]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_pageout.c
Remove a redundant flag variable.
[FreeBSD/FreeBSD.git] / sys / vm / vm_pageout.c
1 /*-
2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  * Copyright (c) 2005 Yahoo! Technologies Norway AS
11  * All rights reserved.
12  *
13  * This code is derived from software contributed to Berkeley by
14  * The Mach Operating System project at Carnegie-Mellon University.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. All advertising materials mentioning features or use of this software
25  *    must display the following acknowledgement:
26  *      This product includes software developed by the University of
27  *      California, Berkeley and its contributors.
28  * 4. Neither the name of the University nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  *
44  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
45  *
46  *
47  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
48  * All rights reserved.
49  *
50  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
51  *
52  * Permission to use, copy, modify and distribute this software and
53  * its documentation is hereby granted, provided that both the copyright
54  * notice and this permission notice appear in all copies of the
55  * software, derivative works or modified versions, and any portions
56  * thereof, and that both notices appear in supporting documentation.
57  *
58  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
59  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
60  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
61  *
62  * Carnegie Mellon requests users of this software to return to
63  *
64  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
65  *  School of Computer Science
66  *  Carnegie Mellon University
67  *  Pittsburgh PA 15213-3890
68  *
69  * any improvements or extensions that they make and grant Carnegie the
70  * rights to redistribute these changes.
71  */
72
73 /*
74  *      The proverbial page-out daemon.
75  */
76
77 #include <sys/cdefs.h>
78 __FBSDID("$FreeBSD$");
79
80 #include "opt_vm.h"
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/eventhandler.h>
86 #include <sys/lock.h>
87 #include <sys/mutex.h>
88 #include <sys/proc.h>
89 #include <sys/kthread.h>
90 #include <sys/ktr.h>
91 #include <sys/mount.h>
92 #include <sys/racct.h>
93 #include <sys/resourcevar.h>
94 #include <sys/sched.h>
95 #include <sys/sdt.h>
96 #include <sys/signalvar.h>
97 #include <sys/smp.h>
98 #include <sys/time.h>
99 #include <sys/vnode.h>
100 #include <sys/vmmeter.h>
101 #include <sys/rwlock.h>
102 #include <sys/sx.h>
103 #include <sys/sysctl.h>
104
105 #include <vm/vm.h>
106 #include <vm/vm_param.h>
107 #include <vm/vm_object.h>
108 #include <vm/vm_page.h>
109 #include <vm/vm_map.h>
110 #include <vm/vm_pageout.h>
111 #include <vm/vm_pager.h>
112 #include <vm/vm_phys.h>
113 #include <vm/vm_pagequeue.h>
114 #include <vm/swap_pager.h>
115 #include <vm/vm_extern.h>
116 #include <vm/uma.h>
117
118 /*
119  * System initialization
120  */
121
122 /* the kernel process "vm_pageout"*/
123 static void vm_pageout(void);
124 static void vm_pageout_init(void);
125 static int vm_pageout_clean(vm_page_t m, int *numpagedout);
126 static int vm_pageout_cluster(vm_page_t m);
127 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
128     int starting_page_shortage);
129
130 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init,
131     NULL);
132
133 struct proc *pageproc;
134
135 static struct kproc_desc page_kp = {
136         "pagedaemon",
137         vm_pageout,
138         &pageproc
139 };
140 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start,
141     &page_kp);
142
143 SDT_PROVIDER_DEFINE(vm);
144 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan);
145
146 /* Pagedaemon activity rates, in subdivisions of one second. */
147 #define VM_LAUNDER_RATE         10
148 #define VM_INACT_SCAN_RATE      10
149
150 static int vm_pageout_oom_seq = 12;
151
152 static int vm_pageout_update_period;
153 static int disable_swap_pageouts;
154 static int lowmem_period = 10;
155 static int swapdev_enabled;
156
157 static int vm_panic_on_oom = 0;
158
159 SYSCTL_INT(_vm, OID_AUTO, panic_on_oom,
160         CTLFLAG_RWTUN, &vm_panic_on_oom, 0,
161         "panic on out of memory instead of killing the largest process");
162
163 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period,
164         CTLFLAG_RWTUN, &vm_pageout_update_period, 0,
165         "Maximum active LRU update period");
166   
167 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RWTUN, &lowmem_period, 0,
168         "Low memory callback period");
169
170 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
171         CTLFLAG_RWTUN, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
172
173 static int pageout_lock_miss;
174 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
175         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
176
177 SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq,
178         CTLFLAG_RWTUN, &vm_pageout_oom_seq, 0,
179         "back-to-back calls to oom detector to start OOM");
180
181 static int act_scan_laundry_weight = 3;
182 SYSCTL_INT(_vm, OID_AUTO, act_scan_laundry_weight, CTLFLAG_RWTUN,
183     &act_scan_laundry_weight, 0,
184     "weight given to clean vs. dirty pages in active queue scans");
185
186 static u_int vm_background_launder_rate = 4096;
187 SYSCTL_UINT(_vm, OID_AUTO, background_launder_rate, CTLFLAG_RWTUN,
188     &vm_background_launder_rate, 0,
189     "background laundering rate, in kilobytes per second");
190
191 static u_int vm_background_launder_max = 20 * 1024;
192 SYSCTL_UINT(_vm, OID_AUTO, background_launder_max, CTLFLAG_RWTUN,
193     &vm_background_launder_max, 0, "background laundering cap, in kilobytes");
194
195 int vm_pageout_page_count = 32;
196
197 int vm_page_max_wired;          /* XXX max # of wired pages system-wide */
198 SYSCTL_INT(_vm, OID_AUTO, max_wired,
199         CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
200
201 static u_int isqrt(u_int num);
202 static int vm_pageout_launder(struct vm_domain *vmd, int launder,
203     bool in_shortfall);
204 static void vm_pageout_laundry_worker(void *arg);
205
206 struct scan_state {
207         struct vm_batchqueue bq;
208         struct vm_pagequeue *pq;
209         vm_page_t       marker;
210         int             maxscan;
211         int             scanned;
212 };
213
214 static void
215 vm_pageout_init_scan(struct scan_state *ss, struct vm_pagequeue *pq,
216     vm_page_t marker, vm_page_t after, int maxscan)
217 {
218
219         vm_pagequeue_assert_locked(pq);
220         KASSERT((marker->aflags & PGA_ENQUEUED) == 0,
221             ("marker %p already enqueued", marker));
222
223         if (after == NULL)
224                 TAILQ_INSERT_HEAD(&pq->pq_pl, marker, plinks.q);
225         else
226                 TAILQ_INSERT_AFTER(&pq->pq_pl, after, marker, plinks.q);
227         vm_page_aflag_set(marker, PGA_ENQUEUED);
228
229         vm_batchqueue_init(&ss->bq);
230         ss->pq = pq;
231         ss->marker = marker;
232         ss->maxscan = maxscan;
233         ss->scanned = 0;
234         vm_pagequeue_unlock(pq);
235 }
236
237 static void
238 vm_pageout_end_scan(struct scan_state *ss)
239 {
240         struct vm_pagequeue *pq;
241
242         pq = ss->pq;
243         vm_pagequeue_assert_locked(pq);
244         KASSERT((ss->marker->aflags & PGA_ENQUEUED) != 0,
245             ("marker %p not enqueued", ss->marker));
246
247         TAILQ_REMOVE(&pq->pq_pl, ss->marker, plinks.q);
248         vm_page_aflag_clear(ss->marker, PGA_ENQUEUED);
249         pq->pq_pdpages += ss->scanned;
250 }
251
252 /*
253  * Add a small number of queued pages to a batch queue for later processing
254  * without the corresponding queue lock held.  The caller must have enqueued a
255  * marker page at the desired start point for the scan.  Pages will be
256  * physically dequeued if the caller so requests.  Otherwise, the returned
257  * batch may contain marker pages, and it is up to the caller to handle them.
258  *
259  * When processing the batch queue, vm_page_queue() must be used to
260  * determine whether the page has been logically dequeued by another thread.
261  * Once this check is performed, the page lock guarantees that the page will
262  * not be disassociated from the queue.
263  */
264 static __always_inline void
265 vm_pageout_collect_batch(struct scan_state *ss, const bool dequeue)
266 {
267         struct vm_pagequeue *pq;
268         vm_page_t m, marker;
269
270         marker = ss->marker;
271         pq = ss->pq;
272
273         KASSERT((marker->aflags & PGA_ENQUEUED) != 0,
274             ("marker %p not enqueued", ss->marker));
275
276         vm_pagequeue_lock(pq);
277         for (m = TAILQ_NEXT(marker, plinks.q); m != NULL &&
278             ss->scanned < ss->maxscan && ss->bq.bq_cnt < VM_BATCHQUEUE_SIZE;
279             m = TAILQ_NEXT(m, plinks.q), ss->scanned++) {
280                 if ((m->flags & PG_MARKER) == 0) {
281                         KASSERT((m->aflags & PGA_ENQUEUED) != 0,
282                             ("page %p not enqueued", m));
283                         KASSERT((m->flags & PG_FICTITIOUS) == 0,
284                             ("Fictitious page %p cannot be in page queue", m));
285                         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
286                             ("Unmanaged page %p cannot be in page queue", m));
287                 } else if (dequeue)
288                         continue;
289
290                 (void)vm_batchqueue_insert(&ss->bq, m);
291                 if (dequeue) {
292                         TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
293                         vm_page_aflag_clear(m, PGA_ENQUEUED);
294                 }
295         }
296         TAILQ_REMOVE(&pq->pq_pl, marker, plinks.q);
297         if (__predict_true(m != NULL))
298                 TAILQ_INSERT_BEFORE(m, marker, plinks.q);
299         else
300                 TAILQ_INSERT_TAIL(&pq->pq_pl, marker, plinks.q);
301         if (dequeue)
302                 vm_pagequeue_cnt_add(pq, -ss->bq.bq_cnt);
303         vm_pagequeue_unlock(pq);
304 }
305
306 /* Return the next page to be scanned, or NULL if the scan is complete. */
307 static __always_inline vm_page_t
308 vm_pageout_next(struct scan_state *ss, const bool dequeue)
309 {
310
311         if (ss->bq.bq_cnt == 0)
312                 vm_pageout_collect_batch(ss, dequeue);
313         return (vm_batchqueue_pop(&ss->bq));
314 }
315
316 /*
317  * Scan for pages at adjacent offsets within the given page's object that are
318  * eligible for laundering, form a cluster of these pages and the given page,
319  * and launder that cluster.
