]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_pageout.c
Increase the pageout cluster size to 32 pages.
[FreeBSD/FreeBSD.git] / sys / vm / vm_pageout.c
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  * Copyright (c) 2005 Yahoo! Technologies Norway AS
9  * All rights reserved.
10  *
11  * This code is derived from software contributed to Berkeley by
12  * The Mach Operating System project at Carnegie-Mellon University.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *      This product includes software developed by the University of
25  *      California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
43  *
44  *
45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46  * All rights reserved.
47  *
48  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49  *
50  * Permission to use, copy, modify and distribute this software and
51  * its documentation is hereby granted, provided that both the copyright
52  * notice and this permission notice appear in all copies of the
53  * software, derivative works or modified versions, and any portions
54  * thereof, and that both notices appear in supporting documentation.
55  *
56  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59  *
60  * Carnegie Mellon requests users of this software to return to
61  *
62  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63  *  School of Computer Science
64  *  Carnegie Mellon University
65  *  Pittsburgh PA 15213-3890
66  *
67  * any improvements or extensions that they make and grant Carnegie the
68  * rights to redistribute these changes.
69  */
70
71 /*
72  *      The proverbial page-out daemon.
73  */
74
75 #include <sys/cdefs.h>
76 __FBSDID("$FreeBSD$");
77
78 #include "opt_vm.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/eventhandler.h>
84 #include <sys/lock.h>
85 #include <sys/mutex.h>
86 #include <sys/proc.h>
87 #include <sys/kthread.h>
88 #include <sys/ktr.h>
89 #include <sys/mount.h>
90 #include <sys/racct.h>
91 #include <sys/resourcevar.h>
92 #include <sys/sched.h>
93 #include <sys/sdt.h>
94 #include <sys/signalvar.h>
95 #include <sys/smp.h>
96 #include <sys/time.h>
97 #include <sys/vnode.h>
98 #include <sys/vmmeter.h>
99 #include <sys/rwlock.h>
100 #include <sys/sx.h>
101 #include <sys/sysctl.h>
102
103 #include <vm/vm.h>
104 #include <vm/vm_param.h>
105 #include <vm/vm_object.h>
106 #include <vm/vm_page.h>
107 #include <vm/vm_map.h>
108 #include <vm/vm_pageout.h>
109 #include <vm/vm_pager.h>
110 #include <vm/vm_phys.h>
111 #include <vm/swap_pager.h>
112 #include <vm/vm_extern.h>
113 #include <vm/uma.h>
114
115 /*
116  * System initialization
117  */
118
119 /* the kernel process "vm_pageout"*/
120 static void vm_pageout(void);
121 static void vm_pageout_init(void);
122 static int vm_pageout_clean(vm_page_t m, int *numpagedout);
123 static int vm_pageout_cluster(vm_page_t m);
124 static bool vm_pageout_scan(struct vm_domain *vmd, int pass);
125 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
126     int starting_page_shortage);
127
128 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init,
129     NULL);
130
131 struct proc *pageproc;
132
133 static struct kproc_desc page_kp = {
134         "pagedaemon",
135         vm_pageout,
136         &pageproc
137 };
138 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start,
139     &page_kp);
140
141 SDT_PROVIDER_DEFINE(vm);
142 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan);
143
144 #if !defined(NO_SWAPPING)
145 /* the kernel process "vm_daemon"*/
146 static void vm_daemon(void);
147 static struct   proc *vmproc;
148
149 static struct kproc_desc vm_kp = {
150         "vmdaemon",
151         vm_daemon,
152         &vmproc
153 };
154 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
155 #endif
156
157 /* Pagedaemon activity rates, in subdivisions of one second. */
158 #define VM_LAUNDER_RATE         10
159 #define VM_INACT_SCAN_RATE      2
160
161 int vm_pageout_deficit;         /* Estimated number of pages deficit */
162 u_int vm_pageout_wakeup_thresh;
163 static int vm_pageout_oom_seq = 12;
164 bool vm_pageout_wanted;         /* Event on which pageout daemon sleeps */
165 bool vm_pages_needed;           /* Are threads waiting for free pages? */
166
167 /* Pending request for dirty page laundering. */
168 static enum {
169         VM_LAUNDRY_IDLE,
170         VM_LAUNDRY_BACKGROUND,
171         VM_LAUNDRY_SHORTFALL
172 } vm_laundry_request = VM_LAUNDRY_IDLE;
173
174 #if !defined(NO_SWAPPING)
175 static int vm_pageout_req_swapout;      /* XXX */
176 static int vm_daemon_needed;
177 static struct mtx vm_daemon_mtx;
178 /* Allow for use by vm_pageout before vm_daemon is initialized. */
179 MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
180 #endif
181 static int vm_pageout_update_period;
182 static int disable_swap_pageouts;
183 static int lowmem_period = 10;
184 static time_t lowmem_uptime;
185 static int swapdev_enabled;
186
187 #if defined(NO_SWAPPING)
188 static int vm_swap_enabled = 0;
189 static int vm_swap_idle_enabled = 0;
190 #else
191 static int vm_swap_enabled = 1;
192 static int vm_swap_idle_enabled = 0;
193 #endif
194
195 static int vm_panic_on_oom = 0;
196
197 SYSCTL_INT(_vm, OID_AUTO, panic_on_oom,
198         CTLFLAG_RWTUN, &vm_panic_on_oom, 0,
199         "panic on out of memory instead of killing the largest process");
200
201 SYSCTL_INT(_vm, OID_AUTO, pageout_wakeup_thresh,
202         CTLFLAG_RW, &vm_pageout_wakeup_thresh, 0,
203         "free page threshold for waking up the pageout daemon");
204
205 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period,
206         CTLFLAG_RW, &vm_pageout_update_period, 0,
207         "Maximum active LRU update period");
208   
209 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RW, &lowmem_period, 0,
210         "Low memory callback period");
211
212 #if defined(NO_SWAPPING)
213 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
214         CTLFLAG_RD, &vm_swap_enabled, 0, "Enable entire process swapout");
215 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
216         CTLFLAG_RD, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
217 #else
218 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
219         CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
220 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
221         CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
222 #endif
223
224 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
225         CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
226
227 static int pageout_lock_miss;
228 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
229         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
230
231 SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq,
232         CTLFLAG_RW, &vm_pageout_oom_seq, 0,
233         "back-to-back calls to oom detector to start OOM");
234
235 static int act_scan_laundry_weight = 3;
236 SYSCTL_INT(_vm, OID_AUTO, act_scan_laundry_weight, CTLFLAG_RW,
237     &act_scan_laundry_weight, 0,
238     "weight given to clean vs. dirty pages in active queue scans");
239
240 static u_int vm_background_launder_target;
241 SYSCTL_UINT(_vm, OID_AUTO, background_launder_target, CTLFLAG_RW,
242     &vm_background_launder_target, 0,
243     "background laundering target, in pages");
244
245 static u_int vm_background_launder_rate = 4096;
246 SYSCTL_UINT(_vm, OID_AUTO, background_launder_rate, CTLFLAG_RW,
247     &vm_background_launder_rate, 0,
248     "background laundering rate, in kilobytes per second");
249
250 static u_int vm_background_launder_max = 20 * 1024;
251 SYSCTL_UINT(_vm, OID_AUTO, background_launder_max, CTLFLAG_RW,
252     &vm_background_launder_max, 0, "background laundering cap, in kilobytes");
253
254 int vm_pageout_page_count = 32;
255
256 int vm_page_max_wired;          /* XXX max # of wired pages system-wide */
257 SYSCTL_INT(_vm, OID_AUTO, max_wired,
258         CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
259
260 static u_int isqrt(u_int num);
261 static boolean_t vm_pageout_fallback_object_lock(vm_page_t, vm_page_t *);
262 static int vm_pageout_launder(struct vm_domain *vmd, int launder,
263     bool in_shortfall);
264 static void vm_pageout_laundry_worker(void *arg);
265 #if !defined(NO_SWAPPING)
266 static void vm_pageout_map_deactivate_pages(vm_map_t, long);
267 static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
268 static void vm_req_vmdaemon(int req);
269 #endif
270 static boolean_t vm_pageout_page_lock(vm_page_t, vm_page_t *);
271
272 /*
273  * Initialize a dummy page for marking the caller's place in the specified
274  * paging queue.  In principle, this function only needs to set the flag
275  * PG_MARKER.  Nonetheless, it write busies and initializes the hold count
276  * to one as safety precautions.
277  */ 
278 static void
279 vm_pageout_init_marker(vm_page_t marker, u_short queue)
280 {
281
282         bzero(marker, sizeof(*marker));
283         marker->flags = PG_MARKER;
284         marker->busy_lock = VPB_SINGLE_EXCLUSIVER;
285         marker->queue = queue;
286         marker->hold_count = 1;
287 }
288
289 /*
290  * vm_pageout_fallback_object_lock:
291  * 
292  * Lock vm object currently associated with `m'. VM_OBJECT_TRYWLOCK is
293  * known to have failed and page queue must be either PQ_ACTIVE or
294  * PQ_INACTIVE.  To avoid lock order violation, unlock the page queue
295  * while locking the vm object.  Use marker page to detect page queue
296  * changes and maintain notion of next page on page queue.  Return
297  * TRUE if no changes were detected, FALSE otherwise.  vm object is
298  * locked on return.
299  * 
300  * This function depends on both the lock portion of struct vm_object
301  * and normal struct vm_page being type stable.
302  */
303 static boolean_t
304 vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
305 {
306         struct vm_page marker;
307         struct vm_pagequeue *pq;
308         boolean_t unchanged;
309         u_short queue;
310         vm_object_t object;
311
312         queue = m->queue;
313         vm_pageout_init_marker(&marker, queue);
314         pq = vm_page_pagequeue(m);
315         object = m->object;
316         
317         TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q);
318         vm_pagequeue_unlock(pq);
319         vm_page_unlock(m);
320         VM_OBJECT_WLOCK(object);
321         vm_page_lock(m);
322         vm_pagequeue_lock(pq);
323
324         /*
325          * The page's object might have changed, and/or the page might
326          * have moved from its original position in the queue.  If the
327          * page's object has changed, then the caller should abandon
328          * processing the page because the wrong object lock was
329          * acquired.  Use the marker's plinks.q, not the page's, to
330          * determine if the page has been moved.  The state of the
331          * page's plinks.q can be indeterminate; whereas, the marker's
332          * plinks.q must be valid.
