]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_pageout.c
Remove most lingering references to the page lock in comments.
[FreeBSD/FreeBSD.git] / sys / vm / vm_pageout.c
1 /*-
2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  * Copyright (c) 2005 Yahoo! Technologies Norway AS
11  * All rights reserved.
12  *
13  * This code is derived from software contributed to Berkeley by
14  * The Mach Operating System project at Carnegie-Mellon University.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. All advertising materials mentioning features or use of this software
25  *    must display the following acknowledgement:
26  *      This product includes software developed by the University of
27  *      California, Berkeley and its contributors.
28  * 4. Neither the name of the University nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  *
44  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
45  *
46  *
47  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
48  * All rights reserved.
49  *
50  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
51  *
52  * Permission to use, copy, modify and distribute this software and
53  * its documentation is hereby granted, provided that both the copyright
54  * notice and this permission notice appear in all copies of the
55  * software, derivative works or modified versions, and any portions
56  * thereof, and that both notices appear in supporting documentation.
57  *
58  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
59  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
60  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
61  *
62  * Carnegie Mellon requests users of this software to return to
63  *
64  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
65  *  School of Computer Science
66  *  Carnegie Mellon University
67  *  Pittsburgh PA 15213-3890
68  *
69  * any improvements or extensions that they make and grant Carnegie the
70  * rights to redistribute these changes.
71  */
72
73 /*
74  *      The proverbial page-out daemon.
75  */
76
77 #include <sys/cdefs.h>
78 __FBSDID("$FreeBSD$");
79
80 #include "opt_vm.h"
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/eventhandler.h>
86 #include <sys/lock.h>
87 #include <sys/mutex.h>
88 #include <sys/proc.h>
89 #include <sys/kthread.h>
90 #include <sys/ktr.h>
91 #include <sys/mount.h>
92 #include <sys/racct.h>
93 #include <sys/resourcevar.h>
94 #include <sys/sched.h>
95 #include <sys/sdt.h>
96 #include <sys/signalvar.h>
97 #include <sys/smp.h>
98 #include <sys/time.h>
99 #include <sys/vnode.h>
100 #include <sys/vmmeter.h>
101 #include <sys/rwlock.h>
102 #include <sys/sx.h>
103 #include <sys/sysctl.h>
104
105 #include <vm/vm.h>
106 #include <vm/vm_param.h>
107 #include <vm/vm_object.h>
108 #include <vm/vm_page.h>
109 #include <vm/vm_map.h>
110 #include <vm/vm_pageout.h>
111 #include <vm/vm_pager.h>
112 #include <vm/vm_phys.h>
113 #include <vm/vm_pagequeue.h>
114 #include <vm/swap_pager.h>
115 #include <vm/vm_extern.h>
116 #include <vm/uma.h>
117
118 /*
119  * System initialization
120  */
121
122 /* the kernel process "vm_pageout"*/
123 static void vm_pageout(void);
124 static void vm_pageout_init(void);
125 static int vm_pageout_clean(vm_page_t m, int *numpagedout);
126 static int vm_pageout_cluster(vm_page_t m);
127 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
128     int starting_page_shortage);
129
130 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init,
131     NULL);
132
133 struct proc *pageproc;
134
135 static struct kproc_desc page_kp = {
136         "pagedaemon",
137         vm_pageout,
138         &pageproc
139 };
140 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start,
141     &page_kp);
142
143 SDT_PROVIDER_DEFINE(vm);
144 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan);
145
146 /* Pagedaemon activity rates, in subdivisions of one second. */
147 #define VM_LAUNDER_RATE         10
148 #define VM_INACT_SCAN_RATE      10
149
150 static int vm_pageout_oom_seq = 12;
151
152 static int vm_pageout_update_period;
153 static int disable_swap_pageouts;
154 static int lowmem_period = 10;
155 static int swapdev_enabled;
156
157 static int vm_panic_on_oom = 0;
158
159 SYSCTL_INT(_vm, OID_AUTO, panic_on_oom,
160         CTLFLAG_RWTUN, &vm_panic_on_oom, 0,
161         "Panic on the given number of out-of-memory errors instead of killing the largest process");
162
163 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period,
164         CTLFLAG_RWTUN, &vm_pageout_update_period, 0,
165         "Maximum active LRU update period");
166   
167 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RWTUN, &lowmem_period, 0,
168         "Low memory callback period");
169
170 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
171         CTLFLAG_RWTUN, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
172
173 static int pageout_lock_miss;
174 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
175         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
176
177 SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq,
178         CTLFLAG_RWTUN, &vm_pageout_oom_seq, 0,
179         "back-to-back calls to oom detector to start OOM");
180
181 static int act_scan_laundry_weight = 3;
182 SYSCTL_INT(_vm, OID_AUTO, act_scan_laundry_weight, CTLFLAG_RWTUN,
183     &act_scan_laundry_weight, 0,
184     "weight given to clean vs. dirty pages in active queue scans");
185
186 static u_int vm_background_launder_rate = 4096;
187 SYSCTL_UINT(_vm, OID_AUTO, background_launder_rate, CTLFLAG_RWTUN,
188     &vm_background_launder_rate, 0,
189     "background laundering rate, in kilobytes per second");
190
191 static u_int vm_background_launder_max = 20 * 1024;
192 SYSCTL_UINT(_vm, OID_AUTO, background_launder_max, CTLFLAG_RWTUN,
193     &vm_background_launder_max, 0, "background laundering cap, in kilobytes");
194
195 int vm_pageout_page_count = 32;
196
197 u_long vm_page_max_user_wired;
198 SYSCTL_ULONG(_vm, OID_AUTO, max_user_wired, CTLFLAG_RW,
199     &vm_page_max_user_wired, 0,
200     "system-wide limit to user-wired page count");
201
202 static u_int isqrt(u_int num);
203 static int vm_pageout_launder(struct vm_domain *vmd, int launder,
204     bool in_shortfall);
205 static void vm_pageout_laundry_worker(void *arg);
206
207 struct scan_state {
208         struct vm_batchqueue bq;
209         struct vm_pagequeue *pq;
210         vm_page_t       marker;
211         int             maxscan;
212         int             scanned;
213 };
214
215 static void
216 vm_pageout_init_scan(struct scan_state *ss, struct vm_pagequeue *pq,
217     vm_page_t marker, vm_page_t after, int maxscan)
218 {
219
220         vm_pagequeue_assert_locked(pq);
221         KASSERT((marker->a.flags & PGA_ENQUEUED) == 0,
222             ("marker %p already enqueued", marker));
223
224         if (after == NULL)
225                 TAILQ_INSERT_HEAD(&pq->pq_pl, marker, plinks.q);
226         else
227                 TAILQ_INSERT_AFTER(&pq->pq_pl, after, marker, plinks.q);
228         vm_page_aflag_set(marker, PGA_ENQUEUED);
229
230         vm_batchqueue_init(&ss->bq);
231         ss->pq = pq;
232         ss->marker = marker;
233         ss->maxscan = maxscan;
234         ss->scanned = 0;
235         vm_pagequeue_unlock(pq);
236 }
237
238 static void
239 vm_pageout_end_scan(struct scan_state *ss)
240 {
241         struct vm_pagequeue *pq;
242
243         pq = ss->pq;
244         vm_pagequeue_assert_locked(pq);
245         KASSERT((ss->marker->a.flags & PGA_ENQUEUED) != 0,
246             ("marker %p not enqueued", ss->marker));
247
248         TAILQ_REMOVE(&pq->pq_pl, ss->marker, plinks.q);
249         vm_page_aflag_clear(ss->marker, PGA_ENQUEUED);
250         pq->pq_pdpages += ss->scanned;
251 }
252
253 /*
254  * Add a small number of queued pages to a batch queue for later processing
255  * without the corresponding queue lock held.  The caller must have enqueued a
256  * marker page at the desired start point for the scan.  Pages will be
257  * physically dequeued if the caller so requests.  Otherwise, the returned
258  * batch may contain marker pages, and it is up to the caller to handle them.
259  *
260  * When processing the batch queue, vm_pageout_defer() must be used to
261  * determine whether the page has been logically dequeued since the batch was
262  * collected.
263  */
264 static __always_inline void
265 vm_pageout_collect_batch(struct scan_state *ss, const bool dequeue)
266 {
267         struct vm_pagequeue *pq;
268         vm_page_t m, marker, n;
269
270         marker = ss->marker;
271         pq = ss->pq;
272
273         KASSERT((marker->a.flags & PGA_ENQUEUED) != 0,
274             ("marker %p not enqueued", ss->marker));
275
276         vm_pagequeue_lock(pq);
277         for (m = TAILQ_NEXT(marker, plinks.q); m != NULL &&
278             ss->scanned < ss->maxscan && ss->bq.bq_cnt < VM_BATCHQUEUE_SIZE;
279             m = n, ss->scanned++) {
280                 n = TAILQ_NEXT(m, plinks.q);
281                 if ((m->flags & PG_MARKER) == 0) {
282                         KASSERT((m->a.flags & PGA_ENQUEUED) != 0,
283                             ("page %p not enqueued", m));
284                         KASSERT((m->flags & PG_FICTITIOUS) == 0,
285                             ("Fictitious page %p cannot be in page queue", m));
286                         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
287                             ("Unmanaged page %p cannot be in page queue", m));
288                 } else if (dequeue)
289                         continue;
290
291                 (void)vm_batchqueue_insert(&ss->bq, m);
292                 if (dequeue) {
293                         TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
294                         vm_page_aflag_clear(m, PGA_ENQUEUED);
295                 }
296         }
297         TAILQ_REMOVE(&pq->pq_pl, marker, plinks.q);
298         if (__predict_true(m != NULL))
299                 TAILQ_INSERT_BEFORE(m, marker, plinks.q);
300         else
301                 TAILQ_INSERT_TAIL(&pq->pq_pl, marker, plinks.q);
302         if (dequeue)
303                 vm_pagequeue_cnt_add(pq, -ss->bq.bq_cnt);
304         vm_pagequeue_unlock(pq);
305 }
306
307 /*
308  * Return the next page to be scanned, or NULL if the scan is complete.
309  */
310 static __always_inline vm_page_t
311 vm_pageout_next(struct scan_state *ss, const bool dequeue)
312 {
313
314         if (ss->bq.bq_cnt == 0)
315                 vm_pageout_collect_batch(ss, dequeue);
316         return (vm_batchqueue_pop(&ss->bq));
317 }
318
319 /*
320  * Determine whether processing of a page should be deferred and ensure that any
321  * outstanding queue operations are processed.