320  */
321 static int
322 vm_pageout_cluster(vm_page_t m)
323 {
324         vm_object_t object;
325         vm_page_t mc[2 * vm_pageout_page_count], p, pb, ps;
326         vm_pindex_t pindex;
327         int ib, is, page_base, pageout_count;
328
329         vm_page_assert_locked(m);
330         object = m->object;
331         VM_OBJECT_ASSERT_WLOCKED(object);
332         pindex = m->pindex;
333
334         vm_page_assert_unbusied(m);
335         KASSERT(!vm_page_held(m), ("page %p is held", m));
336
337         pmap_remove_write(m);
338         vm_page_unlock(m);
339
340         mc[vm_pageout_page_count] = pb = ps = m;
341         pageout_count = 1;
342         page_base = vm_pageout_page_count;
343         ib = 1;
344         is = 1;
345
346         /*
347          * We can cluster only if the page is not clean, busy, or held, and
348          * the page is in the laundry queue.
349          *
350          * During heavy mmap/modification loads the pageout
351          * daemon can really fragment the underlying file
352          * due to flushing pages out of order and not trying to
353          * align the clusters (which leaves sporadic out-of-order
354          * holes).  To solve this problem we do the reverse scan
355          * first and attempt to align our cluster, then do a 
356          * forward scan if room remains.
357          */
358 more:
359         while (ib != 0 && pageout_count < vm_pageout_page_count) {
360                 if (ib > pindex) {
361                         ib = 0;
362                         break;
363                 }
364                 if ((p = vm_page_prev(pb)) == NULL || vm_page_busied(p)) {
365                         ib = 0;
366                         break;
367                 }
368                 vm_page_test_dirty(p);
369                 if (p->dirty == 0) {
370                         ib = 0;
371                         break;
372                 }
373                 vm_page_lock(p);
374                 if (vm_page_held(p) || !vm_page_in_laundry(p)) {
375                         vm_page_unlock(p);
376                         ib = 0;
377                         break;
378                 }
379                 pmap_remove_write(p);
380                 vm_page_unlock(p);
381                 mc[--page_base] = pb = p;
382                 ++pageout_count;
383                 ++ib;
384
385                 /*
386                  * We are at an alignment boundary.  Stop here, and switch
387                  * directions.  Do not clear ib.
388                  */
389                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
390                         break;
391         }
392         while (pageout_count < vm_pageout_page_count && 
393             pindex + is < object->size) {
394                 if ((p = vm_page_next(ps)) == NULL || vm_page_busied(p))
395                         break;
396                 vm_page_test_dirty(p);
397                 if (p->dirty == 0)
398                         break;
399                 vm_page_lock(p);
400                 if (vm_page_held(p) || !vm_page_in_laundry(p)) {
401                         vm_page_unlock(p);
402                         break;
403                 }
404                 pmap_remove_write(p);
405                 vm_page_unlock(p);
406                 mc[page_base + pageout_count] = ps = p;
407                 ++pageout_count;
408                 ++is;
409         }
410
411         /*
412          * If we exhausted our forward scan, continue with the reverse scan
413          * when possible, even past an alignment boundary.  This catches
414          * boundary conditions.
415          */
416         if (ib != 0 && pageout_count < vm_pageout_page_count)
417                 goto more;
418
419         return (vm_pageout_flush(&mc[page_base], pageout_count,
420             VM_PAGER_PUT_NOREUSE, 0, NULL, NULL));
421 }
422
423 /*
424  * vm_pageout_flush() - launder the given pages
425  *
426  *      The given pages are laundered.  Note that we setup for the start of
427  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
428  *      reference count all in here rather then in the parent.  If we want
429  *      the parent to do more sophisticated things we may have to change
430  *      the ordering.
431  *
432  *      Returned runlen is the count of pages between mreq and first
433  *      page after mreq with status VM_PAGER_AGAIN.
434  *      *eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
435  *      for any page in runlen set.
436  */
437 int
438 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
439     boolean_t *eio)
440 {
441         vm_object_t object = mc[0]->object;
442         int pageout_status[count];
443         int numpagedout = 0;
444         int i, runlen;
445
446         VM_OBJECT_ASSERT_WLOCKED(object);
447
448         /*
449          * Initiate I/O.  Mark the pages busy and verify that they're valid
450          * and read-only.
451          *
452          * We do not have to fixup the clean/dirty bits here... we can
453          * allow the pager to do it after the I/O completes.
454          *
455          * NOTE! mc[i]->dirty may be partial or fragmented due to an
456          * edge case with file fragments.
457          */
458         for (i = 0; i < count; i++) {
459                 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
460                     ("vm_pageout_flush: partially invalid page %p index %d/%d",
461                         mc[i], i, count));
462                 KASSERT((mc[i]->aflags & PGA_WRITEABLE) == 0,
463                     ("vm_pageout_flush: writeable page %p", mc[i]));
464                 vm_page_sbusy(mc[i]);
465         }
466         vm_object_pip_add(object, count);
467
468         vm_pager_put_pages(object, mc, count, flags, pageout_status);
469
470         runlen = count - mreq;
471         if (eio != NULL)
472                 *eio = FALSE;
473         for (i = 0; i < count; i++) {
474                 vm_page_t mt = mc[i];
475
476                 KASSERT(pageout_status[i] == VM_PAGER_PEND ||
477                     !pmap_page_is_write_mapped(mt),
478                     ("vm_pageout_flush: page %p is not write protected", mt));
479                 switch (pageout_status[i]) {
480                 case VM_PAGER_OK:
481                         vm_page_lock(mt);
482                         if (vm_page_in_laundry(mt))
483                                 vm_page_deactivate_noreuse(mt);
484                         vm_page_unlock(mt);
485                         /* FALLTHROUGH */
486                 case VM_PAGER_PEND:
487                         numpagedout++;
488                         break;
489                 case VM_PAGER_BAD:
490                         /*
491                          * The page is outside the object's range.  We pretend
492                          * that the page out worked and clean the page, so the
493                          * changes will be lost if the page is reclaimed by
494                          * the page daemon.
495                          */
496                         vm_page_undirty(mt);
497                         vm_page_lock(mt);
498                         if (vm_page_in_laundry(mt))
499                                 vm_page_deactivate_noreuse(mt);
500                         vm_page_unlock(mt);
501                         break;
502                 case VM_PAGER_ERROR:
503                 case VM_PAGER_FAIL:
504                         /*
505                          * If the page couldn't be paged out to swap because the
506                          * pager wasn't able to find space, place the page in
507                          * the PQ_UNSWAPPABLE holding queue.  This is an
508                          * optimization that prevents the page daemon from
509                          * wasting CPU cycles on pages that cannot be reclaimed
510                          * becase no swap device is configured.
511                          *
512                          * Otherwise, reactivate the page so that it doesn't
513                          * clog the laundry and inactive queues.  (We will try
514                          * paging it out again later.)
515                          */
516                         vm_page_lock(mt);
517                         if (object->type == OBJT_SWAP &&
518                             pageout_status[i] == VM_PAGER_FAIL) {
519                                 vm_page_unswappable(mt);
520                                 numpagedout++;
521                         } else
522                                 vm_page_activate(mt);
523                         vm_page_unlock(mt);
524                         if (eio != NULL && i >= mreq && i - mreq < runlen)
525                                 *eio = TRUE;
526                         break;
527                 case VM_PAGER_AGAIN:
528                         if (i >= mreq && i - mreq < runlen)
529                                 runlen = i - mreq;
530                         break;
531                 }
532
533                 /*
534                  * If the operation is still going, leave the page busy to
535                  * block all other accesses. Also, leave the paging in
536                  * progress indicator set so that we don't attempt an object
537                  * collapse.
538                  */
539                 if (pageout_status[i] != VM_PAGER_PEND) {
540                         vm_object_pip_wakeup(object);
541                         vm_page_sunbusy(mt);
542                 }
543         }
544         if (prunlen != NULL)
545                 *prunlen = runlen;
546         return (numpagedout);
547 }
548
549 static void
550 vm_pageout_swapon(void *arg __unused, struct swdevt *sp __unused)
551 {
552
553         atomic_store_rel_int(&swapdev_enabled, 1);
554 }
555
556 static void
557 vm_pageout_swapoff(void *arg __unused, struct swdevt *sp __unused)
558 {
559
560         if (swap_pager_nswapdev() == 1)
561                 atomic_store_rel_int(&swapdev_enabled, 0);
562 }
563
564 /*
565  * Attempt to acquire all of the necessary locks to launder a page and
566  * then call through the clustering layer to PUTPAGES.  Wait a short
567  * time for a vnode lock.
568  *
569  * Requires the page and object lock on entry, releases both before return.
570  * Returns 0 on success and an errno otherwise.
