]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_pageout.c
Rework the test which raises OOM condition. Right now, the code
[FreeBSD/FreeBSD.git] / sys / vm / vm_pageout.c
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  * Copyright (c) 2005 Yahoo! Technologies Norway AS
9  * All rights reserved.
10  *
11  * This code is derived from software contributed to Berkeley by
12  * The Mach Operating System project at Carnegie-Mellon University.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *      This product includes software developed by the University of
25  *      California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
43  *
44  *
45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46  * All rights reserved.
47  *
48  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49  *
50  * Permission to use, copy, modify and distribute this software and
51  * its documentation is hereby granted, provided that both the copyright
52  * notice and this permission notice appear in all copies of the
53  * software, derivative works or modified versions, and any portions
54  * thereof, and that both notices appear in supporting documentation.
55  *
56  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59  *
60  * Carnegie Mellon requests users of this software to return to
61  *
62  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63  *  School of Computer Science
64  *  Carnegie Mellon University
65  *  Pittsburgh PA 15213-3890
66  *
67  * any improvements or extensions that they make and grant Carnegie the
68  * rights to redistribute these changes.
69  */
70
71 /*
72  *      The proverbial page-out daemon.
73  */
74
75 #include <sys/cdefs.h>
76 __FBSDID("$FreeBSD$");
77
78 #include "opt_vm.h"
79 #include "opt_kdtrace.h"
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/eventhandler.h>
84 #include <sys/lock.h>
85 #include <sys/mutex.h>
86 #include <sys/proc.h>
87 #include <sys/kthread.h>
88 #include <sys/ktr.h>
89 #include <sys/mount.h>
90 #include <sys/racct.h>
91 #include <sys/resourcevar.h>
92 #include <sys/sched.h>
93 #include <sys/sdt.h>
94 #include <sys/signalvar.h>
95 #include <sys/smp.h>
96 #include <sys/time.h>
97 #include <sys/vnode.h>
98 #include <sys/vmmeter.h>
99 #include <sys/rwlock.h>
100 #include <sys/sx.h>
101 #include <sys/sysctl.h>
102
103 #include <vm/vm.h>
104 #include <vm/vm_param.h>
105 #include <vm/vm_object.h>
106 #include <vm/vm_page.h>
107 #include <vm/vm_map.h>
108 #include <vm/vm_pageout.h>
109 #include <vm/vm_pager.h>
110 #include <vm/vm_phys.h>
111 #include <vm/swap_pager.h>
112 #include <vm/vm_extern.h>
113 #include <vm/uma.h>
114
115 /*
116  * System initialization
117  */
118
119 /* the kernel process "vm_pageout"*/
120 static void vm_pageout(void);
121 static void vm_pageout_init(void);
122 static int vm_pageout_clean(vm_page_t m);
123 static int vm_pageout_cluster(vm_page_t m);
124 static void vm_pageout_scan(struct vm_domain *vmd, int pass);
125 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
126     int starting_page_shortage);
127
128 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init,
129     NULL);
130
131 struct proc *pageproc;
132
133 static struct kproc_desc page_kp = {
134         "pagedaemon",
135         vm_pageout,
136         &pageproc
137 };
138 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start,
139     &page_kp);
140
141 SDT_PROVIDER_DEFINE(vm);
142 SDT_PROBE_DEFINE(vm, , , vm__lowmem_cache);
143 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan);
144
145 #if !defined(NO_SWAPPING)
146 /* the kernel process "vm_daemon"*/
147 static void vm_daemon(void);
148 static struct   proc *vmproc;
149
150 static struct kproc_desc vm_kp = {
151         "vmdaemon",
152         vm_daemon,
153         &vmproc
154 };
155 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
156 #endif
157
158
159 int vm_pages_needed;            /* Event on which pageout daemon sleeps */
160 int vm_pageout_deficit;         /* Estimated number of pages deficit */
161 int vm_pageout_wakeup_thresh;
162 static int vm_pageout_oom_seq = 12;
163
164 #if !defined(NO_SWAPPING)
165 static int vm_pageout_req_swapout;      /* XXX */
166 static int vm_daemon_needed;
167 static struct mtx vm_daemon_mtx;
168 /* Allow for use by vm_pageout before vm_daemon is initialized. */
169 MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
170 #endif
171 static int vm_max_launder = 32;
172 static int vm_pageout_update_period;
173 static int defer_swap_pageouts;
174 static int disable_swap_pageouts;
175 static int lowmem_period = 10;
176 static time_t lowmem_uptime;
177
178 #if defined(NO_SWAPPING)
179 static int vm_swap_enabled = 0;
180 static int vm_swap_idle_enabled = 0;
181 #else
182 static int vm_swap_enabled = 1;
183 static int vm_swap_idle_enabled = 0;
184 #endif
185
186 static int vm_panic_on_oom = 0;
187
188 SYSCTL_INT(_vm, OID_AUTO, panic_on_oom,
189         CTLFLAG_RWTUN, &vm_panic_on_oom, 0,
190         "panic on out of memory instead of killing the largest process");
191
192 SYSCTL_INT(_vm, OID_AUTO, pageout_wakeup_thresh,
193         CTLFLAG_RW, &vm_pageout_wakeup_thresh, 0,
194         "free page threshold for waking up the pageout daemon");
195
196 SYSCTL_INT(_vm, OID_AUTO, max_launder,
197         CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
198
199 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period,
200         CTLFLAG_RW, &vm_pageout_update_period, 0,
201         "Maximum active LRU update period");
202   
203 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RW, &lowmem_period, 0,
204         "Low memory callback period");
205
206 #if defined(NO_SWAPPING)
207 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
208         CTLFLAG_RD, &vm_swap_enabled, 0, "Enable entire process swapout");
209 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
210         CTLFLAG_RD, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
211 #else
212 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
213         CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
214 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
215         CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
216 #endif
217
218 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
219         CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
220
221 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
222         CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
223
224 static int pageout_lock_miss;
225 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
226         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
227
228 SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq,
229         CTLFLAG_RW, &vm_pageout_oom_seq, 0,
230         "back-to-back calls to oom detector to start OOM");
231
232 #define VM_PAGEOUT_PAGE_COUNT 16
233 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
234
235 int vm_page_max_wired;          /* XXX max # of wired pages system-wide */
236 SYSCTL_INT(_vm, OID_AUTO, max_wired,
237         CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
238
239 static boolean_t vm_pageout_fallback_object_lock(vm_page_t, vm_page_t *);
240 static boolean_t vm_pageout_launder(struct vm_pagequeue *pq, int, vm_paddr_t,
241     vm_paddr_t);
242 #if !defined(NO_SWAPPING)
243 static void vm_pageout_map_deactivate_pages(vm_map_t, long);
244 static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
245 static void vm_req_vmdaemon(int req);
246 #endif
247 static boolean_t vm_pageout_page_lock(vm_page_t, vm_page_t *);
248
249 /*
250  * Initialize a dummy page for marking the caller's place in the specified
251  * paging queue.  In principle, this function only needs to set the flag
252  * PG_MARKER.  Nonetheless, it wirte busies and initializes the hold count
253  * to one as safety precautions.
