]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_pageout.c
Merge two bug fixes from the vendor branch.
[FreeBSD/FreeBSD.git] / sys / vm / vm_pageout.c
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  * Copyright (c) 2005 Yahoo! Technologies Norway AS
9  * All rights reserved.
10  *
11  * This code is derived from software contributed to Berkeley by
12  * The Mach Operating System project at Carnegie-Mellon University.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *      This product includes software developed by the University of
25  *      California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
43  *
44  *
45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46  * All rights reserved.
47  *
48  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49  *
50  * Permission to use, copy, modify and distribute this software and
51  * its documentation is hereby granted, provided that both the copyright
52  * notice and this permission notice appear in all copies of the
53  * software, derivative works or modified versions, and any portions
54  * thereof, and that both notices appear in supporting documentation.
55  *
56  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59  *
60  * Carnegie Mellon requests users of this software to return to
61  *
62  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63  *  School of Computer Science
64  *  Carnegie Mellon University
65  *  Pittsburgh PA 15213-3890
66  *
67  * any improvements or extensions that they make and grant Carnegie the
68  * rights to redistribute these changes.
69  */
70
71 /*
72  *      The proverbial page-out daemon.
73  */
74
75 #include <sys/cdefs.h>
76 __FBSDID("$FreeBSD$");
77
78 #include "opt_vm.h"
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/eventhandler.h>
83 #include <sys/lock.h>
84 #include <sys/mutex.h>
85 #include <sys/proc.h>
86 #include <sys/kthread.h>
87 #include <sys/ktr.h>
88 #include <sys/mount.h>
89 #include <sys/racct.h>
90 #include <sys/resourcevar.h>
91 #include <sys/sched.h>
92 #include <sys/signalvar.h>
93 #include <sys/vnode.h>
94 #include <sys/vmmeter.h>
95 #include <sys/sx.h>
96 #include <sys/sysctl.h>
97
98 #include <vm/vm.h>
99 #include <vm/vm_param.h>
100 #include <vm/vm_object.h>
101 #include <vm/vm_page.h>
102 #include <vm/vm_map.h>
103 #include <vm/vm_pageout.h>
104 #include <vm/vm_pager.h>
105 #include <vm/swap_pager.h>
106 #include <vm/vm_extern.h>
107 #include <vm/uma.h>
108
109 /*
110  * System initialization
111  */
112
113 /* the kernel process "vm_pageout"*/
114 static void vm_pageout(void);
115 static int vm_pageout_clean(vm_page_t);
116 static void vm_pageout_scan(int pass);
117
118 struct proc *pageproc;
119
120 static struct kproc_desc page_kp = {
121         "pagedaemon",
122         vm_pageout,
123         &pageproc
124 };
125 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start,
126     &page_kp);
127
128 #if !defined(NO_SWAPPING)
129 /* the kernel process "vm_daemon"*/
130 static void vm_daemon(void);
131 static struct   proc *vmproc;
132
133 static struct kproc_desc vm_kp = {
134         "vmdaemon",
135         vm_daemon,
136         &vmproc
137 };
138 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
139 #endif
140
141
142 int vm_pages_needed;            /* Event on which pageout daemon sleeps */
143 int vm_pageout_deficit;         /* Estimated number of pages deficit */
144 int vm_pageout_pages_needed;    /* flag saying that the pageout daemon needs pages */
145
146 #if !defined(NO_SWAPPING)
147 static int vm_pageout_req_swapout;      /* XXX */
148 static int vm_daemon_needed;
149 static struct mtx vm_daemon_mtx;
150 /* Allow for use by vm_pageout before vm_daemon is initialized. */
151 MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
152 #endif
153 static int vm_max_launder = 32;
154 static int vm_pageout_stats_max;
155 static int vm_pageout_stats;
156 static int vm_pageout_stats_interval;
157 static int vm_pageout_full_stats;
158 static int vm_pageout_full_stats_interval;
159 static int vm_pageout_algorithm;
160 static int defer_swap_pageouts;
161 static int disable_swap_pageouts;
162
163 #if defined(NO_SWAPPING)
164 static int vm_swap_enabled = 0;
165 static int vm_swap_idle_enabled = 0;
166 #else
167 static int vm_swap_enabled = 1;
168 static int vm_swap_idle_enabled = 0;
169 #endif
170
171 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
172         CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
173
174 SYSCTL_INT(_vm, OID_AUTO, max_launder,
175         CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
176
177 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
178         CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
179
180 SYSCTL_INT(_vm, OID_AUTO, pageout_stats,
181         CTLFLAG_RD, &vm_pageout_stats, 0, "Number of partial stats scans");
182
183 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
184         CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
185
186 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats,
187         CTLFLAG_RD, &vm_pageout_full_stats, 0, "Number of full stats scans");
188
189 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
190         CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
191
192 #if defined(NO_SWAPPING)
193 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
194         CTLFLAG_RD, &vm_swap_enabled, 0, "Enable entire process swapout");
195 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
196         CTLFLAG_RD, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
197 #else
198 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
199         CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
200 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
201         CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
202 #endif
203
204 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
205         CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
206
207 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
208         CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
209
210 static int pageout_lock_miss;
211 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
212         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
213
214 #define VM_PAGEOUT_PAGE_COUNT 16
215 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
216
217 int vm_page_max_wired;          /* XXX max # of wired pages system-wide */
218 SYSCTL_INT(_vm, OID_AUTO, max_wired,
219         CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
220
221 static boolean_t vm_pageout_fallback_object_lock(vm_page_t, vm_page_t *);
222 static boolean_t vm_pageout_launder(int, int, vm_paddr_t, vm_paddr_t);
223 #if !defined(NO_SWAPPING)
224 static void vm_pageout_map_deactivate_pages(vm_map_t, long);
225 static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
226 static void vm_req_vmdaemon(int req);
227 #endif
228 static boolean_t vm_pageout_page_lock(vm_page_t, vm_page_t *);
229 static void vm_pageout_page_stats(void);
230
231 /*
232  * Initialize a dummy page for marking the caller's place in the specified
233  * paging queue.  In principle, this function only needs to set the flag
234  * PG_MARKER.  Nonetheless, it sets the flag VPO_BUSY and initializes the hold
235  * count to one as safety precautions.
236  */ 
237 static void
238 vm_pageout_init_marker(vm_page_t marker, u_short queue)
239 {
240
241         bzero(marker, sizeof(*marker));
242         marker->flags = PG_MARKER;
243         marker->oflags = VPO_BUSY;
244         marker->queue = queue;
245         marker->hold_count = 1;
246 }
247
248 /*
249  * vm_pageout_fallback_object_lock:
250  * 
251  * Lock vm object currently associated with `m'. VM_OBJECT_TRYLOCK is
252  * known to have failed and page queue must be either PQ_ACTIVE or
253  * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
254  * while locking the vm object.  Use marker page to detect page queue
255  * changes and maintain notion of next page on page queue.  Return
256  * TRUE if no changes were detected, FALSE otherwise.  vm object is
257  * locked on return.
258  * 
259  * This function depends on both the lock portion of struct vm_object
260  * and normal struct vm_page being type stable.
261  */
262 static boolean_t
263 vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
264 {
265         struct vm_page marker;
266         struct vm_pagequeue *pq;
267         boolean_t unchanged;
268         u_short queue;
269         vm_object_t object;
270
271         queue = m->queue;
272         vm_pageout_init_marker(&marker, queue);
273         pq = &vm_pagequeues[queue];
274         object = m->object;
275         
276         TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, pageq);
277         vm_pagequeue_unlock(pq);
278         vm_page_unlock(m);
279         VM_OBJECT_LOCK(object);
280         vm_page_lock(m);
281         vm_pagequeue_lock(pq);
282
283         /* Page queue might have changed. */
284         *next = TAILQ_NEXT(&marker, pageq);
285         unchanged = (m->queue == queue &&
286                      m->object == object &&
287                      &marker == TAILQ_NEXT(m, pageq));
288         TAILQ_REMOVE(&pq->pq_pl, &marker, pageq);
289         return (unchanged);
290 }
291
292 /*
293  * Lock the page while holding the page queue lock.  Use marker page
294  * to detect page queue changes and maintain notion of next page on
295  * page queue.  Return TRUE if no changes were detected, FALSE
296  * otherwise.  The page is locked on return. The page queue lock might
297  * be dropped and reacquired.
298  *
299  * This function depends on normal struct vm_page being type stable.