333          */
334         *next = TAILQ_NEXT(&marker, plinks.q);
335         unchanged = m->object == object &&
336             m == TAILQ_PREV(&marker, pglist, plinks.q);
337         KASSERT(!unchanged || m->queue == queue,
338             ("page %p queue %d %d", m, queue, m->queue));
339         TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q);
340         return (unchanged);
341 }
342
343 /*
344  * Lock the page while holding the page queue lock.  Use marker page
345  * to detect page queue changes and maintain notion of next page on
346  * page queue.  Return TRUE if no changes were detected, FALSE
347  * otherwise.  The page is locked on return. The page queue lock might
348  * be dropped and reacquired.
349  *
350  * This function depends on normal struct vm_page being type stable.
351  */
352 static boolean_t
353 vm_pageout_page_lock(vm_page_t m, vm_page_t *next)
354 {
355         struct vm_page marker;
356         struct vm_pagequeue *pq;
357         boolean_t unchanged;
358         u_short queue;
359
360         vm_page_lock_assert(m, MA_NOTOWNED);
361         if (vm_page_trylock(m))
362                 return (TRUE);
363
364         queue = m->queue;
365         vm_pageout_init_marker(&marker, queue);
366         pq = vm_page_pagequeue(m);
367
368         TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q);
369         vm_pagequeue_unlock(pq);
370         vm_page_lock(m);
371         vm_pagequeue_lock(pq);
372
373         /* Page queue might have changed. */
374         *next = TAILQ_NEXT(&marker, plinks.q);
375         unchanged = m == TAILQ_PREV(&marker, pglist, plinks.q);
376         KASSERT(!unchanged || m->queue == queue,
377             ("page %p queue %d %d", m, queue, m->queue));
378         TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q);
379         return (unchanged);
380 }
381
382 /*
383  * Scan for pages at adjacent offsets within the given page's object that are
384  * eligible for laundering, form a cluster of these pages and the given page,
385  * and launder that cluster.
386  */
387 static int
388 vm_pageout_cluster(vm_page_t m)
389 {
390         vm_object_t object;
391         vm_page_t mc[2 * vm_pageout_page_count], p, pb, ps;
392         vm_pindex_t pindex;
393         int ib, is, page_base, pageout_count;
394
395         vm_page_assert_locked(m);
396         object = m->object;
397         VM_OBJECT_ASSERT_WLOCKED(object);
398         pindex = m->pindex;
399
400         /*
401          * We can't clean the page if it is busy or held.
402          */
403         vm_page_assert_unbusied(m);
404         KASSERT(m->hold_count == 0, ("page %p is held", m));
405         vm_page_unlock(m);
406
407         mc[vm_pageout_page_count] = pb = ps = m;
408         pageout_count = 1;
409         page_base = vm_pageout_page_count;
410         ib = 1;
411         is = 1;
412
413         /*
414          * We can cluster only if the page is not clean, busy, or held, and
415          * the page is in the laundry queue.
416          *
417          * During heavy mmap/modification loads the pageout
418          * daemon can really fragment the underlying file
419          * due to flushing pages out of order and not trying to
420          * align the clusters (which leaves sporadic out-of-order
421          * holes).  To solve this problem we do the reverse scan
422          * first and attempt to align our cluster, then do a 
423          * forward scan if room remains.
424          */
425 more:
426         while (ib != 0 && pageout_count < vm_pageout_page_count) {
427                 if (ib > pindex) {
428                         ib = 0;
429                         break;
430                 }
431                 if ((p = vm_page_prev(pb)) == NULL || vm_page_busied(p)) {
432                         ib = 0;
433                         break;
434                 }
435                 vm_page_test_dirty(p);
436                 if (p->dirty == 0) {
437                         ib = 0;
438                         break;
439                 }
440                 vm_page_lock(p);
441                 if (!vm_page_in_laundry(p) ||
442                     p->hold_count != 0) {       /* may be undergoing I/O */
443                         vm_page_unlock(p);
444                         ib = 0;
445                         break;
446                 }
447                 vm_page_unlock(p);
448                 mc[--page_base] = pb = p;
449                 ++pageout_count;
450                 ++ib;
451
452                 /*
453                  * We are at an alignment boundary.  Stop here, and switch
454                  * directions.  Do not clear ib.
455                  */
456                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
457                         break;
458         }
459         while (pageout_count < vm_pageout_page_count && 
460             pindex + is < object->size) {
461                 if ((p = vm_page_next(ps)) == NULL || vm_page_busied(p))
462                         break;
463                 vm_page_test_dirty(p);
464                 if (p->dirty == 0)
465                         break;
466                 vm_page_lock(p);
467                 if (!vm_page_in_laundry(p) ||
468                     p->hold_count != 0) {       /* may be undergoing I/O */
469                         vm_page_unlock(p);
470                         break;
471                 }
472                 vm_page_unlock(p);
473                 mc[page_base + pageout_count] = ps = p;
474                 ++pageout_count;
475                 ++is;
476         }
477
478         /*
479          * If we exhausted our forward scan, continue with the reverse scan
480          * when possible, even past an alignment boundary.  This catches
481          * boundary conditions.
482          */
483         if (ib != 0 && pageout_count < vm_pageout_page_count)
484                 goto more;
485
486         return (vm_pageout_flush(&mc[page_base], pageout_count,
487             VM_PAGER_PUT_NOREUSE, 0, NULL, NULL));
488 }
489
490 /*
491  * vm_pageout_flush() - launder the given pages
492  *
493  *      The given pages are laundered.  Note that we setup for the start of
494  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
495  *      reference count all in here rather then in the parent.  If we want
496  *      the parent to do more sophisticated things we may have to change
497  *      the ordering.
498  *
499  *      Returned runlen is the count of pages between mreq and first
500  *      page after mreq with status VM_PAGER_AGAIN.
501  *      *eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
502  *      for any page in runlen set.
503  */
504 int
505 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
506     boolean_t *eio)
507 {
508         vm_object_t object = mc[0]->object;
509         int pageout_status[count];
510         int numpagedout = 0;
511         int i, runlen;
512
513         VM_OBJECT_ASSERT_WLOCKED(object);
514
515         /*
516          * Initiate I/O.  Bump the vm_page_t->busy counter and
517          * mark the pages read-only.
518          *
519          * We do not have to fixup the clean/dirty bits here... we can
520          * allow the pager to do it after the I/O completes.
521          *
522          * NOTE! mc[i]->dirty may be partial or fragmented due to an
523          * edge case with file fragments.
524          */
525         for (i = 0; i < count; i++) {
526                 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
527                     ("vm_pageout_flush: partially invalid page %p index %d/%d",
528                         mc[i], i, count));
529                 vm_page_sbusy(mc[i]);
530                 pmap_remove_write(mc[i]);
531         }
532         vm_object_pip_add(object, count);
533
534         vm_pager_put_pages(object, mc, count, flags, pageout_status);
535
536         runlen = count - mreq;
537         if (eio != NULL)
538                 *eio = FALSE;
539         for (i = 0; i < count; i++) {
540                 vm_page_t mt = mc[i];
541
542                 KASSERT(pageout_status[i] == VM_PAGER_PEND ||
543                     !pmap_page_is_write_mapped(mt),
544                     ("vm_pageout_flush: page %p is not write protected", mt));
545                 switch (pageout_status[i]) {
546                 case VM_PAGER_OK:
547                         vm_page_lock(mt);
548                         if (vm_page_in_laundry(mt))
549                                 vm_page_deactivate_noreuse(mt);
550                         vm_page_unlock(mt);
551                         /* FALLTHROUGH */
552                 case VM_PAGER_PEND:
553                         numpagedout++;
554                         break;
555                 case VM_PAGER_BAD:
556                         /*
557                          * The page is outside the object's range.  We pretend
558                          * that the page out worked and clean the page, so the
559                          * changes will be lost if the page is reclaimed by
560                          * the page daemon.
561                          */
562                         vm_page_undirty(mt);
563                         vm_page_lock(mt);
564                         if (vm_page_in_laundry(mt))
565                                 vm_page_deactivate_noreuse(mt);
566                         vm_page_unlock(mt);
567                         break;
568                 case VM_PAGER_ERROR:
569                 case VM_PAGER_FAIL:
570                         /*
571                          * If the page couldn't be paged out to swap because the
572                          * pager wasn't able to find space, place the page in
573                          * the PQ_UNSWAPPABLE holding queue.  This is an
574                          * optimization that prevents the page daemon from
575                          * wasting CPU cycles on pages that cannot be reclaimed
576                          * becase no swap device is configured.
577                          *
578                          * Otherwise, reactivate the page so that it doesn't
579                          * clog the laundry and inactive queues.  (We will try
580                          * paging it out again later.)
581                          */
582                         vm_page_lock(mt);
583                         if (object->type == OBJT_SWAP &&
584                             pageout_status[i] == VM_PAGER_FAIL) {
585                                 vm_page_unswappable(mt);
586                                 numpagedout++;
587                         } else
588                                 vm_page_activate(mt);
589                         vm_page_unlock(mt);
590                         if (eio != NULL && i >= mreq && i - mreq < runlen)
591                                 *eio = TRUE;
592                         break;
593                 case VM_PAGER_AGAIN:
594                         if (i >= mreq && i - mreq < runlen)
595                                 runlen = i - mreq;
596                         break;
597                 }
598
599                 /*
600                  * If the operation is still going, leave the page busy to
601                  * block all other accesses. Also, leave the paging in
602                  * progress indicator set so that we don't attempt an object
603                  * collapse.
604                  */
605                 if (pageout_status[i] != VM_PAGER_PEND) {
606                         vm_object_pip_wakeup(object);
607                         vm_page_sunbusy(mt);
608                 }
609         }
610         if (prunlen != NULL)
611                 *prunlen = runlen;
612         return (numpagedout);
613 }
614
615 static void
616 vm_pageout_swapon(void *arg __unused, struct swdevt *sp __unused)
617 {
618
619         atomic_store_rel_int(&swapdev_enabled, 1);
620 }
621
622 static void
623 vm_pageout_swapoff(void *arg __unused, struct swdevt *sp __unused)
624 {
625
626         if (swap_pager_nswapdev() == 1)
627                 atomic_store_rel_int(&swapdev_enabled, 0);
628 }
629
630 #if !defined(NO_SWAPPING)
631 /*
632  *      vm_pageout_object_deactivate_pages
633  *
634  *      Deactivate enough pages to satisfy the inactive target
635  *      requirements.
636  *
637  *      The object and map must be locked.