254  */ 
255 static void
256 vm_pageout_init_marker(vm_page_t marker, u_short queue)
257 {
258
259         bzero(marker, sizeof(*marker));
260         marker->flags = PG_MARKER;
261         marker->busy_lock = VPB_SINGLE_EXCLUSIVER;
262         marker->queue = queue;
263         marker->hold_count = 1;
264 }
265
266 /*
267  * vm_pageout_fallback_object_lock:
268  * 
269  * Lock vm object currently associated with `m'. VM_OBJECT_TRYWLOCK is
270  * known to have failed and page queue must be either PQ_ACTIVE or
271  * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
272  * while locking the vm object.  Use marker page to detect page queue
273  * changes and maintain notion of next page on page queue.  Return
274  * TRUE if no changes were detected, FALSE otherwise.  vm object is
275  * locked on return.
276  * 
277  * This function depends on both the lock portion of struct vm_object
278  * and normal struct vm_page being type stable.
279  */
280 static boolean_t
281 vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
282 {
283         struct vm_page marker;
284         struct vm_pagequeue *pq;
285         boolean_t unchanged;
286         u_short queue;
287         vm_object_t object;
288
289         queue = m->queue;
290         vm_pageout_init_marker(&marker, queue);
291         pq = vm_page_pagequeue(m);
292         object = m->object;
293         
294         TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q);
295         vm_pagequeue_unlock(pq);
296         vm_page_unlock(m);
297         VM_OBJECT_WLOCK(object);
298         vm_page_lock(m);
299         vm_pagequeue_lock(pq);
300
301         /*
302          * The page's object might have changed, and/or the page might
303          * have moved from its original position in the queue.  If the
304          * page's object has changed, then the caller should abandon
305          * processing the page because the wrong object lock was
306          * acquired.  Use the marker's plinks.q, not the page's, to
307          * determine if the page has been moved.  The state of the
308          * page's plinks.q can be indeterminate; whereas, the marker's
309          * plinks.q must be valid.
310          */
311         *next = TAILQ_NEXT(&marker, plinks.q);
312         unchanged = m->object == object &&
313             m == TAILQ_PREV(&marker, pglist, plinks.q);
314         KASSERT(!unchanged || m->queue == queue,
315             ("page %p queue %d %d", m, queue, m->queue));
316         TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q);
317         return (unchanged);
318 }
319
320 /*
321  * Lock the page while holding the page queue lock.  Use marker page
322  * to detect page queue changes and maintain notion of next page on
323  * page queue.  Return TRUE if no changes were detected, FALSE
324  * otherwise.  The page is locked on return. The page queue lock might
325  * be dropped and reacquired.
326  *
327  * This function depends on normal struct vm_page being type stable.
328  */
329 static boolean_t
330 vm_pageout_page_lock(vm_page_t m, vm_page_t *next)
331 {
332         struct vm_page marker;
333         struct vm_pagequeue *pq;
334         boolean_t unchanged;
335         u_short queue;
336
337         vm_page_lock_assert(m, MA_NOTOWNED);
338         if (vm_page_trylock(m))
339                 return (TRUE);
340
341         queue = m->queue;
342         vm_pageout_init_marker(&marker, queue);
343         pq = vm_page_pagequeue(m);
344
345         TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q);
346         vm_pagequeue_unlock(pq);
347         vm_page_lock(m);
348         vm_pagequeue_lock(pq);
349
350         /* Page queue might have changed. */
351         *next = TAILQ_NEXT(&marker, plinks.q);
352         unchanged = m == TAILQ_PREV(&marker, pglist, plinks.q);
353         KASSERT(!unchanged || m->queue == queue,
354             ("page %p queue %d %d", m, queue, m->queue));
355         TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q);
356         return (unchanged);
357 }
358
359 /*
360  * vm_pageout_clean:
361  *
362  * Clean the page and remove it from the laundry.
363  * 
364  * We set the busy bit to cause potential page faults on this page to
365  * block.  Note the careful timing, however, the busy bit isn't set till
366  * late and we cannot do anything that will mess with the page.
367  */
368 static int
369 vm_pageout_cluster(vm_page_t m)
370 {
371         vm_object_t object;
372         vm_page_t mc[2*vm_pageout_page_count], pb, ps;
373         int pageout_count;
374         int ib, is, page_base;
375         vm_pindex_t pindex = m->pindex;
376
377         vm_page_lock_assert(m, MA_OWNED);
378         object = m->object;
379         VM_OBJECT_ASSERT_WLOCKED(object);
380
381         /*
382          * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
383          * with the new swapper, but we could have serious problems paging
384          * out other object types if there is insufficient memory.  
385          *
386          * Unfortunately, checking free memory here is far too late, so the
387          * check has been moved up a procedural level.
388          */
389
390         /*
391          * Can't clean the page if it's busy or held.
392          */
393         vm_page_assert_unbusied(m);
394         KASSERT(m->hold_count == 0, ("vm_pageout_clean: page %p is held", m));
395         vm_page_unlock(m);
396
397         mc[vm_pageout_page_count] = pb = ps = m;
398         pageout_count = 1;
399         page_base = vm_pageout_page_count;
400         ib = 1;
401         is = 1;
402
403         /*
404          * Scan object for clusterable pages.
405          *
406          * We can cluster ONLY if: ->> the page is NOT
407          * clean, wired, busy, held, or mapped into a
408          * buffer, and one of the following:
409          * 1) The page is inactive, or a seldom used
410          *    active page.
411          * -or-
412          * 2) we force the issue.
413          *
414          * During heavy mmap/modification loads the pageout
415          * daemon can really fragment the underlying file
416          * due to flushing pages out of order and not trying
417          * align the clusters (which leave sporatic out-of-order
418          * holes).  To solve this problem we do the reverse scan
419          * first and attempt to align our cluster, then do a 
420          * forward scan if room remains.
421          */
422 more:
423         while (ib && pageout_count < vm_pageout_page_count) {
424                 vm_page_t p;
425
426                 if (ib > pindex) {
427                         ib = 0;
428                         break;
429                 }
430
431                 if ((p = vm_page_prev(pb)) == NULL || vm_page_busied(p)) {
432                         ib = 0;
433                         break;
434                 }
435                 vm_page_test_dirty(p);
436                 if (p->dirty == 0) {
437                         ib = 0;
438                         break;
439                 }
440                 vm_page_lock(p);
441                 if (p->queue != PQ_INACTIVE ||
442                     p->hold_count != 0) {       /* may be undergoing I/O */
443                         vm_page_unlock(p);
444                         ib = 0;
445                         break;
446                 }
447                 vm_page_unlock(p);
448                 mc[--page_base] = pb = p;
449                 ++pageout_count;
450                 ++ib;
451                 /*
452                  * alignment boundry, stop here and switch directions.  Do
453                  * not clear ib.
454                  */
455                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
456                         break;
457         }
458
459         while (pageout_count < vm_pageout_page_count && 
460             pindex + is < object->size) {
461                 vm_page_t p;
462
463                 if ((p = vm_page_next(ps)) == NULL || vm_page_busied(p))
464                         break;
465                 vm_page_test_dirty(p);
466                 if (p->dirty == 0)
467                         break;
468                 vm_page_lock(p);
469                 if (p->queue != PQ_INACTIVE ||
470                     p->hold_count != 0) {       /* may be undergoing I/O */
471                         vm_page_unlock(p);
472                         break;
473                 }
474                 vm_page_unlock(p);
475                 mc[page_base + pageout_count] = ps = p;
476                 ++pageout_count;
477                 ++is;
478         }
479
480         /*
481          * If we exhausted our forward scan, continue with the reverse scan
482          * when possible, even past a page boundry.  This catches boundry
483          * conditions.