300  */
301 static boolean_t
302 vm_pageout_page_lock(vm_page_t m, vm_page_t *next)
303 {
304         struct vm_page marker;
305         struct vm_pagequeue *pq;
306         boolean_t unchanged;
307         u_short queue;
308
309         vm_page_lock_assert(m, MA_NOTOWNED);
310         if (vm_page_trylock(m))
311                 return (TRUE);
312
313         queue = m->queue;
314         vm_pageout_init_marker(&marker, queue);
315         pq = &vm_pagequeues[queue];
316
317         TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, pageq);
318         vm_pagequeue_unlock(pq);
319         vm_page_lock(m);
320         vm_pagequeue_lock(pq);
321
322         /* Page queue might have changed. */
323         *next = TAILQ_NEXT(&marker, pageq);
324         unchanged = (m->queue == queue && &marker == TAILQ_NEXT(m, pageq));
325         TAILQ_REMOVE(&pq->pq_pl, &marker, pageq);
326         return (unchanged);
327 }
328
329 /*
330  * vm_pageout_clean:
331  *
332  * Clean the page and remove it from the laundry.
333  * 
334  * We set the busy bit to cause potential page faults on this page to
335  * block.  Note the careful timing, however, the busy bit isn't set till
336  * late and we cannot do anything that will mess with the page.
337  */
338 static int
339 vm_pageout_clean(vm_page_t m)
340 {
341         vm_object_t object;
342         vm_page_t mc[2*vm_pageout_page_count], pb, ps;
343         int pageout_count;
344         int ib, is, page_base;
345         vm_pindex_t pindex = m->pindex;
346
347         vm_page_lock_assert(m, MA_OWNED);
348         object = m->object;
349         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
350
351         /*
352          * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
353          * with the new swapper, but we could have serious problems paging
354          * out other object types if there is insufficient memory.  
355          *
356          * Unfortunately, checking free memory here is far too late, so the
357          * check has been moved up a procedural level.
358          */
359
360         /*
361          * Can't clean the page if it's busy or held.
362          */
363         KASSERT(m->busy == 0 && (m->oflags & VPO_BUSY) == 0,
364             ("vm_pageout_clean: page %p is busy", m));
365         KASSERT(m->hold_count == 0, ("vm_pageout_clean: page %p is held", m));
366         vm_page_unlock(m);
367
368         mc[vm_pageout_page_count] = pb = ps = m;
369         pageout_count = 1;
370         page_base = vm_pageout_page_count;
371         ib = 1;
372         is = 1;
373
374         /*
375          * Scan object for clusterable pages.
376          *
377          * We can cluster ONLY if: ->> the page is NOT
378          * clean, wired, busy, held, or mapped into a
379          * buffer, and one of the following:
380          * 1) The page is inactive, or a seldom used
381          *    active page.
382          * -or-
383          * 2) we force the issue.
384          *
385          * During heavy mmap/modification loads the pageout
386          * daemon can really fragment the underlying file
387          * due to flushing pages out of order and not trying
388          * align the clusters (which leave sporatic out-of-order
389          * holes).  To solve this problem we do the reverse scan
390          * first and attempt to align our cluster, then do a 
391          * forward scan if room remains.
392          */
393 more:
394         while (ib && pageout_count < vm_pageout_page_count) {
395                 vm_page_t p;
396
397                 if (ib > pindex) {
398                         ib = 0;
399                         break;
400                 }
401
402                 if ((p = vm_page_prev(pb)) == NULL ||
403                     (p->oflags & VPO_BUSY) != 0 || p->busy != 0) {
404                         ib = 0;
405                         break;
406                 }
407                 vm_page_lock(p);
408                 vm_page_test_dirty(p);
409                 if (p->dirty == 0 ||
410                     p->queue != PQ_INACTIVE ||
411                     p->hold_count != 0) {       /* may be undergoing I/O */
412                         vm_page_unlock(p);
413                         ib = 0;
414                         break;
415                 }
416                 vm_page_unlock(p);
417                 mc[--page_base] = pb = p;
418                 ++pageout_count;
419                 ++ib;
420                 /*
421                  * alignment boundry, stop here and switch directions.  Do
422                  * not clear ib.
423                  */
424                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
425                         break;
426         }
427
428         while (pageout_count < vm_pageout_page_count && 
429             pindex + is < object->size) {
430                 vm_page_t p;
431
432                 if ((p = vm_page_next(ps)) == NULL ||
433                     (p->oflags & VPO_BUSY) != 0 || p->busy != 0)
434                         break;
435                 vm_page_lock(p);
436                 vm_page_test_dirty(p);
437                 if (p->dirty == 0 ||
438                     p->queue != PQ_INACTIVE ||
439                     p->hold_count != 0) {       /* may be undergoing I/O */
440                         vm_page_unlock(p);
441                         break;
442                 }
443                 vm_page_unlock(p);
444                 mc[page_base + pageout_count] = ps = p;
445                 ++pageout_count;
446                 ++is;
447         }
448
449         /*
450          * If we exhausted our forward scan, continue with the reverse scan
451          * when possible, even past a page boundry.  This catches boundry
452          * conditions.
453          */
454         if (ib && pageout_count < vm_pageout_page_count)
455                 goto more;
456
457         /*
458          * we allow reads during pageouts...
459          */
460         return (vm_pageout_flush(&mc[page_base], pageout_count, 0, 0, NULL,
461             NULL));
462 }
463
464 /*
465  * vm_pageout_flush() - launder the given pages
466  *
467  *      The given pages are laundered.  Note that we setup for the start of
468  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
469  *      reference count all in here rather then in the parent.  If we want
470  *      the parent to do more sophisticated things we may have to change
471  *      the ordering.
472  *
473  *      Returned runlen is the count of pages between mreq and first
474  *      page after mreq with status VM_PAGER_AGAIN.
475  *      *eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
476  *      for any page in runlen set.
477  */
478 int
479 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
480     boolean_t *eio)
481 {
482         vm_object_t object = mc[0]->object;
483         int pageout_status[count];
484         int numpagedout = 0;
485         int i, runlen;
486
487         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
488
489         /*
490          * Initiate I/O.  Bump the vm_page_t->busy counter and
491          * mark the pages read-only.
492          *
493          * We do not have to fixup the clean/dirty bits here... we can
494          * allow the pager to do it after the I/O completes.
495          *
496          * NOTE! mc[i]->dirty may be partial or fragmented due to an
497          * edge case with file fragments.
498          */
499         for (i = 0; i < count; i++) {
500                 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
501                     ("vm_pageout_flush: partially invalid page %p index %d/%d",
502                         mc[i], i, count));
503                 vm_page_io_start(mc[i]);
504                 pmap_remove_write(mc[i]);
505         }
506         vm_object_pip_add(object, count);
507
508         vm_pager_put_pages(object, mc, count, flags, pageout_status);
509
510         runlen = count - mreq;
511         if (eio != NULL)
512                 *eio = FALSE;
513         for (i = 0; i < count; i++) {
514                 vm_page_t mt = mc[i];
515
516                 KASSERT(pageout_status[i] == VM_PAGER_PEND ||
517                     !pmap_page_is_write_mapped(mt),
518                     ("vm_pageout_flush: page %p is not write protected", mt));
519                 switch (pageout_status[i]) {
520                 case VM_PAGER_OK:
521                 case VM_PAGER_PEND:
522                         numpagedout++;
523                         break;
524                 case VM_PAGER_BAD:
525                         /*
526                          * Page outside of range of object. Right now we
527                          * essentially lose the changes by pretending it
528                          * worked.
529                          */
530                         vm_page_undirty(mt);
531                         break;
532                 case VM_PAGER_ERROR:
533                 case VM_PAGER_FAIL:
534                         /*
535                          * If page couldn't be paged out, then reactivate the
536                          * page so it doesn't clog the inactive list.  (We
537                          * will try paging out it again later).
538                          */
539                         vm_page_lock(mt);
540                         vm_page_activate(mt);
541                         vm_page_unlock(mt);
542                         if (eio != NULL && i >= mreq && i - mreq < runlen)
543                                 *eio = TRUE;
544                         break;
545                 case VM_PAGER_AGAIN:
546                         if (i >= mreq && i - mreq < runlen)
547                                 runlen = i - mreq;
548                         break;
549                 }
550
551                 /*
552                  * If the operation is still going, leave the page busy to
553                  * block all other accesses. Also, leave the paging in
554                  * progress indicator set so that we don't attempt an object
555                  * collapse.
