                         nqueue = PQ_INACTIVE;
1355                                         ps_delta = act_scan_laundry_weight;
1356                                 } else {
1357                                         nqueue = PQ_LAUNDRY;
1358                                         ps_delta = 1;
1359                                 }
1360
1361                                 new.flags &= ~PGA_QUEUE_OP_MASK;
1362                                 new.flags |= PGA_REQUEUE;
1363                                 new.queue = nqueue;
1364                         }
1365                 } while (!vm_page_pqstate_commit(m, &old, new));
1366
1367                 page_shortage -= ps_delta;
1368         }
1369         vm_pagequeue_lock(pq);
1370         TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
1371         TAILQ_INSERT_AFTER(&pq->pq_pl, marker, &vmd->vmd_clock[0], plinks.q);
1372         vm_pageout_end_scan(&ss);
1373         vm_pagequeue_unlock(pq);
1374 }
1375
1376 static int
1377 vm_pageout_reinsert_inactive_page(struct vm_pagequeue *pq, vm_page_t marker,
1378     vm_page_t m)
1379 {
1380         vm_page_astate_t as;
1381
1382         vm_pagequeue_assert_locked(pq);
1383
1384         as = vm_page_astate_load(m);
1385         if (as.queue != PQ_INACTIVE || (as.flags & PGA_ENQUEUED) != 0)
1386                 return (0);
1387         vm_page_aflag_set(m, PGA_ENQUEUED);
1388         TAILQ_INSERT_BEFORE(marker, m, plinks.q);
1389         return (1);
1390 }
1391
1392 /*
1393  * Re-add stuck pages to the inactive queue.  We will examine them again
1394  * during the next scan.  If the queue state of a page has changed since
1395  * it was physically removed from the page queue in
1396  * vm_pageout_collect_batch(), don't do anything with that page.
1397  */
1398 static void
1399 vm_pageout_reinsert_inactive(struct scan_state *ss, struct vm_batchqueue *bq,
1400     vm_page_t m)
1401 {
1402         struct vm_pagequeue *pq;
1403         vm_page_t marker;
1404         int delta;
1405
1406         delta = 0;
1407         marker = ss->marker;
1408         pq = ss->pq;
1409
1410         if (m != NULL) {
1411                 if (vm_batchqueue_insert(bq, m))
1412                         return;
1413                 vm_pagequeue_lock(pq);
1414                 delta += vm_pageout_reinsert_inactive_page(pq, marker, m);
1415         } else
1416                 vm_pagequeue_lock(pq);
1417         while ((m = vm_batchqueue_pop(bq)) != NULL)
1418                 delta += vm_pageout_reinsert_inactive_page(pq, marker, m);
1419         vm_pagequeue_cnt_add(pq, delta);
1420         vm_pagequeue_unlock(pq);
1421         vm_batchqueue_init(bq);
1422 }
1423
1424 static void
1425 vm_pageout_scan_inactive(struct vm_domain *vmd, int page_shortage)
1426 {
1427         struct timeval start, end;
1428         struct scan_state ss;
1429         struct vm_batchqueue rq;
1430         struct vm_page marker_page;
1431         vm_page_t m, marker;
1432         struct vm_pagequeue *pq;
1433         vm_object_t object;
1434         vm_page_astate_t old, new;
1435         int act_delta, addl_page_shortage, starting_page_shortage, refs;
1436
1437         object = NULL;
1438         vm_batchqueue_init(&rq);
1439         getmicrouptime(&start);
1440
1441         /*
1442          * The addl_page_shortage is an estimate of the number of temporarily
1443          * stuck pages in the inactive queue.  In other words, the
1444          * number of pages from the inactive count that should be
1445          * discounted in setting the target for the active queue scan.
1446          */
1447         addl_page_shortage = 0;
1448
1449         /*
1450          * Start scanning the inactive queue for pages that we can free.  The
1451          * scan will stop when we reach the target or we have scanned the
1452          * entire queue.  (Note that m->a.act_count is not used to make
1453          * decisions for the inactive queue, only for the active queue.)
1454          */
1455         starting_page_shortage = page_shortage;
1456         marker = &marker_page;
1457         vm_page_init_marker(marker, PQ_INACTIVE, 0);
1458         pq = &vmd->vmd_pagequeues[PQ_INACTIVE];
1459         vm_pagequeue_lock(pq);
1460         vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
1461         while (page_shortage > 0 && (m = vm_pageout_next(&ss, true)) != NULL) {
1462                 KASSERT((m->flags & PG_MARKER) == 0,
1463                     ("marker page %p was dequeued", m));
1464
1465                 /*
1466                  * Don't touch a page that was removed from the queue after the
1467                  * page queue lock was released.  Otherwise, ensure that any
1468                  * pending queue operations, such as dequeues for wired pages,
1469                  * are handled.
1470                  */
1471                 if (vm_pageout_defer(m, PQ_INACTIVE, false))
1472                         continue;
1473
1474                 /*
1475                  * Lock the page's object.