322  */
323 static __always_inline bool
324 vm_pageout_defer(vm_page_t m, const uint8_t queue, const bool enqueued)
325 {
326         vm_page_astate_t as;
327
328         as = vm_page_astate_load(m);
329         if (__predict_false(as.queue != queue ||
330             ((as.flags & PGA_ENQUEUED) != 0) != enqueued))
331                 return (true);
332         if ((as.flags & PGA_QUEUE_OP_MASK) != 0) {
333                 vm_page_pqbatch_submit(m, queue);
334                 return (true);
335         }
336         return (false);
337 }
338
339 /*
340  * Scan for pages at adjacent offsets within the given page's object that are
341  * eligible for laundering, form a cluster of these pages and the given page,
342  * and launder that cluster.
343  */
344 static int
345 vm_pageout_cluster(vm_page_t m)
346 {
347         vm_object_t object;
348         vm_page_t mc[2 * vm_pageout_page_count], p, pb, ps;
349         vm_pindex_t pindex;
350         int ib, is, page_base, pageout_count;
351
352         object = m->object;
353         VM_OBJECT_ASSERT_WLOCKED(object);
354         pindex = m->pindex;
355
356         vm_page_assert_xbusied(m);
357
358         mc[vm_pageout_page_count] = pb = ps = m;
359         pageout_count = 1;
360         page_base = vm_pageout_page_count;
361         ib = 1;
362         is = 1;
363
364         /*
365          * We can cluster only if the page is not clean, busy, or held, and
366          * the page is in the laundry queue.
367          *
368          * During heavy mmap/modification loads the pageout
369          * daemon can really fragment the underlying file
370          * due to flushing pages out of order and not trying to
371          * align the clusters (which leaves sporadic out-of-order
372          * holes).  To solve this problem we do the reverse scan
373          * first and attempt to align our cluster, then do a 
374          * forward scan if room remains.
375          */
376 more:
377         while (ib != 0 && pageout_count < vm_pageout_page_count) {
378                 if (ib > pindex) {
379                         ib = 0;
380                         break;
381                 }
382                 if ((p = vm_page_prev(pb)) == NULL ||
383                     vm_page_tryxbusy(p) == 0) {
384                         ib = 0;
385                         break;
386                 }
387                 if (vm_page_wired(p)) {
388                         ib = 0;
389                         vm_page_xunbusy(p);
390                         break;
391                 }
392                 vm_page_test_dirty(p);
393                 if (p->dirty == 0) {
394                         ib = 0;
395                         vm_page_xunbusy(p);
396                         break;
397                 }
398                 if (!vm_page_in_laundry(p) || !vm_page_try_remove_write(p)) {
399                         vm_page_xunbusy(p);
400                         ib = 0;
401                         break;
402                 }
403                 mc[--page_base] = pb = p;
404                 ++pageout_count;
405                 ++ib;
406
407                 /*
408                  * We are at an alignment boundary.  Stop here, and switch
409                  * directions.  Do not clear ib.
410                  */
411                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
412                         break;
413         }
414         while (pageout_count < vm_pageout_page_count && 
415             pindex + is < object->size) {
416                 if ((p = vm_page_next(ps)) == NULL ||
417                     vm_page_tryxbusy(p) == 0)
418                         break;
419                 if (vm_page_wired(p)) {
420                         vm_page_xunbusy(p);
421                         break;
422                 }
423                 vm_page_test_dirty(p);
424                 if (p->dirty == 0) {
425                         vm_page_xunbusy(p);
426                         break;
427                 }
428                 if (!vm_page_in_laundry(p) || !vm_page_try_remove_write(p)) {
429                         vm_page_xunbusy(p);
430                         break;
431                 }
432                 mc[page_base + pageout_count] = ps = p;
433                 ++pageout_count;
434                 ++is;
435         }
436
437         /*
438          * If we exhausted our forward scan, continue with the reverse scan
439          * when possible, even past an alignment boundary.  This catches
440          * boundary conditions.
441          */
442         if (ib != 0 && pageout_count < vm_pageout_page_count)
443                 goto more;
444
445         return (vm_pageout_flush(&mc[page_base], pageout_count,
446             VM_PAGER_PUT_NOREUSE, 0, NULL, NULL));
447 }
448
449 /*
450  * vm_pageout_flush() - launder the given pages
451  *
452  *      The given pages are laundered.  Note that we setup for the start of
453  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
454  *      reference count all in here rather then in the parent.  If we want
455  *      the parent to do more sophisticated things we may have to change
456  *      the ordering.
457  *
458  *      Returned runlen is the count of pages between mreq and first
459  *      page after mreq with status VM_PAGER_AGAIN.
460  *      *eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
461  *      for any page in runlen set.
462  */
463 int
464 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
465     boolean_t *eio)
466 {
467         vm_object_t object = mc[0]->object;
468         int pageout_status[count];
469         int numpagedout = 0;
470         int i, runlen;
471
472         VM_OBJECT_ASSERT_WLOCKED(object);
473
474         /*
475          * Initiate I/O.  Mark the pages shared busy and verify that they're
476          * valid and read-only.
477          *
478          * We do not have to fixup the clean/dirty bits here... we can
479          * allow the pager to do it after the I/O completes.
480          *
481          * NOTE! mc[i]->dirty may be partial or fragmented due to an
482          * edge case with file fragments.
483          */
484         for (i = 0; i < count; i++) {
485                 KASSERT(vm_page_all_valid(mc[i]),
486                     ("vm_pageout_flush: partially invalid page %p index %d/%d",
487                         mc[i], i, count));
488                 KASSERT((mc[i]->a.flags & PGA_WRITEABLE) == 0,
489                     ("vm_pageout_flush: writeable page %p", mc[i]));
490                 vm_page_busy_downgrade(mc[i]);
491         }
492         vm_object_pip_add(object, count);
493
494         vm_pager_put_pages(object, mc, count, flags, pageout_status);
495
496         runlen = count - mreq;
497         if (eio != NULL)
498                 *eio = FALSE;
499         for (i = 0; i < count; i++) {
500                 vm_page_t mt = mc[i];
501
502                 KASSERT(pageout_status[i] == VM_PAGER_PEND ||
503                     !pmap_page_is_write_mapped(mt),
504                     ("vm_pageout_flush: page %p is not write protected", mt));
505                 switch (pageout_status[i]) {
506                 case VM_PAGER_OK:
507                         /*
508                          * The page may have moved since laundering started, in
509                          * which case it should be left alone.
510                          */
511                         if (vm_page_in_laundry(mt))
512                                 vm_page_deactivate_noreuse(mt);
513                         /* FALLTHROUGH */
514                 case VM_PAGER_PEND:
515                         numpagedout++;
516                         break;
517                 case VM_PAGER_BAD:
518                         /*
519                          * The page is outside the object's range.  We pretend
520                          * that the page out worked and clean the page, so the
521                          * changes will be lost if the page is reclaimed by
522                          * the page daemon.
523                          */
524                         vm_page_undirty(mt);
525                         if (vm_page_in_laundry(mt))
526                                 vm_page_deactivate_noreuse(mt);
527                         break;
528                 case VM_PAGER_ERROR:
529                 case VM_PAGER_FAIL:
530                         /*
531                          * If the page couldn't be paged out to swap because the
532                          * pager wasn't able to find space, place the page in
533                          * the PQ_UNSWAPPABLE holding queue.  This is an
534                          * optimization that prevents the page daemon from
535                          * wasting CPU cycles on pages that cannot be reclaimed
536                          * becase no swap device is configured.
537                          *
538                          * Otherwise, reactivate the page so that it doesn't
539                          * clog the laundry and inactive queues.  (We will try
540                          * paging it out again later.)
541                          */
542                         if (object->type == OBJT_SWAP &&
543                             pageout_status[i] == VM_PAGER_FAIL) {
544                                 vm_page_unswappable(mt);
545                                 numpagedout++;
546                         } else
547                                 vm_page_activate(mt);
548                         if (eio != NULL && i >= mreq && i - mreq < runlen)
549                                 *eio = TRUE;
550                         break;
551                 case VM_PAGER_AGAIN:
552                         if (i >= mreq && i - mreq < runlen)
553                                 runlen = i - mreq;
554                         break;
555                 }
556
557                 /*
558                  * If the operation is still going, leave the page busy to
559                  * block all other accesses. Also, leave the paging in
560                  * progress indicator set so that we don't attempt an object
561                  * collapse.
562                  */
563                 if (pageout_status[i] != VM_PAGER_PEND) {
564                         vm_object_pip_wakeup(object);
565                         vm_page_sunbusy(mt);
566                 }
567         }
568         if (prunlen != NULL)
569                 *prunlen = runlen;
570         return (numpagedout);
571 }
572
573 static void
574 vm_pageout_swapon(void *arg __unused, struct swdevt *sp __unused)
575 {
576
577         atomic_store_rel_int(&swapdev_enabled, 1);
578 }
579
580 static void
581 vm_pageout_swapoff(void *arg __unused, struct swdevt *sp __unused)
582 {
583
584         if (swap_pager_nswapdev() == 1)
585                 atomic_store_rel_int(&swapdev_enabled, 0);
586 }
587
588 /*
589  * Attempt to acquire all of the necessary locks to launder a page and
590  * then call through the clustering layer to PUTPAGES.  Wait a short
591  * time for a vnode lock.
592  *
593  * Requires the page and object lock on entry, releases both before return.
594  * Returns 0 on success and an errno otherwise.
595  */
596 static int
597 vm_pageout_clean(vm_page_t m, int *numpagedout)
598 {
599         struct vnode *vp;
600         struct mount *mp;
601         vm_object_t object;
602         vm_pindex_t pindex;
603         int error, lockmode;
604
605         object = m->object;
606         VM_OBJECT_ASSERT_WLOCKED(object);
607         error = 0;
608         vp = NULL;
609         mp = NULL;
610
611         /*
612          * The object is already known NOT to be dead.   It
613          * is possible for the vget() to block the whole
614          * pageout daemon, but the new low-memory handling
615          * code should prevent it.
616          *
617          * We can't wait forever for the vnode lock, we might
618          * deadlock due to a vn_read() getting stuck in
619          * vm_wait while holding this vnode.  We skip the 
620          * vnode if we can't get it in a reasonable amount
621          * of time.