571  */
572 static int
573 vm_pageout_clean(vm_page_t m, int *numpagedout)
574 {
575         struct vnode *vp;
576         struct mount *mp;
577         vm_object_t object;
578         vm_pindex_t pindex;
579         int error, lockmode;
580
581         vm_page_assert_locked(m);
582         object = m->object;
583         VM_OBJECT_ASSERT_WLOCKED(object);
584         error = 0;
585         vp = NULL;
586         mp = NULL;
587
588         /*
589          * The object is already known NOT to be dead.   It
590          * is possible for the vget() to block the whole
591          * pageout daemon, but the new low-memory handling
592          * code should prevent it.
593          *
594          * We can't wait forever for the vnode lock, we might
595          * deadlock due to a vn_read() getting stuck in
596          * vm_wait while holding this vnode.  We skip the 
597          * vnode if we can't get it in a reasonable amount
598          * of time.
599          */
600         if (object->type == OBJT_VNODE) {
601                 vm_page_unlock(m);
602                 vp = object->handle;
603                 if (vp->v_type == VREG &&
604                     vn_start_write(vp, &mp, V_NOWAIT) != 0) {
605                         mp = NULL;
606                         error = EDEADLK;
607                         goto unlock_all;
608                 }
609                 KASSERT(mp != NULL,
610                     ("vp %p with NULL v_mount", vp));
611                 vm_object_reference_locked(object);
612                 pindex = m->pindex;
613                 VM_OBJECT_WUNLOCK(object);
614                 lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
615                     LK_SHARED : LK_EXCLUSIVE;
616                 if (vget(vp, lockmode | LK_TIMELOCK, curthread)) {
617                         vp = NULL;
618                         error = EDEADLK;
619                         goto unlock_mp;
620                 }
621                 VM_OBJECT_WLOCK(object);
622
623                 /*
624                  * Ensure that the object and vnode were not disassociated
625                  * while locks were dropped.
626                  */
627                 if (vp->v_object != object) {
628                         error = ENOENT;
629                         goto unlock_all;
630                 }
631                 vm_page_lock(m);
632
633                 /*
634                  * While the object and page were unlocked, the page
635                  * may have been:
636                  * (1) moved to a different queue,
637                  * (2) reallocated to a different object,
638                  * (3) reallocated to a different offset, or
639                  * (4) cleaned.
640                  */
641                 if (!vm_page_in_laundry(m) || m->object != object ||
642                     m->pindex != pindex || m->dirty == 0) {
643                         vm_page_unlock(m);
644                         error = ENXIO;
645                         goto unlock_all;
646                 }
647
648                 /*
649                  * The page may have been busied or referenced while the object
650                  * and page locks were released.
651                  */
652                 if (vm_page_busied(m) || vm_page_held(m)) {
653                         vm_page_unlock(m);
654                         error = EBUSY;
655                         goto unlock_all;
656                 }
657         }
658
659         /*
660          * If a page is dirty, then it is either being washed
661          * (but not yet cleaned) or it is still in the
662          * laundry.  If it is still in the laundry, then we
663          * start the cleaning operation. 
664          */
665         if ((*numpagedout = vm_pageout_cluster(m)) == 0)
666                 error = EIO;
667
668 unlock_all:
669         VM_OBJECT_WUNLOCK(object);
670
671 unlock_mp:
672         vm_page_lock_assert(m, MA_NOTOWNED);
673         if (mp != NULL) {
674                 if (vp != NULL)
675                         vput(vp);
676                 vm_object_deallocate(object);
677                 vn_finished_write(mp);
678         }
679
680         return (error);
681 }
682
683 /*
684  * Attempt to launder the specified number of pages.
685  *
686  * Returns the number of pages successfully laundered.
687  */
688 static int
689 vm_pageout_launder(struct vm_domain *vmd, int launder, bool in_shortfall)
690 {
691         struct scan_state ss;
692         struct vm_pagequeue *pq;
693         struct mtx *mtx;
694         vm_object_t object;
695         vm_page_t m, marker;
696         int act_delta, error, numpagedout, queue, starting_target;
697         int vnodes_skipped;
698         bool pageout_ok;
699
700         mtx = NULL;
701         object = NULL;
702         starting_target = launder;
703         vnodes_skipped = 0;
704
705         /*
706          * Scan the laundry queues for pages eligible to be laundered.  We stop
707          * once the target number of dirty pages have been laundered, or once
708          * we've reached the end of the queue.  A single iteration of this loop
709          * may cause more than one page to be laundered because of clustering.
710          *
711          * As an optimization, we avoid laundering from PQ_UNSWAPPABLE when no
712          * swap devices are configured.
713          */
714         if (atomic_load_acq_int(&swapdev_enabled))
715                 queue = PQ_UNSWAPPABLE;
716         else
717                 queue = PQ_LAUNDRY;
718
719 scan:
720         marker = &vmd->vmd_markers[queue];
721         pq = &vmd->vmd_pagequeues[queue];
722         vm_pagequeue_lock(pq);
723         vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
724         while (launder > 0 && (m = vm_pageout_next(&ss, false)) != NULL) {
725                 if (__predict_false((m->flags & PG_MARKER) != 0))
726                         continue;
727
728                 vm_page_change_lock(m, &mtx);
729
730 recheck:
731                 /*
732                  * The page may have been disassociated from the queue
733                  * while locks were dropped.
734                  */
735                 if (vm_page_queue(m) != queue)
736                         continue;
737
738                 /*
739                  * A requeue was requested, so this page gets a second
740                  * chance.
741                  */
742                 if ((m->aflags & PGA_REQUEUE) != 0) {
743                         vm_page_requeue(m);
744                         continue;
745                 }
746
747                 /*
748                  * Held pages are essentially stuck in the queue.
749                  *
750                  * Wired pages may not be freed.  Complete their removal
751                  * from the queue now to avoid needless revisits during
752                  * future scans.
753                  */
754                 if (m->hold_count != 0)
755                         continue;
756                 if (m->wire_count != 0) {
757                         vm_page_dequeue_deferred(m);
758                         continue;
759                 }
760
761                 if (object != m->object) {
762                         if (object != NULL)
763                                 VM_OBJECT_WUNLOCK(object);
764                         object = m->object;
765                         if (!VM_OBJECT_TRYWLOCK(object)) {
766                                 mtx_unlock(mtx);
767                                 /* Depends on type-stability. */
768                                 VM_OBJECT_WLOCK(object);
769                                 mtx_lock(mtx);
770                                 goto recheck;
771                         }
772                 }
773
774                 if (vm_page_busied(m))
775                         continue;
776
777                 /*
778                  * Invalid pages can be easily freed.  They cannot be
779                  * mapped; vm_page_free() asserts this.
780                  */
781                 if (m->valid == 0)
782                         goto free_page;
783
784                 /*
785                  * If the page has been referenced and the object is not dead,
786                  * reactivate or requeue the page depending on whether the
787                  * object is mapped.
788                  *
789                  * Test PGA_REFERENCED after calling pmap_ts_referenced() so
790                  * that a reference from a concurrently destroyed mapping is
791                  * observed here and now.
792                  */
793                 if (object->ref_count != 0)
794                         act_delta = pmap_ts_referenced(m);
795                 else {
796                         KASSERT(!pmap_page_is_mapped(m),
797                             ("page %p is mapped", m));
798                         act_delta = 0;
799                 }
800                 if ((m->aflags & PGA_REFERENCED) != 0) {
801                         vm_page_aflag_clear(m, PGA_REFERENCED);
802                         act_delta++;
803                 }
804                 if (act_delta != 0) {
805                         if (object->ref_count != 0) {
806                                 VM_CNT_INC(v_reactivated);
807                                 vm_page_activate(m);
808
809                                 /*
810                                  * Increase the activation count if the page
811                                  * was referenced while in the laundry queue.
812                                  * This makes it less likely that the page will
813                                  * be returned prematurely to the inactive
814                                  * queue.
815                                  */
816                                 m->act_count += act_delta + ACT_ADVANCE;
817
818                                 /*
819                                  * If this was a background laundering, count
820                                  * activated pages towards our target.  The
821                                  * purpose of background laundering is to ensure
822                                  * that pages are eventually cycled through the
823                                  * laundry queue, and an activation is a valid
824                                  * way out.
825                                  */
826                                 if (!in_shortfall)
827                                         launder--;
828                                 continue;
829                         } else if ((object->flags & OBJ_DEAD) == 0) {
830                                 vm_page_requeue(m);
831                                 continue;
832                         }
833                 }
834
835                 /*
836                  * If the page appears to be clean at the machine-independent
837                  * layer, then remove all of its mappings from the pmap in
838                  * anticipation of freeing it.  If, however, any of the page's
839                  * mappings allow write access, then the page may still be
840                  * modified until the last of those mappings are removed.
841                  */
842                 if (object->ref_count != 0) {
843                         vm_page_test_dirty(m);
844                         if (m->dirty == 0)
845                                 pmap_remove_all(m);
846                 }
847
848                 /*
849                  * Clean pages are freed, and dirty pages are paged out unless
850                  * they belong to a dead object.  Requeueing dirty pages from
851                  * dead objects is pointless, as they are being paged out and
852                  * freed by the thread that destroyed the object.
853                  */
854                 if (m->dirty == 0) {
855 free_page:
856                         vm_page_free(m);
857                         VM_CNT_INC(v_dfree);
858                 } else if ((object->flags & OBJ_DEAD) == 0) {
859                         if (object->type != OBJT_SWAP &&
860                             object->type != OBJT_DEFAULT)
861                                 pageout_ok = true;
862                         else if (disable_swap_pageouts)
863                                 pageout_ok = false;
864                         else
865                                 pageout_ok = true;
866                         if (!pageout_ok) {
867                                 vm_page_requeue(m);
868                                 continue;
869                         }
870
871                         /*
872                          * Form a cluster with adjacent, dirty pages from the
873                          * same object, and page out that entire cluster.