1476                  */
1477                 if (object == NULL || object != m->object) {
1478                         if (object != NULL)
1479                                 VM_OBJECT_WUNLOCK(object);
1480                         object = atomic_load_ptr(&m->object);
1481                         if (__predict_false(object == NULL))
1482                                 /* The page is being freed by another thread. */
1483                                 continue;
1484
1485                         /* Depends on type-stability. */
1486                         VM_OBJECT_WLOCK(object);
1487                         if (__predict_false(m->object != object)) {
1488                                 VM_OBJECT_WUNLOCK(object);
1489                                 object = NULL;
1490                                 goto reinsert;
1491                         }
1492                 }
1493
1494                 if (vm_page_tryxbusy(m) == 0) {
1495                         /*
1496                          * Don't mess with busy pages.  Leave them at
1497                          * the front of the queue.  Most likely, they
1498                          * are being paged out and will leave the
1499                          * queue shortly after the scan finishes.  So,
1500                          * they ought to be discounted from the
1501                          * inactive count.
1502                          */
1503                         addl_page_shortage++;
1504                         goto reinsert;
1505                 }
1506
1507                 /* Deferred free of swap space. */
1508                 if ((m->a.flags & PGA_SWAP_FREE) != 0)
1509                         vm_pager_page_unswapped(m);
1510
1511                 /*
1512                  * Check for wirings now that we hold the object lock and have
1513                  * exclusively busied the page.  If the page is mapped, it may
1514                  * still be wired by pmap lookups.  The call to
1515                  * vm_page_try_remove_all() below atomically checks for such
1516                  * wirings and removes mappings.  If the page is unmapped, the
1517                  * wire count is guaranteed not to increase after this check.
1518                  */
1519                 if (__predict_false(vm_page_wired(m)))
1520                         goto skip_page;
1521
1522                 /*
1523                  * Invalid pages can be easily freed. They cannot be
1524                  * mapped, vm_page_free() asserts this.
1525                  */
1526                 if (vm_page_none_valid(m))
1527                         goto free_page;
1528
1529                 refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0;
1530
1531                 for (old = vm_page_astate_load(m);;) {
1532                         /*
1533                          * Check to see if the page has been removed from the
1534                          * queue since the first such check.  Leave it alone if
1535                          * so, discarding any references collected by
1536                          * pmap_ts_referenced().
1537                          */
1538                         if (__predict_false(_vm_page_queue(old) == PQ_NONE))
1539                                 goto skip_page;
1540
1541                         new = old;
1542                         act_delta = refs;
1543                         if ((old.flags & PGA_REFERENCED) != 0) {
1544                                 new.flags &= ~PGA_REFERENCED;
1545                                 act_delta++;
1546                         }
1547                         if (act_delta == 0) {
1548                                 ;
1549                         } else if (object->ref_count != 0) {
1550                                 /*
1551                                  * Increase the activation count if the
1552                                  * page was referenced while in the
1553                                  * inactive queue.  This makes it less
1554                                  * likely that the page will be returned
1555                                  * prematurely to the inactive queue.
1556                                  */
1557                                 new.act_count += ACT_ADVANCE +
1558                                     act_delta;
1559                                 if (new.act_count > ACT_MAX)
1560                                         new.act_count = ACT_MAX;
1561
1562                                 new.flags &= ~PGA_QUEUE_OP_MASK;
1563                                 new.flags |= PGA_REQUEUE;
1564                                 new.queue = PQ_ACTIVE;
1565                                 if (!vm_page_pqstate_commit(m, &old, new))
1566                                         continue;
1567
1568                                 VM_CNT_INC(v_reactivated);
1569                                 goto skip_page;
1570                         } else if ((object->flags & OBJ_DEAD) == 0) {
1571                                 new.queue = PQ_INACTIVE;
1572                                 new.flags |= PGA_REQUEUE;
1573                                 if (!vm_page_pqstate_commit(m, &old, new))
1574                                         continue;
1575                                 goto skip_page;
1576                         }
1577                         break;
1578                 }
1579
1580                 /*
1581                  * If the page appears to be clean at the machine-independent
1582                  * layer, then remove all of its mappings from the pmap in
1583                  * anticipation of freeing it.  If, however, any of the page's
1584                  * mappings allow write access, then the page may still be
1585                  * modified until the last of those mappings are removed.
1586                  */
1587                 if (object->ref_count != 0) {
1588                         vm_page_test_dirty(m);
1589                         if (m->dirty == 0 && !vm_page_try_remove_all(m))
1590                                 goto skip_page;
1591                 }
1592
1593                 /*
1594                  * Clean pages can be freed, but dirty pages must be sent back
1595                  * to the laundry, unless they belong to a dead object.
1596                  * Requeueing dirty pages from dead objects is pointless, as
1597                  * they are being paged out and freed by the thread that
1598                  * destroyed the object.
1599                  */
1600                 if (m->dirty == 0) {
1601 free_page:
1602                         /*
1603                          * Now we are guaranteed that no other threads are
1604                          * manipulating the page, check for a last-second
1605                          * reference that would save it from doom.
1606                          */
1607                         if (vm_pageout_defer(m, PQ_INACTIVE, false))
1608                                 goto skip_page;
1609
1610                         /*
1611                          * Because we dequeued the page and have already checked
1612                          * for pending dequeue and enqueue requests, we can
1613                          * safely disassociate the page from the inactive queue
1614                          * without holding the queue lock.