556                  */
557                 if (pageout_status[i] != VM_PAGER_PEND) {
558                         vm_object_pip_wakeup(object);
559                         vm_page_io_finish(mt);
560                         if (vm_page_count_severe()) {
561                                 vm_page_lock(mt);
562                                 vm_page_try_to_cache(mt);
563                                 vm_page_unlock(mt);
564                         }
565                 }
566         }
567         if (prunlen != NULL)
568                 *prunlen = runlen;
569         return (numpagedout);
570 }
571
572 static boolean_t
573 vm_pageout_launder(int queue, int tries, vm_paddr_t low, vm_paddr_t high)
574 {
575         struct mount *mp;
576         struct vm_pagequeue *pq;
577         struct vnode *vp;
578         vm_object_t object;
579         vm_paddr_t pa;
580         vm_page_t m, m_tmp, next;
581
582         pq = &vm_pagequeues[queue];
583         vm_pagequeue_lock(pq);
584         TAILQ_FOREACH_SAFE(m, &pq->pq_pl, pageq, next) {
585                 KASSERT(m->queue == queue,
586                     ("vm_pageout_launder: page %p's queue is not %d", m,
587                     queue));
588                 if ((m->flags & PG_MARKER) != 0)
589                         continue;
590                 pa = VM_PAGE_TO_PHYS(m);
591                 if (pa < low || pa + PAGE_SIZE > high)
592                         continue;
593                 if (!vm_pageout_page_lock(m, &next) || m->hold_count != 0) {
594                         vm_page_unlock(m);
595                         continue;
596                 }
597                 object = m->object;
598                 if ((!VM_OBJECT_TRYLOCK(object) &&
599                     (!vm_pageout_fallback_object_lock(m, &next) ||
600                     m->hold_count != 0)) || (m->oflags & VPO_BUSY) != 0 ||
601                     m->busy != 0) {
602                         vm_page_unlock(m);
603                         VM_OBJECT_UNLOCK(object);
604                         continue;
605                 }
606                 vm_page_test_dirty(m);
607                 if (m->dirty == 0 && object->ref_count != 0)
608                         pmap_remove_all(m);
609                 if (m->dirty != 0) {
610                         vm_page_unlock(m);
611                         if (tries == 0 || (object->flags & OBJ_DEAD) != 0) {
612                                 VM_OBJECT_UNLOCK(object);
613                                 continue;
614                         }
615                         if (object->type == OBJT_VNODE) {
616                                 vm_pagequeue_unlock(pq);
617                                 vp = object->handle;
618                                 vm_object_reference_locked(object);
619                                 VM_OBJECT_UNLOCK(object);
620                                 (void)vn_start_write(vp, &mp, V_WAIT);
621                                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
622                                 VM_OBJECT_LOCK(object);
623                                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
624                                 VM_OBJECT_UNLOCK(object);
625                                 VOP_UNLOCK(vp, 0);
626                                 vm_object_deallocate(object);
627                                 vn_finished_write(mp);
628                                 return (TRUE);
629                         } else if (object->type == OBJT_SWAP ||
630                             object->type == OBJT_DEFAULT) {
631                                 vm_pagequeue_unlock(pq);
632                                 m_tmp = m;
633                                 vm_pageout_flush(&m_tmp, 1, VM_PAGER_PUT_SYNC,
634                                     0, NULL, NULL);
635                                 VM_OBJECT_UNLOCK(object);
636                                 return (TRUE);
637                         }
638                 } else {
639                         /*
640                          * Dequeue here to prevent lock recursion in
641                          * vm_page_cache().
642                          */
643                         vm_page_dequeue_locked(m);
644                         vm_page_cache(m);
645                         vm_page_unlock(m);
646                 }
647                 VM_OBJECT_UNLOCK(object);
648         }
649         vm_pagequeue_unlock(pq);
650         return (FALSE);
651 }
652
653 /*
654  * Increase the number of cached pages.  The specified value, "tries",
655  * determines which categories of pages are cached:
656  *
657  *  0: All clean, inactive pages within the specified physical address range
658  *     are cached.  Will not sleep.
659  *  1: The vm_lowmem handlers are called.  All inactive pages within
660  *     the specified physical address range are cached.  May sleep.
661  *  2: The vm_lowmem handlers are called.  All inactive and active pages
662  *     within the specified physical address range are cached.  May sleep.
663  */
664 void
665 vm_pageout_grow_cache(int tries, vm_paddr_t low, vm_paddr_t high)
666 {
667         int actl, actmax, inactl, inactmax;
668
669         if (tries > 0) {
670                 /*
671                  * Decrease registered cache sizes.  The vm_lowmem handlers
672                  * may acquire locks and/or sleep, so they can only be invoked
673                  * when "tries" is greater than zero.
674                  */
675                 EVENTHANDLER_INVOKE(vm_lowmem, 0);
676
677                 /*
678                  * We do this explicitly after the caches have been drained
679                  * above.
680                  */
681                 uma_reclaim();
682         }
683         inactl = 0;
684         inactmax = cnt.v_inactive_count;
685         actl = 0;
686         actmax = tries < 2 ? 0 : cnt.v_active_count;
687 again:
688         if (inactl < inactmax && vm_pageout_launder(PQ_INACTIVE, tries, low,
689             high)) {
690                 inactl++;
691                 goto again;
692         }
693         if (actl < actmax && vm_pageout_launder(PQ_ACTIVE, tries, low, high)) {
694                 actl++;
695                 goto again;
696         }
697 }
698
699 #if !defined(NO_SWAPPING)
700 /*
701  *      vm_pageout_object_deactivate_pages
702  *
703  *      Deactivate enough pages to satisfy the inactive target
704  *      requirements.
705  *
706  *      The object and map must be locked.
707  */
708 static void
709 vm_pageout_object_deactivate_pages(pmap_t pmap, vm_object_t first_object,
710     long desired)
711 {
712         vm_object_t backing_object, object;
713         vm_page_t p;
714         int actcount, remove_mode;
715
716         VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
717         if ((first_object->flags & OBJ_FICTITIOUS) != 0)
718                 return;
719         for (object = first_object;; object = backing_object) {
720                 if (pmap_resident_count(pmap) <= desired)
721                         goto unlock_return;
722                 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
723                 if ((object->flags & OBJ_UNMANAGED) != 0 ||
724                     object->paging_in_progress != 0)
725                         goto unlock_return;
726
727                 remove_mode = 0;
728                 if (object->shadow_count > 1)
729                         remove_mode = 1;
730                 /*
731                  * Scan the object's entire memory queue.
732                  */
733                 TAILQ_FOREACH(p, &object->memq, listq) {
734                         if (pmap_resident_count(pmap) <= desired)
735                                 goto unlock_return;
736                         if ((p->oflags & VPO_BUSY) != 0 || p->busy != 0)
737                                 continue;
738                         PCPU_INC(cnt.v_pdpages);
739                         vm_page_lock(p);
740                         if (p->wire_count != 0 || p->hold_count != 0 ||
741                             !pmap_page_exists_quick(pmap, p)) {
742                                 vm_page_unlock(p);
743                                 continue;
744                         }
745                         actcount = pmap_ts_referenced(p);
746                         if ((p->aflags & PGA_REFERENCED) != 0) {
747                                 if (actcount == 0)
748                                         actcount = 1;
749                                 vm_page_aflag_clear(p, PGA_REFERENCED);
750                         }
751                         if (p->queue != PQ_ACTIVE && actcount != 0) {
752                                 vm_page_activate(p);
753                                 p->act_count += actcount;
754                         } else if (p->queue == PQ_ACTIVE) {
755                                 if (actcount == 0) {
756                                         p->act_count -= min(p->act_count,
757                                             ACT_DECLINE);
758                                         if (!remove_mode &&
759                                             (vm_pageout_algorithm ||
760                                             p->act_count == 0)) {
761                                                 pmap_remove_all(p);
762                                                 vm_page_deactivate(p);
763                                         } else
764                                                 vm_page_requeue(p);
765                                 } else {
766                                         vm_page_activate(p);
767                                         if (p->act_count < ACT_MAX -
768                                             ACT_ADVANCE)
769                                                 p->act_count += ACT_ADVANCE;
770                                         vm_page_requeue(p);
771                                 }
772                         } else if (p->queue == PQ_INACTIVE)
773                                 pmap_remove_all(p);
774                         vm_page_unlock(p);
775                 }
776                 if ((backing_object = object->backing_object) == NULL)
777                         goto unlock_return;
778                 VM_OBJECT_LOCK(backing_object);
779                 if (object != first_object)
780                         VM_OBJECT_UNLOCK(object);
781         }
782 unlock_return:
783         if (object != first_object)
784                 VM_OBJECT_UNLOCK(object);
785 }
786
787 /*
788  * deactivate some number of pages in a map, try to do it fairly, but
789  * that is really hard to do.