638  */
639 static void
640 vm_pageout_object_deactivate_pages(pmap_t pmap, vm_object_t first_object,
641     long desired)
642 {
643         vm_object_t backing_object, object;
644         vm_page_t p;
645         int act_delta, remove_mode;
646
647         VM_OBJECT_ASSERT_LOCKED(first_object);
648         if ((first_object->flags & OBJ_FICTITIOUS) != 0)
649                 return;
650         for (object = first_object;; object = backing_object) {
651                 if (pmap_resident_count(pmap) <= desired)
652                         goto unlock_return;
653                 VM_OBJECT_ASSERT_LOCKED(object);
654                 if ((object->flags & OBJ_UNMANAGED) != 0 ||
655                     object->paging_in_progress != 0)
656                         goto unlock_return;
657
658                 remove_mode = 0;
659                 if (object->shadow_count > 1)
660                         remove_mode = 1;
661                 /*
662                  * Scan the object's entire memory queue.
663                  */
664                 TAILQ_FOREACH(p, &object->memq, listq) {
665                         if (pmap_resident_count(pmap) <= desired)
666                                 goto unlock_return;
667                         if (vm_page_busied(p))
668                                 continue;
669                         VM_CNT_INC(v_pdpages);
670                         vm_page_lock(p);
671                         if (p->wire_count != 0 || p->hold_count != 0 ||
672                             !pmap_page_exists_quick(pmap, p)) {
673                                 vm_page_unlock(p);
674                                 continue;
675                         }
676                         act_delta = pmap_ts_referenced(p);
677                         if ((p->aflags & PGA_REFERENCED) != 0) {
678                                 if (act_delta == 0)
679                                         act_delta = 1;
680                                 vm_page_aflag_clear(p, PGA_REFERENCED);
681                         }
682                         if (!vm_page_active(p) && act_delta != 0) {
683                                 vm_page_activate(p);
684                                 p->act_count += act_delta;
685                         } else if (vm_page_active(p)) {
686                                 if (act_delta == 0) {
687                                         p->act_count -= min(p->act_count,
688                                             ACT_DECLINE);
689                                         if (!remove_mode && p->act_count == 0) {
690                                                 pmap_remove_all(p);
691                                                 vm_page_deactivate(p);
692                                         } else
693                                                 vm_page_requeue(p);
694                                 } else {
695                                         vm_page_activate(p);
696                                         if (p->act_count < ACT_MAX -
697                                             ACT_ADVANCE)
698                                                 p->act_count += ACT_ADVANCE;
699                                         vm_page_requeue(p);
700                                 }
701                         } else if (vm_page_inactive(p))
702                                 pmap_remove_all(p);
703                         vm_page_unlock(p);
704                 }
705                 if ((backing_object = object->backing_object) == NULL)
706                         goto unlock_return;
707                 VM_OBJECT_RLOCK(backing_object);
708                 if (object != first_object)
709                         VM_OBJECT_RUNLOCK(object);
710         }
711 unlock_return:
712         if (object != first_object)
713                 VM_OBJECT_RUNLOCK(object);
714 }
715
716 /*
717  * deactivate some number of pages in a map, try to do it fairly, but
718  * that is really hard to do.
719  */
720 static void
721 vm_pageout_map_deactivate_pages(map, desired)
722         vm_map_t map;
723         long desired;
724 {
725         vm_map_entry_t tmpe;
726         vm_object_t obj, bigobj;
727         int nothingwired;
728
729         if (!vm_map_trylock(map))
730                 return;
731
732         bigobj = NULL;
733         nothingwired = TRUE;
734
735         /*
736          * first, search out the biggest object, and try to free pages from
737          * that.
738          */
739         tmpe = map->header.next;
740         while (tmpe != &map->header) {
741                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
742                         obj = tmpe->object.vm_object;
743                         if (obj != NULL && VM_OBJECT_TRYRLOCK(obj)) {
744                                 if (obj->shadow_count <= 1 &&
745                                     (bigobj == NULL ||
746                                      bigobj->resident_page_count < obj->resident_page_count)) {
747                                         if (bigobj != NULL)
748                                                 VM_OBJECT_RUNLOCK(bigobj);
749                                         bigobj = obj;
750                                 } else
751                                         VM_OBJECT_RUNLOCK(obj);
752                         }
753                 }
754                 if (tmpe->wired_count > 0)
755                         nothingwired = FALSE;
756                 tmpe = tmpe->next;
757         }
758
759         if (bigobj != NULL) {
760                 vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
761                 VM_OBJECT_RUNLOCK(bigobj);
762         }
763         /*
764          * Next, hunt around for other pages to deactivate.  We actually
765          * do this search sort of wrong -- .text first is not the best idea.
766          */
767         tmpe = map->header.next;
768         while (tmpe != &map->header) {
769                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
770                         break;
771                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
772                         obj = tmpe->object.vm_object;
773                         if (obj != NULL) {
774                                 VM_OBJECT_RLOCK(obj);
775                                 vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
776                                 VM_OBJECT_RUNLOCK(obj);
777                         }
778                 }
779                 tmpe = tmpe->next;
780         }
781
782         /*
783          * Remove all mappings if a process is swapped out, this will free page
784          * table pages.
785          */
786         if (desired == 0 && nothingwired) {
787                 pmap_remove(vm_map_pmap(map), vm_map_min(map),
788                     vm_map_max(map));
789         }
790
791         vm_map_unlock(map);
792 }
793 #endif          /* !defined(NO_SWAPPING) */
794
795 /*
796  * Attempt to acquire all of the necessary locks to launder a page and
797  * then call through the clustering layer to PUTPAGES.  Wait a short
798  * time for a vnode lock.
799  *
800  * Requires the page and object lock on entry, releases both before return.
801  * Returns 0 on success and an errno otherwise.
802  */
803 static int
804 vm_pageout_clean(vm_page_t m, int *numpagedout)
805 {
806         struct vnode *vp;
807         struct mount *mp;
808         vm_object_t object;
809         vm_pindex_t pindex;
810         int error, lockmode;
811
812         vm_page_assert_locked(m);
813         object = m->object;
814         VM_OBJECT_ASSERT_WLOCKED(object);
815         error = 0;
816         vp = NULL;
817         mp = NULL;
818
819         /*
820          * The object is already known NOT to be dead.   It
821          * is possible for the vget() to block the whole
822          * pageout daemon, but the new low-memory handling
823          * code should prevent it.
824          *
825          * We can't wait forever for the vnode lock, we might
826          * deadlock due to a vn_read() getting stuck in
827          * vm_wait while holding this vnode.  We skip the 
828          * vnode if we can't get it in a reasonable amount
829          * of time.
830          */
831         if (object->type == OBJT_VNODE) {
832                 vm_page_unlock(m);
833                 vp = object->handle;
834                 if (vp->v_type == VREG &&
835                     vn_start_write(vp, &mp, V_NOWAIT) != 0) {
836                         mp = NULL;
837                         error = EDEADLK;
838                         goto unlock_all;
839                 }
840                 KASSERT(mp != NULL,
841                     ("vp %p with NULL v_mount", vp));
842                 vm_object_reference_locked(object);
843                 pindex = m->pindex;
844                 VM_OBJECT_WUNLOCK(object);
845                 lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
846                     LK_SHARED : LK_EXCLUSIVE;
847                 if (vget(vp, lockmode | LK_TIMELOCK, curthread)) {
848                         vp = NULL;
849                         error = EDEADLK;
850                         goto unlock_mp;
851                 }
852                 VM_OBJECT_WLOCK(object);
853                 vm_page_lock(m);
854                 /*
855                  * While the object and page were unlocked, the page
856                  * may have been:
857                  * (1) moved to a different queue,
858                  * (2) reallocated to a different object,
859                  * (3) reallocated to a different offset, or
860                  * (4) cleaned.
861                  */
862                 if (!vm_page_in_laundry(m) || m->object != object ||
863                     m->pindex != pindex || m->dirty == 0) {
864                         vm_page_unlock(m);
865                         error = ENXIO;
866                         goto unlock_all;
867                 }
868
869                 /*
870                  * The page may have been busied or held while the object
871                  * and page locks were released.
872                  */
873                 if (vm_page_busied(m) || m->hold_count != 0) {
874                         vm_page_unlock(m);
875                         error = EBUSY;
876                         goto unlock_all;
877                 }
878         }
879
880         /*
881          * If a page is dirty, then it is either being washed
882          * (but not yet cleaned) or it is still in the
883          * laundry.  If it is still in the laundry, then we
884          * start the cleaning operation. 
885          */
886         if ((*numpagedout = vm_pageout_cluster(m)) == 0)
887                 error = EIO;
888
889 unlock_all:
890         VM_OBJECT_WUNLOCK(object);
891
892 unlock_mp:
893         vm_page_lock_assert(m, MA_NOTOWNED);
894         if (mp != NULL) {
895                 if (vp != NULL)
896                         vput(vp);
897                 vm_object_deallocate(object);
898                 vn_finished_write(mp);
899         }
900
901         return (error);
902 }
903
904 /*
905  * Attempt to launder the specified number of pages.
906  *
907  * Returns the number of pages successfully laundered.
908  */
909 static int
910 vm_pageout_launder(struct vm_domain *vmd, int launder, bool in_shortfall)
911 {
912         struct vm_pagequeue *pq;
913         vm_object_t object;
914         vm_page_t m, next;
915         int act_delta, error, maxscan, numpagedout, starting_target;
916         int vnodes_skipped;
917         bool pageout_ok, queue_locked;
918
919         starting_target = launder;
920         vnodes_skipped = 0;
921
922         /*
923          * Scan the laundry queues for pages eligible to be laundered.  We stop
924          * once the target number of dirty pages have been laundered, or once
925          * we've reached the end of the queue.  A single iteration of this loop
926          * may cause more than one page to be laundered because of clustering.
927          *
928          * maxscan ensures that we don't re-examine requeued pages.  Any
929          * additional pages written as part of a cluster are subtracted from
930          * maxscan since they must be taken from the laundry queue.
931          *
932          * As an optimization, we avoid laundering from PQ_UNSWAPPABLE when no
933          * swap devices are configured.
934          */
935         if (atomic_load_acq_int(&swapdev_enabled))
936                 pq = &vmd->vmd_pagequeues[PQ_UNSWAPPABLE];
937         else
938                 pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
939
940 scan:
941         vm_pagequeue_lock(pq);
942         maxscan = pq->pq_cnt;
943         queue_locked = true;
944         for (m = TAILQ_FIRST(&pq->pq_pl);
945             m != NULL && maxscan-- > 0 && launder > 0;
946             m = next) {
947                 vm_pagequeue_assert_locked(pq);
948                 KASSERT(queue_locked, ("unlocked laundry queue"));
949                 KASSERT(vm_page_in_laundry(m),
950                     ("page %p has an inconsistent queue", m));
951                 next = TAILQ_NEXT(m, plinks.q);
952                 if ((m->flags & PG_MARKER) != 0)
953                         continue;
954                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
955                     ("PG_FICTITIOUS page %p cannot be in laundry queue", m));
956                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
957                     ("VPO_UNMANAGED page %p cannot be in laundry queue", m));
958                 if (!vm_pageout_page_lock(m, &next) || m->hold_count != 0) {
959                         vm_page_unlock(m);
960                         continue;
961                 }
962                 object = m->object;
963                 if ((!VM_OBJECT_TRYWLOCK(object) &&
964                     (!vm_pageout_fallback_object_lock(m, &next) ||
965                     m->hold_count != 0)) || vm_page_busied(m)) {
966                         VM_OBJECT_WUNLOCK(object);
967                         vm_page_unlock(m);
968                         continue;
969                 }
970
971                 /*
972                  * Unlock the laundry queue, invalidating the 'next' pointer.