1615                          */
1616                         m->a.queue = PQ_NONE;
1617                         vm_page_free(m);
1618                         page_shortage--;
1619                         continue;
1620                 }
1621                 if ((object->flags & OBJ_DEAD) == 0)
1622                         vm_page_launder(m);
1623 skip_page:
1624                 vm_page_xunbusy(m);
1625                 continue;
1626 reinsert:
1627                 vm_pageout_reinsert_inactive(&ss, &rq, m);
1628         }
1629         if (object != NULL)
1630                 VM_OBJECT_WUNLOCK(object);
1631         vm_pageout_reinsert_inactive(&ss, &rq, NULL);
1632         vm_pageout_reinsert_inactive(&ss, &ss.bq, NULL);
1633         vm_pagequeue_lock(pq);
1634         vm_pageout_end_scan(&ss);
1635         vm_pagequeue_unlock(pq);
1636
1637         /*
1638          * Record the remaining shortage and the progress and rate it was made.
1639          */
1640         atomic_add_int(&vmd->vmd_addl_shortage, addl_page_shortage);
1641         getmicrouptime(&end);
1642         timevalsub(&end, &start);
1643         atomic_add_int(&vmd->vmd_inactive_us,
1644             end.tv_sec * 1000000 + end.tv_usec);
1645         atomic_add_int(&vmd->vmd_inactive_freed,
1646             starting_page_shortage - page_shortage);
1647 }
1648
1649 /*
1650  * Dispatch a number of inactive threads according to load and collect the
1651  * results to prevent a coherent (CEM: incoherent?) view of paging activity on
1652  * this domain.
1653  */
1654 static int
1655 vm_pageout_inactive_dispatch(struct vm_domain *vmd, int shortage)
1656 {
1657         u_int freed, pps, threads, us;
1658
1659         vmd->vmd_inactive_shortage = shortage;
1660
1661         /*
1662          * If we have more work than we can do in a quarter of our interval, we
1663          * fire off multiple threads to process it.
1664          */
1665         if (vmd->vmd_inactive_threads > 1 && vmd->vmd_inactive_pps != 0 &&
1666             shortage > vmd->vmd_inactive_pps / VM_INACT_SCAN_RATE / 4) {
1667                 threads = vmd->vmd_inactive_threads;
1668                 vm_domain_pageout_lock(vmd);
1669                 vmd->vmd_inactive_shortage /= threads;
1670                 blockcount_acquire(&vmd->vmd_inactive_starting, threads - 1);
1671                 blockcount_acquire(&vmd->vmd_inactive_running, threads - 1);
1672                 wakeup(&vmd->vmd_inactive_shortage);
1673                 vm_domain_pageout_unlock(vmd);
1674         }
1675
1676         /* Run the local thread scan. */
1677         vm_pageout_scan_inactive(vmd, vmd->vmd_inactive_shortage);
1678
1679         /*
1680          * Block until helper threads report results and then accumulate
1681          * totals.
1682          */
1683         blockcount_wait(&vmd->vmd_inactive_running, NULL, "vmpoid", PVM);
1684         freed = atomic_readandclear_int(&vmd->vmd_inactive_freed);
1685         VM_CNT_ADD(v_dfree, freed);
1686
1687         /*
1688          * Calculate the per-thread paging rate with an exponential decay of
1689          * prior results.  Careful to avoid integer rounding errors with large
1690          * us values.
1691          */
1692         us = max(atomic_readandclear_int(&vmd->vmd_inactive_us), 1);
1693         if (us > 1000000)
1694                 /* Keep rounding to tenths */
1695                 pps = (freed * 10) / ((us * 10) / 1000000);
1696         else
1697                 pps = (1000000 / us) * freed;
1698         vmd->vmd_inactive_pps = (vmd->vmd_inactive_pps / 2) + (pps / 2);
1699
1700         return (shortage - freed);
1701 }
1702
1703 /*
1704  * Attempt to reclaim the requested number of pages from the inactive queue.
1705  * Returns true if the shortage was addressed.
1706  */
1707 static int
1708 vm_pageout_inactive(struct vm_domain *vmd, int shortage, int *addl_shortage)
1709 {
1710         struct vm_pagequeue *pq;
1711         u_int addl_page_shortage, deficit, page_shortage;
1712         u_int starting_page_shortage;
1713
1714         /*
1715          * vmd_pageout_deficit counts the number of pages requested in
1716          * allocations that failed because of a free page shortage.  We assume
1717          * that the allocations will be reattempted and thus include the deficit
1718          * in our scan target.
1719          */
1720         deficit = atomic_readandclear_int(&vmd->vmd_pageout_deficit);
1721         starting_page_shortage = shortage + deficit;
1722
1723         /*
1724          * Run the inactive scan on as many threads as is necessary.
1725          */
1726         page_shortage = vm_pageout_inactive_dispatch(vmd, starting_page_shortage);
1727         addl_page_shortage = atomic_readandclear_int(&vmd->vmd_addl_shortage);
1728
1729         /*
1730          * Wake up the laundry thread so that it can perform any needed
1731          * laundering.  If we didn't meet our target, we're in shortfall and
1732          * need to launder more aggressively.  If PQ_LAUNDRY is empty and no
1733          * swap devices are configured, the laundry thread has no work to do, so
1734          * don't bother waking it up.
1735          *
1736          * The laundry thread uses the number of inactive queue scans elapsed
1737          * since the last laundering to determine whether to launder again, so
1738          * keep count.