622          */
623         if (object->type == OBJT_VNODE) {
624                 vm_page_xunbusy(m);
625                 vp = object->handle;
626                 if (vp->v_type == VREG &&
627                     vn_start_write(vp, &mp, V_NOWAIT) != 0) {
628                         mp = NULL;
629                         error = EDEADLK;
630                         goto unlock_all;
631                 }
632                 KASSERT(mp != NULL,
633                     ("vp %p with NULL v_mount", vp));
634                 vm_object_reference_locked(object);
635                 pindex = m->pindex;
636                 VM_OBJECT_WUNLOCK(object);
637                 lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
638                     LK_SHARED : LK_EXCLUSIVE;
639                 if (vget(vp, lockmode | LK_TIMELOCK, curthread)) {
640                         vp = NULL;
641                         error = EDEADLK;
642                         goto unlock_mp;
643                 }
644                 VM_OBJECT_WLOCK(object);
645
646                 /*
647                  * Ensure that the object and vnode were not disassociated
648                  * while locks were dropped.
649                  */
650                 if (vp->v_object != object) {
651                         error = ENOENT;
652                         goto unlock_all;
653                 }
654
655                 /*
656                  * While the object was unlocked, the page may have been:
657                  * (1) moved to a different queue,
658                  * (2) reallocated to a different object,
659                  * (3) reallocated to a different offset, or
660                  * (4) cleaned.
661                  */
662                 if (!vm_page_in_laundry(m) || m->object != object ||
663                     m->pindex != pindex || m->dirty == 0) {
664                         error = ENXIO;
665                         goto unlock_all;
666                 }
667
668                 /*
669                  * The page may have been busied while the object lock was
670                  * released.
671                  */
672                 if (vm_page_tryxbusy(m) == 0) {
673                         error = EBUSY;
674                         goto unlock_all;
675                 }
676         }
677
678         /*
679          * Remove all writeable mappings, failing if the page is wired.
680          */
681         if (!vm_page_try_remove_write(m)) {
682                 vm_page_xunbusy(m);
683                 error = EBUSY;
684                 goto unlock_all;
685         }
686
687         /*
688          * If a page is dirty, then it is either being washed
689          * (but not yet cleaned) or it is still in the
690          * laundry.  If it is still in the laundry, then we
691          * start the cleaning operation. 
692          */
693         if ((*numpagedout = vm_pageout_cluster(m)) == 0)
694                 error = EIO;
695
696 unlock_all:
697         VM_OBJECT_WUNLOCK(object);
698
699 unlock_mp:
700         if (mp != NULL) {
701                 if (vp != NULL)
702                         vput(vp);
703                 vm_object_deallocate(object);
704                 vn_finished_write(mp);
705         }
706
707         return (error);
708 }
709
710 /*
711  * Attempt to launder the specified number of pages.
712  *
713  * Returns the number of pages successfully laundered.
714  */
715 static int
716 vm_pageout_launder(struct vm_domain *vmd, int launder, bool in_shortfall)
717 {
718         struct scan_state ss;
719         struct vm_pagequeue *pq;
720         vm_object_t object;
721         vm_page_t m, marker;
722         vm_page_astate_t new, old;
723         int act_delta, error, numpagedout, queue, refs, starting_target;
724         int vnodes_skipped;
725         bool pageout_ok;
726
727         object = NULL;
728         starting_target = launder;
729         vnodes_skipped = 0;
730
731         /*
732          * Scan the laundry queues for pages eligible to be laundered.  We stop
733          * once the target number of dirty pages have been laundered, or once
734          * we've reached the end of the queue.  A single iteration of this loop
735          * may cause more than one page to be laundered because of clustering.
736          *
737          * As an optimization, we avoid laundering from PQ_UNSWAPPABLE when no
738          * swap devices are configured.
739          */
740         if (atomic_load_acq_int(&swapdev_enabled))
741                 queue = PQ_UNSWAPPABLE;
742         else
743                 queue = PQ_LAUNDRY;
744
745 scan:
746         marker = &vmd->vmd_markers[queue];
747         pq = &vmd->vmd_pagequeues[queue];
748         vm_pagequeue_lock(pq);
749         vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
750         while (launder > 0 && (m = vm_pageout_next(&ss, false)) != NULL) {
751                 if (__predict_false((m->flags & PG_MARKER) != 0))
752                         continue;
753
754                 /*
755                  * Don't touch a page that was removed from the queue after the
756                  * page queue lock was released.  Otherwise, ensure that any
757                  * pending queue operations, such as dequeues for wired pages,
758                  * are handled.
759                  */
760                 if (vm_pageout_defer(m, queue, true))
761                         continue;
762
763                 /*
764                  * Lock the page's object.
765                  */
766                 if (object == NULL || object != m->object) {
767                         if (object != NULL)
768                                 VM_OBJECT_WUNLOCK(object);
769                         object = atomic_load_ptr(&m->object);
770                         if (__predict_false(object == NULL))
771                                 /* The page is being freed by another thread. */
772                                 continue;
773
774                         /* Depends on type-stability. */
775                         VM_OBJECT_WLOCK(object);
776                         if (__predict_false(m->object != object)) {
777                                 VM_OBJECT_WUNLOCK(object);
778                                 object = NULL;
779                                 continue;
780                         }
781                 }
782
783                 if (vm_page_tryxbusy(m) == 0)
784                         continue;
785
786                 /*
787                  * Check for wirings now that we hold the object lock and have
788                  * exclusively busied the page.  If the page is mapped, it may
789                  * still be wired by pmap lookups.  The call to
790                  * vm_page_try_remove_all() below atomically checks for such
791                  * wirings and removes mappings.  If the page is unmapped, the
792                  * wire count is guaranteed not to increase after this check.
793                  */
794                 if (__predict_false(vm_page_wired(m)))
795                         goto skip_page;
796
797                 /*
798                  * Invalid pages can be easily freed.  They cannot be
799                  * mapped; vm_page_free() asserts this.
800                  */
801                 if (vm_page_none_valid(m))
802                         goto free_page;
803
804                 refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0;
805
806                 for (old = vm_page_astate_load(m);;) {
807                         /*
808                          * Check to see if the page has been removed from the
809                          * queue since the first such check.  Leave it alone if
810                          * so, discarding any references collected by
811                          * pmap_ts_referenced().
812                          */
813                         if (__predict_false(_vm_page_queue(old) == PQ_NONE))
814                                 goto skip_page;
815
816                         new = old;
817                         act_delta = refs;
818                         if ((old.flags & PGA_REFERENCED) != 0) {
819                                 new.flags &= ~PGA_REFERENCED;
820                                 act_delta++;
821                         }
822                         if (act_delta == 0) {
823                                 ;
824                         } else if (object->ref_count != 0) {
825                                 /*
826                                  * Increase the activation count if the page was
827                                  * referenced while in the laundry queue.  This
828                                  * makes it less likely that the page will be
829                                  * returned prematurely to the laundry queue.
830                                  */
831                                 new.act_count += ACT_ADVANCE +
832                                     act_delta;
833                                 if (new.act_count > ACT_MAX)
834                                         new.act_count = ACT_MAX;
835
836                                 new.flags &= ~PGA_QUEUE_OP_MASK;
837                                 new.flags |= PGA_REQUEUE;
838                                 new.queue = PQ_ACTIVE;
839                                 if (!vm_page_pqstate_commit(m, &old, new))
840                                         continue;
841
842                                 /*
843                                  * If this was a background laundering, count
844                                  * activated pages towards our target.  The
845                                  * purpose of background laundering is to ensure
846                                  * that pages are eventually cycled through the
847                                  * laundry queue, and an activation is a valid
848                                  * way out.
849                                  */
850                                 if (!in_shortfall)
851                                         launder--;
852                                 VM_CNT_INC(v_reactivated);
853                                 goto skip_page;
854                         } else if ((object->flags & OBJ_DEAD) == 0) {
855                                 new.flags |= PGA_REQUEUE;
856                                 if (!vm_page_pqstate_commit(m, &old, new))
857                                         continue;
858                                 goto skip_page;
859                         }
860                         break;
861                 }
862
863                 /*
864                  * If the page appears to be clean at the machine-independent
865                  * layer, then remove all of its mappings from the pmap in
866                  * anticipation of freeing it.  If, however, any of the page's
867                  * mappings allow write access, then the page may still be
868                  * modified until the last of those mappings are removed.
869                  */
870                 if (object->ref_count != 0) {
871                         vm_page_test_dirty(m);
872                         if (m->dirty == 0 && !vm_page_try_remove_all(m))
873                                 goto skip_page;
874                 }
875
876                 /*
877                  * Clean pages are freed, and dirty pages are paged out unless
878                  * they belong to a dead object.  Requeueing dirty pages from
879                  * dead objects is pointless, as they are being paged out and
880                  * freed by the thread that destroyed the object.
881                  */
882                 if (m->dirty == 0) {
883 free_page:
884                         /*
885                          * Now we are guaranteed that no other threads are
886                          * manipulating the page, check for a last-second
887                          * reference.
888                          */
889                         if (vm_pageout_defer(m, queue, true))
890                                 goto skip_page;
891                         vm_page_free(m);
892                         VM_CNT_INC(v_dfree);
893                 } else if ((object->flags & OBJ_DEAD) == 0) {
894                         if (object->type != OBJT_SWAP &&
895                             object->type != OBJT_DEFAULT)
896                                 pageout_ok = true;
897                         else if (disable_swap_pageouts)
898                                 pageout_ok = false;
899                         else
900                                 pageout_ok = true;
901                         if (!pageout_ok) {
902                                 vm_page_launder(m);
903                                 goto skip_page;
904                         }
905
906                         /*
907                          * Form a cluster with adjacent, dirty pages from the
908                          * same object, and page out that entire cluster.
909                          *
910                          * The adjacent, dirty pages must also be in the
911                          * laundry.  However, their mappings are not checked
912                          * for new references.  Consequently, a recently
913                          * referenced page may be paged out.  However, that
914                          * page will not be prematurely reclaimed.  After page
915                          * out, the page will be placed in the inactive queue,
916                          * where any new references will be detected and the
917                          * page reactivated.