973                  * Use a marker to remember our place in the laundry queue.
974                  */
975                 TAILQ_INSERT_AFTER(&pq->pq_pl, m, &vmd->vmd_laundry_marker,
976                     plinks.q);
977                 vm_pagequeue_unlock(pq);
978                 queue_locked = false;
979
980                 /*
981                  * Invalid pages can be easily freed.  They cannot be
982                  * mapped; vm_page_free() asserts this.
983                  */
984                 if (m->valid == 0)
985                         goto free_page;
986
987                 /*
988                  * If the page has been referenced and the object is not dead,
989                  * reactivate or requeue the page depending on whether the
990                  * object is mapped.
991                  */
992                 if ((m->aflags & PGA_REFERENCED) != 0) {
993                         vm_page_aflag_clear(m, PGA_REFERENCED);
994                         act_delta = 1;
995                 } else
996                         act_delta = 0;
997                 if (object->ref_count != 0)
998                         act_delta += pmap_ts_referenced(m);
999                 else {
1000                         KASSERT(!pmap_page_is_mapped(m),
1001                             ("page %p is mapped", m));
1002                 }
1003                 if (act_delta != 0) {
1004                         if (object->ref_count != 0) {
1005                                 VM_CNT_INC(v_reactivated);
1006                                 vm_page_activate(m);
1007
1008                                 /*
1009                                  * Increase the activation count if the page
1010                                  * was referenced while in the laundry queue.
1011                                  * This makes it less likely that the page will
1012                                  * be returned prematurely to the inactive
1013                                  * queue.
1014                                  */
1015                                 m->act_count += act_delta + ACT_ADVANCE;
1016
1017                                 /*
1018                                  * If this was a background laundering, count
1019                                  * activated pages towards our target.  The
1020                                  * purpose of background laundering is to ensure
1021                                  * that pages are eventually cycled through the
1022                                  * laundry queue, and an activation is a valid
1023                                  * way out.
1024                                  */
1025                                 if (!in_shortfall)
1026                                         launder--;
1027                                 goto drop_page;
1028                         } else if ((object->flags & OBJ_DEAD) == 0)
1029                                 goto requeue_page;
1030                 }
1031
1032                 /*
1033                  * If the page appears to be clean at the machine-independent
1034                  * layer, then remove all of its mappings from the pmap in
1035                  * anticipation of freeing it.  If, however, any of the page's
1036                  * mappings allow write access, then the page may still be
1037                  * modified until the last of those mappings are removed.
1038                  */
1039                 if (object->ref_count != 0) {
1040                         vm_page_test_dirty(m);
1041                         if (m->dirty == 0)
1042                                 pmap_remove_all(m);
1043                 }
1044
1045                 /*
1046                  * Clean pages are freed, and dirty pages are paged out unless
1047                  * they belong to a dead object.  Requeueing dirty pages from
1048                  * dead objects is pointless, as they are being paged out and
1049                  * freed by the thread that destroyed the object.
1050                  */
1051                 if (m->dirty == 0) {
1052 free_page:
1053                         vm_page_free(m);
1054                         VM_CNT_INC(v_dfree);
1055                 } else if ((object->flags & OBJ_DEAD) == 0) {
1056                         if (object->type != OBJT_SWAP &&
1057                             object->type != OBJT_DEFAULT)
1058                                 pageout_ok = true;
1059                         else if (disable_swap_pageouts)
1060                                 pageout_ok = false;
1061                         else
1062                                 pageout_ok = true;
1063                         if (!pageout_ok) {
1064 requeue_page:
1065                                 vm_pagequeue_lock(pq);
1066                                 queue_locked = true;
1067                                 vm_page_requeue_locked(m);
1068                                 goto drop_page;
1069                         }
1070
1071                         /*
1072                          * Form a cluster with adjacent, dirty pages from the
1073                          * same object, and page out that entire cluster.
1074                          *
1075                          * The adjacent, dirty pages must also be in the
1076                          * laundry.  However, their mappings are not checked
1077                          * for new references.  Consequently, a recently
1078                          * referenced page may be paged out.  However, that
1079                          * page will not be prematurely reclaimed.  After page
1080                          * out, the page will be placed in the inactive queue,
1081                          * where any new references will be detected and the
1082                          * page reactivated.
1083                          */
1084                         error = vm_pageout_clean(m, &numpagedout);
1085                         if (error == 0) {
1086                                 launder -= numpagedout;
1087                                 maxscan -= numpagedout - 1;
1088                         } else if (error == EDEADLK) {
1089                                 pageout_lock_miss++;
1090                                 vnodes_skipped++;
1091                         }
1092                         goto relock_queue;
1093                 }
1094 drop_page:
1095                 vm_page_unlock(m);
1096                 VM_OBJECT_WUNLOCK(object);
1097 relock_queue:
1098                 if (!queue_locked) {
1099                         vm_pagequeue_lock(pq);
1100                         queue_locked = true;
1101                 }
1102                 next = TAILQ_NEXT(&vmd->vmd_laundry_marker, plinks.q);
1103                 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_laundry_marker, plinks.q);
1104         }
1105         vm_pagequeue_unlock(pq);
1106
1107         if (launder > 0 && pq == &vmd->vmd_pagequeues[PQ_UNSWAPPABLE]) {
1108                 pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
1109                 goto scan;
1110         }
1111
1112         /*
1113          * Wakeup the sync daemon if we skipped a vnode in a writeable object
1114          * and we didn't launder enough pages.
1115          */
1116         if (vnodes_skipped > 0 && launder > 0)
1117                 (void)speedup_syncer();
1118
1119         return (starting_target - launder);
1120 }
1121
1122 /*
1123  * Compute the integer square root.
1124  */
1125 static u_int
1126 isqrt(u_int num)
1127 {
1128         u_int bit, root, tmp;
1129
1130         bit = 1u << ((NBBY * sizeof(u_int)) - 2);
1131         while (bit > num)
1132                 bit >>= 2;
1133         root = 0;
1134         while (bit != 0) {
1135                 tmp = root + bit;
1136                 root >>= 1;
1137                 if (num >= tmp) {
1138                         num -= tmp;
1139                         root += bit;
1140                 }
1141                 bit >>= 2;
1142         }
1143         return (root);
1144 }
1145
1146 /*
1147  * Perform the work of the laundry thread: periodically wake up and determine
1148  * whether any pages need to be laundered.  If so, determine the number of pages
1149  * that need to be laundered, and launder them.
1150  */
1151 static void
1152 vm_pageout_laundry_worker(void *arg)
1153 {
1154         struct vm_domain *domain;
1155         struct vm_pagequeue *pq;
1156         uint64_t nclean, ndirty;
1157         u_int last_launder, wakeups;
1158         int domidx, last_target, launder, shortfall, shortfall_cycle, target;
1159         bool in_shortfall;
1160
1161         domidx = (uintptr_t)arg;
1162         domain = &vm_dom[domidx];
1163         pq = &domain->vmd_pagequeues[PQ_LAUNDRY];
1164         KASSERT(domain->vmd_segs != 0, ("domain without segments"));
1165         vm_pageout_init_marker(&domain->vmd_laundry_marker, PQ_LAUNDRY);
1166
1167         shortfall = 0;
1168         in_shortfall = false;
1169         shortfall_cycle = 0;
1170         target = 0;
1171         last_launder = 0;
1172
1173         /*
1174          * Calls to these handlers are serialized by the swap syscall lock.
1175          */
1176         (void)EVENTHANDLER_REGISTER(swapon, vm_pageout_swapon, domain,
1177             EVENTHANDLER_PRI_ANY);
1178         (void)EVENTHANDLER_REGISTER(swapoff, vm_pageout_swapoff, domain,
1179             EVENTHANDLER_PRI_ANY);
1180
1181         /*
1182          * The pageout laundry worker is never done, so loop forever.
1183          */
1184         for (;;) {
1185                 KASSERT(target >= 0, ("negative target %d", target));
1186                 KASSERT(shortfall_cycle >= 0,
1187                     ("negative cycle %d", shortfall_cycle));
1188                 launder = 0;
1189                 wakeups = VM_CNT_FETCH(v_pdwakeups);
1190
1191                 /*
1192                  * First determine whether we need to launder pages to meet a
1193                  * shortage of free pages.
1194                  */
1195                 if (shortfall > 0) {
1196                         in_shortfall = true;
1197                         shortfall_cycle = VM_LAUNDER_RATE / VM_INACT_SCAN_RATE;
1198                         target = shortfall;
1199                 } else if (!in_shortfall)
1200                         goto trybackground;
1201                 else if (shortfall_cycle == 0 || vm_laundry_target() <= 0) {
1202                         /*
1203                          * We recently entered shortfall and began laundering
1204                          * pages.  If we have completed that laundering run
1205                          * (and we are no longer in shortfall) or we have met
1206                          * our laundry target through other activity, then we
1207                          * can stop laundering pages.
1208                          */
1209                         in_shortfall = false;
1210                         target = 0;
1211                         goto trybackground;
1212                 }
1213                 last_launder = wakeups;
1214                 launder = target / shortfall_cycle--;
1215                 goto dolaundry;
1216
1217                 /*
1218                  * There's no immediate need to launder any pages; see if we
1219                  * meet the conditions to perform background laundering:
1220                  *
1221                  * 1. The ratio of dirty to clean inactive pages exceeds the
1222                  *    background laundering threshold and the pagedaemon has
1223                  *    been woken up to reclaim pages since our last
1224                  *    laundering, or
1225                  * 2. we haven't yet reached the target of the current
1226                  *    background laundering run.
1227                  *
1228                  * The background laundering threshold is not a constant.
1229                  * Instead, it is a slowly growing function of the number of
1230                  * page daemon wakeups since the last laundering.  Thus, as the
1231                  * ratio of dirty to clean inactive pages grows, the amount of
1232                  * memory pressure required to trigger laundering decreases.