874                          *
875                          * The adjacent, dirty pages must also be in the
876                          * laundry.  However, their mappings are not checked
877                          * for new references.  Consequently, a recently
878                          * referenced page may be paged out.  However, that
879                          * page will not be prematurely reclaimed.  After page
880                          * out, the page will be placed in the inactive queue,
881                          * where any new references will be detected and the
882                          * page reactivated.
883                          */
884                         error = vm_pageout_clean(m, &numpagedout);
885                         if (error == 0) {
886                                 launder -= numpagedout;
887                                 ss.scanned += numpagedout;
888                         } else if (error == EDEADLK) {
889                                 pageout_lock_miss++;
890                                 vnodes_skipped++;
891                         }
892                         mtx = NULL;
893                         object = NULL;
894                 }
895         }
896         if (mtx != NULL)
897                 mtx_unlock(mtx);
898         if (object != NULL)
899                 VM_OBJECT_WUNLOCK(object);
900         vm_pagequeue_lock(pq);
901         vm_pageout_end_scan(&ss);
902         vm_pagequeue_unlock(pq);
903
904         if (launder > 0 && queue == PQ_UNSWAPPABLE) {
905                 queue = PQ_LAUNDRY;
906                 goto scan;
907         }
908
909         /*
910          * Wakeup the sync daemon if we skipped a vnode in a writeable object
911          * and we didn't launder enough pages.
912          */
913         if (vnodes_skipped > 0 && launder > 0)
914                 (void)speedup_syncer();
915
916         return (starting_target - launder);
917 }
918
919 /*
920  * Compute the integer square root.
921  */
922 static u_int
923 isqrt(u_int num)
924 {
925         u_int bit, root, tmp;
926
927         bit = 1u << ((NBBY * sizeof(u_int)) - 2);
928         while (bit > num)
929                 bit >>= 2;
930         root = 0;
931         while (bit != 0) {
932                 tmp = root + bit;
933                 root >>= 1;
934                 if (num >= tmp) {
935                         num -= tmp;
936                         root += bit;
937                 }
938                 bit >>= 2;
939         }
940         return (root);
941 }
942
943 /*
944  * Perform the work of the laundry thread: periodically wake up and determine
945  * whether any pages need to be laundered.  If so, determine the number of pages
946  * that need to be laundered, and launder them.
947  */
948 static void
949 vm_pageout_laundry_worker(void *arg)
950 {
951         struct vm_domain *vmd;
952         struct vm_pagequeue *pq;
953         uint64_t nclean, ndirty, nfreed;
954         int domain, last_target, launder, shortfall, shortfall_cycle, target;
955         bool in_shortfall;
956
957         domain = (uintptr_t)arg;
958         vmd = VM_DOMAIN(domain);
959         pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
960         KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
961
962         shortfall = 0;
963         in_shortfall = false;
964         shortfall_cycle = 0;
965         last_target = target = 0;
966         nfreed = 0;
967
968         /*
969          * Calls to these handlers are serialized by the swap syscall lock.
970          */
971         (void)EVENTHANDLER_REGISTER(swapon, vm_pageout_swapon, vmd,
972             EVENTHANDLER_PRI_ANY);
973         (void)EVENTHANDLER_REGISTER(swapoff, vm_pageout_swapoff, vmd,
974             EVENTHANDLER_PRI_ANY);
975
976         /*
977          * The pageout laundry worker is never done, so loop forever.
978          */
979         for (;;) {
980                 KASSERT(target >= 0, ("negative target %d", target));
981                 KASSERT(shortfall_cycle >= 0,
982                     ("negative cycle %d", shortfall_cycle));
983                 launder = 0;
984
985                 /*
986                  * First determine whether we need to launder pages to meet a
987                  * shortage of free pages.
988                  */
989                 if (shortfall > 0) {
990                         in_shortfall = true;
991                         shortfall_cycle = VM_LAUNDER_RATE / VM_INACT_SCAN_RATE;
992                         target = shortfall;
993                 } else if (!in_shortfall)
994                         goto trybackground;
995                 else if (shortfall_cycle == 0 || vm_laundry_target(vmd) <= 0) {
996                         /*
997                          * We recently entered shortfall and began laundering
998                          * pages.  If we have completed that laundering run
999                          * (and we are no longer in shortfall) or we have met
1000                          * our laundry target through other activity, then we
1001                          * can stop laundering pages.
1002                          */
1003                         in_shortfall = false;
1004                         target = 0;
1005                         goto trybackground;
1006                 }
1007                 launder = target / shortfall_cycle--;
1008                 goto dolaundry;
1009
1010                 /*
1011                  * There's no immediate need to launder any pages; see if we
1012                  * meet the conditions to perform background laundering:
1013                  *
1014                  * 1. The ratio of dirty to clean inactive pages exceeds the
1015                  *    background laundering threshold, or
1016                  * 2. we haven't yet reached the target of the current
1017                  *    background laundering run.
1018                  *
1019                  * The background laundering threshold is not a constant.
1020                  * Instead, it is a slowly growing function of the number of
1021                  * clean pages freed by the page daemon since the last
1022                  * background laundering.  Thus, as the ratio of dirty to
1023                  * clean inactive pages grows, the amount of memory pressure
1024                  * required to trigger laundering decreases.  We ensure
1025                  * that the threshold is non-zero after an inactive queue
1026                  * scan, even if that scan failed to free a single clean page.
1027                  */
1028 trybackground:
1029                 nclean = vmd->vmd_free_count +
1030                     vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt;
1031                 ndirty = vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt;
1032                 if (target == 0 && ndirty * isqrt(howmany(nfreed + 1,
1033                     vmd->vmd_free_target - vmd->vmd_free_min)) >= nclean) {
1034                         target = vmd->vmd_background_launder_target;
1035                 }
1036
1037                 /*
1038                  * We have a non-zero background laundering target.  If we've
1039                  * laundered up to our maximum without observing a page daemon
1040                  * request, just stop.  This is a safety belt that ensures we
1041                  * don't launder an excessive amount if memory pressure is low
1042                  * and the ratio of dirty to clean pages is large.  Otherwise,
1043                  * proceed at the background laundering rate.
1044                  */
1045                 if (target > 0) {
1046                         if (nfreed > 0) {
1047                                 nfreed = 0;
1048                                 last_target = target;
1049                         } else if (last_target - target >=
1050                             vm_background_launder_max * PAGE_SIZE / 1024) {
1051                                 target = 0;
1052                         }
1053                         launder = vm_background_launder_rate * PAGE_SIZE / 1024;
1054                         launder /= VM_LAUNDER_RATE;
1055                         if (launder > target)
1056                                 launder = target;
1057                 }
1058
1059 dolaundry:
1060                 if (launder > 0) {
1061                         /*
1062                          * Because of I/O clustering, the number of laundered
1063                          * pages could exceed "target" by the maximum size of
1064                          * a cluster minus one. 
1065                          */
1066                         target -= min(vm_pageout_launder(vmd, launder,
1067                             in_shortfall), target);
1068                         pause("laundp", hz / VM_LAUNDER_RATE);
1069                 }
1070
1071                 /*
1072                  * If we're not currently laundering pages and the page daemon
1073                  * hasn't posted a new request, sleep until the page daemon
1074                  * kicks us.
1075                  */
1076                 vm_pagequeue_lock(pq);
1077                 if (target == 0 && vmd->vmd_laundry_request == VM_LAUNDRY_IDLE)
1078                         (void)mtx_sleep(&vmd->vmd_laundry_request,
1079                             vm_pagequeue_lockptr(pq), PVM, "launds", 0);
1080
1081                 /*
1082                  * If the pagedaemon has indicated that it's in shortfall, start
1083                  * a shortfall laundering unless we're already in the middle of
1084                  * one.  This may preempt a background laundering.
1085                  */
1086                 if (vmd->vmd_laundry_request == VM_LAUNDRY_SHORTFALL &&
1087                     (!in_shortfall || shortfall_cycle == 0)) {
1088                         shortfall = vm_laundry_target(vmd) +
1089                             vmd->vmd_pageout_deficit;
1090                         target = 0;
1091                 } else
1092                         shortfall = 0;
1093
1094                 if (target == 0)
1095                         vmd->vmd_laundry_request = VM_LAUNDRY_IDLE;
1096                 nfreed += vmd->vmd_clean_pages_freed;
1097                 vmd->vmd_clean_pages_freed = 0;
1098                 vm_pagequeue_unlock(pq);
1099         }
1100 }
1101
1102 /*
1103  * Compute the number of pages we want to try to move from the
1104  * active queue to either the inactive or laundry queue.
1105  *
1106  * When scanning active pages during a shortage, we make clean pages
1107  * count more heavily towards the page shortage than dirty pages.
1108  * This is because dirty pages must be laundered before they can be
1109  * reused and thus have less utility when attempting to quickly
1110  * alleviate a free page shortage.  However, this weighting also
1111  * causes the scan to deactivate dirty pages more aggressively,
1112  * improving the effectiveness of clustering.
1113  */
1114 static int
1115 vm_pageout_active_target(struct vm_domain *vmd)
1116 {
1117         int shortage;
1118
1119         shortage = vmd->vmd_inactive_target + vm_paging_target(vmd) -
1120             (vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt +
1121             vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt / act_scan_laundry_weight);
1122         shortage *= act_scan_laundry_weight;
1123         return (shortage);
1124 }
1125
1126 /*
1127  * Scan the active queue.  If there is no shortage of inactive pages, scan a
1128  * small portion of the queue in order to maintain quasi-LRU.