918                          */
919                         error = vm_pageout_clean(m, &numpagedout);
920                         if (error == 0) {
921                                 launder -= numpagedout;
922                                 ss.scanned += numpagedout;
923                         } else if (error == EDEADLK) {
924                                 pageout_lock_miss++;
925                                 vnodes_skipped++;
926                         }
927                         object = NULL;
928                 } else {
929 skip_page:
930                         vm_page_xunbusy(m);
931                 }
932         }
933         if (object != NULL) {
934                 VM_OBJECT_WUNLOCK(object);
935                 object = NULL;
936         }
937         vm_pagequeue_lock(pq);
938         vm_pageout_end_scan(&ss);
939         vm_pagequeue_unlock(pq);
940
941         if (launder > 0 && queue == PQ_UNSWAPPABLE) {
942                 queue = PQ_LAUNDRY;
943                 goto scan;
944         }
945
946         /*
947          * Wakeup the sync daemon if we skipped a vnode in a writeable object
948          * and we didn't launder enough pages.
949          */
950         if (vnodes_skipped > 0 && launder > 0)
951                 (void)speedup_syncer();
952
953         return (starting_target - launder);
954 }
955
956 /*
957  * Compute the integer square root.
958  */
959 static u_int
960 isqrt(u_int num)
961 {
962         u_int bit, root, tmp;
963
964         bit = num != 0 ? (1u << ((fls(num) - 1) & ~1)) : 0;
965         root = 0;
966         while (bit != 0) {
967                 tmp = root + bit;
968                 root >>= 1;
969                 if (num >= tmp) {
970                         num -= tmp;
971                         root += bit;
972                 }
973                 bit >>= 2;
974         }
975         return (root);
976 }
977
978 /*
979  * Perform the work of the laundry thread: periodically wake up and determine
980  * whether any pages need to be laundered.  If so, determine the number of pages
981  * that need to be laundered, and launder them.
982  */
983 static void
984 vm_pageout_laundry_worker(void *arg)
985 {
986         struct vm_domain *vmd;
987         struct vm_pagequeue *pq;
988         uint64_t nclean, ndirty, nfreed;
989         int domain, last_target, launder, shortfall, shortfall_cycle, target;
990         bool in_shortfall;
991
992         domain = (uintptr_t)arg;
993         vmd = VM_DOMAIN(domain);
994         pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
995         KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
996
997         shortfall = 0;
998         in_shortfall = false;
999         shortfall_cycle = 0;
1000         last_target = target = 0;
1001         nfreed = 0;
1002
1003         /*
1004          * Calls to these handlers are serialized by the swap syscall lock.
1005          */
1006         (void)EVENTHANDLER_REGISTER(swapon, vm_pageout_swapon, vmd,
1007             EVENTHANDLER_PRI_ANY);
1008         (void)EVENTHANDLER_REGISTER(swapoff, vm_pageout_swapoff, vmd,
1009             EVENTHANDLER_PRI_ANY);
1010
1011         /*
1012          * The pageout laundry worker is never done, so loop forever.
1013          */
1014         for (;;) {
1015                 KASSERT(target >= 0, ("negative target %d", target));
1016                 KASSERT(shortfall_cycle >= 0,
1017                     ("negative cycle %d", shortfall_cycle));
1018                 launder = 0;
1019
1020                 /*
1021                  * First determine whether we need to launder pages to meet a
1022                  * shortage of free pages.
1023                  */
1024                 if (shortfall > 0) {
1025                         in_shortfall = true;
1026                         shortfall_cycle = VM_LAUNDER_RATE / VM_INACT_SCAN_RATE;
1027                         target = shortfall;
1028                 } else if (!in_shortfall)
1029                         goto trybackground;
1030                 else if (shortfall_cycle == 0 || vm_laundry_target(vmd) <= 0) {
1031                         /*
1032                          * We recently entered shortfall and began laundering
1033                          * pages.  If we have completed that laundering run
1034                          * (and we are no longer in shortfall) or we have met
1035                          * our laundry target through other activity, then we
1036                          * can stop laundering pages.
1037                          */
1038                         in_shortfall = false;
1039                         target = 0;
1040                         goto trybackground;
1041                 }
1042                 launder = target / shortfall_cycle--;
1043                 goto dolaundry;
1044
1045                 /*
1046                  * There's no immediate need to launder any pages; see if we
1047                  * meet the conditions to perform background laundering:
1048                  *
1049                  * 1. The ratio of dirty to clean inactive pages exceeds the
1050                  *    background laundering threshold, or
1051                  * 2. we haven't yet reached the target of the current
1052                  *    background laundering run.
1053                  *
1054                  * The background laundering threshold is not a constant.
1055                  * Instead, it is a slowly growing function of the number of
1056                  * clean pages freed by the page daemon since the last
1057                  * background laundering.  Thus, as the ratio of dirty to
1058                  * clean inactive pages grows, the amount of memory pressure
1059                  * required to trigger laundering decreases.  We ensure
1060                  * that the threshold is non-zero after an inactive queue
1061                  * scan, even if that scan failed to free a single clean page.
1062                  */
1063 trybackground:
1064                 nclean = vmd->vmd_free_count +
1065                     vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt;
1066                 ndirty = vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt;
1067                 if (target == 0 && ndirty * isqrt(howmany(nfreed + 1,
1068                     vmd->vmd_free_target - vmd->vmd_free_min)) >= nclean) {
1069                         target = vmd->vmd_background_launder_target;
1070                 }
1071
1072                 /*
1073                  * We have a non-zero background laundering target.  If we've
1074                  * laundered up to our maximum without observing a page daemon
1075                  * request, just stop.  This is a safety belt that ensures we
1076                  * don't launder an excessive amount if memory pressure is low
1077                  * and the ratio of dirty to clean pages is large.  Otherwise,
1078                  * proceed at the background laundering rate.
1079                  */
1080                 if (target > 0) {
1081                         if (nfreed > 0) {
1082                                 nfreed = 0;
1083                                 last_target = target;
1084                         } else if (last_target - target >=
1085                             vm_background_launder_max * PAGE_SIZE / 1024) {
1086                                 target = 0;
1087                         }
1088                         launder = vm_background_launder_rate * PAGE_SIZE / 1024;
1089                         launder /= VM_LAUNDER_RATE;
1090                         if (launder > target)
1091                                 launder = target;
1092                 }
1093
1094 dolaundry:
1095                 if (launder > 0) {
1096                         /*
1097                          * Because of I/O clustering, the number of laundered
1098                          * pages could exceed "target" by the maximum size of
1099                          * a cluster minus one. 
1100                          */
1101                         target -= min(vm_pageout_launder(vmd, launder,
1102                             in_shortfall), target);
1103                         pause("laundp", hz / VM_LAUNDER_RATE);
1104                 }
1105
1106                 /*
1107                  * If we're not currently laundering pages and the page daemon
1108                  * hasn't posted a new request, sleep until the page daemon
1109                  * kicks us.
1110                  */
1111                 vm_pagequeue_lock(pq);
1112                 if (target == 0 && vmd->vmd_laundry_request == VM_LAUNDRY_IDLE)
1113                         (void)mtx_sleep(&vmd->vmd_laundry_request,
1114                             vm_pagequeue_lockptr(pq), PVM, "launds", 0);
1115
1116                 /*
1117                  * If the pagedaemon has indicated that it's in shortfall, start
1118                  * a shortfall laundering unless we're already in the middle of
1119                  * one.  This may preempt a background laundering.
1120                  */
1121                 if (vmd->vmd_laundry_request == VM_LAUNDRY_SHORTFALL &&
1122                     (!in_shortfall || shortfall_cycle == 0)) {
1123                         shortfall = vm_laundry_target(vmd) +
1124                             vmd->vmd_pageout_deficit;
1125                         target = 0;
1126                 } else
1127                         shortfall = 0;
1128
1129                 if (target == 0)
1130                         vmd->vmd_laundry_request = VM_LAUNDRY_IDLE;
1131                 nfreed += vmd->vmd_clean_pages_freed;
1132                 vmd->vmd_clean_pages_freed = 0;
1133                 vm_pagequeue_unlock(pq);
1134         }
1135 }
1136
1137 /*
1138  * Compute the number of pages we want to try to move from the
1139  * active queue to either the inactive or laundry queue.
1140  *
1141  * When scanning active pages during a shortage, we make clean pages
1142  * count more heavily towards the page shortage than dirty pages.
1143  * This is because dirty pages must be laundered before they can be
1144  * reused and thus have less utility when attempting to quickly
1145  * alleviate a free page shortage.  However, this weighting also
1146  * causes the scan to deactivate dirty pages more aggressively,
1147  * improving the effectiveness of clustering.
1148  */
1149 static int
1150 vm_pageout_active_target(struct vm_domain *vmd)
1151 {
1152         int shortage;
1153
1154         shortage = vmd->vmd_inactive_target + vm_paging_target(vmd) -
1155             (vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt +
1156             vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt / act_scan_laundry_weight);
1157         shortage *= act_scan_laundry_weight;
1158         return (shortage);
1159 }
1160
1161 /*
1162  * Scan the active queue.  If there is no shortage of inactive pages, scan a
1163  * small portion of the queue in order to maintain quasi-LRU.
1164  */
1165 static void
1166 vm_pageout_scan_active(struct vm_domain *vmd, int page_shortage)
1167 {
1168         struct scan_state ss;
1169         vm_object_t object;
1170         vm_page_t m, marker;
1171         struct vm_pagequeue *pq;
1172         vm_page_astate_t old, new;
1173         long min_scan;
1174         int act_delta, max_scan, ps_delta, refs, scan_tick;
1175         uint8_t nqueue;
1176
1177         marker = &vmd->vmd_markers[PQ_ACTIVE];
1178         pq = &vmd->vmd_pagequeues[PQ_ACTIVE];
1179         vm_pagequeue_lock(pq);
1180
1181         /*
1182          * If we're just idle polling attempt to visit every
1183          * active page within 'update_period' seconds.
1184          */
1185         scan_tick = ticks;
1186         if (vm_pageout_update_period != 0) {
1187                 min_scan = pq->pq_cnt;
1188                 min_scan *= scan_tick - vmd->vmd_last_active_scan;
1189                 min_scan /= hz * vm_pageout_update_period;
1190         } else
1191                 min_scan = 0;
1192         if (min_scan > 0 || (page_shortage > 0 && pq->pq_cnt > 0))
1193                 vmd->vmd_last_active_scan = scan_tick;
1194
1195         /*
1196          * Scan the active queue for pages that can be deactivated.  Update
1197          * the per-page activity counter and use it to identify deactivation
1198          * candidates.  Held pages may be deactivated.