1233                  */
1234 trybackground:
1235                 nclean = vm_cnt.v_inactive_count + vm_cnt.v_free_count;
1236                 ndirty = vm_cnt.v_laundry_count;
1237                 if (target == 0 && wakeups != last_launder &&
1238                     ndirty * isqrt(wakeups - last_launder) >= nclean) {
1239                         target = vm_background_launder_target;
1240                 }
1241
1242                 /*
1243                  * We have a non-zero background laundering target.  If we've
1244                  * laundered up to our maximum without observing a page daemon
1245                  * wakeup, just stop.  This is a safety belt that ensures we
1246                  * don't launder an excessive amount if memory pressure is low
1247                  * and the ratio of dirty to clean pages is large.  Otherwise,
1248                  * proceed at the background laundering rate.
1249                  */
1250                 if (target > 0) {
1251                         if (wakeups != last_launder) {
1252                                 last_launder = wakeups;
1253                                 last_target = target;
1254                         } else if (last_target - target >=
1255                             vm_background_launder_max * PAGE_SIZE / 1024) {
1256                                 target = 0;
1257                         }
1258                         launder = vm_background_launder_rate * PAGE_SIZE / 1024;
1259                         launder /= VM_LAUNDER_RATE;
1260                         if (launder > target)
1261                                 launder = target;
1262                 }
1263
1264 dolaundry:
1265                 if (launder > 0) {
1266                         /*
1267                          * Because of I/O clustering, the number of laundered
1268                          * pages could exceed "target" by the maximum size of
1269                          * a cluster minus one. 
1270                          */
1271                         target -= min(vm_pageout_launder(domain, launder,
1272                             in_shortfall), target);
1273                         pause("laundp", hz / VM_LAUNDER_RATE);
1274                 }
1275
1276                 /*
1277                  * If we're not currently laundering pages and the page daemon
1278                  * hasn't posted a new request, sleep until the page daemon
1279                  * kicks us.
1280                  */
1281                 vm_pagequeue_lock(pq);
1282                 if (target == 0 && vm_laundry_request == VM_LAUNDRY_IDLE)
1283                         (void)mtx_sleep(&vm_laundry_request,
1284                             vm_pagequeue_lockptr(pq), PVM, "launds", 0);
1285
1286                 /*
1287                  * If the pagedaemon has indicated that it's in shortfall, start
1288                  * a shortfall laundering unless we're already in the middle of
1289                  * one.  This may preempt a background laundering.
1290                  */
1291                 if (vm_laundry_request == VM_LAUNDRY_SHORTFALL &&
1292                     (!in_shortfall || shortfall_cycle == 0)) {
1293                         shortfall = vm_laundry_target() + vm_pageout_deficit;
1294                         target = 0;
1295                 } else
1296                         shortfall = 0;
1297
1298                 if (target == 0)
1299                         vm_laundry_request = VM_LAUNDRY_IDLE;
1300                 vm_pagequeue_unlock(pq);
1301         }
1302 }
1303
1304 /*
1305  *      vm_pageout_scan does the dirty work for the pageout daemon.
1306  *
1307  *      pass == 0: Update active LRU/deactivate pages
1308  *      pass >= 1: Free inactive pages
1309  *
1310  * Returns true if pass was zero or enough pages were freed by the inactive
1311  * queue scan to meet the target.
1312  */
1313 static bool
1314 vm_pageout_scan(struct vm_domain *vmd, int pass)
1315 {
1316         vm_page_t m, next;
1317         struct vm_pagequeue *pq;
1318         vm_object_t object;
1319         long min_scan;
1320         int act_delta, addl_page_shortage, deficit, inactq_shortage, maxscan;
1321         int page_shortage, scan_tick, scanned, starting_page_shortage;
1322         boolean_t queue_locked;
1323
1324         /*
1325          * If we need to reclaim memory ask kernel caches to return
1326          * some.  We rate limit to avoid thrashing.
1327          */
1328         if (vmd == &vm_dom[0] && pass > 0 &&
1329             (time_uptime - lowmem_uptime) >= lowmem_period) {
1330                 /*
1331                  * Decrease registered cache sizes.
1332                  */
1333                 SDT_PROBE0(vm, , , vm__lowmem_scan);
1334                 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_PAGES);
1335                 /*
1336                  * We do this explicitly after the caches have been
1337                  * drained above.
1338                  */
1339                 uma_reclaim();
1340                 lowmem_uptime = time_uptime;
1341         }
1342
1343         /*
1344          * The addl_page_shortage is the number of temporarily
1345          * stuck pages in the inactive queue.  In other words, the
1346          * number of pages from the inactive count that should be
1347          * discounted in setting the target for the active queue scan.
1348          */
1349         addl_page_shortage = 0;
1350
1351         /*
1352          * Calculate the number of pages that we want to free.  This number
1353          * can be negative if many pages are freed between the wakeup call to
1354          * the page daemon and this calculation.
1355          */
1356         if (pass > 0) {
1357                 deficit = atomic_readandclear_int(&vm_pageout_deficit);
1358                 page_shortage = vm_paging_target() + deficit;
1359         } else
1360                 page_shortage = deficit = 0;
1361         starting_page_shortage = page_shortage;
1362
1363         /*
1364          * Start scanning the inactive queue for pages that we can free.  The
1365          * scan will stop when we reach the target or we have scanned the
1366          * entire queue.  (Note that m->act_count is not used to make
1367          * decisions for the inactive queue, only for the active queue.)
1368          */
1369         pq = &vmd->vmd_pagequeues[PQ_INACTIVE];
1370         maxscan = pq->pq_cnt;
1371         vm_pagequeue_lock(pq);
1372         queue_locked = TRUE;
1373         for (m = TAILQ_FIRST(&pq->pq_pl);
1374              m != NULL && maxscan-- > 0 && page_shortage > 0;
1375              m = next) {
1376                 vm_pagequeue_assert_locked(pq);
1377                 KASSERT(queue_locked, ("unlocked inactive queue"));
1378                 KASSERT(vm_page_inactive(m), ("Inactive queue %p", m));
1379
1380                 VM_CNT_INC(v_pdpages);
1381                 next = TAILQ_NEXT(m, plinks.q);
1382
1383                 /*
1384                  * skip marker pages
1385                  */
1386                 if (m->flags & PG_MARKER)
1387                         continue;
1388
1389                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
1390                     ("Fictitious page %p cannot be in inactive queue", m));
1391                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1392                     ("Unmanaged page %p cannot be in inactive queue", m));
1393
1394                 /*
1395                  * The page or object lock acquisitions fail if the
1396                  * page was removed from the queue or moved to a
1397                  * different position within the queue.  In either
1398                  * case, addl_page_shortage should not be incremented.
1399                  */
1400                 if (!vm_pageout_page_lock(m, &next))
1401                         goto unlock_page;
1402                 else if (m->hold_count != 0) {
1403                         /*
1404                          * Held pages are essentially stuck in the
1405                          * queue.  So, they ought to be discounted
1406                          * from the inactive count.  See the
1407                          * calculation of inactq_shortage before the
1408                          * loop over the active queue below.
1409                          */
1410                         addl_page_shortage++;
1411                         goto unlock_page;
1412                 }
1413                 object = m->object;
1414                 if (!VM_OBJECT_TRYWLOCK(object)) {
1415                         if (!vm_pageout_fallback_object_lock(m, &next))
1416                                 goto unlock_object;
1417                         else if (m->hold_count != 0) {
1418                                 addl_page_shortage++;
1419                                 goto unlock_object;
1420                         }
1421                 }
1422                 if (vm_page_busied(m)) {
1423                         /*
1424                          * Don't mess with busy pages.  Leave them at
1425                          * the front of the queue.  Most likely, they
1426                          * are being paged out and will leave the
1427                          * queue shortly after the scan finishes.  So,
1428                          * they ought to be discounted from the
1429                          * inactive count.
1430                          */
1431                         addl_page_shortage++;
1432 unlock_object:
1433                         VM_OBJECT_WUNLOCK(object);
1434 unlock_page:
1435                         vm_page_unlock(m);
1436                         continue;
1437                 }
1438                 KASSERT(m->hold_count == 0, ("Held page %p", m));
1439
1440                 /*
1441                  * Dequeue the inactive page and unlock the inactive page
1442                  * queue, invalidating the 'next' pointer.  Dequeueing the
1443                  * page here avoids a later reacquisition (and release) of
1444                  * the inactive page queue lock when vm_page_activate(),
1445                  * vm_page_free(), or vm_page_launder() is called.  Use a
1446                  * marker to remember our place in the inactive queue.
1447                  */
1448                 TAILQ_INSERT_AFTER(&pq->pq_pl, m, &vmd->vmd_marker, plinks.q);
1449                 vm_page_dequeue_locked(m);
1450                 vm_pagequeue_unlock(pq);
1451                 queue_locked = FALSE;
1452
1453                 /*
1454                  * Invalid pages can be easily freed. They cannot be
1455                  * mapped, vm_page_free() asserts this.
1456                  */
1457                 if (m->valid == 0)
1458                         goto free_page;
1459
1460                 /*
1461                  * If the page has been referenced and the object is not dead,
1462                  * reactivate or requeue the page depending on whether the
1463                  * object is mapped.
1464                  */
1465                 if ((m->aflags & PGA_REFERENCED) != 0) {
1466                         vm_page_aflag_clear(m, PGA_REFERENCED);
1467                         act_delta = 1;
1468                 } else
1469                         act_delta = 0;
1470                 if (object->ref_count != 0) {
1471                         act_delta += pmap_ts_referenced(m);
1472                 } else {
1473                         KASSERT(!pmap_page_is_mapped(m),
1474                             ("vm_pageout_scan: page %p is mapped", m));
1475                 }
1476                 if (act_delta != 0) {
1477                         if (object->ref_count != 0) {
1478                                 VM_CNT_INC(v_reactivated);
1479                                 vm_page_activate(m);
1480
1481                                 /*
1482                                  * Increase the activation count if the page
1483                                  * was referenced while in the inactive queue.
1484                                  * This makes it less likely that the page will
1485                                  * be returned prematurely to the inactive
1486                                  * queue.
1487                                  */
1488                                 m->act_count += act_delta + ACT_ADVANCE;
1489                                 goto drop_page;
1490                         } else if ((object->flags & OBJ_DEAD) == 0) {
1491                                 vm_pagequeue_lock(pq);
1492                                 queue_locked = TRUE;
1493                                 m->queue = PQ_INACTIVE;
1494                                 TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
1495                                 vm_pagequeue_cnt_inc(pq);
1496                                 goto drop_page;
1497                         }
1498                 }
1499
1500                 /*
1501                  * If the page appears to be clean at the machine-independent
1502                  * layer, then remove all of its mappings from the pmap in
1503                  * anticipation of freeing it.  If, however, any of the page's
1504                  * mappings allow write access, then the page may still be
1505                  * modified until the last of those mappings are removed.