1739          */
1740         if (starting_page_shortage > 0) {
1741                 pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
1742                 vm_pagequeue_lock(pq);
1743                 if (vmd->vmd_laundry_request == VM_LAUNDRY_IDLE &&
1744                     (pq->pq_cnt > 0 || atomic_load_acq_int(&swapdev_enabled))) {
1745                         if (page_shortage > 0) {
1746                                 vmd->vmd_laundry_request = VM_LAUNDRY_SHORTFALL;
1747                                 VM_CNT_INC(v_pdshortfalls);
1748                         } else if (vmd->vmd_laundry_request !=
1749                             VM_LAUNDRY_SHORTFALL)
1750                                 vmd->vmd_laundry_request =
1751                                     VM_LAUNDRY_BACKGROUND;
1752                         wakeup(&vmd->vmd_laundry_request);
1753                 }
1754                 vmd->vmd_clean_pages_freed +=
1755                     starting_page_shortage - page_shortage;
1756                 vm_pagequeue_unlock(pq);
1757         }
1758
1759         /*
1760          * Wakeup the swapout daemon if we didn't free the targeted number of
1761          * pages.
1762          */
1763         if (page_shortage > 0)
1764                 vm_swapout_run();
1765
1766         /*
1767          * If the inactive queue scan fails repeatedly to meet its
1768          * target, kill the largest process.
1769          */
1770         vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage);
1771
1772         /*
1773          * Reclaim pages by swapping out idle processes, if configured to do so.
1774          */
1775         vm_swapout_run_idle();
1776
1777         /*
1778          * See the description of addl_page_shortage above.
1779          */
1780         *addl_shortage = addl_page_shortage + deficit;
1781
1782         return (page_shortage <= 0);
1783 }
1784
1785 static int vm_pageout_oom_vote;
1786
1787 /*
1788  * The pagedaemon threads randlomly select one to perform the
1789  * OOM.  Trying to kill processes before all pagedaemons
1790  * failed to reach free target is premature.
1791  */
1792 static void
1793 vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
1794     int starting_page_shortage)
1795 {
1796         int old_vote;
1797
1798         if (starting_page_shortage <= 0 || starting_page_shortage !=
1799             page_shortage)
1800                 vmd->vmd_oom_seq = 0;
1801         else
1802                 vmd->vmd_oom_seq++;
1803         if (vmd->vmd_oom_seq < vm_pageout_oom_seq) {
1804                 if (vmd->vmd_oom) {
1805                         vmd->vmd_oom = FALSE;
1806                         atomic_subtract_int(&vm_pageout_oom_vote, 1);
1807                 }
1808                 return;
1809         }
1810
1811         /*
1812          * Do not follow the call sequence until OOM condition is
1813          * cleared.
1814          */
1815         vmd->vmd_oom_seq = 0;
1816
1817         if (vmd->vmd_oom)
1818                 return;
1819
1820         vmd->vmd_oom = TRUE;
1821         old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1);
1822         if (old_vote != vm_ndomains - 1)
1823                 return;
1824
1825         /*
1826          * The current pagedaemon thread is the last in the quorum to
1827          * start OOM.  Initiate the selection and signaling of the
1828          * victim.
1829          */
1830         vm_pageout_oom(VM_OOM_MEM);
1831
1832         /*
1833          * After one round of OOM terror, recall our vote.  On the
1834          * next pass, current pagedaemon would vote again if the low
1835          * memory condition is still there, due to vmd_oom being
1836          * false.
1837          */
1838         vmd->vmd_oom = FALSE;
1839         atomic_subtract_int(&vm_pageout_oom_vote, 1);
1840 }
1841
1842 /*
1843  * The OOM killer is the page daemon's action of last resort when
1844  * memory allocation requests have been stalled for a prolonged period
1845  * of time because it cannot reclaim memory.  This function computes
1846  * the approximate number of physical pages that could be reclaimed if
1847  * the specified address space is destroyed.
1848  *
1849  * Private, anonymous memory owned by the address space is the
1850  * principal resource that we expect to recover after an OOM kill.
1851  * Since the physical pages mapped by the address space's COW entries
1852  * are typically shared pages, they are unlikely to be released and so
1853  * they are not counted.
1854  *
1855  * To get to the point where the page daemon runs the OOM killer, its
1856  * efforts to write-back vnode-backed pages may have stalled.  This
1857  * could be caused by a memory allocation deadlock in the write path
1858  * that might be resolved by an OOM kill.  Therefore, physical pages
1859  * belonging to vnode-backed objects are counted, because they might
1860  * be freed without being written out first if the address space holds
1861  * the last reference to an unlinked vnode.
1862  *
1863  * Similarly, physical pages belonging to OBJT_PHYS objects are
1864  * counted because the address space might hold the last reference to
1865  * the object.