1199          *
1200          * To avoid requeuing each page that remains in the active queue, we
1201          * implement the CLOCK algorithm.  To keep the implementation of the
1202          * enqueue operation consistent for all page queues, we use two hands,
1203          * represented by marker pages. Scans begin at the first hand, which
1204          * precedes the second hand in the queue.  When the two hands meet,
1205          * they are moved back to the head and tail of the queue, respectively,
1206          * and scanning resumes.
1207          */
1208         max_scan = page_shortage > 0 ? pq->pq_cnt : min_scan;
1209 act_scan:
1210         vm_pageout_init_scan(&ss, pq, marker, &vmd->vmd_clock[0], max_scan);
1211         while ((m = vm_pageout_next(&ss, false)) != NULL) {
1212                 if (__predict_false(m == &vmd->vmd_clock[1])) {
1213                         vm_pagequeue_lock(pq);
1214                         TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
1215                         TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[1], plinks.q);
1216                         TAILQ_INSERT_HEAD(&pq->pq_pl, &vmd->vmd_clock[0],
1217                             plinks.q);
1218                         TAILQ_INSERT_TAIL(&pq->pq_pl, &vmd->vmd_clock[1],
1219                             plinks.q);
1220                         max_scan -= ss.scanned;
1221                         vm_pageout_end_scan(&ss);
1222                         goto act_scan;
1223                 }
1224                 if (__predict_false((m->flags & PG_MARKER) != 0))
1225                         continue;
1226
1227                 /*
1228                  * Don't touch a page that was removed from the queue after the
1229                  * page queue lock was released.  Otherwise, ensure that any
1230                  * pending queue operations, such as dequeues for wired pages,
1231                  * are handled.
1232                  */
1233                 if (vm_pageout_defer(m, PQ_ACTIVE, true))
1234                         continue;
1235
1236                 /*
1237                  * A page's object pointer may be set to NULL before
1238                  * the object lock is acquired.
1239                  */
1240                 object = atomic_load_ptr(&m->object);
1241                 if (__predict_false(object == NULL))
1242                         /*
1243                          * The page has been removed from its object.
1244                          */
1245                         continue;
1246
1247                 /* Deferred free of swap space. */
1248                 if ((m->a.flags & PGA_SWAP_FREE) != 0 &&
1249                     VM_OBJECT_TRYWLOCK(object)) {
1250                         if (m->object == object)
1251                                 vm_pager_page_unswapped(m);
1252                         VM_OBJECT_WUNLOCK(object);
1253                 }
1254
1255                 /*
1256                  * Check to see "how much" the page has been used.
1257                  *
1258                  * Test PGA_REFERENCED after calling pmap_ts_referenced() so
1259                  * that a reference from a concurrently destroyed mapping is
1260                  * observed here and now.
1261                  *
1262                  * Perform an unsynchronized object ref count check.  While
1263                  * the page lock ensures that the page is not reallocated to
1264                  * another object, in particular, one with unmanaged mappings
1265                  * that cannot support pmap_ts_referenced(), two races are,
1266                  * nonetheless, possible:
1267                  * 1) The count was transitioning to zero, but we saw a non-
1268                  *    zero value.  pmap_ts_referenced() will return zero
1269                  *    because the page is not mapped.
1270                  * 2) The count was transitioning to one, but we saw zero.
1271                  *    This race delays the detection of a new reference.  At
1272                  *    worst, we will deactivate and reactivate the page.
1273                  */
1274                 refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0;
1275
1276                 old = vm_page_astate_load(m);
1277                 do {
1278                         /*
1279                          * Check to see if the page has been removed from the
1280                          * queue since the first such check.  Leave it alone if
1281                          * so, discarding any references collected by
1282                          * pmap_ts_referenced().
1283                          */
1284                         if (__predict_false(_vm_page_queue(old) == PQ_NONE))
1285                                 break;
1286
1287                         /*
1288                          * Advance or decay the act_count based on recent usage.
1289                          */
1290                         new = old;
1291                         act_delta = refs;
1292                         if ((old.flags & PGA_REFERENCED) != 0) {
1293                                 new.flags &= ~PGA_REFERENCED;
1294                                 act_delta++;
1295                         }
1296                         if (act_delta != 0) {
1297                                 new.act_count += ACT_ADVANCE + act_delta;
1298                                 if (new.act_count > ACT_MAX)
1299                                         new.act_count = ACT_MAX;
1300                         } else {
1301                                 new.act_count -= min(new.act_count,
1302                                     ACT_DECLINE);
1303                         }
1304
1305                         if (new.act_count > 0) {
1306                                 /*
1307                                  * Adjust the activation count and keep the page
1308                                  * in the active queue.  The count might be left
1309                                  * unchanged if it is saturated.  The page may
1310                                  * have been moved to a different queue since we
1311                                  * started the scan, in which case we move it
1312                                  * back.
1313                                  */
1314                                 ps_delta = 0;
1315                                 if (old.queue != PQ_ACTIVE) {
1316                                         new.flags &= ~PGA_QUEUE_OP_MASK;
1317                                         new.flags |= PGA_REQUEUE;
1318                                         new.queue = PQ_ACTIVE;
1319                                 }
1320                         } else {
1321                                 /*
1322                                  * When not short for inactive pages, let dirty
1323                                  * pages go through the inactive queue before
1324                                  * moving to the laundry queue.  This gives them
1325                                  * some extra time to be reactivated,
1326                                  * potentially avoiding an expensive pageout.
1327                                  * However, during a page shortage, the inactive
1328                                  * queue is necessarily small, and so dirty
1329                                  * pages would only spend a trivial amount of
1330                                  * time in the inactive queue.  Therefore, we
1331                                  * might as well place them directly in the
1332                                  * laundry queue to reduce queuing overhead.
1333                                  *
1334                                  * Calling vm_page_test_dirty() here would
1335                                  * require acquisition of the object's write
1336                                  * lock.  However, during a page shortage,
1337                                  * directing dirty pages into the laundry queue
1338                                  * is only an optimization and not a
1339                                  * requirement.  Therefore, we simply rely on
1340                                  * the opportunistic updates to the page's dirty
1341                                  * field by the pmap.
1342                                  */
1343                                 if (page_shortage <= 0) {
1344                                         nqueue = PQ_INACTIVE;
1345                                         ps_delta = 0;
1346                                 } else if (m->dirty == 0) {
1347                                         nqueue = PQ_INACTIVE;
1348                                         ps_delta = act_scan_laundry_weight;
1349                                 } else {
1350                                         nqueue = PQ_LAUNDRY;
1351                                         ps_delta = 1;
1352                                 }
1353
1354                                 new.flags &= ~PGA_QUEUE_OP_MASK;
1355                                 new.flags |= PGA_REQUEUE;
1356                                 new.queue = nqueue;
1357                         }
1358                 } while (!vm_page_pqstate_commit(m, &old, new));
1359
1360                 page_shortage -= ps_delta;
1361         }
1362         vm_pagequeue_lock(pq);
1363         TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
1364         TAILQ_INSERT_AFTER(&pq->pq_pl, marker, &vmd->vmd_clock[0], plinks.q);
1365         vm_pageout_end_scan(&ss);
1366         vm_pagequeue_unlock(pq);
1367 }
1368
1369 static int
1370 vm_pageout_reinsert_inactive_page(struct vm_pagequeue *pq, vm_page_t marker,
1371     vm_page_t m)
1372 {
1373         vm_page_astate_t as;
1374
1375         vm_pagequeue_assert_locked(pq);
1376
1377         as = vm_page_astate_load(m);
1378         if (as.queue != PQ_INACTIVE || (as.flags & PGA_ENQUEUED) != 0)
1379                 return (0);
1380         vm_page_aflag_set(m, PGA_ENQUEUED);
1381         TAILQ_INSERT_BEFORE(marker, m, plinks.q);
1382         return (1);
1383 }
1384
1385 /*
1386  * Re-add stuck pages to the inactive queue.  We will examine them again
1387  * during the next scan.  If the queue state of a page has changed since
1388  * it was physically removed from the page queue in
1389  * vm_pageout_collect_batch(), don't do anything with that page.
1390  */
1391 static void
1392 vm_pageout_reinsert_inactive(struct scan_state *ss, struct vm_batchqueue *bq,
1393     vm_page_t m)
1394 {
1395         struct vm_pagequeue *pq;
1396         vm_page_t marker;
1397         int delta;
1398
1399         delta = 0;
1400         marker = ss->marker;
1401         pq = ss->pq;
1402
1403         if (m != NULL) {
1404                 if (vm_batchqueue_insert(bq, m))
1405                         return;
1406                 vm_pagequeue_lock(pq);
1407                 delta += vm_pageout_reinsert_inactive_page(pq, marker, m);
1408         } else
1409                 vm_pagequeue_lock(pq);
1410         while ((m = vm_batchqueue_pop(bq)) != NULL)
1411                 delta += vm_pageout_reinsert_inactive_page(pq, marker, m);
1412         vm_pagequeue_cnt_add(pq, delta);
1413         vm_pagequeue_unlock(pq);
1414         vm_batchqueue_init(bq);
1415 }
1416
1417 /*
1418  * Attempt to reclaim the requested number of pages from the inactive queue.
1419  * Returns true if the shortage was addressed.
1420  */
1421 static int
1422 vm_pageout_scan_inactive(struct vm_domain *vmd, int shortage,
1423     int *addl_shortage)
1424 {
1425         struct scan_state ss;
1426         struct vm_batchqueue rq;
1427         vm_page_t m, marker;
1428         struct vm_pagequeue *pq;
1429         vm_object_t object;
1430         vm_page_astate_t old, new;
1431         int act_delta, addl_page_shortage, deficit, page_shortage, refs;
1432         int starting_page_shortage;
1433
1434         /*
1435          * The addl_page_shortage is an estimate of the number of temporarily
1436          * stuck pages in the inactive queue.  In other words, the
1437          * number of pages from the inactive count that should be
1438          * discounted in setting the target for the active queue scan.
1439          */
1440         addl_page_shortage = 0;
1441
1442         /*
1443          * vmd_pageout_deficit counts the number of pages requested in
1444          * allocations that failed because of a free page shortage.  We assume
1445          * that the allocations will be reattempted and thus include the deficit
1446          * in our scan target.