484          */
485         if (ib && pageout_count < vm_pageout_page_count)
486                 goto more;
487
488         /*
489          * we allow reads during pageouts...
490          */
491         return (vm_pageout_flush(&mc[page_base], pageout_count, 0, 0, NULL,
492             NULL));
493 }
494
495 /*
496  * vm_pageout_flush() - launder the given pages
497  *
498  *      The given pages are laundered.  Note that we setup for the start of
499  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
500  *      reference count all in here rather then in the parent.  If we want
501  *      the parent to do more sophisticated things we may have to change
502  *      the ordering.
503  *
504  *      Returned runlen is the count of pages between mreq and first
505  *      page after mreq with status VM_PAGER_AGAIN.
506  *      *eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
507  *      for any page in runlen set.
508  */
509 int
510 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
511     boolean_t *eio)
512 {
513         vm_object_t object = mc[0]->object;
514         int pageout_status[count];
515         int numpagedout = 0;
516         int i, runlen;
517
518         VM_OBJECT_ASSERT_WLOCKED(object);
519
520         /*
521          * Initiate I/O.  Bump the vm_page_t->busy counter and
522          * mark the pages read-only.
523          *
524          * We do not have to fixup the clean/dirty bits here... we can
525          * allow the pager to do it after the I/O completes.
526          *
527          * NOTE! mc[i]->dirty may be partial or fragmented due to an
528          * edge case with file fragments.
529          */
530         for (i = 0; i < count; i++) {
531                 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
532                     ("vm_pageout_flush: partially invalid page %p index %d/%d",
533                         mc[i], i, count));
534                 vm_page_sbusy(mc[i]);
535                 pmap_remove_write(mc[i]);
536         }
537         vm_object_pip_add(object, count);
538
539         vm_pager_put_pages(object, mc, count, flags, pageout_status);
540
541         runlen = count - mreq;
542         if (eio != NULL)
543                 *eio = FALSE;
544         for (i = 0; i < count; i++) {
545                 vm_page_t mt = mc[i];
546
547                 KASSERT(pageout_status[i] == VM_PAGER_PEND ||
548                     !pmap_page_is_write_mapped(mt),
549                     ("vm_pageout_flush: page %p is not write protected", mt));
550                 switch (pageout_status[i]) {
551                 case VM_PAGER_OK:
552                 case VM_PAGER_PEND:
553                         numpagedout++;
554                         break;
555                 case VM_PAGER_BAD:
556                         /*
557                          * Page outside of range of object. Right now we
558                          * essentially lose the changes by pretending it
559                          * worked.
560                          */
561                         vm_page_undirty(mt);
562                         break;
563                 case VM_PAGER_ERROR:
564                 case VM_PAGER_FAIL:
565                         /*
566                          * If page couldn't be paged out, then reactivate the
567                          * page so it doesn't clog the inactive list.  (We
568                          * will try paging out it again later).
569                          */
570                         vm_page_lock(mt);
571                         vm_page_activate(mt);
572                         vm_page_unlock(mt);
573                         if (eio != NULL && i >= mreq && i - mreq < runlen)
574                                 *eio = TRUE;
575                         break;
576                 case VM_PAGER_AGAIN:
577                         if (i >= mreq && i - mreq < runlen)
578                                 runlen = i - mreq;
579                         break;
580                 }
581
582                 /*
583                  * If the operation is still going, leave the page busy to
584                  * block all other accesses. Also, leave the paging in
585                  * progress indicator set so that we don't attempt an object
586                  * collapse.
587                  */
588                 if (pageout_status[i] != VM_PAGER_PEND) {
589                         vm_object_pip_wakeup(object);
590                         vm_page_sunbusy(mt);
591                 }
592         }
593         if (prunlen != NULL)
594                 *prunlen = runlen;
595         return (numpagedout);
596 }
597
598 static boolean_t
599 vm_pageout_launder(struct vm_pagequeue *pq, int tries, vm_paddr_t low,
600     vm_paddr_t high)
601 {
602         struct mount *mp;
603         struct vnode *vp;
604         vm_object_t object;
605         vm_paddr_t pa;
606         vm_page_t m, m_tmp, next;
607         int lockmode;
608
609         vm_pagequeue_lock(pq);
610         TAILQ_FOREACH_SAFE(m, &pq->pq_pl, plinks.q, next) {
611                 if ((m->flags & PG_MARKER) != 0)
612                         continue;
613                 pa = VM_PAGE_TO_PHYS(m);
614                 if (pa < low || pa + PAGE_SIZE > high)
615                         continue;
616                 if (!vm_pageout_page_lock(m, &next) || m->hold_count != 0) {
617                         vm_page_unlock(m);
618                         continue;
619                 }
620                 object = m->object;
621                 if ((!VM_OBJECT_TRYWLOCK(object) &&
622                     (!vm_pageout_fallback_object_lock(m, &next) ||
623                     m->hold_count != 0)) || vm_page_busied(m)) {
624                         vm_page_unlock(m);
625                         VM_OBJECT_WUNLOCK(object);
626                         continue;
627                 }
628                 vm_page_test_dirty(m);
629                 if (m->dirty == 0 && object->ref_count != 0)
630                         pmap_remove_all(m);
631                 if (m->dirty != 0) {
632                         vm_page_unlock(m);
633                         if (tries == 0 || (object->flags & OBJ_DEAD) != 0) {
634                                 VM_OBJECT_WUNLOCK(object);
635                                 continue;
636                         }
637                         if (object->type == OBJT_VNODE) {
638                                 vm_pagequeue_unlock(pq);
639                                 vp = object->handle;
640                                 vm_object_reference_locked(object);
641                                 VM_OBJECT_WUNLOCK(object);
642                                 (void)vn_start_write(vp, &mp, V_WAIT);
643                                 lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
644                                     LK_SHARED : LK_EXCLUSIVE;
645                                 vn_lock(vp, lockmode | LK_RETRY);
646                                 VM_OBJECT_WLOCK(object);
647                                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
648                                 VM_OBJECT_WUNLOCK(object);
649                                 VOP_UNLOCK(vp, 0);
650                                 vm_object_deallocate(object);
651                                 vn_finished_write(mp);
652                                 return (TRUE);
653                         } else if (object->type == OBJT_SWAP ||
654                             object->type == OBJT_DEFAULT) {
655                                 vm_pagequeue_unlock(pq);
656                                 m_tmp = m;
657                                 vm_pageout_flush(&m_tmp, 1, VM_PAGER_PUT_SYNC,
658                                     0, NULL, NULL);
659                                 VM_OBJECT_WUNLOCK(object);
660                                 return (TRUE);
661                         }
662                 } else {
663                         /*
664                          * Dequeue here to prevent lock recursion in
665                          * vm_page_cache().