1866  */
1867 static long
1868 vm_pageout_oom_pagecount(struct vmspace *vmspace)
1869 {
1870         vm_map_t map;
1871         vm_map_entry_t entry;
1872         vm_object_t obj;
1873         long res;
1874
1875         map = &vmspace->vm_map;
1876         KASSERT(!map->system_map, ("system map"));
1877         sx_assert(&map->lock, SA_LOCKED);
1878         res = 0;
1879         VM_MAP_ENTRY_FOREACH(entry, map) {
1880                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
1881                         continue;
1882                 obj = entry->object.vm_object;
1883                 if (obj == NULL)
1884                         continue;
1885                 if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 &&
1886                     obj->ref_count != 1)
1887                         continue;
1888                 switch (obj->type) {
1889                 case OBJT_DEFAULT:
1890                 case OBJT_SWAP:
1891                 case OBJT_PHYS:
1892                 case OBJT_VNODE:
1893                         res += obj->resident_page_count;
1894                         break;
1895                 }
1896         }
1897         return (res);
1898 }
1899
1900 static int vm_oom_ratelim_last;
1901 static int vm_oom_pf_secs = 10;
1902 SYSCTL_INT(_vm, OID_AUTO, oom_pf_secs, CTLFLAG_RWTUN, &vm_oom_pf_secs, 0,
1903     "");
1904 static struct mtx vm_oom_ratelim_mtx;
1905
1906 void
1907 vm_pageout_oom(int shortage)
1908 {
1909         struct proc *p, *bigproc;
1910         vm_offset_t size, bigsize;
1911         struct thread *td;
1912         struct vmspace *vm;
1913         int now;
1914         bool breakout;
1915
1916         /*
1917          * For OOM requests originating from vm_fault(), there is a high
1918          * chance that a single large process faults simultaneously in
1919          * several threads.  Also, on an active system running many
1920          * processes of middle-size, like buildworld, all of them
1921          * could fault almost simultaneously as well.
1922          *
1923          * To avoid killing too many processes, rate-limit OOMs
1924          * initiated by vm_fault() time-outs on the waits for free
1925          * pages.
1926          */
1927         mtx_lock(&vm_oom_ratelim_mtx);
1928         now = ticks;
1929         if (shortage == VM_OOM_MEM_PF &&
1930             (u_int)(now - vm_oom_ratelim_last) < hz * vm_oom_pf_secs) {
1931                 mtx_unlock(&vm_oom_ratelim_mtx);
1932                 return;
1933         }
1934         vm_oom_ratelim_last = now;
1935         mtx_unlock(&vm_oom_ratelim_mtx);
1936
1937         /*
1938          * We keep the process bigproc locked once we find it to keep anyone
1939          * from messing with it; however, there is a possibility of
1940          * deadlock if process B is bigproc and one of its child processes
1941          * attempts to propagate a signal to B while we are waiting for A's
1942          * lock while walking this list.  To avoid this, we don't block on
1943          * the process lock but just skip a process if it is already locked.
1944          */
1945         bigproc = NULL;
1946         bigsize = 0;
1947         sx_slock(&allproc_lock);
1948         FOREACH_PROC_IN_SYSTEM(p) {
1949                 PROC_LOCK(p);
1950
1951                 /*
1952                  * If this is a system, protected or killed process, skip it.
1953                  */
1954                 if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC |
1955                     P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 ||
1956                     p->p_pid == 1 || P_KILLED(p) ||
1957                     (p->p_pid < 48 && swap_pager_avail != 0)) {
1958                         PROC_UNLOCK(p);
1959                         continue;
1960                 }
1961                 /*
1962                  * If the process is in a non-running type state,
1963                  * don't touch it.  Check all the threads individually.
1964                  */
1965                 breakout = false;
1966                 FOREACH_THREAD_IN_PROC(p, td) {
1967                         thread_lock(td);
1968                         if (!TD_ON_RUNQ(td) &&
1969                             !TD_IS_RUNNING(td) &&
1970                             !TD_IS_SLEEPING(td) &&
1971                             !TD_IS_SUSPENDED(td) &&
1972                             !TD_IS_SWAPPED(td)) {
1973                                 thread_unlock(td);
1974                                 breakout = true;
1975                                 break;
1976                         }
1977                         thread_unlock(td);
1978                 }
1979                 if (breakout) {
1980                         PROC_UNLOCK(p);
1981                         continue;
1982                 }
1983                 /*
1984                  * get the process size
1985                  */
1986                 vm = vmspace_acquire_ref(p);
1987                 if (vm == NULL) {
1988                         PROC_UNLOCK(p);
1989                         continue;
1990                 }
1991                 _PHOLD_LITE(p);
1992                 PROC_UNLOCK(p);
1993                 sx_sunlock(&allproc_lock);
1994                 if (!vm_map_trylock_read(&vm->vm_map)) {
1995                         vmspace_free(vm);
1996                         sx_slock(&allproc_lock);
1997                         PRELE(p);
1998                         continue;
1999                 }
2000                 size = vmspace_swap_count(vm);
2001                 if (shortage == VM_OOM_MEM || shortage == VM_OOM_MEM_PF)
2002                         size += vm_pageout_oom_pagecount(vm);
2003                 vm_map_unlock_read(&vm->vm_map);
2004                 vmspace_free(vm);
2005                 sx_slock(&allproc_lock);
2006
2007                 /*
2008                  * If this process is bigger than the biggest one,
2009                  * remember it.