1447          */
1448         deficit = atomic_readandclear_int(&vmd->vmd_pageout_deficit);
1449         starting_page_shortage = page_shortage = shortage + deficit;
1450
1451         object = NULL;
1452         vm_batchqueue_init(&rq);
1453
1454         /*
1455          * Start scanning the inactive queue for pages that we can free.  The
1456          * scan will stop when we reach the target or we have scanned the
1457          * entire queue.  (Note that m->a.act_count is not used to make
1458          * decisions for the inactive queue, only for the active queue.)
1459          */
1460         marker = &vmd->vmd_markers[PQ_INACTIVE];
1461         pq = &vmd->vmd_pagequeues[PQ_INACTIVE];
1462         vm_pagequeue_lock(pq);
1463         vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
1464         while (page_shortage > 0 && (m = vm_pageout_next(&ss, true)) != NULL) {
1465                 KASSERT((m->flags & PG_MARKER) == 0,
1466                     ("marker page %p was dequeued", m));
1467
1468                 /*
1469                  * Don't touch a page that was removed from the queue after the
1470                  * page queue lock was released.  Otherwise, ensure that any
1471                  * pending queue operations, such as dequeues for wired pages,
1472                  * are handled.
1473                  */
1474                 if (vm_pageout_defer(m, PQ_INACTIVE, false))
1475                         continue;
1476
1477                 /*
1478                  * Lock the page's object.
1479                  */
1480                 if (object == NULL || object != m->object) {
1481                         if (object != NULL)
1482                                 VM_OBJECT_WUNLOCK(object);
1483                         object = atomic_load_ptr(&m->object);
1484                         if (__predict_false(object == NULL))
1485                                 /* The page is being freed by another thread. */
1486                                 continue;
1487
1488                         /* Depends on type-stability. */
1489                         VM_OBJECT_WLOCK(object);
1490                         if (__predict_false(m->object != object)) {
1491                                 VM_OBJECT_WUNLOCK(object);
1492                                 object = NULL;
1493                                 goto reinsert;
1494                         }
1495                 }
1496
1497                 if (vm_page_tryxbusy(m) == 0) {
1498                         /*
1499                          * Don't mess with busy pages.  Leave them at
1500                          * the front of the queue.  Most likely, they
1501                          * are being paged out and will leave the
1502                          * queue shortly after the scan finishes.  So,
1503                          * they ought to be discounted from the
1504                          * inactive count.
1505                          */
1506                         addl_page_shortage++;
1507                         goto reinsert;
1508                 }
1509
1510                 /* Deferred free of swap space. */
1511                 if ((m->a.flags & PGA_SWAP_FREE) != 0)
1512                         vm_pager_page_unswapped(m);
1513
1514                 /*
1515                  * Check for wirings now that we hold the object lock and have
1516                  * exclusively busied the page.  If the page is mapped, it may
1517                  * still be wired by pmap lookups.  The call to
1518                  * vm_page_try_remove_all() below atomically checks for such
1519                  * wirings and removes mappings.  If the page is unmapped, the
1520                  * wire count is guaranteed not to increase after this check.
1521                  */
1522                 if (__predict_false(vm_page_wired(m)))
1523                         goto skip_page;
1524
1525                 /*
1526                  * Invalid pages can be easily freed. They cannot be
1527                  * mapped, vm_page_free() asserts this.
1528                  */
1529                 if (vm_page_none_valid(m))
1530                         goto free_page;
1531
1532                 refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0;
1533
1534                 for (old = vm_page_astate_load(m);;) {
1535                         /*
1536                          * Check to see if the page has been removed from the
1537                          * queue since the first such check.  Leave it alone if
1538                          * so, discarding any references collected by
1539                          * pmap_ts_referenced().
1540                          */
1541                         if (__predict_false(_vm_page_queue(old) == PQ_NONE))
1542                                 goto skip_page;
1543
1544                         new = old;
1545                         act_delta = refs;
1546                         if ((old.flags & PGA_REFERENCED) != 0) {
1547                                 new.flags &= ~PGA_REFERENCED;
1548                                 act_delta++;
1549                         }
1550                         if (act_delta == 0) {
1551                                 ;
1552                         } else if (object->ref_count != 0) {
1553                                 /*
1554                                  * Increase the activation count if the
1555                                  * page was referenced while in the
1556                                  * inactive queue.  This makes it less
1557                                  * likely that the page will be returned
1558                                  * prematurely to the inactive queue.
1559                                  */
1560                                 new.act_count += ACT_ADVANCE +
1561                                     act_delta;
1562                                 if (new.act_count > ACT_MAX)
1563                                         new.act_count = ACT_MAX;
1564
1565                                 new.flags &= ~PGA_QUEUE_OP_MASK;
1566                                 new.flags |= PGA_REQUEUE;
1567                                 new.queue = PQ_ACTIVE;
1568                                 if (!vm_page_pqstate_commit(m, &old, new))
1569                                         continue;
1570
1571                                 VM_CNT_INC(v_reactivated);
1572                                 goto skip_page;
1573                         } else if ((object->flags & OBJ_DEAD) == 0) {
1574                                 new.queue = PQ_INACTIVE;
1575                                 new.flags |= PGA_REQUEUE;
1576                                 if (!vm_page_pqstate_commit(m, &old, new))
1577                                         continue;
1578                                 goto skip_page;
1579                         }
1580                         break;
1581                 }
1582
1583                 /*
1584                  * If the page appears to be clean at the machine-independent
1585                  * layer, then remove all of its mappings from the pmap in
1586                  * anticipation of freeing it.  If, however, any of the page's
1587                  * mappings allow write access, then the page may still be
1588                  * modified until the last of those mappings are removed.
1589                  */
1590                 if (object->ref_count != 0) {
1591                         vm_page_test_dirty(m);
1592                         if (m->dirty == 0 && !vm_page_try_remove_all(m))
1593                                 goto skip_page;
1594                 }
1595
1596                 /*
1597                  * Clean pages can be freed, but dirty pages must be sent back
1598                  * to the laundry, unless they belong to a dead object.
1599                  * Requeueing dirty pages from dead objects is pointless, as
1600                  * they are being paged out and freed by the thread that
1601                  * destroyed the object.
1602                  */
1603                 if (m->dirty == 0) {
1604 free_page:
1605                         /*
1606                          * Now we are guaranteed that no other threads are
1607                          * manipulating the page, check for a last-second
1608                          * reference that would save it from doom.
1609                          */
1610                         if (vm_pageout_defer(m, PQ_INACTIVE, false))
1611                                 goto skip_page;
1612
1613                         /*
1614                          * Because we dequeued the page and have already checked
1615                          * for pending dequeue and enqueue requests, we can
1616                          * safely disassociate the page from the inactive queue
1617                          * without holding the queue lock.
1618                          */
1619                         m->a.queue = PQ_NONE;
1620                         vm_page_free(m);
1621                         page_shortage--;
1622                         continue;
1623                 }
1624                 if ((object->flags & OBJ_DEAD) == 0)
1625                         vm_page_launder(m);
1626 skip_page:
1627                 vm_page_xunbusy(m);
1628                 continue;
1629 reinsert:
1630                 vm_pageout_reinsert_inactive(&ss, &rq, m);
1631         }
1632         if (object != NULL)
1633                 VM_OBJECT_WUNLOCK(object);
1634         vm_pageout_reinsert_inactive(&ss, &rq, NULL);
1635         vm_pageout_reinsert_inactive(&ss, &ss.bq, NULL);
1636         vm_pagequeue_lock(pq);
1637         vm_pageout_end_scan(&ss);
1638         vm_pagequeue_unlock(pq);
1639
1640         VM_CNT_ADD(v_dfree, starting_page_shortage - page_shortage);
1641
1642         /*
1643          * Wake up the laundry thread so that it can perform any needed
1644          * laundering.  If we didn't meet our target, we're in shortfall and
1645          * need to launder more aggressively.  If PQ_LAUNDRY is empty and no
1646          * swap devices are configured, the laundry thread has no work to do, so
1647          * don't bother waking it up.
1648          *
1649          * The laundry thread uses the number of inactive queue scans elapsed
1650          * since the last laundering to determine whether to launder again, so
1651          * keep count.
1652          */
1653         if (starting_page_shortage > 0) {
1654                 pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
1655                 vm_pagequeue_lock(pq);
1656                 if (vmd->vmd_laundry_request == VM_LAUNDRY_IDLE &&
1657                     (pq->pq_cnt > 0 || atomic_load_acq_int(&swapdev_enabled))) {
1658                         if (page_shortage > 0) {
1659                                 vmd->vmd_laundry_request = VM_LAUNDRY_SHORTFALL;
1660                                 VM_CNT_INC(v_pdshortfalls);
1661                         } else if (vmd->vmd_laundry_request !=
1662                             VM_LAUNDRY_SHORTFALL)
1663                                 vmd->vmd_laundry_request =
1664                                     VM_LAUNDRY_BACKGROUND;
1665                         wakeup(&vmd->vmd_laundry_request);
1666                 }
1667                 vmd->vmd_clean_pages_freed +=
1668                     starting_page_shortage - page_shortage;
1669                 vm_pagequeue_unlock(pq);
1670         }
1671
1672         /*
1673          * Wakeup the swapout daemon if we didn't free the targeted number of
1674          * pages.
1675          */
1676         if (page_shortage > 0)
1677                 vm_swapout_run();
1678
1679         /*
1680          * If the inactive queue scan fails repeatedly to meet its
1681          * target, kill the largest process.
1682          */
1683         vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage);
1684
1685         /*
1686          * Reclaim pages by swapping out idle processes, if configured to do so.
1687          */
1688         vm_swapout_run_idle();
1689
1690         /*
1691          * See the description of addl_page_shortage above.
1692          */
1693         *addl_shortage = addl_page_shortage + deficit;
1694
1695         return (page_shortage <= 0);
1696 }
1697
1698 static int vm_pageout_oom_vote;
1699
1700 /*
1701  * The pagedaemon threads randlomly select one to perform the
1702  * OOM.  Trying to kill processes before all pagedaemons
1703  * failed to reach free target is premature.