1129  */
1130 static void
1131 vm_pageout_scan_active(struct vm_domain *vmd, int page_shortage)
1132 {
1133         struct scan_state ss;
1134         struct mtx *mtx;
1135         vm_page_t m, marker;
1136         struct vm_pagequeue *pq;
1137         long min_scan;
1138         int act_delta, max_scan, scan_tick;
1139
1140         marker = &vmd->vmd_markers[PQ_ACTIVE];
1141         pq = &vmd->vmd_pagequeues[PQ_ACTIVE];
1142         vm_pagequeue_lock(pq);
1143
1144         /*
1145          * If we're just idle polling attempt to visit every
1146          * active page within 'update_period' seconds.
1147          */
1148         scan_tick = ticks;
1149         if (vm_pageout_update_period != 0) {
1150                 min_scan = pq->pq_cnt;
1151                 min_scan *= scan_tick - vmd->vmd_last_active_scan;
1152                 min_scan /= hz * vm_pageout_update_period;
1153         } else
1154                 min_scan = 0;
1155         if (min_scan > 0 || (page_shortage > 0 && pq->pq_cnt > 0))
1156                 vmd->vmd_last_active_scan = scan_tick;
1157
1158         /*
1159          * Scan the active queue for pages that can be deactivated.  Update
1160          * the per-page activity counter and use it to identify deactivation
1161          * candidates.  Held pages may be deactivated.
1162          *
1163          * To avoid requeuing each page that remains in the active queue, we
1164          * implement the CLOCK algorithm.  To keep the implementation of the
1165          * enqueue operation consistent for all page queues, we use two hands,
1166          * represented by marker pages. Scans begin at the first hand, which
1167          * precedes the second hand in the queue.  When the two hands meet,
1168          * they are moved back to the head and tail of the queue, respectively,
1169          * and scanning resumes.
1170          */
1171         max_scan = page_shortage > 0 ? pq->pq_cnt : min_scan;
1172         mtx = NULL;
1173 act_scan:
1174         vm_pageout_init_scan(&ss, pq, marker, &vmd->vmd_clock[0], max_scan);
1175         while ((m = vm_pageout_next(&ss, false)) != NULL) {
1176                 if (__predict_false(m == &vmd->vmd_clock[1])) {
1177                         vm_pagequeue_lock(pq);
1178                         TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
1179                         TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[1], plinks.q);
1180                         TAILQ_INSERT_HEAD(&pq->pq_pl, &vmd->vmd_clock[0],
1181                             plinks.q);
1182                         TAILQ_INSERT_TAIL(&pq->pq_pl, &vmd->vmd_clock[1],
1183                             plinks.q);
1184                         max_scan -= ss.scanned;
1185                         vm_pageout_end_scan(&ss);
1186                         goto act_scan;
1187                 }
1188                 if (__predict_false((m->flags & PG_MARKER) != 0))
1189                         continue;
1190
1191                 vm_page_change_lock(m, &mtx);
1192
1193                 /*
1194                  * The page may have been disassociated from the queue
1195                  * while locks were dropped.
1196                  */
1197                 if (vm_page_queue(m) != PQ_ACTIVE)
1198                         continue;
1199
1200                 /*
1201                  * Wired pages are dequeued lazily.
1202                  */
1203                 if (m->wire_count != 0) {
1204                         vm_page_dequeue_deferred(m);
1205                         continue;
1206                 }
1207
1208                 /*
1209                  * Check to see "how much" the page has been used.
1210                  *
1211                  * Test PGA_REFERENCED after calling pmap_ts_referenced() so
1212                  * that a reference from a concurrently destroyed mapping is
1213                  * observed here and now.
1214                  *
1215                  * Perform an unsynchronized object ref count check.  While
1216                  * the page lock ensures that the page is not reallocated to
1217                  * another object, in particular, one with unmanaged mappings
1218                  * that cannot support pmap_ts_referenced(), two races are,
1219                  * nonetheless, possible:
1220                  * 1) The count was transitioning to zero, but we saw a non-
1221                  *    zero value.  pmap_ts_referenced() will return zero
1222                  *    because the page is not mapped.
1223                  * 2) The count was transitioning to one, but we saw zero.
1224                  *    This race delays the detection of a new reference.  At
1225                  *    worst, we will deactivate and reactivate the page.
1226                  */
1227                 if (m->object->ref_count != 0)
1228                         act_delta = pmap_ts_referenced(m);
1229                 else
1230                         act_delta = 0;
1231                 if ((m->aflags & PGA_REFERENCED) != 0) {
1232                         vm_page_aflag_clear(m, PGA_REFERENCED);
1233                         act_delta++;
1234                 }
1235
1236                 /*
1237                  * Advance or decay the act_count based on recent usage.
1238                  */
1239                 if (act_delta != 0) {
1240                         m->act_count += ACT_ADVANCE + act_delta;
1241                         if (m->act_count > ACT_MAX)
1242                                 m->act_count = ACT_MAX;
1243                 } else
1244                         m->act_count -= min(m->act_count, ACT_DECLINE);
1245
1246                 if (m->act_count == 0) {
1247                         /*
1248                          * When not short for inactive pages, let dirty pages go
1249                          * through the inactive queue before moving to the
1250                          * laundry queues.  This gives them some extra time to
1251                          * be reactivated, potentially avoiding an expensive
1252                          * pageout.  However, during a page shortage, the
1253                          * inactive queue is necessarily small, and so dirty
1254                          * pages would only spend a trivial amount of time in
1255                          * the inactive queue.  Therefore, we might as well
1256                          * place them directly in the laundry queue to reduce
1257                          * queuing overhead.
1258                          */
1259                         if (page_shortage <= 0)
1260                                 vm_page_deactivate(m);
1261                         else {
1262                                 /*
1263                                  * Calling vm_page_test_dirty() here would
1264                                  * require acquisition of the object's write
1265                                  * lock.  However, during a page shortage,
1266                                  * directing dirty pages into the laundry
1267                                  * queue is only an optimization and not a
1268                                  * requirement.  Therefore, we simply rely on
1269                                  * the opportunistic updates to the page's
1270                                  * dirty field by the pmap.
1271                                  */
1272                                 if (m->dirty == 0) {
1273                                         vm_page_deactivate(m);
1274                                         page_shortage -=
1275                                             act_scan_laundry_weight;
1276                                 } else {
1277                                         vm_page_launder(m);
1278                                         page_shortage--;
1279                                 }
1280                         }
1281                 }
1282         }
1283         if (mtx != NULL) {
1284                 mtx_unlock(mtx);
1285                 mtx = NULL;
1286         }
1287         vm_pagequeue_lock(pq);
1288         TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
1289         TAILQ_INSERT_AFTER(&pq->pq_pl, marker, &vmd->vmd_clock[0], plinks.q);
1290         vm_pageout_end_scan(&ss);
1291         vm_pagequeue_unlock(pq);
1292 }
1293
1294 static int
1295 vm_pageout_reinsert_inactive_page(struct scan_state *ss, vm_page_t m)
1296 {
1297         struct vm_domain *vmd;
1298
1299         if (m->queue != PQ_INACTIVE || (m->aflags & PGA_ENQUEUED) != 0)
1300                 return (0);
1301         vm_page_aflag_set(m, PGA_ENQUEUED);
1302         if ((m->aflags & PGA_REQUEUE_HEAD) != 0) {
1303                 vmd = vm_pagequeue_domain(m);
1304                 TAILQ_INSERT_BEFORE(&vmd->vmd_inacthead, m, plinks.q);
1305                 vm_page_aflag_clear(m, PGA_REQUEUE | PGA_REQUEUE_HEAD);
1306         } else if ((m->aflags & PGA_REQUEUE) != 0) {
1307                 TAILQ_INSERT_TAIL(&ss->pq->pq_pl, m, plinks.q);
1308                 vm_page_aflag_clear(m, PGA_REQUEUE | PGA_REQUEUE_HEAD);
1309         } else
1310                 TAILQ_INSERT_BEFORE(ss->marker, m, plinks.q);
1311         return (1);
1312 }
1313
1314 /*
1315  * Re-add stuck pages to the inactive queue.  We will examine them again
1316  * during the next scan.  If the queue state of a page has changed since
1317  * it was physically removed from the page queue in
1318  * vm_pageout_collect_batch(), don't do anything with that page.
1319  */
1320 static void
1321 vm_pageout_reinsert_inactive(struct scan_state *ss, struct vm_batchqueue *bq,
1322     vm_page_t m)
1323 {
1324         struct vm_pagequeue *pq;
1325         int delta;
1326
1327         delta = 0;
1328         pq = ss->pq;
1329
1330         if (m != NULL) {
1331                 if (vm_batchqueue_insert(bq, m))
1332                         return;
1333                 vm_pagequeue_lock(pq);
1334                 delta += vm_pageout_reinsert_inactive_page(ss, m);
1335         } else
1336                 vm_pagequeue_lock(pq);
1337         while ((m = vm_batchqueue_pop(bq)) != NULL)
1338                 delta += vm_pageout_reinsert_inactive_page(ss, m);
1339         vm_pagequeue_cnt_add(pq, delta);
1340         vm_pagequeue_unlock(pq);
1341         vm_batchqueue_init(bq);
1342 }
1343
1344 /*
1345  * Attempt to reclaim the requested number of pages from the inactive queue.
1346  * Returns true if the shortage was addressed.