790  */
791 static void
792 vm_pageout_map_deactivate_pages(map, desired)
793         vm_map_t map;
794         long desired;
795 {
796         vm_map_entry_t tmpe;
797         vm_object_t obj, bigobj;
798         int nothingwired;
799
800         if (!vm_map_trylock(map))
801                 return;
802
803         bigobj = NULL;
804         nothingwired = TRUE;
805
806         /*
807          * first, search out the biggest object, and try to free pages from
808          * that.
809          */
810         tmpe = map->header.next;
811         while (tmpe != &map->header) {
812                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
813                         obj = tmpe->object.vm_object;
814                         if (obj != NULL && VM_OBJECT_TRYLOCK(obj)) {
815                                 if (obj->shadow_count <= 1 &&
816                                     (bigobj == NULL ||
817                                      bigobj->resident_page_count < obj->resident_page_count)) {
818                                         if (bigobj != NULL)
819                                                 VM_OBJECT_UNLOCK(bigobj);
820                                         bigobj = obj;
821                                 } else
822                                         VM_OBJECT_UNLOCK(obj);
823                         }
824                 }
825                 if (tmpe->wired_count > 0)
826                         nothingwired = FALSE;
827                 tmpe = tmpe->next;
828         }
829
830         if (bigobj != NULL) {
831                 vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
832                 VM_OBJECT_UNLOCK(bigobj);
833         }
834         /*
835          * Next, hunt around for other pages to deactivate.  We actually
836          * do this search sort of wrong -- .text first is not the best idea.
837          */
838         tmpe = map->header.next;
839         while (tmpe != &map->header) {
840                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
841                         break;
842                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
843                         obj = tmpe->object.vm_object;
844                         if (obj != NULL) {
845                                 VM_OBJECT_LOCK(obj);
846                                 vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
847                                 VM_OBJECT_UNLOCK(obj);
848                         }
849                 }
850                 tmpe = tmpe->next;
851         }
852
853         /*
854          * Remove all mappings if a process is swapped out, this will free page
855          * table pages.
856          */
857         if (desired == 0 && nothingwired) {
858                 pmap_remove(vm_map_pmap(map), vm_map_min(map),
859                     vm_map_max(map));
860         }
861         vm_map_unlock(map);
862 }
863 #endif          /* !defined(NO_SWAPPING) */
864
865 /*
866  *      vm_pageout_scan does the dirty work for the pageout daemon.
867  */
868 static void
869 vm_pageout_scan(int pass)
870 {
871         vm_page_t m, next;
872         struct vm_page marker;
873         struct vm_pagequeue *pq;
874         int page_shortage, maxscan, pcount;
875         int addl_page_shortage;
876         vm_object_t object;
877         int actcount;
878         int vnodes_skipped = 0;
879         int maxlaunder;
880         boolean_t queues_locked;
881
882         vm_pageout_init_marker(&marker, PQ_INACTIVE);
883
884         /*
885          * Decrease registered cache sizes.
886          */
887         EVENTHANDLER_INVOKE(vm_lowmem, 0);
888         /*
889          * We do this explicitly after the caches have been drained above.
890          */
891         uma_reclaim();
892
893         /*
894          * The addl_page_shortage is the number of temporarily
895          * stuck pages in the inactive queue.  In other words, the
896          * number of pages from cnt.v_inactive_count that should be
897          * discounted in setting the target for the active queue scan.
898          */
899         addl_page_shortage = atomic_readandclear_int(&vm_pageout_deficit);
900
901         /*
902          * Calculate the number of pages we want to either free or move
903          * to the cache.
904          */
905         page_shortage = vm_paging_target() + addl_page_shortage;
906
907         /*
908          * maxlaunder limits the number of dirty pages we flush per scan.
909          * For most systems a smaller value (16 or 32) is more robust under
910          * extreme memory and disk pressure because any unnecessary writes
911          * to disk can result in extreme performance degredation.  However,
912          * systems with excessive dirty pages (especially when MAP_NOSYNC is
913          * used) will die horribly with limited laundering.  If the pageout
914          * daemon cannot clean enough pages in the first pass, we let it go
915          * all out in succeeding passes.
916          */
917         if ((maxlaunder = vm_max_launder) <= 1)
918                 maxlaunder = 1;
919         if (pass)
920                 maxlaunder = 10000;
921
922         maxscan = cnt.v_inactive_count;
923
924         /*
925          * Start scanning the inactive queue for pages we can move to the
926          * cache or free.  The scan will stop when the target is reached or
927          * we have scanned the entire inactive queue.  Note that m->act_count
928          * is not used to form decisions for the inactive queue, only for the
929          * active queue.
930          */
931         pq = &vm_pagequeues[PQ_INACTIVE];
932         vm_pagequeue_lock(pq);
933         queues_locked = TRUE;
934         for (m = TAILQ_FIRST(&pq->pq_pl);
935              m != NULL && maxscan-- > 0 && page_shortage > 0;
936              m = next) {
937                 vm_pagequeue_assert_locked(pq);
938                 KASSERT(queues_locked, ("unlocked queues"));
939                 KASSERT(m->queue == PQ_INACTIVE, ("Inactive queue %p", m));
940
941                 PCPU_INC(cnt.v_pdpages);
942                 next = TAILQ_NEXT(m, pageq);
943
944                 /*
945                  * skip marker pages
946                  */
947                 if (m->flags & PG_MARKER)
948                         continue;
949
950                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
951                     ("Fictitious page %p cannot be in inactive queue", m));
952                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
953                     ("Unmanaged page %p cannot be in inactive queue", m));
954
955                 /*
956                  * The page or object lock acquisitions fail if the
957                  * page was removed from the queue or moved to a
958                  * different position within the queue.  In either
959                  * case, addl_page_shortage should not be incremented.
960                  */
961                 if (!vm_pageout_page_lock(m, &next)) {
962                         vm_page_unlock(m);
963                         continue;
964                 }
965                 object = m->object;
966                 if (!VM_OBJECT_TRYLOCK(object) &&
967                     !vm_pageout_fallback_object_lock(m, &next)) {
968                         vm_page_unlock(m);
969                         VM_OBJECT_UNLOCK(object);
970                         continue;
971                 }
972
973                 /*
974                  * Don't mess with busy pages, keep them at at the
975                  * front of the queue, most likely they are being
976                  * paged out.  Increment addl_page_shortage for busy
977                  * pages, because they may leave the inactive queue
978                  * shortly after page scan is finished.
979                  */
980                 if (m->busy != 0 || (m->oflags & VPO_BUSY) != 0) {
981                         vm_page_unlock(m);
982                         VM_OBJECT_UNLOCK(object);
983                         addl_page_shortage++;
984                         continue;
985                 }
986
987                 /*
988                  * We unlock the inactive page queue, invalidating the
989                  * 'next' pointer.  Use our marker to remember our
990                  * place.
991                  */
992                 TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, pageq);
993                 vm_pagequeue_unlock(pq);
994                 queues_locked = FALSE;
995
996                 /*
997                  * If the object is not being used, we ignore previous 
998                  * references.
999                  */
1000                 if (object->ref_count == 0) {
1001                         vm_page_aflag_clear(m, PGA_REFERENCED);
1002                         KASSERT(!pmap_page_is_mapped(m),
1003                             ("vm_pageout_scan: page %p is mapped", m));
1004
1005                 /*
1006                  * Otherwise, if the page has been referenced while in the 
1007                  * inactive queue, we bump the "activation count" upwards, 
1008                  * making it less likely that the page will be added back to 
1009                  * the inactive queue prematurely again.  Here we check the 
1010                  * page tables (or emulated bits, if any), given the upper 
1011                  * level VM system not knowing anything about existing 
1012                  * references.
1013                  */
1014                 } else if ((m->aflags & PGA_REFERENCED) == 0 &&
1015                     (actcount = pmap_ts_referenced(m)) != 0) {
1016                         vm_page_activate(m);
1017                         vm_page_unlock(m);
1018                         m->act_count += actcount + ACT_ADVANCE;
1019                         VM_OBJECT_UNLOCK(object);
1020                         goto relock_queues;
1021                 }
1022
1023                 /*
1024                  * If the upper level VM system knows about any page 
1025                  * references, we activate the page.  We also set the 
1026                  * "activation count" higher than normal so that we will less 
1027                  * likely place pages back onto the inactive queue again.