1506                  */
1507                 if (object->ref_count != 0) {
1508                         vm_page_test_dirty(m);
1509                         if (m->dirty == 0)
1510                                 pmap_remove_all(m);
1511                 }
1512
1513                 /*
1514                  * Clean pages can be freed, but dirty pages must be sent back
1515                  * to the laundry, unless they belong to a dead object.
1516                  * Requeueing dirty pages from dead objects is pointless, as
1517                  * they are being paged out and freed by the thread that
1518                  * destroyed the object.
1519                  */
1520                 if (m->dirty == 0) {
1521 free_page:
1522                         vm_page_free(m);
1523                         VM_CNT_INC(v_dfree);
1524                         --page_shortage;
1525                 } else if ((object->flags & OBJ_DEAD) == 0)
1526                         vm_page_launder(m);
1527 drop_page:
1528                 vm_page_unlock(m);
1529                 VM_OBJECT_WUNLOCK(object);
1530                 if (!queue_locked) {
1531                         vm_pagequeue_lock(pq);
1532                         queue_locked = TRUE;
1533                 }
1534                 next = TAILQ_NEXT(&vmd->vmd_marker, plinks.q);
1535                 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_marker, plinks.q);
1536         }
1537         vm_pagequeue_unlock(pq);
1538
1539         /*
1540          * Wake up the laundry thread so that it can perform any needed
1541          * laundering.  If we didn't meet our target, we're in shortfall and
1542          * need to launder more aggressively.  If PQ_LAUNDRY is empty and no
1543          * swap devices are configured, the laundry thread has no work to do, so
1544          * don't bother waking it up.
1545          */
1546         if (vm_laundry_request == VM_LAUNDRY_IDLE &&
1547             starting_page_shortage > 0) {
1548                 pq = &vm_dom[0].vmd_pagequeues[PQ_LAUNDRY];
1549                 vm_pagequeue_lock(pq);
1550                 if (pq->pq_cnt > 0 || atomic_load_acq_int(&swapdev_enabled)) {
1551                         if (page_shortage > 0) {
1552                                 vm_laundry_request = VM_LAUNDRY_SHORTFALL;
1553                                 VM_CNT_INC(v_pdshortfalls);
1554                         } else if (vm_laundry_request != VM_LAUNDRY_SHORTFALL)
1555                                 vm_laundry_request = VM_LAUNDRY_BACKGROUND;
1556                         wakeup(&vm_laundry_request);
1557                 }
1558                 vm_pagequeue_unlock(pq);
1559         }
1560
1561 #if !defined(NO_SWAPPING)
1562         /*
1563          * Wakeup the swapout daemon if we didn't free the targeted number of
1564          * pages.
1565          */
1566         if (vm_swap_enabled && page_shortage > 0)
1567                 vm_req_vmdaemon(VM_SWAP_NORMAL);
1568 #endif
1569
1570         /*
1571          * If the inactive queue scan fails repeatedly to meet its
1572          * target, kill the largest process.
1573          */
1574         vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage);
1575
1576         /*
1577          * Compute the number of pages we want to try to move from the
1578          * active queue to either the inactive or laundry queue.
1579          *
1580          * When scanning active pages, we make clean pages count more heavily
1581          * towards the page shortage than dirty pages.  This is because dirty
1582          * pages must be laundered before they can be reused and thus have less
1583          * utility when attempting to quickly alleviate a shortage.  However,
1584          * this weighting also causes the scan to deactivate dirty pages more
1585          * more aggressively, improving the effectiveness of clustering and
1586          * ensuring that they can eventually be reused.
1587          */
1588         inactq_shortage = vm_cnt.v_inactive_target - (vm_cnt.v_inactive_count +
1589             vm_cnt.v_laundry_count / act_scan_laundry_weight) +
1590             vm_paging_target() + deficit + addl_page_shortage;
1591         page_shortage *= act_scan_laundry_weight;
1592
1593         pq = &vmd->vmd_pagequeues[PQ_ACTIVE];
1594         vm_pagequeue_lock(pq);
1595         maxscan = pq->pq_cnt;
1596
1597         /*
1598          * If we're just idle polling attempt to visit every
1599          * active page within 'update_period' seconds.
1600          */
1601         scan_tick = ticks;
1602         if (vm_pageout_update_period != 0) {
1603                 min_scan = pq->pq_cnt;
1604                 min_scan *= scan_tick - vmd->vmd_last_active_scan;
1605                 min_scan /= hz * vm_pageout_update_period;
1606         } else
1607                 min_scan = 0;
1608         if (min_scan > 0 || (inactq_shortage > 0 && maxscan > 0))
1609                 vmd->vmd_last_active_scan = scan_tick;
1610
1611         /*
1612          * Scan the active queue for pages that can be deactivated.  Update
1613          * the per-page activity counter and use it to identify deactivation
1614          * candidates.  Held pages may be deactivated.
1615          */
1616         for (m = TAILQ_FIRST(&pq->pq_pl), scanned = 0; m != NULL && (scanned <
1617             min_scan || (inactq_shortage > 0 && scanned < maxscan)); m = next,
1618             scanned++) {
1619                 KASSERT(m->queue == PQ_ACTIVE,
1620                     ("vm_pageout_scan: page %p isn't active", m));
1621                 next = TAILQ_NEXT(m, plinks.q);
1622                 if ((m->flags & PG_MARKER) != 0)
1623                         continue;
1624                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
1625                     ("Fictitious page %p cannot be in active queue", m));
1626                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1627                     ("Unmanaged page %p cannot be in active queue", m));
1628                 if (!vm_pageout_page_lock(m, &next)) {
1629                         vm_page_unlock(m);
1630                         continue;
1631                 }
1632
1633                 /*
1634                  * The count for page daemon pages is updated after checking
1635                  * the page for eligibility.
1636                  */
1637                 VM_CNT_INC(v_pdpages);
1638
1639                 /*
1640                  * Check to see "how much" the page has been used.
1641                  */
1642                 if ((m->aflags & PGA_REFERENCED) != 0) {
1643                         vm_page_aflag_clear(m, PGA_REFERENCED);
1644                         act_delta = 1;
1645                 } else
1646                         act_delta = 0;
1647
1648                 /*
1649                  * Perform an unsynchronized object ref count check.  While
1650                  * the page lock ensures that the page is not reallocated to
1651                  * another object, in particular, one with unmanaged mappings
1652                  * that cannot support pmap_ts_referenced(), two races are,
1653                  * nonetheless, possible:
1654                  * 1) The count was transitioning to zero, but we saw a non-
1655                  *    zero value.  pmap_ts_referenced() will return zero
1656                  *    because the page is not mapped.
1657                  * 2) The count was transitioning to one, but we saw zero. 
1658                  *    This race delays the detection of a new reference.  At
1659                  *    worst, we will deactivate and reactivate the page.
1660                  */
1661                 if (m->object->ref_count != 0)
1662                         act_delta += pmap_ts_referenced(m);
1663
1664                 /*
1665                  * Advance or decay the act_count based on recent usage.
1666                  */
1667                 if (act_delta != 0) {
1668                         m->act_count += ACT_ADVANCE + act_delta;
1669                         if (m->act_count > ACT_MAX)
1670                                 m->act_count = ACT_MAX;
1671                 } else
1672                         m->act_count -= min(m->act_count, ACT_DECLINE);
1673
1674                 /*
1675                  * Move this page to the tail of the active, inactive or laundry
1676                  * queue depending on usage.
1677                  */
1678                 if (m->act_count == 0) {
1679                         /* Dequeue to avoid later lock recursion. */
1680                         vm_page_dequeue_locked(m);
1681
1682                         /*
1683                          * When not short for inactive pages, let dirty pages go
1684                          * through the inactive queue before moving to the
1685                          * laundry queues.  This gives them some extra time to
1686                          * be reactivated, potentially avoiding an expensive
1687                          * pageout.  During a page shortage, the inactive queue
1688                          * is necessarily small, so we may move dirty pages
1689                          * directly to the laundry queue.
1690                          */
1691                         if (inactq_shortage <= 0)
1692                                 vm_page_deactivate(m);
1693                         else {
1694                                 /*
1695                                  * Calling vm_page_test_dirty() here would
1696                                  * require acquisition of the object's write
1697                                  * lock.  However, during a page shortage,
1698                                  * directing dirty pages into the laundry
1699                                  * queue is only an optimization and not a
1700                                  * requirement.  Therefore, we simply rely on
1701                                  * the opportunistic updates to the page's
1702                                  * dirty field by the pmap.
1703                                  */
1704                                 if (m->dirty == 0) {
1705                                         vm_page_deactivate(m);
1706                                         inactq_shortage -=
1707                                             act_scan_laundry_weight;
1708                                 } else {
1709                                         vm_page_launder(m);
1710                                         inactq_shortage--;
1711                                 }
1712                         }
1713                 } else
1714                         vm_page_requeue_locked(m);
1715                 vm_page_unlock(m);
1716         }
1717         vm_pagequeue_unlock(pq);
1718 #if !defined(NO_SWAPPING)
1719         /*
1720          * Idle process swapout -- run once per second when we are reclaiming
1721          * pages.
1722          */
1723         if (vm_swap_idle_enabled && pass > 0) {
1724                 static long lsec;
1725                 if (time_second != lsec) {
1726                         vm_req_vmdaemon(VM_SWAP_IDLE);
1727                         lsec = time_second;
1728                 }
1729         }
1730 #endif
1731         return (page_shortage <= 0);
1732 }
1733
1734 static int vm_pageout_oom_vote;
1735
1736 /*
1737  * The pagedaemon threads randlomly select one to perform the
1738  * OOM.  Trying to kill processes before all pagedaemons
1739  * failed to reach free target is premature.
1740  */
1741 static void
1742 vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
1743     int starting_page_shortage)
1744 {
1745         int old_vote;
1746
1747         if (starting_page_shortage <= 0 || starting_page_shortage !=
1748             page_shortage)
1749                 vmd->vmd_oom_seq = 0;
1750         else
1751                 vmd->vmd_oom_seq++;
1752         if (vmd->vmd_oom_seq < vm_pageout_oom_seq) {
1753                 if (vmd->vmd_oom) {
1754                         vmd->vmd_oom = FALSE;
1755                         atomic_subtract_int(&vm_pageout_oom_vote, 1);
1756                 }
1757                 return;
1758         }
1759
1760         /*
1761          * Do not follow the call sequence until OOM condition is
1762          * cleared.