666                          */
667                         vm_page_dequeue_locked(m);
668                         vm_page_cache(m);
669                         vm_page_unlock(m);
670                 }
671                 VM_OBJECT_WUNLOCK(object);
672         }
673         vm_pagequeue_unlock(pq);
674         return (FALSE);
675 }
676
677 /*
678  * Increase the number of cached pages.  The specified value, "tries",
679  * determines which categories of pages are cached:
680  *
681  *  0: All clean, inactive pages within the specified physical address range
682  *     are cached.  Will not sleep.
683  *  1: The vm_lowmem handlers are called.  All inactive pages within
684  *     the specified physical address range are cached.  May sleep.
685  *  2: The vm_lowmem handlers are called.  All inactive and active pages
686  *     within the specified physical address range are cached.  May sleep.
687  */
688 void
689 vm_pageout_grow_cache(int tries, vm_paddr_t low, vm_paddr_t high)
690 {
691         int actl, actmax, inactl, inactmax, dom, initial_dom;
692         static int start_dom = 0;
693
694         if (tries > 0) {
695                 /*
696                  * Decrease registered cache sizes.  The vm_lowmem handlers
697                  * may acquire locks and/or sleep, so they can only be invoked
698                  * when "tries" is greater than zero.
699                  */
700                 SDT_PROBE0(vm, , , vm__lowmem_cache);
701                 EVENTHANDLER_INVOKE(vm_lowmem, 0);
702
703                 /*
704                  * We do this explicitly after the caches have been drained
705                  * above.
706                  */
707                 uma_reclaim();
708         }
709
710         /*
711          * Make the next scan start on the next domain.
712          */
713         initial_dom = atomic_fetchadd_int(&start_dom, 1) % vm_ndomains;
714
715         inactl = 0;
716         inactmax = vm_cnt.v_inactive_count;
717         actl = 0;
718         actmax = tries < 2 ? 0 : vm_cnt.v_active_count;
719         dom = initial_dom;
720
721         /*
722          * Scan domains in round-robin order, first inactive queues,
723          * then active.  Since domain usually owns large physically
724          * contiguous chunk of memory, it makes sense to completely
725          * exhaust one domain before switching to next, while growing
726          * the pool of contiguous physical pages.
727          *
728          * Do not even start launder a domain which cannot contain
729          * the specified address range, as indicated by segments
730          * constituting the domain.
731          */
732 again:
733         if (inactl < inactmax) {
734                 if (vm_phys_domain_intersects(vm_dom[dom].vmd_segs,
735                     low, high) &&
736                     vm_pageout_launder(&vm_dom[dom].vmd_pagequeues[PQ_INACTIVE],
737                     tries, low, high)) {
738                         inactl++;
739                         goto again;
740                 }
741                 if (++dom == vm_ndomains)
742                         dom = 0;
743                 if (dom != initial_dom)
744                         goto again;
745         }
746         if (actl < actmax) {
747                 if (vm_phys_domain_intersects(vm_dom[dom].vmd_segs,
748                     low, high) &&
749                     vm_pageout_launder(&vm_dom[dom].vmd_pagequeues[PQ_ACTIVE],
750                       tries, low, high)) {
751                         actl++;
752                         goto again;
753                 }
754                 if (++dom == vm_ndomains)
755                         dom = 0;
756                 if (dom != initial_dom)
757                         goto again;
758         }
759 }
760
761 #if !defined(NO_SWAPPING)
762 /*
763  *      vm_pageout_object_deactivate_pages
764  *
765  *      Deactivate enough pages to satisfy the inactive target
766  *      requirements.
767  *
768  *      The object and map must be locked.
769  */
770 static void
771 vm_pageout_object_deactivate_pages(pmap_t pmap, vm_object_t first_object,
772     long desired)
773 {
774         vm_object_t backing_object, object;
775         vm_page_t p;
776         int act_delta, remove_mode;
777
778         VM_OBJECT_ASSERT_LOCKED(first_object);
779         if ((first_object->flags & OBJ_FICTITIOUS) != 0)
780                 return;
781         for (object = first_object;; object = backing_object) {
782                 if (pmap_resident_count(pmap) <= desired)
783                         goto unlock_return;
784                 VM_OBJECT_ASSERT_LOCKED(object);
785                 if ((object->flags & OBJ_UNMANAGED) != 0 ||
786                     object->paging_in_progress != 0)
787                         goto unlock_return;
788
789                 remove_mode = 0;
790                 if (object->shadow_count > 1)
791                         remove_mode = 1;
792                 /*
793                  * Scan the object's entire memory queue.
794                  */
795                 TAILQ_FOREACH(p, &object->memq, listq) {
796                         if (pmap_resident_count(pmap) <= desired)
797                                 goto unlock_return;
798                         if (vm_page_busied(p))
799                                 continue;
800                         PCPU_INC(cnt.v_pdpages);
801                         vm_page_lock(p);
802                         if (p->wire_count != 0 || p->hold_count != 0 ||
803                             !pmap_page_exists_quick(pmap, p)) {
804                                 vm_page_unlock(p);
805                                 continue;
806                         }
807                         act_delta = pmap_ts_referenced(p);
808                         if ((p->aflags & PGA_REFERENCED) != 0) {
809                                 if (act_delta == 0)
810                                         act_delta = 1;
811                                 vm_page_aflag_clear(p, PGA_REFERENCED);
812                         }
813                         if (p->queue != PQ_ACTIVE && act_delta != 0) {
814                                 vm_page_activate(p);
815                                 p->act_count += act_delta;
816                         } else if (p->queue == PQ_ACTIVE) {
817                                 if (act_delta == 0) {
818                                         p->act_count -= min(p->act_count,
819                                             ACT_DECLINE);
820                                         if (!remove_mode && p->act_count == 0) {
821                                                 pmap_remove_all(p);
822                                                 vm_page_deactivate(p);
823                                         } else
824                                                 vm_page_requeue(p);
825                                 } else {
826                                         vm_page_activate(p);
827                                         if (p->act_count < ACT_MAX -
828                                             ACT_ADVANCE)
829                                                 p->act_count += ACT_ADVANCE;
830                                         vm_page_requeue(p);
831                                 }
832                         } else if (p->queue == PQ_INACTIVE)
833                                 pmap_remove_all(p);
834                         vm_page_unlock(p);
835                 }
836                 if ((backing_object = object->backing_object) == NULL)
837                         goto unlock_return;
838                 VM_OBJECT_RLOCK(backing_object);
839                 if (object != first_object)
840                         VM_OBJECT_RUNLOCK(object);
841         }
842 unlock_return:
843         if (object != first_object)
844                 VM_OBJECT_RUNLOCK(object);
845 }
846
847 /*
848  * deactivate some number of pages in a map, try to do it fairly, but
849  * that is really hard to do.
850  */
851 static void
852 vm_pageout_map_deactivate_pages(map, desired)
853         vm_map_t map;
854         long desired;
855 {
856         vm_map_entry_t tmpe;
857         vm_object_t obj, bigobj;
858         int nothingwired;
859
860         if (!vm_map_trylock(map))
861                 return;
862
863         bigobj = NULL;
864         nothingwired = TRUE;
865
866         /*
867          * first, search out the biggest object, and try to free pages from
868          * that.