1028                  */
1029                 if ((m->aflags & PGA_REFERENCED) != 0) {
1030                         vm_page_aflag_clear(m, PGA_REFERENCED);
1031                         actcount = pmap_ts_referenced(m);
1032                         vm_page_activate(m);
1033                         vm_page_unlock(m);
1034                         m->act_count += actcount + ACT_ADVANCE + 1;
1035                         VM_OBJECT_UNLOCK(object);
1036                         goto relock_queues;
1037                 }
1038
1039                 if (m->hold_count != 0) {
1040                         vm_page_unlock(m);
1041                         VM_OBJECT_UNLOCK(object);
1042
1043                         /*
1044                          * Held pages are essentially stuck in the
1045                          * queue.  So, they ought to be discounted
1046                          * from cnt.v_inactive_count.  See the
1047                          * calculation of the page_shortage for the
1048                          * loop over the active queue below.
1049                          */
1050                         addl_page_shortage++;
1051                         goto relock_queues;
1052                 }
1053
1054                 /*
1055                  * If the page appears to be clean at the machine-independent
1056                  * layer, then remove all of its mappings from the pmap in
1057                  * anticipation of placing it onto the cache queue.  If,
1058                  * however, any of the page's mappings allow write access,
1059                  * then the page may still be modified until the last of those
1060                  * mappings are removed.
1061                  */
1062                 vm_page_test_dirty(m);
1063                 if (m->dirty == 0 && object->ref_count != 0)
1064                         pmap_remove_all(m);
1065
1066                 if (m->valid == 0) {
1067                         /*
1068                          * Invalid pages can be easily freed
1069                          */
1070                         vm_page_free(m);
1071                         PCPU_INC(cnt.v_dfree);
1072                         --page_shortage;
1073                 } else if (m->dirty == 0) {
1074                         /*
1075                          * Clean pages can be placed onto the cache queue.
1076                          * This effectively frees them.
1077                          */
1078                         vm_page_cache(m);
1079                         --page_shortage;
1080                 } else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
1081                         /*
1082                          * Dirty pages need to be paged out, but flushing
1083                          * a page is extremely expensive verses freeing
1084                          * a clean page.  Rather then artificially limiting
1085                          * the number of pages we can flush, we instead give
1086                          * dirty pages extra priority on the inactive queue
1087                          * by forcing them to be cycled through the queue
1088                          * twice before being flushed, after which the
1089                          * (now clean) page will cycle through once more
1090                          * before being freed.  This significantly extends
1091                          * the thrash point for a heavily loaded machine.
1092                          */
1093                         m->flags |= PG_WINATCFLS;
1094                         vm_pagequeue_lock(pq);
1095                         queues_locked = TRUE;
1096                         vm_page_requeue_locked(m);
1097                 } else if (maxlaunder > 0) {
1098                         /*
1099                          * We always want to try to flush some dirty pages if
1100                          * we encounter them, to keep the system stable.
1101                          * Normally this number is small, but under extreme
1102                          * pressure where there are insufficient clean pages
1103                          * on the inactive queue, we may have to go all out.
1104                          */
1105                         int swap_pageouts_ok;
1106                         struct vnode *vp = NULL;
1107                         struct mount *mp = NULL;
1108
1109                         if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
1110                                 swap_pageouts_ok = 1;
1111                         } else {
1112                                 swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
1113                                 swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
1114                                 vm_page_count_min());
1115                                                                                 
1116                         }
1117
1118                         /*
1119                          * We don't bother paging objects that are "dead".  
1120                          * Those objects are in a "rundown" state.
1121                          */
1122                         if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
1123                                 vm_pagequeue_lock(pq);
1124                                 vm_page_unlock(m);
1125                                 VM_OBJECT_UNLOCK(object);
1126                                 queues_locked = TRUE;
1127                                 vm_page_requeue_locked(m);
1128                                 goto relock_queues;
1129                         }
1130
1131                         /*
1132                          * The object is already known NOT to be dead.   It
1133                          * is possible for the vget() to block the whole
1134                          * pageout daemon, but the new low-memory handling
1135                          * code should prevent it.
1136                          *
1137                          * The previous code skipped locked vnodes and, worse,
1138                          * reordered pages in the queue.  This results in
1139                          * completely non-deterministic operation and, on a
1140                          * busy system, can lead to extremely non-optimal
1141                          * pageouts.  For example, it can cause clean pages
1142                          * to be freed and dirty pages to be moved to the end
1143                          * of the queue.  Since dirty pages are also moved to
1144                          * the end of the queue once-cleaned, this gives
1145                          * way too large a weighting to defering the freeing
1146                          * of dirty pages.
1147                          *
1148                          * We can't wait forever for the vnode lock, we might
1149                          * deadlock due to a vn_read() getting stuck in
1150                          * vm_wait while holding this vnode.  We skip the 
1151                          * vnode if we can't get it in a reasonable amount
1152                          * of time.
1153                          */
1154                         if (object->type == OBJT_VNODE) {
1155                                 vm_page_unlock(m);
1156                                 vp = object->handle;
1157                                 if (vp->v_type == VREG &&
1158                                     vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1159                                         mp = NULL;
1160                                         ++pageout_lock_miss;
1161                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1162                                                 vnodes_skipped++;
1163                                         goto unlock_and_continue;
1164                                 }
1165                                 KASSERT(mp != NULL,
1166                                     ("vp %p with NULL v_mount", vp));
1167                                 vm_object_reference_locked(object);
1168                                 VM_OBJECT_UNLOCK(object);
1169                                 if (vget(vp, LK_EXCLUSIVE | LK_TIMELOCK,
1170                                     curthread)) {
1171                                         VM_OBJECT_LOCK(object);
1172                                         ++pageout_lock_miss;
1173                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1174                                                 vnodes_skipped++;
1175                                         vp = NULL;
1176                                         goto unlock_and_continue;
1177                                 }
1178                                 VM_OBJECT_LOCK(object);
1179                                 vm_page_lock(m);
1180                                 vm_pagequeue_lock(pq);
1181                                 queues_locked = TRUE;
1182                                 /*
1183                                  * The page might have been moved to another
1184                                  * queue during potential blocking in vget()
1185                                  * above.  The page might have been freed and
1186                                  * reused for another vnode.
1187                                  */
1188                                 if (m->queue != PQ_INACTIVE ||
1189                                     m->object != object ||
1190                                     TAILQ_NEXT(m, pageq) != &marker) {
1191                                         vm_page_unlock(m);
1192                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1193                                                 vnodes_skipped++;
1194                                         goto unlock_and_continue;
1195                                 }
1196         
1197                                 /*
1198                                  * The page may have been busied during the
1199                                  * blocking in vget().  We don't move the
1200                                  * page back onto the end of the queue so that
1201                                  * statistics are more correct if we don't.
1202                                  */
1203                                 if (m->busy || (m->oflags & VPO_BUSY)) {
1204                                         vm_page_unlock(m);
1205                                         goto unlock_and_continue;
1206                                 }
1207
1208                                 /*
1209                                  * If the page has become held it might
1210                                  * be undergoing I/O, so skip it
1211                                  */
1212                                 if (m->hold_count) {
1213                                         vm_page_unlock(m);
1214                                         vm_page_requeue_locked(m);
1215                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1216                                                 vnodes_skipped++;
1217                                         goto unlock_and_continue;
1218                                 }
1219                                 vm_pagequeue_unlock(pq);
1220                                 queues_locked = FALSE;
1221                         }
1222
1223                         /*
1224                          * If a page is dirty, then it is either being washed
1225                          * (but not yet cleaned) or it is still in the
1226                          * laundry.  If it is still in the laundry, then we
1227                          * start the cleaning operation. 
1228                          *
1229                          * decrement page_shortage on success to account for
1230                          * the (future) cleaned page.  Otherwise we could wind
1231                          * up laundering or cleaning too many pages.