1763          */
1764         vmd->vmd_oom_seq = 0;
1765
1766         if (vmd->vmd_oom)
1767                 return;
1768
1769         vmd->vmd_oom = TRUE;
1770         old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1);
1771         if (old_vote != vm_ndomains - 1)
1772                 return;
1773
1774         /*
1775          * The current pagedaemon thread is the last in the quorum to
1776          * start OOM.  Initiate the selection and signaling of the
1777          * victim.
1778          */
1779         vm_pageout_oom(VM_OOM_MEM);
1780
1781         /*
1782          * After one round of OOM terror, recall our vote.  On the
1783          * next pass, current pagedaemon would vote again if the low
1784          * memory condition is still there, due to vmd_oom being
1785          * false.
1786          */
1787         vmd->vmd_oom = FALSE;
1788         atomic_subtract_int(&vm_pageout_oom_vote, 1);
1789 }
1790
1791 /*
1792  * The OOM killer is the page daemon's action of last resort when
1793  * memory allocation requests have been stalled for a prolonged period
1794  * of time because it cannot reclaim memory.  This function computes
1795  * the approximate number of physical pages that could be reclaimed if
1796  * the specified address space is destroyed.
1797  *
1798  * Private, anonymous memory owned by the address space is the
1799  * principal resource that we expect to recover after an OOM kill.
1800  * Since the physical pages mapped by the address space's COW entries
1801  * are typically shared pages, they are unlikely to be released and so
1802  * they are not counted.
1803  *
1804  * To get to the point where the page daemon runs the OOM killer, its
1805  * efforts to write-back vnode-backed pages may have stalled.  This
1806  * could be caused by a memory allocation deadlock in the write path
1807  * that might be resolved by an OOM kill.  Therefore, physical pages
1808  * belonging to vnode-backed objects are counted, because they might
1809  * be freed without being written out first if the address space holds
1810  * the last reference to an unlinked vnode.
1811  *
1812  * Similarly, physical pages belonging to OBJT_PHYS objects are
1813  * counted because the address space might hold the last reference to
1814  * the object.
1815  */
1816 static long
1817 vm_pageout_oom_pagecount(struct vmspace *vmspace)
1818 {
1819         vm_map_t map;
1820         vm_map_entry_t entry;
1821         vm_object_t obj;
1822         long res;
1823
1824         map = &vmspace->vm_map;
1825         KASSERT(!map->system_map, ("system map"));
1826         sx_assert(&map->lock, SA_LOCKED);
1827         res = 0;
1828         for (entry = map->header.next; entry != &map->header;
1829             entry = entry->next) {
1830                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
1831                         continue;
1832                 obj = entry->object.vm_object;
1833                 if (obj == NULL)
1834                         continue;
1835                 if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 &&
1836                     obj->ref_count != 1)
1837                         continue;
1838                 switch (obj->type) {
1839                 case OBJT_DEFAULT:
1840                 case OBJT_SWAP:
1841                 case OBJT_PHYS:
1842                 case OBJT_VNODE:
1843                         res += obj->resident_page_count;
1844                         break;
1845                 }
1846         }
1847         return (res);
1848 }
1849
1850 void
1851 vm_pageout_oom(int shortage)
1852 {
1853         struct proc *p, *bigproc;
1854         vm_offset_t size, bigsize;
1855         struct thread *td;
1856         struct vmspace *vm;
1857         bool breakout;
1858
1859         /*
1860          * We keep the process bigproc locked once we find it to keep anyone
1861          * from messing with it; however, there is a possibility of
1862          * deadlock if process B is bigproc and one of its child processes
1863          * attempts to propagate a signal to B while we are waiting for A's
1864          * lock while walking this list.  To avoid this, we don't block on
1865          * the process lock but just skip a process if it is already locked.
1866          */
1867         bigproc = NULL;
1868         bigsize = 0;
1869         sx_slock(&allproc_lock);
1870         FOREACH_PROC_IN_SYSTEM(p) {
1871                 PROC_LOCK(p);
1872
1873                 /*
1874                  * If this is a system, protected or killed process, skip it.
1875                  */
1876                 if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC |
1877                     P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 ||
1878                     p->p_pid == 1 || P_KILLED(p) ||
1879                     (p->p_pid < 48 && swap_pager_avail != 0)) {
1880                         PROC_UNLOCK(p);
1881                         continue;
1882                 }
1883                 /*
1884                  * If the process is in a non-running type state,
1885                  * don't touch it.  Check all the threads individually.
1886                  */
1887                 breakout = false;
1888                 FOREACH_THREAD_IN_PROC(p, td) {
1889                         thread_lock(td);
1890                         if (!TD_ON_RUNQ(td) &&
1891                             !TD_IS_RUNNING(td) &&
1892                             !TD_IS_SLEEPING(td) &&
1893                             !TD_IS_SUSPENDED(td) &&
1894                             !TD_IS_SWAPPED(td)) {
1895                                 thread_unlock(td);
1896                                 breakout = true;
1897                                 break;
1898                         }
1899                         thread_unlock(td);
1900                 }
1901                 if (breakout) {
1902                         PROC_UNLOCK(p);
1903                         continue;
1904                 }
1905                 /*
1906                  * get the process size
1907                  */
1908                 vm = vmspace_acquire_ref(p);
1909                 if (vm == NULL) {
1910                         PROC_UNLOCK(p);
1911                         continue;
1912                 }
1913                 _PHOLD_LITE(p);
1914                 PROC_UNLOCK(p);
1915                 sx_sunlock(&allproc_lock);
1916                 if (!vm_map_trylock_read(&vm->vm_map)) {
1917                         vmspace_free(vm);
1918                         sx_slock(&allproc_lock);
1919                         PRELE(p);
1920                         continue;
1921                 }
1922                 size = vmspace_swap_count(vm);
1923                 if (shortage == VM_OOM_MEM)
1924                         size += vm_pageout_oom_pagecount(vm);
1925                 vm_map_unlock_read(&vm->vm_map);
1926                 vmspace_free(vm);
1927                 sx_slock(&allproc_lock);
1928
1929                 /*
1930                  * If this process is bigger than the biggest one,
1931                  * remember it.
1932                  */
1933                 if (size > bigsize) {
1934                         if (bigproc != NULL)
1935                                 PRELE(bigproc);
1936                         bigproc = p;
1937                         bigsize = size;
1938                 } else {
1939                         PRELE(p);
1940                 }
1941         }
1942         sx_sunlock(&allproc_lock);
1943         if (bigproc != NULL) {
1944                 if (vm_panic_on_oom != 0)
1945                         panic("out of swap space");
1946                 PROC_LOCK(bigproc);
1947                 killproc(bigproc, "out of swap space");
1948                 sched_nice(bigproc, PRIO_MIN);
1949                 _PRELE(bigproc);
1950                 PROC_UNLOCK(bigproc);
1951                 wakeup(&vm_cnt.v_free_count);
1952         }
1953 }
1954
1955 static void
1956 vm_pageout_worker(void *arg)
1957 {
1958         struct vm_domain *domain;
1959         int domidx, pass;
1960         bool target_met;
1961
1962         domidx = (uintptr_t)arg;
1963         domain = &vm_dom[domidx];
1964         pass = 0;
1965         target_met = true;
1966
1967         /*
1968          * XXXKIB It could be useful to bind pageout daemon threads to
1969          * the cores belonging to the domain, from which vm_page_array
1970          * is allocated.
1971          */
1972
1973         KASSERT(domain->vmd_segs != 0, ("domain without segments"));
1974         domain->vmd_last_active_scan = ticks;
1975         vm_pageout_init_marker(&domain->vmd_marker, PQ_INACTIVE);
1976         vm_pageout_init_marker(&domain->vmd_inacthead, PQ_INACTIVE);
1977         TAILQ_INSERT_HEAD(&domain->vmd_pagequeues[PQ_INACTIVE].pq_pl,
1978             &domain->vmd_inacthead, plinks.q);
1979
1980         /*
1981          * The pageout daemon worker is never done, so loop forever.
1982          */
1983         while (TRUE) {
1984                 mtx_lock(&vm_page_queue_free_mtx);
1985
1986                 /*
1987                  * Generally, after a level >= 1 scan, if there are enough
1988                  * free pages to wakeup the waiters, then they are already
1989                  * awake.  A call to vm_page_free() during the scan awakened
1990                  * them.  However, in the following case, this wakeup serves
1991                  * to bound the amount of time that a thread might wait.
1992                  * Suppose a thread's call to vm_page_alloc() fails, but
1993                  * before that thread calls VM_WAIT, enough pages are freed by
1994                  * other threads to alleviate the free page shortage.  The
1995                  * thread will, nonetheless, wait until another page is freed
1996                  * or this wakeup is performed.
1997                  */
1998                 if (vm_pages_needed && !vm_page_count_min()) {
1999                         vm_pages_needed = false;
2000                         wakeup(&vm_cnt.v_free_count);
2001                 }
2002
2003                 /*
2004                  * Do not clear vm_pageout_wanted until we reach our free page
2005                  * target.  Otherwise, we may be awakened over and over again,
2006                  * wasting CPU time.
2007                  */
2008                 if (vm_pageout_wanted && target_met)
2009                         vm_pageout_wanted = false;
2010
2011                 /*
2012                  * Might the page daemon receive a wakeup call?
2013                  */
2014                 if (vm_pageout_wanted) {
2015                         /*
2016                          * No.  Either vm_pageout_wanted was set by another
2017                          * thread during the previous scan, which must have
2018                          * been a level 0 scan, or vm_pageout_wanted was
2019                          * already set and the scan failed to free enough
2020                          * pages.  If we haven't yet performed a level >= 1
2021                          * (page reclamation) scan, then increase the level
2022                          * and scan again now.  Otherwise, sleep a bit and
2023                          * try again later.
2024                          */
2025                         mtx_unlock(&vm_page_queue_free_mtx);
2026                         if (pass >= 1)
2027                                 pause("psleep", hz / VM_INACT_SCAN_RATE);
2028                         pass++;
2029                 } else {
2030                         /*
2031                          * Yes.  Sleep until pages need to be reclaimed or
2032                          * have their reference stats updated.
2033                          */
2034                         if (mtx_sleep(&vm_pageout_wanted,
2035                             &vm_page_queue_free_mtx, PDROP | PVM, "psleep",
2036                             hz) == 0) {
2037                                 VM_CNT_INC(v_pdwakeups);
2038                                 pass = 1;
2039                         } else
2040                                 pass = 0;
2041                 }
2042
2043                 target_met = vm_pageout_scan(domain, pass);
2044         }
2045 }
2046
2047 /*
2048  *      vm_pageout_init initialises basic pageout daemon settings.