2010                  */
2011                 if (size > bigsize) {
2012                         if (bigproc != NULL)
2013                                 PRELE(bigproc);
2014                         bigproc = p;
2015                         bigsize = size;
2016                 } else {
2017                         PRELE(p);
2018                 }
2019         }
2020         sx_sunlock(&allproc_lock);
2021         if (bigproc != NULL) {
2022                 if (vm_panic_on_oom != 0 && --vm_panic_on_oom == 0)
2023                         panic("out of swap space");
2024                 PROC_LOCK(bigproc);
2025                 killproc(bigproc, "out of swap space");
2026                 sched_nice(bigproc, PRIO_MIN);
2027                 _PRELE(bigproc);
2028                 PROC_UNLOCK(bigproc);
2029         }
2030 }
2031
2032 /*
2033  * Signal a free page shortage to subsystems that have registered an event
2034  * handler.  Reclaim memory from UMA in the event of a severe shortage.
2035  * Return true if the free page count should be re-evaluated.
2036  */
2037 static bool
2038 vm_pageout_lowmem(void)
2039 {
2040         static int lowmem_ticks = 0;
2041         int last;
2042         bool ret;
2043
2044         ret = false;
2045
2046         last = atomic_load_int(&lowmem_ticks);
2047         while ((u_int)(ticks - last) / hz >= lowmem_period) {
2048                 if (atomic_fcmpset_int(&lowmem_ticks, &last, ticks) == 0)
2049                         continue;
2050
2051                 /*
2052                  * Decrease registered cache sizes.
2053                  */
2054                 SDT_PROBE0(vm, , , vm__lowmem_scan);
2055                 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_PAGES);
2056
2057                 /*
2058                  * We do this explicitly after the caches have been
2059                  * drained above.
2060                  */
2061                 uma_reclaim(UMA_RECLAIM_TRIM);
2062                 ret = true;
2063                 break;
2064         }
2065
2066         /*
2067          * Kick off an asynchronous reclaim of cached memory if one of the
2068          * page daemons is failing to keep up with demand.  Use the "severe"
2069          * threshold instead of "min" to ensure that we do not blow away the
2070          * caches if a subset of the NUMA domains are depleted by kernel memory
2071          * allocations; the domainset iterators automatically skip domains
2072          * below the "min" threshold on the first pass.
2073          *
2074          * UMA reclaim worker has its own rate-limiting mechanism, so don't
2075          * worry about kicking it too often.
2076          */
2077         if (vm_page_count_severe())
2078                 uma_reclaim_wakeup();
2079
2080         return (ret);
2081 }
2082
2083 static void
2084 vm_pageout_worker(void *arg)
2085 {
2086         struct vm_domain *vmd;
2087         u_int ofree;
2088         int addl_shortage, domain, shortage;
2089         bool target_met;
2090
2091         domain = (uintptr_t)arg;
2092         vmd = VM_DOMAIN(domain);
2093         shortage = 0;
2094         target_met = true;
2095
2096         /*
2097          * XXXKIB It could be useful to bind pageout daemon threads to
2098          * the cores belonging to the domain, from which vm_page_array
2099          * is allocated.
2100          */
2101
2102         KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
2103         vmd->vmd_last_active_scan = ticks;
2104
2105         /*
2106          * The pageout daemon worker is never done, so loop forever.
2107          */
2108         while (TRUE) {
2109                 vm_domain_pageout_lock(vmd);
2110
2111                 /*
2112                  * We need to clear wanted before we check the limits.  This
2113                  * prevents races with wakers who will check wanted after they
2114                  * reach the limit.
2115                  */
2116                 atomic_store_int(&vmd->vmd_pageout_wanted, 0);
2117
2118                 /*
2119                  * Might the page daemon need to run again?
2120                  */
2121                 if (vm_paging_needed(vmd, vmd->vmd_free_count)) {
2122                         /*
2123                          * Yes.  If the scan failed to produce enough free
2124                          * pages, sleep uninterruptibly for some time in the
2125                          * hope that the laundry thread will clean some pages.
2126                          */
2127                         vm_domain_pageout_unlock(vmd);
2128                         if (!target_met)
2129                                 pause("pwait", hz / VM_INACT_SCAN_RATE);
2130                 } else {
2131                         /*
2132                          * No, sleep until the next wakeup or until pages
2133                          * need to have their reference stats updated.
2134                          */
2135                         if (mtx_sleep(&vmd->vmd_pageout_wanted,
2136                             vm_domain_pageout_lockptr(vmd), PDROP | PVM,
2137                             "psleep", hz / VM_INACT_SCAN_RATE) == 0)
2138                                 VM_CNT_INC(v_pdwakeups);
2139                 }
2140
2141                 /* Prevent spurious wakeups by ensuring that wanted is set. */
2142                 atomic_store_int(&vmd->vmd_pageout_wanted, 1);
2143
2144                 /*
2145                  * Use the controller to calculate how many pages to free in
2146                  * this interval, and scan the inactive queue.  If the lowmem
2147                  * handlers appear to have freed up some pages, subtract the
2148                  * difference from the inactive queue scan target.
2149                  */
2150                 shortage = pidctrl_daemon(&vmd->vmd_pid, vmd->vmd_free_count);
2151                 if (shortage > 0) {
2152                         ofree = vmd->vmd_free_count;
2153                         if (vm_pageout_lowmem() && vmd->vmd_free_count > ofree)
2154                                 shortage -= min(vmd->vmd_free_count - ofree,
2155                                     (u_int)shortage);
2156                         target_met = vm_pageout_inactive(vmd, shortage,
2157                             &addl_shortage);
2158                 } else
2159                         addl_shortage = 0;
2160
2161                 /*
2162                  * Scan the active queue.  A positive value for shortage
2163                  * indicates that we must aggressively deactivate pages to avoid
2164                  * a shortfall.