1232                          */
1233                         if (vm_pageout_clean(m) != 0) {
1234                                 --page_shortage;
1235                                 --maxlaunder;
1236                         }
1237 unlock_and_continue:
1238                         vm_page_lock_assert(m, MA_NOTOWNED);
1239                         VM_OBJECT_UNLOCK(object);
1240                         if (mp != NULL) {
1241                                 if (queues_locked) {
1242                                         vm_pagequeue_unlock(pq);
1243                                         queues_locked = FALSE;
1244                                 }
1245                                 if (vp != NULL)
1246                                         vput(vp);
1247                                 vm_object_deallocate(object);
1248                                 vn_finished_write(mp);
1249                         }
1250                         vm_page_lock_assert(m, MA_NOTOWNED);
1251                         goto relock_queues;
1252                 }
1253                 vm_page_unlock(m);
1254                 VM_OBJECT_UNLOCK(object);
1255 relock_queues:
1256                 if (!queues_locked) {
1257                         vm_pagequeue_lock(pq);
1258                         queues_locked = TRUE;
1259                 }
1260                 next = TAILQ_NEXT(&marker, pageq);
1261                 TAILQ_REMOVE(&pq->pq_pl, &marker, pageq);
1262         }
1263         vm_pagequeue_unlock(pq);
1264
1265         /*
1266          * Compute the number of pages we want to try to move from the
1267          * active queue to the inactive queue.
1268          */
1269         page_shortage = vm_paging_target() +
1270                 cnt.v_inactive_target - cnt.v_inactive_count;
1271         page_shortage += addl_page_shortage;
1272
1273         /*
1274          * Scan the active queue for things we can deactivate. We nominally
1275          * track the per-page activity counter and use it to locate
1276          * deactivation candidates.
1277          */
1278         pcount = cnt.v_active_count;
1279         pq = &vm_pagequeues[PQ_ACTIVE];
1280         vm_pagequeue_lock(pq);
1281         m = TAILQ_FIRST(&pq->pq_pl);
1282         while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1283
1284                 KASSERT(m->queue == PQ_ACTIVE,
1285                     ("vm_pageout_scan: page %p isn't active", m));
1286
1287                 next = TAILQ_NEXT(m, pageq);
1288                 if ((m->flags & PG_MARKER) != 0) {
1289                         m = next;
1290                         continue;
1291                 }
1292                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
1293                     ("Fictitious page %p cannot be in active queue", m));
1294                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1295                     ("Unmanaged page %p cannot be in active queue", m));
1296                 if (!vm_pageout_page_lock(m, &next)) {
1297                         vm_page_unlock(m);
1298                         m = next;
1299                         continue;
1300                 }
1301                 object = m->object;
1302                 if (!VM_OBJECT_TRYLOCK(object) &&
1303                     !vm_pageout_fallback_object_lock(m, &next)) {
1304                         VM_OBJECT_UNLOCK(object);
1305                         vm_page_unlock(m);
1306                         m = next;
1307                         continue;
1308                 }
1309
1310                 /*
1311                  * Don't deactivate pages that are busy.
1312                  */
1313                 if ((m->busy != 0) ||
1314                     (m->oflags & VPO_BUSY) ||
1315                     (m->hold_count != 0)) {
1316                         vm_page_unlock(m);
1317                         VM_OBJECT_UNLOCK(object);
1318                         vm_page_requeue_locked(m);
1319                         m = next;
1320                         continue;
1321                 }
1322
1323                 /*
1324                  * The count for pagedaemon pages is done after checking the
1325                  * page for eligibility...
1326                  */
1327                 PCPU_INC(cnt.v_pdpages);
1328
1329                 /*
1330                  * Check to see "how much" the page has been used.
1331                  */
1332                 actcount = 0;
1333                 if (object->ref_count != 0) {
1334                         if (m->aflags & PGA_REFERENCED) {
1335                                 actcount += 1;
1336                         }
1337                         actcount += pmap_ts_referenced(m);
1338                         if (actcount) {
1339                                 m->act_count += ACT_ADVANCE + actcount;
1340                                 if (m->act_count > ACT_MAX)
1341                                         m->act_count = ACT_MAX;
1342                         }
1343                 }
1344
1345                 /*
1346                  * Since we have "tested" this bit, we need to clear it now.
1347                  */
1348                 vm_page_aflag_clear(m, PGA_REFERENCED);
1349
1350                 /*
1351                  * Only if an object is currently being used, do we use the
1352                  * page activation count stats.
1353                  */
1354                 if (actcount != 0 && object->ref_count != 0)
1355                         vm_page_requeue_locked(m);
1356                 else {
1357                         m->act_count -= min(m->act_count, ACT_DECLINE);
1358                         if (vm_pageout_algorithm ||
1359                             object->ref_count == 0 ||
1360                             m->act_count == 0) {
1361                                 page_shortage--;
1362                                 /* Dequeue to avoid later lock recursion. */
1363                                 vm_page_dequeue_locked(m);
1364                                 if (object->ref_count == 0) {
1365                                         KASSERT(!pmap_page_is_mapped(m),
1366                                     ("vm_pageout_scan: page %p is mapped", m));
1367                                         if (m->dirty == 0)
1368                                                 vm_page_cache(m);
1369                                         else
1370                                                 vm_page_deactivate(m);
1371                                 } else {
1372                                         vm_page_deactivate(m);
1373                                 }
1374                         } else
1375                                 vm_page_requeue_locked(m);
1376                 }
1377                 vm_page_unlock(m);
1378                 VM_OBJECT_UNLOCK(object);
1379                 m = next;
1380         }
1381         vm_pagequeue_unlock(pq);
1382 #if !defined(NO_SWAPPING)
1383         /*
1384          * Idle process swapout -- run once per second.
1385          */
1386         if (vm_swap_idle_enabled) {
1387                 static long lsec;
1388                 if (time_second != lsec) {
1389                         vm_req_vmdaemon(VM_SWAP_IDLE);
1390                         lsec = time_second;
1391                 }
1392         }
1393 #endif
1394                 
1395         /*
1396          * If we didn't get enough free pages, and we have skipped a vnode
1397          * in a writeable object, wakeup the sync daemon.  And kick swapout
1398          * if we did not get enough free pages.
1399          */
1400         if (vm_paging_target() > 0) {
1401                 if (vnodes_skipped && vm_page_count_min())
1402                         (void) speedup_syncer();
1403 #if !defined(NO_SWAPPING)
1404                 if (vm_swap_enabled && vm_page_count_target())
1405                         vm_req_vmdaemon(VM_SWAP_NORMAL);
1406 #endif
1407         }
1408
1409         /*
1410          * If we are critically low on one of RAM or swap and low on
1411          * the other, kill the largest process.  However, we avoid
1412          * doing this on the first pass in order to give ourselves a
1413          * chance to flush out dirty vnode-backed pages and to allow
1414          * active pages to be moved to the inactive queue and reclaimed.
1415          */
1416         if (pass != 0 &&
1417             ((swap_pager_avail < 64 && vm_page_count_min()) ||
1418              (swap_pager_full && vm_paging_target() > 0)))
1419                 vm_pageout_oom(VM_OOM_MEM);
1420 }
1421
1422
1423 void
1424 vm_pageout_oom(int shortage)
1425 {
1426         struct proc *p, *bigproc;
1427         vm_offset_t size, bigsize;
1428         struct thread *td;
1429         struct vmspace *vm;
1430
1431         /*
1432          * We keep the process bigproc locked once we find it to keep anyone
1433          * from messing with it; however, there is a possibility of
1434          * deadlock if process B is bigproc and one of it's child processes
1435          * attempts to propagate a signal to B while we are waiting for A's
1436          * lock while walking this list.  To avoid this, we don't block on
1437          * the process lock but just skip a process if it is already locked.
1438          */
1439         bigproc = NULL;
1440         bigsize = 0;
1441         sx_slock(&allproc_lock);
1442         FOREACH_PROC_IN_SYSTEM(p) {
1443                 int breakout;
1444
1445                 if (PROC_TRYLOCK(p) == 0)
1446                         continue;
1447                 /*
1448                  * If this is a system, protected or killed process, skip it.
1449                  */
1450                 if (p->p_state != PRS_NORMAL ||
1451                     (p->p_flag & (P_INEXEC | P_PROTECTED | P_SYSTEM)) ||
1452                     (p->p_pid == 1) || P_KILLED(p) ||
1453                     ((p->p_pid < 48) && (swap_pager_avail != 0))) {
1454                         PROC_UNLOCK(p);
1455                         continue;
1456                 }
1457                 /*
1458                  * If the process is in a non-running type state,
1459                  * don't touch it.  Check all the threads individually.