1347  */
1348 static int
1349 vm_pageout_scan_inactive(struct vm_domain *vmd, int shortage,
1350     int *addl_shortage)
1351 {
1352         struct scan_state ss;
1353         struct vm_batchqueue rq;
1354         struct mtx *mtx;
1355         vm_page_t m, marker;
1356         struct vm_pagequeue *pq;
1357         vm_object_t object;
1358         int act_delta, addl_page_shortage, deficit, page_shortage;
1359         int starting_page_shortage;
1360
1361         /*
1362          * The addl_page_shortage is an estimate of the number of temporarily
1363          * stuck pages in the inactive queue.  In other words, the
1364          * number of pages from the inactive count that should be
1365          * discounted in setting the target for the active queue scan.
1366          */
1367         addl_page_shortage = 0;
1368
1369         /*
1370          * vmd_pageout_deficit counts the number of pages requested in
1371          * allocations that failed because of a free page shortage.  We assume
1372          * that the allocations will be reattempted and thus include the deficit
1373          * in our scan target.
1374          */
1375         deficit = atomic_readandclear_int(&vmd->vmd_pageout_deficit);
1376         starting_page_shortage = page_shortage = shortage + deficit;
1377
1378         mtx = NULL;
1379         object = NULL;
1380         vm_batchqueue_init(&rq);
1381
1382         /*
1383          * Start scanning the inactive queue for pages that we can free.  The
1384          * scan will stop when we reach the target or we have scanned the
1385          * entire queue.  (Note that m->act_count is not used to make
1386          * decisions for the inactive queue, only for the active queue.)
1387          */
1388         marker = &vmd->vmd_markers[PQ_INACTIVE];
1389         pq = &vmd->vmd_pagequeues[PQ_INACTIVE];
1390         vm_pagequeue_lock(pq);
1391         vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
1392         while (page_shortage > 0 && (m = vm_pageout_next(&ss, true)) != NULL) {
1393                 KASSERT((m->flags & PG_MARKER) == 0,
1394                     ("marker page %p was dequeued", m));
1395
1396                 vm_page_change_lock(m, &mtx);
1397
1398 recheck:
1399                 /*
1400                  * The page may have been disassociated from the queue
1401                  * while locks were dropped.
1402                  */
1403                 if (vm_page_queue(m) != PQ_INACTIVE) {
1404                         addl_page_shortage++;
1405                         continue;
1406                 }
1407
1408                 /*
1409                  * The page was re-enqueued after the page queue lock was
1410                  * dropped, or a requeue was requested.  This page gets a second
1411                  * chance.
1412                  */
1413                 if ((m->aflags & (PGA_ENQUEUED | PGA_REQUEUE |
1414                     PGA_REQUEUE_HEAD)) != 0)
1415                         goto reinsert;
1416
1417                 /*
1418                  * Held pages are essentially stuck in the queue.  So,
1419                  * they ought to be discounted from the inactive count.
1420                  * See the description of addl_page_shortage above.
1421                  *
1422                  * Wired pages may not be freed.  Complete their removal
1423                  * from the queue now to avoid needless revisits during
1424                  * future scans.
1425                  */
1426                 if (m->hold_count != 0) {
1427                         addl_page_shortage++;
1428                         goto reinsert;
1429                 }
1430                 if (m->wire_count != 0) {
1431                         vm_page_dequeue_deferred(m);
1432                         continue;
1433                 }
1434
1435                 if (object != m->object) {
1436                         if (object != NULL)
1437                                 VM_OBJECT_WUNLOCK(object);
1438                         object = m->object;
1439                         if (!VM_OBJECT_TRYWLOCK(object)) {
1440                                 mtx_unlock(mtx);
1441                                 /* Depends on type-stability. */
1442                                 VM_OBJECT_WLOCK(object);
1443                                 mtx_lock(mtx);
1444                                 goto recheck;
1445                         }
1446                 }
1447
1448                 if (vm_page_busied(m)) {
1449                         /*
1450                          * Don't mess with busy pages.  Leave them at
1451                          * the front of the queue.  Most likely, they
1452                          * are being paged out and will leave the
1453                          * queue shortly after the scan finishes.  So,
1454                          * they ought to be discounted from the
1455                          * inactive count.
1456                          */
1457                         addl_page_shortage++;
1458                         goto reinsert;
1459                 }
1460
1461                 /*
1462                  * Invalid pages can be easily freed. They cannot be
1463                  * mapped, vm_page_free() asserts this.
1464                  */
1465                 if (m->valid == 0)
1466                         goto free_page;
1467
1468                 /*
1469                  * If the page has been referenced and the object is not dead,
1470                  * reactivate or requeue the page depending on whether the
1471                  * object is mapped.
1472                  *
1473                  * Test PGA_REFERENCED after calling pmap_ts_referenced() so
1474                  * that a reference from a concurrently destroyed mapping is
1475                  * observed here and now.
1476                  */
1477                 if (object->ref_count != 0)
1478                         act_delta = pmap_ts_referenced(m);
1479                 else {
1480                         KASSERT(!pmap_page_is_mapped(m),
1481                             ("page %p is mapped", m));
1482                         act_delta = 0;
1483                 }
1484                 if ((m->aflags & PGA_REFERENCED) != 0) {
1485                         vm_page_aflag_clear(m, PGA_REFERENCED);
1486                         act_delta++;
1487                 }
1488                 if (act_delta != 0) {
1489                         if (object->ref_count != 0) {
1490                                 VM_CNT_INC(v_reactivated);
1491                                 vm_page_activate(m);
1492
1493                                 /*
1494                                  * Increase the activation count if the page
1495                                  * was referenced while in the inactive queue.
1496                                  * This makes it less likely that the page will
1497                                  * be returned prematurely to the inactive
1498                                  * queue.
1499                                  */
1500                                 m->act_count += act_delta + ACT_ADVANCE;
1501                                 continue;
1502                         } else if ((object->flags & OBJ_DEAD) == 0) {
1503                                 vm_page_aflag_set(m, PGA_REQUEUE);
1504                                 goto reinsert;
1505                         }
1506                 }
1507
1508                 /*
1509                  * If the page appears to be clean at the machine-independent
1510                  * layer, then remove all of its mappings from the pmap in
1511                  * anticipation of freeing it.  If, however, any of the page's
1512                  * mappings allow write access, then the page may still be
1513                  * modified until the last of those mappings are removed.
1514                  */
1515                 if (object->ref_count != 0) {
1516                         vm_page_test_dirty(m);
1517                         if (m->dirty == 0)
1518                                 pmap_remove_all(m);
1519                 }
1520
1521                 /*
1522                  * Clean pages can be freed, but dirty pages must be sent back
1523                  * to the laundry, unless they belong to a dead object.
1524                  * Requeueing dirty pages from dead objects is pointless, as
1525                  * they are being paged out and freed by the thread that
1526                  * destroyed the object.
1527                  */
1528                 if (m->dirty == 0) {
1529 free_page:
1530                         /*
1531                          * Because we dequeued the page and have already
1532                          * checked for concurrent dequeue and enqueue
1533                          * requests, we can safely disassociate the page
1534                          * from the inactive queue.
1535                          */
1536                         KASSERT((m->aflags & PGA_QUEUE_STATE_MASK) == 0,
1537                             ("page %p has queue state", m));
1538                         m->queue = PQ_NONE;
1539                         vm_page_free(m);
1540                         page_shortage--;
1541                 } else if ((object->flags & OBJ_DEAD) == 0)
1542                         vm_page_launder(m);
1543                 continue;
1544 reinsert:
1545                 vm_pageout_reinsert_inactive(&ss, &rq, m);
1546         }
1547         if (mtx != NULL)
1548                 mtx_unlock(mtx);
1549         if (object != NULL)
1550                 VM_OBJECT_WUNLOCK(object);
1551         vm_pageout_reinsert_inactive(&ss, &rq, NULL);
1552         vm_pageout_reinsert_inactive(&ss, &ss.bq, NULL);
1553         vm_pagequeue_lock(pq);
1554         vm_pageout_end_scan(&ss);
1555         vm_pagequeue_unlock(pq);
1556
1557         VM_CNT_ADD(v_dfree, starting_page_shortage - page_shortage);
1558
1559         /*
1560          * Wake up the laundry thread so that it can perform any needed
1561          * laundering.  If we didn't meet our target, we're in shortfall and
1562          * need to launder more aggressively.  If PQ_LAUNDRY is empty and no
1563          * swap devices are configured, the laundry thread has no work to do, so
1564          * don't bother waking it up.
1565          *
1566          * The laundry thread uses the number of inactive queue scans elapsed
1567          * since the last laundering to determine whether to launder again, so
1568          * keep count.
1569          */
1570         if (starting_page_shortage > 0) {
1571                 pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
1572                 vm_pagequeue_lock(pq);
1573                 if (vmd->vmd_laundry_request == VM_LAUNDRY_IDLE &&
1574                     (pq->pq_cnt > 0 || atomic_load_acq_int(&swapdev_enabled))) {
1575                         if (page_shortage > 0) {
1576                                 vmd->vmd_laundry_request = VM_LAUNDRY_SHORTFALL;
1577                                 VM_CNT_INC(v_pdshortfalls);
1578                         } else if (vmd->vmd_laundry_request !=
1579                             VM_LAUNDRY_SHORTFALL)
1580                                 vmd->vmd_laundry_request =
1581                                     VM_LAUNDRY_BACKGROUND;
1582                         wakeup(&vmd->vmd_laundry_request);
1583                 }
1584                 vmd->vmd_clean_pages_freed +=
1585                     starting_page_shortage - page_shortage;
1586                 vm_pagequeue_unlock(pq);
1587         }
1588
1589         /*
1590          * Wakeup the swapout daemon if we didn't free the targeted number of
1591          * pages.
1592          */
1593         if (page_shortage > 0)
1594                 vm_swapout_run();
1595
1596         /*
1597          * If the inactive queue scan fails repeatedly to meet its
1598          * target, kill the largest process.