2049  */
2050 static void
2051 vm_pageout_init(void)
2052 {
2053         /*
2054          * Initialize some paging parameters.
2055          */
2056         vm_cnt.v_interrupt_free_min = 2;
2057         if (vm_cnt.v_page_count < 2000)
2058                 vm_pageout_page_count = 8;
2059
2060         /*
2061          * v_free_reserved needs to include enough for the largest
2062          * swap pager structures plus enough for any pv_entry structs
2063          * when paging. 
2064          */
2065         if (vm_cnt.v_page_count > 1024)
2066                 vm_cnt.v_free_min = 4 + (vm_cnt.v_page_count - 1024) / 200;
2067         else
2068                 vm_cnt.v_free_min = 4;
2069         vm_cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
2070             vm_cnt.v_interrupt_free_min;
2071         vm_cnt.v_free_reserved = vm_pageout_page_count +
2072             vm_cnt.v_pageout_free_min + (vm_cnt.v_page_count / 768);
2073         vm_cnt.v_free_severe = vm_cnt.v_free_min / 2;
2074         vm_cnt.v_free_target = 4 * vm_cnt.v_free_min + vm_cnt.v_free_reserved;
2075         vm_cnt.v_free_min += vm_cnt.v_free_reserved;
2076         vm_cnt.v_free_severe += vm_cnt.v_free_reserved;
2077         vm_cnt.v_inactive_target = (3 * vm_cnt.v_free_target) / 2;
2078         if (vm_cnt.v_inactive_target > vm_cnt.v_free_count / 3)
2079                 vm_cnt.v_inactive_target = vm_cnt.v_free_count / 3;
2080
2081         /*
2082          * Set the default wakeup threshold to be 10% above the minimum
2083          * page limit.  This keeps the steady state out of shortfall.
2084          */
2085         vm_pageout_wakeup_thresh = (vm_cnt.v_free_min / 10) * 11;
2086
2087         /*
2088          * Set interval in seconds for active scan.  We want to visit each
2089          * page at least once every ten minutes.  This is to prevent worst
2090          * case paging behaviors with stale active LRU.
2091          */
2092         if (vm_pageout_update_period == 0)
2093                 vm_pageout_update_period = 600;
2094
2095         /* XXX does not really belong here */
2096         if (vm_page_max_wired == 0)
2097                 vm_page_max_wired = vm_cnt.v_free_count / 3;
2098
2099         /*
2100          * Target amount of memory to move out of the laundry queue during a
2101          * background laundering.  This is proportional to the amount of system
2102          * memory.
2103          */
2104         vm_background_launder_target = (vm_cnt.v_free_target -
2105             vm_cnt.v_free_min) / 10;
2106 }
2107
2108 /*
2109  *     vm_pageout is the high level pageout daemon.
2110  */
2111 static void
2112 vm_pageout(void)
2113 {
2114         int error;
2115 #ifdef VM_NUMA_ALLOC
2116         int i;
2117 #endif
2118
2119         swap_pager_swap_init();
2120         error = kthread_add(vm_pageout_laundry_worker, NULL, curproc, NULL,
2121             0, 0, "laundry: dom0");
2122         if (error != 0)
2123                 panic("starting laundry for domain 0, error %d", error);
2124 #ifdef VM_NUMA_ALLOC
2125         for (i = 1; i < vm_ndomains; i++) {
2126                 error = kthread_add(vm_pageout_worker, (void *)(uintptr_t)i,
2127                     curproc, NULL, 0, 0, "dom%d", i);
2128                 if (error != 0) {
2129                         panic("starting pageout for domain %d, error %d\n",
2130                             i, error);
2131                 }
2132         }
2133 #endif
2134         error = kthread_add(uma_reclaim_worker, NULL, curproc, NULL,
2135             0, 0, "uma");
2136         if (error != 0)
2137                 panic("starting uma_reclaim helper, error %d\n", error);
2138         vm_pageout_worker((void *)(uintptr_t)0);
2139 }
2140
2141 /*
2142  * Unless the free page queue lock is held by the caller, this function
2143  * should be regarded as advisory.  Specifically, the caller should
2144  * not msleep() on &vm_cnt.v_free_count following this function unless
2145  * the free page queue lock is held until the msleep() is performed.
2146  */
2147 void
2148 pagedaemon_wakeup(void)
2149 {
2150
2151         if (!vm_pageout_wanted && curthread->td_proc != pageproc) {
2152                 vm_pageout_wanted = true;
2153                 wakeup(&vm_pageout_wanted);
2154         }
2155 }
2156
2157 #if !defined(NO_SWAPPING)
2158 static void
2159 vm_req_vmdaemon(int req)
2160 {
2161         static int lastrun = 0;
2162
2163         mtx_lock(&vm_daemon_mtx);
2164         vm_pageout_req_swapout |= req;
2165         if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
2166                 wakeup(&vm_daemon_needed);
2167                 lastrun = ticks;
2168         }
2169         mtx_unlock(&vm_daemon_mtx);
2170 }
2171
2172 static void
2173 vm_daemon(void)
2174 {
2175         struct rlimit rsslim;
2176         struct proc *p;
2177         struct thread *td;
2178         struct vmspace *vm;
2179         int breakout, swapout_flags, tryagain, attempts;
2180 #ifdef RACCT
2181         uint64_t rsize, ravailable;
2182 #endif
2183
2184         while (TRUE) {
2185                 mtx_lock(&vm_daemon_mtx);
2186                 msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep",
2187 #ifdef RACCT
2188                     racct_enable ? hz : 0
2189 #else
2190                     0
2191 #endif
2192                 );
2193                 swapout_flags = vm_pageout_req_swapout;
2194                 vm_pageout_req_swapout = 0;
2195                 mtx_unlock(&vm_daemon_mtx);
2196                 if (swapout_flags)
2197                         swapout_procs(swapout_flags);
2198
2199                 /*
2200                  * scan the processes for exceeding their rlimits or if
2201                  * process is swapped out -- deactivate pages
2202                  */
2203                 tryagain = 0;
2204                 attempts = 0;
2205 again:
2206                 attempts++;
2207                 sx_slock(&allproc_lock);
2208                 FOREACH_PROC_IN_SYSTEM(p) {
2209                         vm_pindex_t limit, size;
2210
2211                         /*
2212                          * if this is a system process or if we have already
2213                          * looked at this process, skip it.
2214                          */
2215                         PROC_LOCK(p);
2216                         if (p->p_state != PRS_NORMAL ||
2217                             p->p_flag & (P_INEXEC | P_SYSTEM | P_WEXIT)) {
2218                                 PROC_UNLOCK(p);
2219                                 continue;
2220                         }
2221                         /*
2222                          * if the process is in a non-running type state,
2223                          * don't touch it.
2224                          */
2225                         breakout = 0;
2226                         FOREACH_THREAD_IN_PROC(p, td) {
2227                                 thread_lock(td);
2228                                 if (!TD_ON_RUNQ(td) &&
2229                                     !TD_IS_RUNNING(td) &&
2230                                     !TD_IS_SLEEPING(td) &&
2231                                     !TD_IS_SUSPENDED(td)) {
2232                                         thread_unlock(td);
2233                                         breakout = 1;
2234                                         break;
2235                                 }
2236                                 thread_unlock(td);
2237                         }
2238                         if (breakout) {
2239                                 PROC_UNLOCK(p);
2240                                 continue;
2241                         }
2242                         /*
2243                          * get a limit
2244                          */
2245                         lim_rlimit_proc(p, RLIMIT_RSS, &rsslim);
2246                         limit = OFF_TO_IDX(
2247                             qmin(rsslim.rlim_cur, rsslim.rlim_max));
2248
2249                         /*
2250                          * let processes that are swapped out really be
2251                          * swapped out set the limit to nothing (will force a
2252                          * swap-out.)
2253                          */
2254                         if ((p->p_flag & P_INMEM) == 0)
2255                                 limit = 0;      /* XXX */
2256                         vm = vmspace_acquire_ref(p);
2257                         _PHOLD_LITE(p);
2258                         PROC_UNLOCK(p);
2259                         if (vm == NULL) {
2260                                 PRELE(p);
2261                                 continue;
2262                         }
2263                         sx_sunlock(&allproc_lock);
2264
2265                         size = vmspace_resident_count(vm);
2266                         if (size >= limit) {
2267                                 vm_pageout_map_deactivate_pages(
2268                                     &vm->vm_map, limit);
2269                                 size = vmspace_resident_count(vm);
2270                         }
2271 #ifdef RACCT
2272                         if (racct_enable) {
2273                                 rsize = IDX_TO_OFF(size);
2274                                 PROC_LOCK(p);
2275                                 if (p->p_state == PRS_NORMAL)
2276                                         racct_set(p, RACCT_RSS, rsize);
2277                                 ravailable = racct_get_available(p, RACCT_RSS);
2278                                 PROC_UNLOCK(p);
2279                                 if (rsize > ravailable) {
2280                                         /*
2281                                          * Don't be overly aggressive; this
2282                                          * might be an innocent process,
2283                                          * and the limit could've been exceeded
2284                                          * by some memory hog.  Don't try
2285                                          * to deactivate more than 1/4th
2286                                          * of process' resident set size.
2287                                          */
2288                                         if (attempts <= 8) {
2289                                                 if (ravailable < rsize -
2290                                                     (rsize / 4)) {
2291                                                         ravailable = rsize -
2292                                                             (rsize / 4);
2293                                                 }
2294                                         }
2295                                         vm_pageout_map_deactivate_pages(
2296                                             &vm->vm_map,
2297                                             OFF_TO_IDX(ravailable));
2298                                         /* Update RSS usage after paging out. */
2299                                         size = vmspace_resident_count(vm);
2300                                         rsize = IDX_TO_OFF(size);
2301                                         PROC_LOCK(p);
2302                                         if (p->p_state == PRS_NORMAL)
2303                                                 racct_set(p, RACCT_RSS, rsize);
2304                                         PROC_UNLOCK(p);
2305                                         if (rsize > ravailable)
2306                                                 tryagain = 1;
2307                                 }
2308                         }
2309 #endif
2310                         vmspace_free(vm);
2311                         sx_slock(&allproc_lock);
2312                         PRELE(p);
2313                 }
2314                 sx_sunlock(&allproc_lock);
2315                 if (tryagain != 0 && attempts <= 10)
2316                         goto again;
2317         }
2318 }
2319 #endif                  /* !defined(NO_SWAPPING) */