1460                  */
1461                 breakout = 0;
1462                 FOREACH_THREAD_IN_PROC(p, td) {
1463                         thread_lock(td);
1464                         if (!TD_ON_RUNQ(td) &&
1465                             !TD_IS_RUNNING(td) &&
1466                             !TD_IS_SLEEPING(td) &&
1467                             !TD_IS_SUSPENDED(td)) {
1468                                 thread_unlock(td);
1469                                 breakout = 1;
1470                                 break;
1471                         }
1472                         thread_unlock(td);
1473                 }
1474                 if (breakout) {
1475                         PROC_UNLOCK(p);
1476                         continue;
1477                 }
1478                 /*
1479                  * get the process size
1480                  */
1481                 vm = vmspace_acquire_ref(p);
1482                 if (vm == NULL) {
1483                         PROC_UNLOCK(p);
1484                         continue;
1485                 }
1486                 if (!vm_map_trylock_read(&vm->vm_map)) {
1487                         vmspace_free(vm);
1488                         PROC_UNLOCK(p);
1489                         continue;
1490                 }
1491                 size = vmspace_swap_count(vm);
1492                 vm_map_unlock_read(&vm->vm_map);
1493                 if (shortage == VM_OOM_MEM)
1494                         size += vmspace_resident_count(vm);
1495                 vmspace_free(vm);
1496                 /*
1497                  * if the this process is bigger than the biggest one
1498                  * remember it.
1499                  */
1500                 if (size > bigsize) {
1501                         if (bigproc != NULL)
1502                                 PROC_UNLOCK(bigproc);
1503                         bigproc = p;
1504                         bigsize = size;
1505                 } else
1506                         PROC_UNLOCK(p);
1507         }
1508         sx_sunlock(&allproc_lock);
1509         if (bigproc != NULL) {
1510                 killproc(bigproc, "out of swap space");
1511                 sched_nice(bigproc, PRIO_MIN);
1512                 PROC_UNLOCK(bigproc);
1513                 wakeup(&cnt.v_free_count);
1514         }
1515 }
1516
1517 /*
1518  * This routine tries to maintain the pseudo LRU active queue,
1519  * so that during long periods of time where there is no paging,
1520  * that some statistic accumulation still occurs.  This code
1521  * helps the situation where paging just starts to occur.
1522  */
1523 static void
1524 vm_pageout_page_stats(void)
1525 {
1526         struct vm_pagequeue *pq;
1527         vm_object_t object;
1528         vm_page_t m, next;
1529         int pcount, tpcount;            /* Number of pages to check */
1530         static int fullintervalcount = 0;
1531         int page_shortage;
1532
1533         page_shortage = 
1534             (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1535             (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1536
1537         if (page_shortage <= 0)
1538                 return;
1539
1540         pcount = cnt.v_active_count;
1541         fullintervalcount += vm_pageout_stats_interval;
1542         if (fullintervalcount < vm_pageout_full_stats_interval) {
1543                 vm_pageout_stats++;
1544                 tpcount = (int64_t)vm_pageout_stats_max * cnt.v_active_count /
1545                     cnt.v_page_count;
1546                 if (pcount > tpcount)
1547                         pcount = tpcount;
1548         } else {
1549                 vm_pageout_full_stats++;
1550                 fullintervalcount = 0;
1551         }
1552
1553         pq = &vm_pagequeues[PQ_ACTIVE];
1554         vm_pagequeue_lock(pq);
1555         m = TAILQ_FIRST(&pq->pq_pl);
1556         while ((m != NULL) && (pcount-- > 0)) {
1557                 int actcount;
1558
1559                 KASSERT(m->queue == PQ_ACTIVE,
1560                     ("vm_pageout_page_stats: page %p isn't active", m));
1561
1562                 next = TAILQ_NEXT(m, pageq);
1563                 if ((m->flags & PG_MARKER) != 0) {
1564                         m = next;
1565                         continue;
1566                 }
1567                 vm_page_lock_assert(m, MA_NOTOWNED);
1568                 if (!vm_pageout_page_lock(m, &next)) {
1569                         vm_page_unlock(m);
1570                         m = next;
1571                         continue;
1572                 }
1573                 object = m->object;
1574                 if (!VM_OBJECT_TRYLOCK(object) &&
1575                     !vm_pageout_fallback_object_lock(m, &next)) {
1576                         VM_OBJECT_UNLOCK(object);
1577                         vm_page_unlock(m);
1578                         m = next;
1579                         continue;
1580                 }
1581
1582                 /*
1583                  * Don't deactivate pages that are busy.
1584                  */
1585                 if ((m->busy != 0) ||
1586                     (m->oflags & VPO_BUSY) ||
1587                     (m->hold_count != 0)) {
1588                         vm_page_unlock(m);
1589                         VM_OBJECT_UNLOCK(object);
1590                         vm_page_requeue_locked(m);
1591                         m = next;
1592                         continue;
1593                 }
1594
1595                 actcount = 0;
1596                 if (m->aflags & PGA_REFERENCED) {
1597                         vm_page_aflag_clear(m, PGA_REFERENCED);
1598                         actcount += 1;
1599                 }
1600
1601                 actcount += pmap_ts_referenced(m);
1602                 if (actcount) {
1603                         m->act_count += ACT_ADVANCE + actcount;
1604                         if (m->act_count > ACT_MAX)
1605                                 m->act_count = ACT_MAX;
1606                         vm_page_requeue_locked(m);
1607                 } else {
1608                         if (m->act_count == 0) {
1609                                 /*
1610                                  * We turn off page access, so that we have
1611                                  * more accurate RSS stats.  We don't do this
1612                                  * in the normal page deactivation when the
1613                                  * system is loaded VM wise, because the
1614                                  * cost of the large number of page protect
1615                                  * operations would be higher than the value
1616                                  * of doing the operation.
1617                                  */
1618                                 pmap_remove_all(m);
1619                                 /* Dequeue to avoid later lock recursion. */
1620                                 vm_page_dequeue_locked(m);
1621                                 vm_page_deactivate(m);
1622                         } else {
1623                                 m->act_count -= min(m->act_count, ACT_DECLINE);
1624                                 vm_page_requeue_locked(m);
1625                         }
1626                 }
1627                 vm_page_unlock(m);
1628                 VM_OBJECT_UNLOCK(object);
1629                 m = next;
1630         }
1631         vm_pagequeue_unlock(pq);
1632 }
1633
1634 /*
1635  *      vm_pageout is the high level pageout daemon.
1636  */
1637 static void
1638 vm_pageout(void)
1639 {
1640         int error, pass;
1641
1642         /*
1643          * Initialize some paging parameters.
1644          */
1645         cnt.v_interrupt_free_min = 2;
1646         if (cnt.v_page_count < 2000)
1647                 vm_pageout_page_count = 8;
1648
1649         /*
1650          * v_free_reserved needs to include enough for the largest
1651          * swap pager structures plus enough for any pv_entry structs
1652          * when paging. 
1653          */
1654         if (cnt.v_page_count > 1024)
1655                 cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1656         else
1657                 cnt.v_free_min = 4;
1658         cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1659             cnt.v_interrupt_free_min;
1660         cnt.v_free_reserved = vm_pageout_page_count +
1661             cnt.v_pageout_free_min + (cnt.v_page_count / 768);
1662         cnt.v_free_severe = cnt.v_free_min / 2;
1663         cnt.v_free_min += cnt.v_free_reserved;
1664         cnt.v_free_severe += cnt.v_free_reserved;
1665
1666         /*
1667          * v_free_target and v_cache_min control pageout hysteresis.  Note
1668          * that these are more a measure of the VM cache queue hysteresis
1669          * then the VM free queue.  Specifically, v_free_target is the
1670          * high water mark (free+cache pages).
1671          *
1672          * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1673          * low water mark, while v_free_min is the stop.  v_cache_min must
1674          * be big enough to handle memory needs while the pageout daemon
1675          * is signalled and run to free more pages.
1676          */
1677         if (cnt.v_free_count > 6144)
1678                 cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1679         else
1680                 cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1681
1682         if (cnt.v_free_count > 2048) {
1683                 cnt.v_cache_min = cnt.v_free_target;
1684                 cnt.v_cache_max = 2 * cnt.v_cache_min;
1685                 cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1686         } else {
1687                 cnt.v_cache_min = 0;
1688                 cnt.v_cache_max = 0;
1689                 cnt.v_inactive_target = cnt.v_free_count / 4;
1690         }
1691         if (cnt.v_inactive_target > cnt.v_free_count / 3)
1692                 cnt.v_inactive_target = cnt.v_free_count / 3;
1693
1694         /* XXX does not really belong here */
1695         if (vm_page_max_wired == 0)
1696                 vm_page_max_wired = cnt.v_free_count / 3;
1697
1698         if (vm_pageout_stats_max == 0)
1699                 vm_pageout_stats_max = cnt.v_free_target;
1700
1701         /*
1702          * Set interval in seconds for stats scan.