1704  */
1705 static void
1706 vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
1707     int starting_page_shortage)
1708 {
1709         int old_vote;
1710
1711         if (starting_page_shortage <= 0 || starting_page_shortage !=
1712             page_shortage)
1713                 vmd->vmd_oom_seq = 0;
1714         else
1715                 vmd->vmd_oom_seq++;
1716         if (vmd->vmd_oom_seq < vm_pageout_oom_seq) {
1717                 if (vmd->vmd_oom) {
1718                         vmd->vmd_oom = FALSE;
1719                         atomic_subtract_int(&vm_pageout_oom_vote, 1);
1720                 }
1721                 return;
1722         }
1723
1724         /*
1725          * Do not follow the call sequence until OOM condition is
1726          * cleared.
1727          */
1728         vmd->vmd_oom_seq = 0;
1729
1730         if (vmd->vmd_oom)
1731                 return;
1732
1733         vmd->vmd_oom = TRUE;
1734         old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1);
1735         if (old_vote != vm_ndomains - 1)
1736                 return;
1737
1738         /*
1739          * The current pagedaemon thread is the last in the quorum to
1740          * start OOM.  Initiate the selection and signaling of the
1741          * victim.
1742          */
1743         vm_pageout_oom(VM_OOM_MEM);
1744
1745         /*
1746          * After one round of OOM terror, recall our vote.  On the
1747          * next pass, current pagedaemon would vote again if the low
1748          * memory condition is still there, due to vmd_oom being
1749          * false.
1750          */
1751         vmd->vmd_oom = FALSE;
1752         atomic_subtract_int(&vm_pageout_oom_vote, 1);
1753 }
1754
1755 /*
1756  * The OOM killer is the page daemon's action of last resort when
1757  * memory allocation requests have been stalled for a prolonged period
1758  * of time because it cannot reclaim memory.  This function computes
1759  * the approximate number of physical pages that could be reclaimed if
1760  * the specified address space is destroyed.
1761  *
1762  * Private, anonymous memory owned by the address space is the
1763  * principal resource that we expect to recover after an OOM kill.
1764  * Since the physical pages mapped by the address space's COW entries
1765  * are typically shared pages, they are unlikely to be released and so
1766  * they are not counted.
1767  *
1768  * To get to the point where the page daemon runs the OOM killer, its
1769  * efforts to write-back vnode-backed pages may have stalled.  This
1770  * could be caused by a memory allocation deadlock in the write path
1771  * that might be resolved by an OOM kill.  Therefore, physical pages
1772  * belonging to vnode-backed objects are counted, because they might
1773  * be freed without being written out first if the address space holds
1774  * the last reference to an unlinked vnode.
1775  *
1776  * Similarly, physical pages belonging to OBJT_PHYS objects are
1777  * counted because the address space might hold the last reference to
1778  * the object.
1779  */
1780 static long
1781 vm_pageout_oom_pagecount(struct vmspace *vmspace)
1782 {
1783         vm_map_t map;
1784         vm_map_entry_t entry;
1785         vm_object_t obj;
1786         long res;
1787
1788         map = &vmspace->vm_map;
1789         KASSERT(!map->system_map, ("system map"));
1790         sx_assert(&map->lock, SA_LOCKED);
1791         res = 0;
1792         VM_MAP_ENTRY_FOREACH(entry, map) {
1793                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
1794                         continue;
1795                 obj = entry->object.vm_object;
1796                 if (obj == NULL)
1797                         continue;
1798                 if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 &&
1799                     obj->ref_count != 1)
1800                         continue;
1801                 switch (obj->type) {
1802                 case OBJT_DEFAULT:
1803                 case OBJT_SWAP:
1804                 case OBJT_PHYS:
1805                 case OBJT_VNODE:
1806                         res += obj->resident_page_count;
1807                         break;
1808                 }
1809         }
1810         return (res);
1811 }
1812
1813 static int vm_oom_ratelim_last;
1814 static int vm_oom_pf_secs = 10;
1815 SYSCTL_INT(_vm, OID_AUTO, oom_pf_secs, CTLFLAG_RWTUN, &vm_oom_pf_secs, 0,
1816     "");
1817 static struct mtx vm_oom_ratelim_mtx;
1818
1819 void
1820 vm_pageout_oom(int shortage)
1821 {
1822         struct proc *p, *bigproc;
1823         vm_offset_t size, bigsize;
1824         struct thread *td;
1825         struct vmspace *vm;
1826         int now;
1827         bool breakout;
1828
1829         /*
1830          * For OOM requests originating from vm_fault(), there is a high
1831          * chance that a single large process faults simultaneously in
1832          * several threads.  Also, on an active system running many
1833          * processes of middle-size, like buildworld, all of them
1834          * could fault almost simultaneously as well.
1835          *
1836          * To avoid killing too many processes, rate-limit OOMs
1837          * initiated by vm_fault() time-outs on the waits for free
1838          * pages.
1839          */
1840         mtx_lock(&vm_oom_ratelim_mtx);
1841         now = ticks;
1842         if (shortage == VM_OOM_MEM_PF &&
1843             (u_int)(now - vm_oom_ratelim_last) < hz * vm_oom_pf_secs) {
1844                 mtx_unlock(&vm_oom_ratelim_mtx);
1845                 return;
1846         }
1847         vm_oom_ratelim_last = now;
1848         mtx_unlock(&vm_oom_ratelim_mtx);
1849
1850         /*
1851          * We keep the process bigproc locked once we find it to keep anyone
1852          * from messing with it; however, there is a possibility of
1853          * deadlock if process B is bigproc and one of its child processes
1854          * attempts to propagate a signal to B while we are waiting for A's
1855          * lock while walking this list.  To avoid this, we don't block on
1856          * the process lock but just skip a process if it is already locked.
1857          */
1858         bigproc = NULL;
1859         bigsize = 0;
1860         sx_slock(&allproc_lock);
1861         FOREACH_PROC_IN_SYSTEM(p) {
1862                 PROC_LOCK(p);
1863
1864                 /*
1865                  * If this is a system, protected or killed process, skip it.
1866                  */
1867                 if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC |
1868                     P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 ||
1869                     p->p_pid == 1 || P_KILLED(p) ||
1870                     (p->p_pid < 48 && swap_pager_avail != 0)) {
1871                         PROC_UNLOCK(p);
1872                         continue;
1873                 }
1874                 /*
1875                  * If the process is in a non-running type state,
1876                  * don't touch it.  Check all the threads individually.
1877                  */
1878                 breakout = false;
1879                 FOREACH_THREAD_IN_PROC(p, td) {
1880                         thread_lock(td);
1881                         if (!TD_ON_RUNQ(td) &&
1882                             !TD_IS_RUNNING(td) &&
1883                             !TD_IS_SLEEPING(td) &&
1884                             !TD_IS_SUSPENDED(td) &&
1885                             !TD_IS_SWAPPED(td)) {
1886                                 thread_unlock(td);
1887                                 breakout = true;
1888                                 break;
1889                         }
1890                         thread_unlock(td);
1891                 }
1892                 if (breakout) {
1893                         PROC_UNLOCK(p);
1894                         continue;
1895                 }
1896                 /*
1897                  * get the process size
1898                  */
1899                 vm = vmspace_acquire_ref(p);
1900                 if (vm == NULL) {
1901                         PROC_UNLOCK(p);
1902                         continue;
1903                 }
1904                 _PHOLD_LITE(p);
1905                 PROC_UNLOCK(p);
1906                 sx_sunlock(&allproc_lock);
1907                 if (!vm_map_trylock_read(&vm->vm_map)) {
1908                         vmspace_free(vm);
1909                         sx_slock(&allproc_lock);
1910                         PRELE(p);
1911                         continue;
1912                 }
1913                 size = vmspace_swap_count(vm);
1914                 if (shortage == VM_OOM_MEM || shortage == VM_OOM_MEM_PF)
1915                         size += vm_pageout_oom_pagecount(vm);
1916                 vm_map_unlock_read(&vm->vm_map);
1917                 vmspace_free(vm);
1918                 sx_slock(&allproc_lock);
1919
1920                 /*
1921                  * If this process is bigger than the biggest one,
1922                  * remember it.
1923                  */
1924                 if (size > bigsize) {
1925                         if (bigproc != NULL)
1926                                 PRELE(bigproc);
1927                         bigproc = p;
1928                         bigsize = size;
1929                 } else {
1930                         PRELE(p);
1931                 }
1932         }
1933         sx_sunlock(&allproc_lock);
1934         if (bigproc != NULL) {
1935                 if (vm_panic_on_oom != 0 && --vm_panic_on_oom == 0)
1936                         panic("out of swap space");
1937                 PROC_LOCK(bigproc);
1938                 killproc(bigproc, "out of swap space");
1939                 sched_nice(bigproc, PRIO_MIN);
1940                 _PRELE(bigproc);
1941                 PROC_UNLOCK(bigproc);
1942         }
1943 }
1944
1945 /*
1946  * Signal a free page shortage to subsystems that have registered an event
1947  * handler.  Reclaim memory from UMA in the event of a severe shortage.
1948  * Return true if the free page count should be re-evaluated.
1949  */
1950 static bool
1951 vm_pageout_lowmem(void)
1952 {
1953         static int lowmem_ticks = 0;
1954         int last;
1955         bool ret;
1956
1957         ret = false;
1958
1959         last = atomic_load_int(&lowmem_ticks);
1960         while ((u_int)(ticks - last) / hz >= lowmem_period) {
1961                 if (atomic_fcmpset_int(&lowmem_ticks, &last, ticks) == 0)
1962                         continue;
1963
1964                 /*
1965                  * Decrease registered cache sizes.
1966                  */
1967                 SDT_PROBE0(vm, , , vm__lowmem_scan);
1968                 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_PAGES);
1969
1970                 /*
1971                  * We do this explicitly after the caches have been
1972                  * drained above.
1973                  */
1974                 uma_reclaim(UMA_RECLAIM_TRIM);
1975                 ret = true;
1976                 break;
1977         }
1978
1979         /*
1980          * Kick off an asynchronous reclaim of cached memory if one of the
1981          * page daemons is failing to keep up with demand.  Use the "severe"
1982          * threshold instead of "min" to ensure that we do not blow away the
1983          * caches if a subset of the NUMA domains are depleted by kernel memory
1984          * allocations; the domainset iterators automatically skip domains
1985          * below the "min" threshold on the first pass.
1986          *
1987          * UMA reclaim worker has its own rate-limiting mechanism, so don't
1988          * worry about kicking it too often.