869          */
870         tmpe = map->header.next;
871         while (tmpe != &map->header) {
872                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
873                         obj = tmpe->object.vm_object;
874                         if (obj != NULL && VM_OBJECT_TRYRLOCK(obj)) {
875                                 if (obj->shadow_count <= 1 &&
876                                     (bigobj == NULL ||
877                                      bigobj->resident_page_count < obj->resident_page_count)) {
878                                         if (bigobj != NULL)
879                                                 VM_OBJECT_RUNLOCK(bigobj);
880                                         bigobj = obj;
881                                 } else
882                                         VM_OBJECT_RUNLOCK(obj);
883                         }
884                 }
885                 if (tmpe->wired_count > 0)
886                         nothingwired = FALSE;
887                 tmpe = tmpe->next;
888         }
889
890         if (bigobj != NULL) {
891                 vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
892                 VM_OBJECT_RUNLOCK(bigobj);
893         }
894         /*
895          * Next, hunt around for other pages to deactivate.  We actually
896          * do this search sort of wrong -- .text first is not the best idea.
897          */
898         tmpe = map->header.next;
899         while (tmpe != &map->header) {
900                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
901                         break;
902                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
903                         obj = tmpe->object.vm_object;
904                         if (obj != NULL) {
905                                 VM_OBJECT_RLOCK(obj);
906                                 vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
907                                 VM_OBJECT_RUNLOCK(obj);
908                         }
909                 }
910                 tmpe = tmpe->next;
911         }
912
913         /*
914          * Remove all mappings if a process is swapped out, this will free page
915          * table pages.
916          */
917         if (desired == 0 && nothingwired) {
918                 pmap_remove(vm_map_pmap(map), vm_map_min(map),
919                     vm_map_max(map));
920         }
921
922         vm_map_unlock(map);
923 }
924 #endif          /* !defined(NO_SWAPPING) */
925
926 /*
927  * Attempt to acquire all of the necessary locks to launder a page and
928  * then call through the clustering layer to PUTPAGES.  Wait a short
929  * time for a vnode lock.
930  *
931  * Requires the page and object lock on entry, releases both before return.
932  * Returns 0 on success and an errno otherwise.
933  */
934 static int
935 vm_pageout_clean(vm_page_t m)
936 {
937         struct vnode *vp;
938         struct mount *mp;
939         vm_object_t object;
940         vm_pindex_t pindex;
941         int error, lockmode;
942
943         vm_page_assert_locked(m);
944         object = m->object;
945         VM_OBJECT_ASSERT_WLOCKED(object);
946         error = 0;
947         vp = NULL;
948         mp = NULL;
949
950         /*
951          * The object is already known NOT to be dead.   It
952          * is possible for the vget() to block the whole
953          * pageout daemon, but the new low-memory handling
954          * code should prevent it.
955          *
956          * We can't wait forever for the vnode lock, we might
957          * deadlock due to a vn_read() getting stuck in
958          * vm_wait while holding this vnode.  We skip the 
959          * vnode if we can't get it in a reasonable amount
960          * of time.
961          */
962         if (object->type == OBJT_VNODE) {
963                 vm_page_unlock(m);
964                 vp = object->handle;
965                 if (vp->v_type == VREG &&
966                     vn_start_write(vp, &mp, V_NOWAIT) != 0) {
967                         mp = NULL;
968                         error = EDEADLK;
969                         goto unlock_all;
970                 }
971                 KASSERT(mp != NULL,
972                     ("vp %p with NULL v_mount", vp));
973                 vm_object_reference_locked(object);
974                 pindex = m->pindex;
975                 VM_OBJECT_WUNLOCK(object);
976                 lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
977                     LK_SHARED : LK_EXCLUSIVE;
978                 if (vget(vp, lockmode | LK_TIMELOCK, curthread)) {
979                         vp = NULL;
980                         error = EDEADLK;
981                         goto unlock_mp;
982                 }
983                 VM_OBJECT_WLOCK(object);
984                 vm_page_lock(m);
985                 /*
986                  * While the object and page were unlocked, the page
987                  * may have been:
988                  * (1) moved to a different queue,
989                  * (2) reallocated to a different object,
990                  * (3) reallocated to a different offset, or
991                  * (4) cleaned.
992                  */
993                 if (m->queue != PQ_INACTIVE || m->object != object ||
994                     m->pindex != pindex || m->dirty == 0) {
995                         vm_page_unlock(m);
996                         error = ENXIO;
997                         goto unlock_all;
998                 }
999
1000                 /*
1001                  * The page may have been busied or held while the object
1002                  * and page locks were released.
1003                  */
1004                 if (vm_page_busied(m) || m->hold_count != 0) {
1005                         vm_page_unlock(m);
1006                         error = EBUSY;
1007                         goto unlock_all;
1008                 }
1009         }
1010
1011         /*
1012          * If a page is dirty, then it is either being washed
1013          * (but not yet cleaned) or it is still in the
1014          * laundry.  If it is still in the laundry, then we
1015          * start the cleaning operation. 
1016          */
1017         if (vm_pageout_cluster(m) == 0)
1018                 error = EIO;
1019
1020 unlock_all:
1021         VM_OBJECT_WUNLOCK(object);
1022
1023 unlock_mp:
1024         vm_page_lock_assert(m, MA_NOTOWNED);
1025         if (mp != NULL) {
1026                 if (vp != NULL)
1027                         vput(vp);
1028                 vm_object_deallocate(object);
1029                 vn_finished_write(mp);
1030         }
1031
1032         return (error);
1033 }
1034
1035 /*
1036  *      vm_pageout_scan does the dirty work for the pageout daemon.
1037  *
1038  *      pass 0 - Update active LRU/deactivate pages
1039  *      pass 1 - Move inactive to cache or free
1040  *      pass 2 - Launder dirty pages
1041  */
1042 static void
1043 vm_pageout_scan(struct vm_domain *vmd, int pass)
1044 {
1045         vm_page_t m, next;
1046         struct vm_pagequeue *pq;
1047         vm_object_t object;
1048         long min_scan;
1049         int act_delta, addl_page_shortage, deficit, error, maxlaunder, maxscan;
1050         int page_shortage, scan_tick, scanned, starting_page_shortage;
1051         int vnodes_skipped;
1052         boolean_t pageout_ok, queues_locked;
1053
1054         /*
1055          * If we need to reclaim memory ask kernel caches to return
1056          * some.  We rate limit to avoid thrashing.
1057          */
1058         if (vmd == &vm_dom[0] && pass > 0 &&
1059             (time_uptime - lowmem_uptime) >= lowmem_period) {
1060                 /*
1061                  * Decrease registered cache sizes.
1062                  */
1063                 SDT_PROBE0(vm, , , vm__lowmem_scan);
1064                 EVENTHANDLER_INVOKE(vm_lowmem, 0);
1065                 /*
1066                  * We do this explicitly after the caches have been
1067                  * drained above.
1068                  */
1069                 uma_reclaim();
1070                 lowmem_uptime = time_uptime;
1071         }
1072
1073         /*
1074          * The addl_page_shortage is the number of temporarily
1075          * stuck pages in the inactive queue.  In other words, the
1076          * number of pages from the inactive count that should be
1077          * discounted in setting the target for the active queue scan.
1078          */
1079         addl_page_shortage = 0;
1080
1081         /*
1082          * Calculate the number of pages we want to either free or move
1083          * to the cache.