1599          */
1600         vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage);
1601
1602         /*
1603          * Reclaim pages by swapping out idle processes, if configured to do so.
1604          */
1605         vm_swapout_run_idle();
1606
1607         /*
1608          * See the description of addl_page_shortage above.
1609          */
1610         *addl_shortage = addl_page_shortage + deficit;
1611
1612         return (page_shortage <= 0);
1613 }
1614
1615 static int vm_pageout_oom_vote;
1616
1617 /*
1618  * The pagedaemon threads randlomly select one to perform the
1619  * OOM.  Trying to kill processes before all pagedaemons
1620  * failed to reach free target is premature.
1621  */
1622 static void
1623 vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
1624     int starting_page_shortage)
1625 {
1626         int old_vote;
1627
1628         if (starting_page_shortage <= 0 || starting_page_shortage !=
1629             page_shortage)
1630                 vmd->vmd_oom_seq = 0;
1631         else
1632                 vmd->vmd_oom_seq++;
1633         if (vmd->vmd_oom_seq < vm_pageout_oom_seq) {
1634                 if (vmd->vmd_oom) {
1635                         vmd->vmd_oom = FALSE;
1636                         atomic_subtract_int(&vm_pageout_oom_vote, 1);
1637                 }
1638                 return;
1639         }
1640
1641         /*
1642          * Do not follow the call sequence until OOM condition is
1643          * cleared.
1644          */
1645         vmd->vmd_oom_seq = 0;
1646
1647         if (vmd->vmd_oom)
1648                 return;
1649
1650         vmd->vmd_oom = TRUE;
1651         old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1);
1652         if (old_vote != vm_ndomains - 1)
1653                 return;
1654
1655         /*
1656          * The current pagedaemon thread is the last in the quorum to
1657          * start OOM.  Initiate the selection and signaling of the
1658          * victim.
1659          */
1660         vm_pageout_oom(VM_OOM_MEM);
1661
1662         /*
1663          * After one round of OOM terror, recall our vote.  On the
1664          * next pass, current pagedaemon would vote again if the low
1665          * memory condition is still there, due to vmd_oom being
1666          * false.
1667          */
1668         vmd->vmd_oom = FALSE;
1669         atomic_subtract_int(&vm_pageout_oom_vote, 1);
1670 }
1671
1672 /*
1673  * The OOM killer is the page daemon's action of last resort when
1674  * memory allocation requests have been stalled for a prolonged period
1675  * of time because it cannot reclaim memory.  This function computes
1676  * the approximate number of physical pages that could be reclaimed if
1677  * the specified address space is destroyed.
1678  *
1679  * Private, anonymous memory owned by the address space is the
1680  * principal resource that we expect to recover after an OOM kill.
1681  * Since the physical pages mapped by the address space's COW entries
1682  * are typically shared pages, they are unlikely to be released and so
1683  * they are not counted.
1684  *
1685  * To get to the point where the page daemon runs the OOM killer, its
1686  * efforts to write-back vnode-backed pages may have stalled.  This
1687  * could be caused by a memory allocation deadlock in the write path
1688  * that might be resolved by an OOM kill.  Therefore, physical pages
1689  * belonging to vnode-backed objects are counted, because they might
1690  * be freed without being written out first if the address space holds
1691  * the last reference to an unlinked vnode.
1692  *
1693  * Similarly, physical pages belonging to OBJT_PHYS objects are
1694  * counted because the address space might hold the last reference to
1695  * the object.
1696  */
1697 static long
1698 vm_pageout_oom_pagecount(struct vmspace *vmspace)
1699 {
1700         vm_map_t map;
1701         vm_map_entry_t entry;
1702         vm_object_t obj;
1703         long res;
1704
1705         map = &vmspace->vm_map;
1706         KASSERT(!map->system_map, ("system map"));
1707         sx_assert(&map->lock, SA_LOCKED);
1708         res = 0;
1709         for (entry = map->header.next; entry != &map->header;
1710             entry = entry->next) {
1711                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
1712                         continue;
1713                 obj = entry->object.vm_object;
1714                 if (obj == NULL)
1715                         continue;
1716                 if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 &&
1717                     obj->ref_count != 1)
1718                         continue;
1719                 switch (obj->type) {
1720                 case OBJT_DEFAULT:
1721                 case OBJT_SWAP:
1722                 case OBJT_PHYS:
1723                 case OBJT_VNODE:
1724                         res += obj->resident_page_count;
1725                         break;
1726                 }
1727         }
1728         return (res);
1729 }
1730
1731 void
1732 vm_pageout_oom(int shortage)
1733 {
1734         struct proc *p, *bigproc;
1735         vm_offset_t size, bigsize;
1736         struct thread *td;
1737         struct vmspace *vm;
1738         bool breakout;
1739
1740         /*
1741          * We keep the process bigproc locked once we find it to keep anyone
1742          * from messing with it; however, there is a possibility of
1743          * deadlock if process B is bigproc and one of its child processes
1744          * attempts to propagate a signal to B while we are waiting for A's
1745          * lock while walking this list.  To avoid this, we don't block on
1746          * the process lock but just skip a process if it is already locked.
1747          */
1748         bigproc = NULL;
1749         bigsize = 0;
1750         sx_slock(&allproc_lock);
1751         FOREACH_PROC_IN_SYSTEM(p) {
1752                 PROC_LOCK(p);
1753
1754                 /*
1755                  * If this is a system, protected or killed process, skip it.
1756                  */
1757                 if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC |
1758                     P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 ||
1759                     p->p_pid == 1 || P_KILLED(p) ||
1760                     (p->p_pid < 48 && swap_pager_avail != 0)) {
1761                         PROC_UNLOCK(p);
1762                         continue;
1763                 }
1764                 /*
1765                  * If the process is in a non-running type state,
1766                  * don't touch it.  Check all the threads individually.
1767                  */
1768                 breakout = false;
1769                 FOREACH_THREAD_IN_PROC(p, td) {
1770                         thread_lock(td);
1771                         if (!TD_ON_RUNQ(td) &&
1772                             !TD_IS_RUNNING(td) &&
1773                             !TD_IS_SLEEPING(td) &&
1774                             !TD_IS_SUSPENDED(td) &&
1775                             !TD_IS_SWAPPED(td)) {
1776                                 thread_unlock(td);
1777                                 breakout = true;
1778                                 break;
1779                         }
1780                         thread_unlock(td);
1781                 }
1782                 if (breakout) {
1783                         PROC_UNLOCK(p);
1784                         continue;
1785                 }
1786                 /*
1787                  * get the process size
1788                  */
1789                 vm = vmspace_acquire_ref(p);
1790                 if (vm == NULL) {
1791                         PROC_UNLOCK(p);
1792                         continue;
1793                 }
1794                 _PHOLD_LITE(p);
1795                 PROC_UNLOCK(p);
1796                 sx_sunlock(&allproc_lock);
1797                 if (!vm_map_trylock_read(&vm->vm_map)) {
1798                         vmspace_free(vm);
1799                         sx_slock(&allproc_lock);
1800                         PRELE(p);
1801                         continue;
1802                 }
1803                 size = vmspace_swap_count(vm);
1804                 if (shortage == VM_OOM_MEM)
1805                         size += vm_pageout_oom_pagecount(vm);
1806                 vm_map_unlock_read(&vm->vm_map);
1807                 vmspace_free(vm);
1808                 sx_slock(&allproc_lock);
1809
1810                 /*
1811                  * If this process is bigger than the biggest one,
1812                  * remember it.
1813                  */
1814                 if (size > bigsize) {
1815                         if (bigproc != NULL)
1816                                 PRELE(bigproc);
1817                         bigproc = p;
1818                         bigsize = size;
1819                 } else {
1820                         PRELE(p);
1821                 }
1822         }
1823         sx_sunlock(&allproc_lock);
1824         if (bigproc != NULL) {
1825                 if (vm_panic_on_oom != 0)
1826                         panic("out of swap space");
1827                 PROC_LOCK(bigproc);
1828                 killproc(bigproc, "out of swap space");
1829                 sched_nice(bigproc, PRIO_MIN);
1830                 _PRELE(bigproc);
1831                 PROC_UNLOCK(bigproc);
1832         }
1833 }
1834
1835 static bool
1836 vm_pageout_lowmem(void)
1837 {
1838         static int lowmem_ticks = 0;
1839         int last;
1840
1841         last = atomic_load_int(&lowmem_ticks);
1842         while ((u_int)(ticks - last) / hz >= lowmem_period) {
1843                 if (atomic_fcmpset_int(&lowmem_ticks, &last, ticks) == 0)
1844                         continue;
1845
1846                 /*
1847                  * Decrease registered cache sizes.
1848                  */
1849                 SDT_PROBE0(vm, , , vm__lowmem_scan);
1850                 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_PAGES);
1851
1852                 /*
1853                  * We do this explicitly after the caches have been
1854                  * drained above.
1855                  */
1856                 uma_reclaim();
1857                 return (true);
1858         }
1859         return (false);
1860 }
1861
1862 static void
1863 vm_pageout_worker(void *arg)
1864 {
1865         struct vm_domain *vmd;
1866         u_int ofree;
1867         int addl_shortage, domain, shortage;
1868         bool target_met;
1869
1870         domain = (uintptr_t)arg;
1871         vmd = VM_DOMAIN(domain);
1872         shortage = 0;
1873         target_met = true;
1874
1875         /*
1876          * XXXKIB It could be useful to bind pageout daemon threads to
1877          * the cores belonging to the domain, from which vm_page_array
1878          * is allocated.