1703          */
1704         if (vm_pageout_stats_interval == 0)
1705                 vm_pageout_stats_interval = 5;
1706         if (vm_pageout_full_stats_interval == 0)
1707                 vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1708
1709         swap_pager_swap_init();
1710         pass = 0;
1711         /*
1712          * The pageout daemon is never done, so loop forever.
1713          */
1714         while (TRUE) {
1715                 /*
1716                  * If we have enough free memory, wakeup waiters.  Do
1717                  * not clear vm_pages_needed until we reach our target,
1718                  * otherwise we may be woken up over and over again and
1719                  * waste a lot of cpu.
1720                  */
1721                 mtx_lock(&vm_page_queue_free_mtx);
1722                 if (vm_pages_needed && !vm_page_count_min()) {
1723                         if (!vm_paging_needed())
1724                                 vm_pages_needed = 0;
1725                         wakeup(&cnt.v_free_count);
1726                 }
1727                 if (vm_pages_needed) {
1728                         /*
1729                          * Still not done, take a second pass without waiting
1730                          * (unlimited dirty cleaning), otherwise sleep a bit
1731                          * and try again.
1732                          */
1733                         ++pass;
1734                         if (pass > 1)
1735                                 msleep(&vm_pages_needed,
1736                                     &vm_page_queue_free_mtx, PVM, "psleep",
1737                                     hz / 2);
1738                 } else {
1739                         /*
1740                          * Good enough, sleep & handle stats.  Prime the pass
1741                          * for the next run.
1742                          */
1743                         if (pass > 1)
1744                                 pass = 1;
1745                         else
1746                                 pass = 0;
1747                         error = msleep(&vm_pages_needed,
1748                             &vm_page_queue_free_mtx, PVM, "psleep",
1749                             vm_pageout_stats_interval * hz);
1750                         if (error && !vm_pages_needed) {
1751                                 mtx_unlock(&vm_page_queue_free_mtx);
1752                                 pass = 0;
1753                                 vm_pageout_page_stats();
1754                                 continue;
1755                         }
1756                 }
1757                 if (vm_pages_needed)
1758                         cnt.v_pdwakeups++;
1759                 mtx_unlock(&vm_page_queue_free_mtx);
1760                 vm_pageout_scan(pass);
1761         }
1762 }
1763
1764 /*
1765  * Unless the free page queue lock is held by the caller, this function
1766  * should be regarded as advisory.  Specifically, the caller should
1767  * not msleep() on &cnt.v_free_count following this function unless
1768  * the free page queue lock is held until the msleep() is performed.
1769  */
1770 void
1771 pagedaemon_wakeup(void)
1772 {
1773
1774         if (!vm_pages_needed && curthread->td_proc != pageproc) {
1775                 vm_pages_needed = 1;
1776                 wakeup(&vm_pages_needed);
1777         }
1778 }
1779
1780 #if !defined(NO_SWAPPING)
1781 static void
1782 vm_req_vmdaemon(int req)
1783 {
1784         static int lastrun = 0;
1785
1786         mtx_lock(&vm_daemon_mtx);
1787         vm_pageout_req_swapout |= req;
1788         if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1789                 wakeup(&vm_daemon_needed);
1790                 lastrun = ticks;
1791         }
1792         mtx_unlock(&vm_daemon_mtx);
1793 }
1794
1795 static void
1796 vm_daemon(void)
1797 {
1798         struct rlimit rsslim;
1799         struct proc *p;
1800         struct thread *td;
1801         struct vmspace *vm;
1802         int breakout, swapout_flags, tryagain, attempts;
1803 #ifdef RACCT
1804         uint64_t rsize, ravailable;
1805 #endif
1806
1807         while (TRUE) {
1808                 mtx_lock(&vm_daemon_mtx);
1809 #ifdef RACCT
1810                 msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", hz);
1811 #else
1812                 msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", 0);
1813 #endif
1814                 swapout_flags = vm_pageout_req_swapout;
1815                 vm_pageout_req_swapout = 0;
1816                 mtx_unlock(&vm_daemon_mtx);
1817                 if (swapout_flags)
1818                         swapout_procs(swapout_flags);
1819
1820                 /*
1821                  * scan the processes for exceeding their rlimits or if
1822                  * process is swapped out -- deactivate pages
1823                  */
1824                 tryagain = 0;
1825                 attempts = 0;
1826 again:
1827                 attempts++;
1828                 sx_slock(&allproc_lock);
1829                 FOREACH_PROC_IN_SYSTEM(p) {
1830                         vm_pindex_t limit, size;
1831
1832                         /*
1833                          * if this is a system process or if we have already
1834                          * looked at this process, skip it.
1835                          */
1836                         PROC_LOCK(p);
1837                         if (p->p_state != PRS_NORMAL ||
1838                             p->p_flag & (P_INEXEC | P_SYSTEM | P_WEXIT)) {
1839                                 PROC_UNLOCK(p);
1840                                 continue;
1841                         }
1842                         /*
1843                          * if the process is in a non-running type state,
1844                          * don't touch it.
1845                          */
1846                         breakout = 0;
1847                         FOREACH_THREAD_IN_PROC(p, td) {
1848                                 thread_lock(td);
1849                                 if (!TD_ON_RUNQ(td) &&
1850                                     !TD_IS_RUNNING(td) &&
1851                                     !TD_IS_SLEEPING(td) &&
1852                                     !TD_IS_SUSPENDED(td)) {
1853                                         thread_unlock(td);
1854                                         breakout = 1;
1855                                         break;
1856                                 }
1857                                 thread_unlock(td);
1858                         }
1859                         if (breakout) {
1860                                 PROC_UNLOCK(p);
1861                                 continue;
1862                         }
1863                         /*
1864                          * get a limit
1865                          */
1866                         lim_rlimit(p, RLIMIT_RSS, &rsslim);
1867                         limit = OFF_TO_IDX(
1868                             qmin(rsslim.rlim_cur, rsslim.rlim_max));
1869
1870                         /*
1871                          * let processes that are swapped out really be
1872                          * swapped out set the limit to nothing (will force a
1873                          * swap-out.)
1874                          */
1875                         if ((p->p_flag & P_INMEM) == 0)
1876                                 limit = 0;      /* XXX */
1877                         vm = vmspace_acquire_ref(p);
1878                         PROC_UNLOCK(p);
1879                         if (vm == NULL)
1880                                 continue;
1881
1882                         size = vmspace_resident_count(vm);
1883                         if (size >= limit) {
1884                                 vm_pageout_map_deactivate_pages(
1885                                     &vm->vm_map, limit);
1886                         }
1887 #ifdef RACCT
1888                         rsize = IDX_TO_OFF(size);
1889                         PROC_LOCK(p);
1890                         racct_set(p, RACCT_RSS, rsize);
1891                         ravailable = racct_get_available(p, RACCT_RSS);
1892                         PROC_UNLOCK(p);
1893                         if (rsize > ravailable) {
1894                                 /*
1895                                  * Don't be overly aggressive; this might be
1896                                  * an innocent process, and the limit could've
1897                                  * been exceeded by some memory hog.  Don't
1898                                  * try to deactivate more than 1/4th of process'
1899                                  * resident set size.
1900                                  */
1901                                 if (attempts <= 8) {
1902                                         if (ravailable < rsize - (rsize / 4))
1903                                                 ravailable = rsize - (rsize / 4);
1904                                 }
1905                                 vm_pageout_map_deactivate_pages(
1906                                     &vm->vm_map, OFF_TO_IDX(ravailable));
1907                                 /* Update RSS usage after paging out. */
1908                                 size = vmspace_resident_count(vm);
1909                                 rsize = IDX_TO_OFF(size);
1910                                 PROC_LOCK(p);
1911                                 racct_set(p, RACCT_RSS, rsize);
1912                                 PROC_UNLOCK(p);
1913                                 if (rsize > ravailable)
1914                                         tryagain = 1;
1915                         }
1916 #endif
1917                         vmspace_free(vm);
1918                 }
1919                 sx_sunlock(&allproc_lock);
1920                 if (tryagain != 0 && attempts <= 10)
1921                         goto again;
1922         }
1923 }
1924 #endif                  /* !defined(NO_SWAPPING) */