1084          */
1085         if (pass > 0) {
1086                 deficit = atomic_readandclear_int(&vm_pageout_deficit);
1087                 page_shortage = vm_paging_target() + deficit;
1088         } else
1089                 page_shortage = deficit = 0;
1090         starting_page_shortage = page_shortage;
1091
1092         /*
1093          * maxlaunder limits the number of dirty pages we flush per scan.
1094          * For most systems a smaller value (16 or 32) is more robust under
1095          * extreme memory and disk pressure because any unnecessary writes
1096          * to disk can result in extreme performance degredation.  However,
1097          * systems with excessive dirty pages (especially when MAP_NOSYNC is
1098          * used) will die horribly with limited laundering.  If the pageout
1099          * daemon cannot clean enough pages in the first pass, we let it go
1100          * all out in succeeding passes.
1101          */
1102         if ((maxlaunder = vm_max_launder) <= 1)
1103                 maxlaunder = 1;
1104         if (pass > 1)
1105                 maxlaunder = 10000;
1106
1107         vnodes_skipped = 0;
1108
1109         /*
1110          * Start scanning the inactive queue for pages we can move to the
1111          * cache or free.  The scan will stop when the target is reached or
1112          * we have scanned the entire inactive queue.  Note that m->act_count
1113          * is not used to form decisions for the inactive queue, only for the
1114          * active queue.
1115          */
1116         pq = &vmd->vmd_pagequeues[PQ_INACTIVE];
1117         maxscan = pq->pq_cnt;
1118         vm_pagequeue_lock(pq);
1119         queues_locked = TRUE;
1120         for (m = TAILQ_FIRST(&pq->pq_pl);
1121              m != NULL && maxscan-- > 0 && page_shortage > 0;
1122              m = next) {
1123                 vm_pagequeue_assert_locked(pq);
1124                 KASSERT(queues_locked, ("unlocked queues"));
1125                 KASSERT(m->queue == PQ_INACTIVE, ("Inactive queue %p", m));
1126
1127                 PCPU_INC(cnt.v_pdpages);
1128                 next = TAILQ_NEXT(m, plinks.q);
1129
1130                 /*
1131                  * skip marker pages
1132                  */
1133                 if (m->flags & PG_MARKER)
1134                         continue;
1135
1136                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
1137                     ("Fictitious page %p cannot be in inactive queue", m));
1138                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1139                     ("Unmanaged page %p cannot be in inactive queue", m));
1140
1141                 /*
1142                  * The page or object lock acquisitions fail if the
1143                  * page was removed from the queue or moved to a
1144                  * different position within the queue.  In either
1145                  * case, addl_page_shortage should not be incremented.
1146                  */
1147                 if (!vm_pageout_page_lock(m, &next))
1148                         goto unlock_page;
1149                 else if (m->hold_count != 0) {
1150                         /*
1151                          * Held pages are essentially stuck in the
1152                          * queue.  So, they ought to be discounted
1153                          * from the inactive count.  See the
1154                          * calculation of the page_shortage for the
1155                          * loop over the active queue below.
1156                          */
1157                         addl_page_shortage++;
1158                         goto unlock_page;
1159                 }
1160                 object = m->object;
1161                 if (!VM_OBJECT_TRYWLOCK(object)) {
1162                         if (!vm_pageout_fallback_object_lock(m, &next))
1163                                 goto unlock_object;
1164                         else if (m->hold_count != 0) {
1165                                 addl_page_shortage++;
1166                                 goto unlock_object;
1167                         }
1168                 }
1169                 if (vm_page_busied(m)) {
1170                         /*
1171                          * Don't mess with busy pages.  Leave them at
1172                          * the front of the queue.  Most likely, they
1173                          * are being paged out and will leave the
1174                          * queue shortly after the scan finishes.  So,
1175                          * they ought to be discounted from the
1176                          * inactive count.
1177                          */
1178                         addl_page_shortage++;
1179 unlock_object:
1180                         VM_OBJECT_WUNLOCK(object);
1181 unlock_page:
1182                         vm_page_unlock(m);
1183                         continue;
1184                 }
1185                 KASSERT(m->hold_count == 0, ("Held page %p", m));
1186
1187                 /*
1188                  * We unlock the inactive page queue, invalidating the
1189                  * 'next' pointer.  Use our marker to remember our
1190                  * place.
1191                  */
1192                 TAILQ_INSERT_AFTER(&pq->pq_pl, m, &vmd->vmd_marker, plinks.q);
1193                 vm_pagequeue_unlock(pq);
1194                 queues_locked = FALSE;
1195
1196                 /*
1197                  * Invalid pages can be easily freed. They cannot be
1198                  * mapped, vm_page_free() asserts this.
1199                  */
1200                 if (m->valid == 0)
1201                         goto free_page;
1202
1203                 /*
1204                  * If the page has been referenced and the object is not dead,
1205                  * reactivate or requeue the page depending on whether the
1206                  * object is mapped.
1207                  */
1208                 if ((m->aflags & PGA_REFERENCED) != 0) {
1209                         vm_page_aflag_clear(m, PGA_REFERENCED);
1210                         act_delta = 1;
1211                 } else
1212                         act_delta = 0;
1213                 if (object->ref_count != 0) {
1214                         act_delta += pmap_ts_referenced(m);
1215                 } else {
1216                         KASSERT(!pmap_page_is_mapped(m),
1217                             ("vm_pageout_scan: page %p is mapped", m));
1218                 }
1219                 if (act_delta != 0) {
1220                         if (object->ref_count != 0) {
1221                                 vm_page_activate(m);
1222
1223                                 /*
1224                                  * Increase the activation count if the page
1225                                  * was referenced while in the inactive queue.
1226                                  * This makes it less likely that the page will
1227                                  * be returned prematurely to the inactive
1228                                  * queue.
1229                                  */
1230                                 m->act_count += act_delta + ACT_ADVANCE;
1231                                 goto drop_page;
1232                         } else if ((object->flags & OBJ_DEAD) == 0)
1233                                 goto requeue_page;
1234                 }
1235
1236                 /*
1237                  * If the page appears to be clean at the machine-independent
1238                  * layer, then remove all of its mappings from the pmap in
1239                  * anticipation of placing it onto the cache queue.  If,
1240                  * however, any of the page's mappings allow write access,
1241                  * then the page may still be modified until the last of those
1242                  * mappings are removed.
1243                  */
1244                 if (object->ref_count != 0) {
1245                         vm_page_test_dirty(m);
1246                         if (m->dirty == 0)
1247                                 pmap_remove_all(m);
1248                 }
1249
1250                 if (m->dirty == 0) {
1251                         /*
1252                          * Clean pages can be freed.
1253                          */
1254 free_page:
1255                         vm_page_free(m);
1256                         PCPU_INC(cnt.v_dfree);
1257                         --page_shortage;
1258                 } else if ((object->flags & OBJ_DEAD) != 0) {
1259                         /*
1260                          * Leave dirty pages from dead objects at the front of
1261                          * the queue.  They are being paged out and freed by
1262                          * the thread that destroyed the object.  They will
1263                          * leave the queue shortly after the scan finishes, so 
1264                          * they should be discounted from the inactive count.