1879          */
1880
1881         KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
1882         vmd->vmd_last_active_scan = ticks;
1883
1884         /*
1885          * The pageout daemon worker is never done, so loop forever.
1886          */
1887         while (TRUE) {
1888                 vm_domain_pageout_lock(vmd);
1889
1890                 /*
1891                  * We need to clear wanted before we check the limits.  This
1892                  * prevents races with wakers who will check wanted after they
1893                  * reach the limit.
1894                  */
1895                 atomic_store_int(&vmd->vmd_pageout_wanted, 0);
1896
1897                 /*
1898                  * Might the page daemon need to run again?
1899                  */
1900                 if (vm_paging_needed(vmd, vmd->vmd_free_count)) {
1901                         /*
1902                          * Yes.  If the scan failed to produce enough free
1903                          * pages, sleep uninterruptibly for some time in the
1904                          * hope that the laundry thread will clean some pages.
1905                          */
1906                         vm_domain_pageout_unlock(vmd);
1907                         if (!target_met)
1908                                 pause("pwait", hz / VM_INACT_SCAN_RATE);
1909                 } else {
1910                         /*
1911                          * No, sleep until the next wakeup or until pages
1912                          * need to have their reference stats updated.
1913                          */
1914                         if (mtx_sleep(&vmd->vmd_pageout_wanted,
1915                             vm_domain_pageout_lockptr(vmd), PDROP | PVM,
1916                             "psleep", hz / VM_INACT_SCAN_RATE) == 0)
1917                                 VM_CNT_INC(v_pdwakeups);
1918                 }
1919
1920                 /* Prevent spurious wakeups by ensuring that wanted is set. */
1921                 atomic_store_int(&vmd->vmd_pageout_wanted, 1);
1922
1923                 /*
1924                  * Use the controller to calculate how many pages to free in
1925                  * this interval, and scan the inactive queue.  If the lowmem
1926                  * handlers appear to have freed up some pages, subtract the
1927                  * difference from the inactive queue scan target.
1928                  */
1929                 shortage = pidctrl_daemon(&vmd->vmd_pid, vmd->vmd_free_count);
1930                 if (shortage > 0) {
1931                         ofree = vmd->vmd_free_count;
1932                         if (vm_pageout_lowmem() && vmd->vmd_free_count > ofree)
1933                                 shortage -= min(vmd->vmd_free_count - ofree,
1934                                     (u_int)shortage);
1935                         target_met = vm_pageout_scan_inactive(vmd, shortage,
1936                             &addl_shortage);
1937                 } else
1938                         addl_shortage = 0;
1939
1940                 /*
1941                  * Scan the active queue.  A positive value for shortage
1942                  * indicates that we must aggressively deactivate pages to avoid
1943                  * a shortfall.
1944                  */
1945                 shortage = vm_pageout_active_target(vmd) + addl_shortage;
1946                 vm_pageout_scan_active(vmd, shortage);
1947         }
1948 }
1949
1950 /*
1951  *      vm_pageout_init initialises basic pageout daemon settings.
1952  */
1953 static void
1954 vm_pageout_init_domain(int domain)
1955 {
1956         struct vm_domain *vmd;
1957         struct sysctl_oid *oid;
1958
1959         vmd = VM_DOMAIN(domain);
1960         vmd->vmd_interrupt_free_min = 2;
1961
1962         /*
1963          * v_free_reserved needs to include enough for the largest
1964          * swap pager structures plus enough for any pv_entry structs
1965          * when paging. 
1966          */
1967         if (vmd->vmd_page_count > 1024)
1968                 vmd->vmd_free_min = 4 + (vmd->vmd_page_count - 1024) / 200;
1969         else
1970                 vmd->vmd_free_min = 4;
1971         vmd->vmd_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1972             vmd->vmd_interrupt_free_min;
1973         vmd->vmd_free_reserved = vm_pageout_page_count +
1974             vmd->vmd_pageout_free_min + (vmd->vmd_page_count / 768);
1975         vmd->vmd_free_severe = vmd->vmd_free_min / 2;
1976         vmd->vmd_free_target = 4 * vmd->vmd_free_min + vmd->vmd_free_reserved;
1977         vmd->vmd_free_min += vmd->vmd_free_reserved;
1978         vmd->vmd_free_severe += vmd->vmd_free_reserved;
1979         vmd->vmd_inactive_target = (3 * vmd->vmd_free_target) / 2;
1980         if (vmd->vmd_inactive_target > vmd->vmd_free_count / 3)
1981                 vmd->vmd_inactive_target = vmd->vmd_free_count / 3;
1982
1983         /*
1984          * Set the default wakeup threshold to be 10% below the paging
1985          * target.  This keeps the steady state out of shortfall.
1986          */
1987         vmd->vmd_pageout_wakeup_thresh = (vmd->vmd_free_target / 10) * 9;
1988
1989         /*
1990          * Target amount of memory to move out of the laundry queue during a
1991          * background laundering.  This is proportional to the amount of system
1992          * memory.
1993          */
1994         vmd->vmd_background_launder_target = (vmd->vmd_free_target -
1995             vmd->vmd_free_min) / 10;
1996
1997         /* Initialize the pageout daemon pid controller. */
1998         pidctrl_init(&vmd->vmd_pid, hz / VM_INACT_SCAN_RATE,
1999             vmd->vmd_free_target, PIDCTRL_BOUND,
2000             PIDCTRL_KPD, PIDCTRL_KID, PIDCTRL_KDD);
2001         oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(vmd->vmd_oid), OID_AUTO,
2002             "pidctrl", CTLFLAG_RD, NULL, "");
2003         pidctrl_init_sysctl(&vmd->vmd_pid, SYSCTL_CHILDREN(oid));
2004 }
2005
2006 static void
2007 vm_pageout_init(void)
2008 {
2009         u_int freecount;
2010         int i;
2011
2012         /*
2013          * Initialize some paging parameters.
2014          */
2015         if (vm_cnt.v_page_count < 2000)
2016                 vm_pageout_page_count = 8;
2017
2018         freecount = 0;
2019         for (i = 0; i < vm_ndomains; i++) {
2020                 struct vm_domain *vmd;
2021
2022                 vm_pageout_init_domain(i);
2023                 vmd = VM_DOMAIN(i);
2024                 vm_cnt.v_free_reserved += vmd->vmd_free_reserved;
2025                 vm_cnt.v_free_target += vmd->vmd_free_target;
2026                 vm_cnt.v_free_min += vmd->vmd_free_min;
2027                 vm_cnt.v_inactive_target += vmd->vmd_inactive_target;
2028                 vm_cnt.v_pageout_free_min += vmd->vmd_pageout_free_min;
2029                 vm_cnt.v_interrupt_free_min += vmd->vmd_interrupt_free_min;
2030                 vm_cnt.v_free_severe += vmd->vmd_free_severe;
2031                 freecount += vmd->vmd_free_count;
2032         }
2033
2034         /*
2035          * Set interval in seconds for active scan.  We want to visit each
2036          * page at least once every ten minutes.  This is to prevent worst
2037          * case paging behaviors with stale active LRU.
2038          */
2039         if (vm_pageout_update_period == 0)
2040                 vm_pageout_update_period = 600;
2041
2042         if (vm_page_max_wired == 0)
2043                 vm_page_max_wired = freecount / 3;
2044 }
2045
2046 /*
2047  *     vm_pageout is the high level pageout daemon.
2048  */
2049 static void
2050 vm_pageout(void)
2051 {
2052         struct proc *p;
2053         struct thread *td;
2054         int error, first, i;
2055
2056         p = curproc;
2057         td = curthread;
2058
2059         swap_pager_swap_init();
2060         for (first = -1, i = 0; i < vm_ndomains; i++) {
2061                 if (VM_DOMAIN_EMPTY(i)) {
2062                         if (bootverbose)
2063                                 printf("domain %d empty; skipping pageout\n",
2064                                     i);
2065                         continue;
2066                 }
2067                 if (first == -1)
2068                         first = i;
2069                 else {
2070                         error = kthread_add(vm_pageout_worker,
2071                             (void *)(uintptr_t)i, p, NULL, 0, 0, "dom%d", i);
2072                         if (error != 0)
2073                                 panic("starting pageout for domain %d: %d\n",
2074                                     i, error);
2075                 }
2076                 error = kthread_add(vm_pageout_laundry_worker,
2077                     (void *)(uintptr_t)i, p, NULL, 0, 0, "laundry: dom%d", i);
2078                 if (error != 0)
2079                         panic("starting laundry for domain %d: %d", i, error);
2080         }
2081         error = kthread_add(uma_reclaim_worker, NULL, p, NULL, 0, 0, "uma");
2082         if (error != 0)
2083                 panic("starting uma_reclaim helper, error %d\n", error);
2084
2085         snprintf(td->td_name, sizeof(td->td_name), "dom%d", first);
2086         vm_pageout_worker((void *)(uintptr_t)first);
2087 }
2088
2089 /*
2090  * Perform an advisory wakeup of the page daemon.
2091  */
2092 void
2093 pagedaemon_wakeup(int domain)
2094 {
2095         struct vm_domain *vmd;
2096
2097         vmd = VM_DOMAIN(domain);
2098         vm_domain_pageout_assert_unlocked(vmd);
2099         if (curproc == pageproc)
2100                 return;
2101
2102         if (atomic_fetchadd_int(&vmd->vmd_pageout_wanted, 1) == 0) {
2103                 vm_domain_pageout_lock(vmd);
2104                 atomic_store_int(&vmd->vmd_pageout_wanted, 1);
2105                 wakeup(&vmd->vmd_pageout_wanted);
2106                 vm_domain_pageout_unlock(vmd);
2107         }
2108 }