1989          */
1990         if (vm_page_count_severe())
1991                 uma_reclaim_wakeup();
1992
1993         return (ret);
1994 }
1995
1996 static void
1997 vm_pageout_worker(void *arg)
1998 {
1999         struct vm_domain *vmd;
2000         u_int ofree;
2001         int addl_shortage, domain, shortage;
2002         bool target_met;
2003
2004         domain = (uintptr_t)arg;
2005         vmd = VM_DOMAIN(domain);
2006         shortage = 0;
2007         target_met = true;
2008
2009         /*
2010          * XXXKIB It could be useful to bind pageout daemon threads to
2011          * the cores belonging to the domain, from which vm_page_array
2012          * is allocated.
2013          */
2014
2015         KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
2016         vmd->vmd_last_active_scan = ticks;
2017
2018         /*
2019          * The pageout daemon worker is never done, so loop forever.
2020          */
2021         while (TRUE) {
2022                 vm_domain_pageout_lock(vmd);
2023
2024                 /*
2025                  * We need to clear wanted before we check the limits.  This
2026                  * prevents races with wakers who will check wanted after they
2027                  * reach the limit.
2028                  */
2029                 atomic_store_int(&vmd->vmd_pageout_wanted, 0);
2030
2031                 /*
2032                  * Might the page daemon need to run again?
2033                  */
2034                 if (vm_paging_needed(vmd, vmd->vmd_free_count)) {
2035                         /*
2036                          * Yes.  If the scan failed to produce enough free
2037                          * pages, sleep uninterruptibly for some time in the
2038                          * hope that the laundry thread will clean some pages.
2039                          */
2040                         vm_domain_pageout_unlock(vmd);
2041                         if (!target_met)
2042                                 pause("pwait", hz / VM_INACT_SCAN_RATE);
2043                 } else {
2044                         /*
2045                          * No, sleep until the next wakeup or until pages
2046                          * need to have their reference stats updated.
2047                          */
2048                         if (mtx_sleep(&vmd->vmd_pageout_wanted,
2049                             vm_domain_pageout_lockptr(vmd), PDROP | PVM,
2050                             "psleep", hz / VM_INACT_SCAN_RATE) == 0)
2051                                 VM_CNT_INC(v_pdwakeups);
2052                 }
2053
2054                 /* Prevent spurious wakeups by ensuring that wanted is set. */
2055                 atomic_store_int(&vmd->vmd_pageout_wanted, 1);
2056
2057                 /*
2058                  * Use the controller to calculate how many pages to free in
2059                  * this interval, and scan the inactive queue.  If the lowmem
2060                  * handlers appear to have freed up some pages, subtract the
2061                  * difference from the inactive queue scan target.
2062                  */
2063                 shortage = pidctrl_daemon(&vmd->vmd_pid, vmd->vmd_free_count);
2064                 if (shortage > 0) {
2065                         ofree = vmd->vmd_free_count;
2066                         if (vm_pageout_lowmem() && vmd->vmd_free_count > ofree)
2067                                 shortage -= min(vmd->vmd_free_count - ofree,
2068                                     (u_int)shortage);
2069                         target_met = vm_pageout_scan_inactive(vmd, shortage,
2070                             &addl_shortage);
2071                 } else
2072                         addl_shortage = 0;
2073
2074                 /*
2075                  * Scan the active queue.  A positive value for shortage
2076                  * indicates that we must aggressively deactivate pages to avoid
2077                  * a shortfall.
2078                  */
2079                 shortage = vm_pageout_active_target(vmd) + addl_shortage;
2080                 vm_pageout_scan_active(vmd, shortage);
2081         }
2082 }
2083
2084 /*
2085  * Initialize basic pageout daemon settings.  See the comment above the
2086  * definition of vm_domain for some explanation of how these thresholds are
2087  * used.
2088  */
2089 static void
2090 vm_pageout_init_domain(int domain)
2091 {
2092         struct vm_domain *vmd;
2093         struct sysctl_oid *oid;
2094
2095         vmd = VM_DOMAIN(domain);
2096         vmd->vmd_interrupt_free_min = 2;
2097
2098         /*
2099          * v_free_reserved needs to include enough for the largest
2100          * swap pager structures plus enough for any pv_entry structs
2101          * when paging. 
2102          */
2103         vmd->vmd_pageout_free_min = 2 * MAXBSIZE / PAGE_SIZE +
2104             vmd->vmd_interrupt_free_min;
2105         vmd->vmd_free_reserved = vm_pageout_page_count +
2106             vmd->vmd_pageout_free_min + vmd->vmd_page_count / 768;
2107         vmd->vmd_free_min = vmd->vmd_page_count / 200;
2108         vmd->vmd_free_severe = vmd->vmd_free_min / 2;
2109         vmd->vmd_free_target = 4 * vmd->vmd_free_min + vmd->vmd_free_reserved;
2110         vmd->vmd_free_min += vmd->vmd_free_reserved;
2111         vmd->vmd_free_severe += vmd->vmd_free_reserved;
2112         vmd->vmd_inactive_target = (3 * vmd->vmd_free_target) / 2;
2113         if (vmd->vmd_inactive_target > vmd->vmd_free_count / 3)
2114                 vmd->vmd_inactive_target = vmd->vmd_free_count / 3;
2115
2116         /*
2117          * Set the default wakeup threshold to be 10% below the paging
2118          * target.  This keeps the steady state out of shortfall.
2119          */
2120         vmd->vmd_pageout_wakeup_thresh = (vmd->vmd_free_target / 10) * 9;
2121
2122         /*
2123          * Target amount of memory to move out of the laundry queue during a
2124          * background laundering.  This is proportional to the amount of system
2125          * memory.
2126          */
2127         vmd->vmd_background_launder_target = (vmd->vmd_free_target -
2128             vmd->vmd_free_min) / 10;
2129
2130         /* Initialize the pageout daemon pid controller. */
2131         pidctrl_init(&vmd->vmd_pid, hz / VM_INACT_SCAN_RATE,
2132             vmd->vmd_free_target, PIDCTRL_BOUND,
2133             PIDCTRL_KPD, PIDCTRL_KID, PIDCTRL_KDD);
2134         oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(vmd->vmd_oid), OID_AUTO,
2135             "pidctrl", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
2136         pidctrl_init_sysctl(&vmd->vmd_pid, SYSCTL_CHILDREN(oid));
2137 }
2138
2139 static void
2140 vm_pageout_init(void)
2141 {
2142         u_int freecount;
2143         int i;
2144
2145         /*
2146          * Initialize some paging parameters.
2147          */
2148         if (vm_cnt.v_page_count < 2000)
2149                 vm_pageout_page_count = 8;
2150
2151         freecount = 0;
2152         for (i = 0; i < vm_ndomains; i++) {
2153                 struct vm_domain *vmd;
2154
2155                 vm_pageout_init_domain(i);
2156                 vmd = VM_DOMAIN(i);
2157                 vm_cnt.v_free_reserved += vmd->vmd_free_reserved;
2158                 vm_cnt.v_free_target += vmd->vmd_free_target;
2159                 vm_cnt.v_free_min += vmd->vmd_free_min;
2160                 vm_cnt.v_inactive_target += vmd->vmd_inactive_target;
2161                 vm_cnt.v_pageout_free_min += vmd->vmd_pageout_free_min;
2162                 vm_cnt.v_interrupt_free_min += vmd->vmd_interrupt_free_min;
2163                 vm_cnt.v_free_severe += vmd->vmd_free_severe;
2164                 freecount += vmd->vmd_free_count;
2165         }
2166
2167         /*
2168          * Set interval in seconds for active scan.  We want to visit each
2169          * page at least once every ten minutes.  This is to prevent worst
2170          * case paging behaviors with stale active LRU.
2171          */
2172         if (vm_pageout_update_period == 0)
2173                 vm_pageout_update_period = 600;
2174
2175         if (vm_page_max_user_wired == 0)
2176                 vm_page_max_user_wired = freecount / 3;
2177 }
2178
2179 /*
2180  *     vm_pageout is the high level pageout daemon.
2181  */
2182 static void
2183 vm_pageout(void)
2184 {
2185         struct proc *p;
2186         struct thread *td;
2187         int error, first, i;
2188
2189         p = curproc;
2190         td = curthread;
2191
2192         mtx_init(&vm_oom_ratelim_mtx, "vmoomr", NULL, MTX_DEF);
2193         swap_pager_swap_init();
2194         for (first = -1, i = 0; i < vm_ndomains; i++) {
2195                 if (VM_DOMAIN_EMPTY(i)) {
2196                         if (bootverbose)
2197                                 printf("domain %d empty; skipping pageout\n",
2198                                     i);
2199                         continue;
2200                 }
2201                 if (first == -1)
2202                         first = i;
2203                 else {
2204                         error = kthread_add(vm_pageout_worker,
2205                             (void *)(uintptr_t)i, p, NULL, 0, 0, "dom%d", i);
2206                         if (error != 0)
2207                                 panic("starting pageout for domain %d: %d\n",
2208                                     i, error);
2209                 }
2210                 error = kthread_add(vm_pageout_laundry_worker,
2211                     (void *)(uintptr_t)i, p, NULL, 0, 0, "laundry: dom%d", i);
2212                 if (error != 0)
2213                         panic("starting laundry for domain %d: %d", i, error);
2214         }
2215         error = kthread_add(uma_reclaim_worker, NULL, p, NULL, 0, 0, "uma");
2216         if (error != 0)
2217                 panic("starting uma_reclaim helper, error %d\n", error);
2218
2219         snprintf(td->td_name, sizeof(td->td_name), "dom%d", first);
2220         vm_pageout_worker((void *)(uintptr_t)first);
2221 }
2222
2223 /*
2224  * Perform an advisory wakeup of the page daemon.
2225  */
2226 void
2227 pagedaemon_wakeup(int domain)
2228 {
2229         struct vm_domain *vmd;
2230
2231         vmd = VM_DOMAIN(domain);
2232         vm_domain_pageout_assert_unlocked(vmd);
2233         if (curproc == pageproc)
2234                 return;
2235
2236         if (atomic_fetchadd_int(&vmd->vmd_pageout_wanted, 1) == 0) {
2237                 vm_domain_pageout_lock(vmd);
2238                 atomic_store_int(&vmd->vmd_pageout_wanted, 1);
2239                 wakeup(&vmd->vmd_pageout_wanted);
2240                 vm_domain_pageout_unlock(vmd);
2241         }
2242 }