1265                          */
1266                         addl_page_shortage++;
1267                 } else if ((m->flags & PG_WINATCFLS) == 0 && pass < 2) {
1268                         /*
1269                          * Dirty pages need to be paged out, but flushing
1270                          * a page is extremely expensive versus freeing
1271                          * a clean page.  Rather then artificially limiting
1272                          * the number of pages we can flush, we instead give
1273                          * dirty pages extra priority on the inactive queue
1274                          * by forcing them to be cycled through the queue
1275                          * twice before being flushed, after which the
1276                          * (now clean) page will cycle through once more
1277                          * before being freed.  This significantly extends
1278                          * the thrash point for a heavily loaded machine.
1279                          */
1280                         m->flags |= PG_WINATCFLS;
1281 requeue_page:
1282                         vm_pagequeue_lock(pq);
1283                         queues_locked = TRUE;
1284                         vm_page_requeue_locked(m);
1285                 } else if (maxlaunder > 0) {
1286                         /*
1287                          * We always want to try to flush some dirty pages if
1288                          * we encounter them, to keep the system stable.
1289                          * Normally this number is small, but under extreme
1290                          * pressure where there are insufficient clean pages
1291                          * on the inactive queue, we may have to go all out.
1292                          */
1293
1294                         if (object->type != OBJT_SWAP &&
1295                             object->type != OBJT_DEFAULT)
1296                                 pageout_ok = TRUE;
1297                         else if (disable_swap_pageouts)
1298                                 pageout_ok = FALSE;
1299                         else if (defer_swap_pageouts)
1300                                 pageout_ok = vm_page_count_min();
1301                         else
1302                                 pageout_ok = TRUE;
1303                         if (!pageout_ok)
1304                                 goto requeue_page;
1305                         error = vm_pageout_clean(m);
1306                         /*
1307                          * Decrement page_shortage on success to account for
1308                          * the (future) cleaned page.  Otherwise we could wind
1309                          * up laundering or cleaning too many pages.
1310                          */
1311                         if (error == 0) {
1312                                 page_shortage--;
1313                                 maxlaunder--;
1314                         } else if (error == EDEADLK) {
1315                                 pageout_lock_miss++;
1316                                 vnodes_skipped++;
1317                         } else if (error == EBUSY) {
1318                                 addl_page_shortage++;
1319                         }
1320                         vm_page_lock_assert(m, MA_NOTOWNED);
1321                         goto relock_queues;
1322                 }
1323 drop_page:
1324                 vm_page_unlock(m);
1325                 VM_OBJECT_WUNLOCK(object);
1326 relock_queues:
1327                 if (!queues_locked) {
1328                         vm_pagequeue_lock(pq);
1329                         queues_locked = TRUE;
1330                 }
1331                 next = TAILQ_NEXT(&vmd->vmd_marker, plinks.q);
1332                 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_marker, plinks.q);
1333         }
1334         vm_pagequeue_unlock(pq);
1335
1336 #if !defined(NO_SWAPPING)
1337         /*
1338          * Wakeup the swapout daemon if we didn't cache or free the targeted
1339          * number of pages. 
1340          */
1341         if (vm_swap_enabled && page_shortage > 0)
1342                 vm_req_vmdaemon(VM_SWAP_NORMAL);
1343 #endif
1344
1345         /*
1346          * Wakeup the sync daemon if we skipped a vnode in a writeable object
1347          * and we didn't cache or free enough pages.
1348          */
1349         if (vnodes_skipped > 0 && page_shortage > vm_cnt.v_free_target -
1350             vm_cnt.v_free_min)
1351                 (void)speedup_syncer();
1352
1353         /*
1354          * If the inactive queue scan fails repeatedly to meet its
1355          * target, kill the largest process.
1356          */
1357         vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage);
1358
1359         /*
1360          * Compute the number of pages we want to try to move from the
1361          * active queue to the inactive queue.
1362          */
1363         page_shortage = vm_cnt.v_inactive_target - vm_cnt.v_inactive_count +
1364             vm_paging_target() + deficit + addl_page_shortage;
1365
1366         pq = &vmd->vmd_pagequeues[PQ_ACTIVE];
1367         vm_pagequeue_lock(pq);
1368         maxscan = pq->pq_cnt;
1369
1370         /*
1371          * If we're just idle polling attempt to visit every
1372          * active page within 'update_period' seconds.
1373          */
1374         scan_tick = ticks;
1375         if (vm_pageout_update_period != 0) {
1376                 min_scan = pq->pq_cnt;
1377                 min_scan *= scan_tick - vmd->vmd_last_active_scan;
1378                 min_scan /= hz * vm_pageout_update_period;
1379         } else
1380                 min_scan = 0;
1381         if (min_scan > 0 || (page_shortage > 0 && maxscan > 0))
1382                 vmd->vmd_last_active_scan = scan_tick;
1383
1384         /*
1385          * Scan the active queue for pages that can be deactivated.  Update
1386          * the per-page activity counter and use it to identify deactivation
1387          * candidates.
1388          */
1389         for (m = TAILQ_FIRST(&pq->pq_pl), scanned = 0; m != NULL && (scanned <
1390             min_scan || (page_shortage > 0 && scanned < maxscan)); m = next,
1391             scanned++) {
1392
1393                 KASSERT(m->queue == PQ_ACTIVE,
1394                     ("vm_pageout_scan: page %p isn't active", m));
1395
1396                 next = TAILQ_NEXT(m, plinks.q);
1397                 if ((m->flags & PG_MARKER) != 0)
1398                         continue;
1399                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
1400                     ("Fictitious page %p cannot be in active queue", m));
1401                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1402                     ("Unmanaged page %p cannot be in active queue", m));
1403                 if (!vm_pageout_page_lock(m, &next)) {
1404                         vm_page_unlock(m);
1405                         continue;
1406                 }
1407
1408                 /*
1409                  * The count for pagedaemon pages is done after checking the
1410                  * page for eligibility...
1411                  */
1412                 PCPU_INC(cnt.v_pdpages);
1413
1414                 /*
1415                  * Check to see "how much" the page has been used.
1416                  */
1417                 if ((m->aflags & PGA_REFERENCED) != 0) {
1418                         vm_page_aflag_clear(m, PGA_REFERENCED);
1419                         act_delta = 1;
1420                 } else
1421                         act_delta = 0;
1422
1423                 /*
1424                  * Unlocked object ref count check.  Two races are possible.
1425                  * 1) The ref was transitioning to zero and we saw non-zero,
1426                  *    the pmap bits will be checked unnecessarily.
1427                  * 2) The ref was transitioning to one and we saw zero. 
1428                  *    The page lock prevents a new reference to this page so
1429                  *    we need not check the reference bits.
1430                  */
1431                 if (m->object->ref_count != 0)
1432                         act_delta += pmap_ts_referenced(m);
1433
1434                 /*
1435                  * Advance or decay the act_count based on recent usage.
1436                  */
1437                 if (act_delta != 0) {
1438                         m->act_count += ACT_ADVANCE + act_delta;
1439                         if (m->act_count > ACT_MAX)
1440                                 m->act_count = ACT_MAX;
1441                 } else
1442                         m->act_count -= min(m->act_count, ACT_DECLINE);
1443
1444                 /*
1445                  * Move this page to the tail of the active or inactive
1446                  * queue depending on usage.