2165                  */
2166                 shortage = vm_pageout_active_target(vmd) + addl_shortage;
2167                 vm_pageout_scan_active(vmd, shortage);
2168         }
2169 }
2170
2171 /*
2172  * vm_pageout_helper runs additional pageout daemons in times of high paging
2173  * activity.
2174  */
2175 static void
2176 vm_pageout_helper(void *arg)
2177 {
2178         struct vm_domain *vmd;
2179         int domain;
2180
2181         domain = (uintptr_t)arg;
2182         vmd = VM_DOMAIN(domain);
2183
2184         vm_domain_pageout_lock(vmd);
2185         for (;;) {
2186                 msleep(&vmd->vmd_inactive_shortage,
2187                     vm_domain_pageout_lockptr(vmd), PVM, "psleep", 0);
2188                 blockcount_release(&vmd->vmd_inactive_starting, 1);
2189
2190                 vm_domain_pageout_unlock(vmd);
2191                 vm_pageout_scan_inactive(vmd, vmd->vmd_inactive_shortage);
2192                 vm_domain_pageout_lock(vmd);
2193
2194                 /*
2195                  * Release the running count while the pageout lock is held to
2196                  * prevent wakeup races.
2197                  */
2198                 blockcount_release(&vmd->vmd_inactive_running, 1);
2199         }
2200 }
2201
2202 static int
2203 get_pageout_threads_per_domain(void)
2204 {
2205         static bool resolved = false;
2206         int half_cpus_per_dom;
2207
2208         /*
2209          * This is serialized externally by the sorted autoconfig portion of
2210          * boot.
2211          */
2212         if (__predict_true(resolved))
2213                 return (pageout_threads_per_domain);
2214
2215         /*
2216          * Semi-arbitrarily constrain pagedaemon threads to less than half the
2217          * total number of threads in the system as an insane upper limit.
2218          */
2219         half_cpus_per_dom = (mp_ncpus / vm_ndomains) / 2;
2220
2221         if (pageout_threads_per_domain < 1) {
2222                 printf("Invalid tuneable vm.pageout_threads_per_domain value: "
2223                     "%d out of valid range: [1-%d]; clamping to 1\n",
2224                     pageout_threads_per_domain, half_cpus_per_dom);
2225                 pageout_threads_per_domain = 1;
2226         } else if (pageout_threads_per_domain > half_cpus_per_dom) {
2227                 printf("Invalid tuneable vm.pageout_threads_per_domain value: "
2228                     "%d out of valid range: [1-%d]; clamping to %d\n",
2229                     pageout_threads_per_domain, half_cpus_per_dom,
2230                     half_cpus_per_dom);
2231                 pageout_threads_per_domain = half_cpus_per_dom;
2232         }
2233         resolved = true;
2234         return (pageout_threads_per_domain);
2235 }
2236
2237 /*
2238  * Initialize basic pageout daemon settings.  See the comment above the
2239  * definition of vm_domain for some explanation of how these thresholds are
2240  * used.
2241  */
2242 static void
2243 vm_pageout_init_domain(int domain)
2244 {
2245         struct vm_domain *vmd;
2246         struct sysctl_oid *oid;
2247
2248         vmd = VM_DOMAIN(domain);
2249         vmd->vmd_interrupt_free_min = 2;
2250
2251         /*
2252          * v_free_reserved needs to include enough for the largest
2253          * swap pager structures plus enough for any pv_entry structs
2254          * when paging. 
2255          */
2256         vmd->vmd_pageout_free_min = 2 * MAXBSIZE / PAGE_SIZE +
2257             vmd->vmd_interrupt_free_min;
2258         vmd->vmd_free_reserved = vm_pageout_page_count +
2259             vmd->vmd_pageout_free_min + vmd->vmd_page_count / 768;
2260         vmd->vmd_free_min = vmd->vmd_page_count / 200;
2261         vmd->vmd_free_severe = vmd->vmd_free_min / 2;
2262         vmd->vmd_free_target = 4 * vmd->vmd_free_min + vmd->vmd_free_reserved;
2263         vmd->vmd_free_min += vmd->vmd_free_reserved;
2264         vmd->vmd_free_severe += vmd->vmd_free_reserved;
2265         vmd->vmd_inactive_target = (3 * vmd->vmd_free_target) / 2;
2266         if (vmd->vmd_inactive_target > vmd->vmd_free_count / 3)
2267                 vmd->vmd_inactive_target = vmd->vmd_free_count / 3;
2268
2269         /*
2270          * Set the default wakeup threshold to be 10% below the paging
2271          * target.  This keeps the steady state out of shortfall.
2272          */
2273         vmd->vmd_pageout_wakeup_thresh = (vmd->vmd_free_target / 10) * 9;
2274
2275         /*
2276          * Target amount of memory to move out of the laundry queue during a
2277          * background laundering.  This is proportional to the amount of system
2278          * memory.
2279          */
2280         vmd->vmd_background_launder_target = (vmd->vmd_free_target -
2281             vmd->vmd_free_min) / 10;
2282
2283         /* Initialize the pageout daemon pid controller. */
2284         pidctrl_init(&vmd->vmd_pid, hz / VM_INACT_SCAN_RATE,
2285             vmd->vmd_free_target, PIDCTRL_BOUND,
2286             PIDCTRL_KPD, PIDCTRL_KID, PIDCTRL_KDD);
2287         oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(vmd->vmd_oid), OID_AUTO,
2288             "pidctrl", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2289         pidctrl_init_sysctl(&vmd->vmd_pid, SYSCTL_CHILDREN(oid));
2290
2291         vmd->vmd_inactive_threads = get_pageout_threads_per_domain();
2292 }
2293
2294 static void
2295 vm_pageout_init(void)
2296 {
2297         u_int freecount;
2298         int i;
2299
2300         /*
2301          * Initialize some paging parameters.
2302          */
2303         if (vm_cnt.v_page_count < 2000)
2304                 vm_pageout_page_count = 8;
2305
2306         freecount = 0;
2307         for (i = 0; i < vm_ndomains; i++) {
2308                 struct vm_domain *vmd;
2309
2310                 vm_pageout_init_domain(i);
2311                 vmd = VM_DOMAIN(i);
2312                 vm_cnt.v_free_reserved += vmd->vmd_free_reserved;
2313                 vm_cnt.v_free_target += vmd->vmd_free_target;
2314                 vm_cnt.v_free_min += vmd->vmd_free_min;
2315                 vm_cnt.v_inactive_target += vmd->vmd_inactive_target;
2316                 vm_cnt.v_pageout_free_min += vmd->vmd_pageout_free_min;
2317                 vm_cnt.v_interrupt_free_min += vmd->vmd_interrupt_free_min;
2318                 vm_cnt.v_free_severe += vmd->vmd_free_severe;
2319                 freecount += vmd->vmd_free_count;
2320         }
2321
2322         /*
2323          * Set interval in seconds for active scan.  We want to visit each
2324          * page at least once every ten minutes.  This is to prevent worst
2325          * case paging behaviors with stale active LRU.
2326          */
2327         if (vm_pageout_update_period == 0)
2328                 vm_pageout_update_period = 600;
2329
2330         if (vm_page_max_user_wired == 0)
2331                 vm_page_max_user_wired = freecount / 3;
2332 }
2333
2334 /*
2335  *     vm_pageout is the high level pageout daemon.
2336  */
2337 static void
2338 vm_pageout(void)
2339 {
2340         struct proc *p;
2341         struct thread *td;
2342         int error, first, i, j, pageout_threads;
2343
2344         p = curproc;
2345         td = curthread;
2346         pageout_threads = get_pageout_threads_per_domain();
2347
2348         mtx_init(&vm_oom_ratelim_mtx, "vmoomr", NULL, MTX_DEF);
2349         swap_pager_swap_init();
2350         for (first = -1, i = 0; i < vm_ndomains; i++) {
2351                 if (VM_DOMAIN_EMPTY(i)) {
2352                         if (bootverbose)
2353                                 printf("domain %d empty; skipping pageout\n",
2354                                     i);
2355                         continue;
2356                 }
2357                 if (first == -1)
2358                         first = i;
2359                 else {
2360                         error = kthread_add(vm_pageout_worker,
2361                             (void *)(uintptr_t)i, p, NULL, 0, 0, "dom%d", i);
2362                         if (error != 0)
2363                                 panic("starting pageout for domain %d: %d\n",
2364                                     i, error);
2365                 }
2366                 for (j = 0; j < pageout_threads - 1; j++) {
2367                         error = kthread_add(vm_pageout_helper,
2368                             (void *)(uintptr_t)i, p, NULL, 0, 0,
2369                             "dom%d helper%d", i, j);
2370                         if (error != 0)
2371                                 panic("starting pageout helper %d for domain "
2372                                     "%d: %d\n", j, i, error);
2373                 }
2374                 error = kthread_add(vm_pageout_laundry_worker,
2375                     (void *)(uintptr_t)i, p, NULL, 0, 0, "laundry: dom%d", i);
2376                 if (error != 0)
2377                         panic("starting laundry for domain %d: %d", i, error);
2378         }
2379         error = kthread_add(uma_reclaim_worker, NULL, p, NULL, 0, 0, "uma");
2380         if (error != 0)
2381                 panic("starting uma_reclaim helper, error %d\n", error);
2382
2383         snprintf(td->td_name, sizeof(td->td_name), "dom%d", first);
2384         vm_pageout_worker((void *)(uintptr_t)first);
2385 }
2386
2387 /*
2388  * Perform an advisory wakeup of the page daemon.
2389  */
2390 void
2391 pagedaemon_wakeup(int domain)
2392 {
2393         struct vm_domain *vmd;
2394
2395         vmd = VM_DOMAIN(domain);
2396         vm_domain_pageout_assert_unlocked(vmd);
2397         if (curproc == pageproc)
2398                 return;
2399
2400         if (atomic_fetchadd_int(&vmd->vmd_pageout_wanted, 1) == 0) {
2401                 vm_domain_pageout_lock(vmd);
2402                 atomic_store_int(&vmd->vmd_pageout_wanted, 1);
2403                 wakeup(&vmd->vmd_pageout_wanted);
2404                 vm_domain_pageout_unlock(vmd);
2405         }
2406 }