1447                  */
1448                 if (m->act_count == 0) {
1449                         /* Dequeue to avoid later lock recursion. */
1450                         vm_page_dequeue_locked(m);
1451                         vm_page_deactivate(m);
1452                         page_shortage--;
1453                 } else
1454                         vm_page_requeue_locked(m);
1455                 vm_page_unlock(m);
1456         }
1457         vm_pagequeue_unlock(pq);
1458 #if !defined(NO_SWAPPING)
1459         /*
1460          * Idle process swapout -- run once per second.
1461          */
1462         if (vm_swap_idle_enabled) {
1463                 static long lsec;
1464                 if (time_second != lsec) {
1465                         vm_req_vmdaemon(VM_SWAP_IDLE);
1466                         lsec = time_second;
1467                 }
1468         }
1469 #endif
1470 }
1471
1472 static int vm_pageout_oom_vote;
1473
1474 /*
1475  * The pagedaemon threads randlomly select one to perform the
1476  * OOM.  Trying to kill processes before all pagedaemons
1477  * failed to reach free target is premature.
1478  */
1479 static void
1480 vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
1481     int starting_page_shortage)
1482 {
1483         int old_vote;
1484
1485         if (starting_page_shortage <= 0 || starting_page_shortage !=
1486             page_shortage)
1487                 vmd->vmd_oom_seq = 0;
1488         else
1489                 vmd->vmd_oom_seq++;
1490         if (vmd->vmd_oom_seq < vm_pageout_oom_seq) {
1491                 if (vmd->vmd_oom) {
1492                         vmd->vmd_oom = FALSE;
1493                         atomic_subtract_int(&vm_pageout_oom_vote, 1);
1494                 }
1495                 return;
1496         }
1497
1498         /*
1499          * Do not follow the call sequence until OOM condition is
1500          * cleared.
1501          */
1502         vmd->vmd_oom_seq = 0;
1503
1504         if (vmd->vmd_oom)
1505                 return;
1506
1507         vmd->vmd_oom = TRUE;
1508         old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1);
1509         if (old_vote != vm_ndomains - 1)
1510                 return;
1511
1512         /*
1513          * The current pagedaemon thread is the last in the quorum to
1514          * start OOM.  Initiate the selection and signaling of the
1515          * victim.
1516          */
1517         vm_pageout_oom(VM_OOM_MEM);
1518
1519         /*
1520          * After one round of OOM terror, recall our vote.  On the
1521          * next pass, current pagedaemon would vote again if the low
1522          * memory condition is still there, due to vmd_oom being
1523          * false.
1524          */
1525         vmd->vmd_oom = FALSE;
1526         atomic_subtract_int(&vm_pageout_oom_vote, 1);
1527 }
1528
1529 /*
1530  * The OOM killer is the page daemon's action of last resort when
1531  * memory allocation requests have been stalled for a prolonged period
1532  * of time because it cannot reclaim memory.  This function computes
1533  * the approximate number of physical pages that could be reclaimed if
1534  * the specified address space is destroyed.
1535  *
1536  * Private, anonymous memory owned by the address space is the
1537  * principal resource that we expect to recover after an OOM kill.
1538  * Since the physical pages mapped by the address space's COW entries
1539  * are typically shared pages, they are unlikely to be released and so
1540  * they are not counted.
1541  *
1542  * To get to the point where the page daemon runs the OOM killer, its
1543  * efforts to write-back vnode-backed pages may have stalled.  This
1544  * could be caused by a memory allocation deadlock in the write path
1545  * that might be resolved by an OOM kill.  Therefore, physical pages
1546  * belonging to vnode-backed objects are counted, because they might
1547  * be freed without being written out first if the address space holds
1548  * the last reference to an unlinked vnode.
1549  *
1550  * Similarly, physical pages belonging to OBJT_PHYS objects are
1551  * counted because the address space might hold the last reference to
1552  * the object.
1553  */
1554 static long
1555 vm_pageout_oom_pagecount(struct vmspace *vmspace)
1556 {
1557         vm_map_t map;
1558         vm_map_entry_t entry;
1559         vm_object_t obj;
1560         long res;
1561
1562         map = &vmspace->vm_map;
1563         KASSERT(!map->system_map, ("system map"));
1564         sx_assert(&map->lock, SA_LOCKED);
1565         res = 0;
1566         for (entry = map->header.next; entry != &map->header;
1567             entry = entry->next) {
1568                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
1569                         continue;
1570                 obj = entry->object.vm_object;
1571                 if (obj == NULL)
1572                         continue;
1573                 if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 &&
1574                     obj->ref_count != 1)
1575                         continue;
1576                 switch (obj->type) {
1577                 case OBJT_DEFAULT:
1578                 case OBJT_SWAP:
1579                 case OBJT_PHYS:
1580                 case OBJT_VNODE:
1581                         res += obj->resident_page_count;
1582                         break;
1583                 }
1584         }
1585         return (res);
1586 }
1587
1588 void
1589 vm_pageout_oom(int shortage)
1590 {
1591         struct proc *p, *bigproc;
1592         vm_offset_t size, bigsize;
1593         struct thread *td;
1594         struct vmspace *vm;
1595
1596         /*
1597          * We keep the process bigproc locked once we find it to keep anyone
1598          * from messing with it; however, there is a possibility of
1599          * deadlock if process B is bigproc and one of it's child processes
1600          * attempts to propagate a signal to B while we are waiting for A's
1601          * lock while walking this list.  To avoid this, we don't block on
1602          * the process lock but just skip a process if it is already locked.
1603          */
1604         bigproc = NULL;
1605         bigsize = 0;
1606         sx_slock(&allproc_lock);
1607         FOREACH_PROC_IN_SYSTEM(p) {
1608                 int breakout;
1609
1610                 PROC_LOCK(p);
1611
1612                 /*
1613                  * If this is a system, protected or killed process, skip it.
1614                  */
1615                 if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC |
1616                     P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 ||
1617                     p->p_pid == 1 || P_KILLED(p) ||
1618                     (p->p_pid < 48 && swap_pager_avail != 0)) {
1619                         PROC_UNLOCK(p);
1620                         continue;
1621                 }
1622                 /*
1623                  * If the process is in a non-running type state,
1624                  * don't touch it.  Check all the threads individually.
1625                  */
1626                 breakout = 0;
1627                 FOREACH_THREAD_IN_PROC(p, td) {
1628                         thread_lock(td);
1629                         if (!TD_ON_RUNQ(td) &&
1630                             !TD_IS_RUNNING(td) &&
1631                             !TD_IS_SLEEPING(td) &&
1632                             !TD_IS_SUSPENDED(td) &&
1633                             !TD_IS_SWAPPED(td)) {
1634                                 thread_unlock(td);
1635                                 breakout = 1;
1636                                 break;
1637                         }
1638                         thread_unlock(td);
1639                 }
1640                 if (breakout) {
1641                         PROC_UNLOCK(p);
1642                         continue;
1643                 }
1644                 /*
1645                  * get the process size
1646                  */
1647                 vm = vmspace_acquire_ref(p);
1648                 if (vm == NULL) {
1649                         PROC_UNLOCK(p);
1650                         continue;
1651                 }
1652                 _PHOLD(p);
1653                 if (!vm_map_trylock_read(&vm->vm_map)) {
1654                         _PRELE(p);
1655                         PROC_UNLOCK(p);
1656                         vmspace_free(vm);
1657                         continue;
1658                 }
1659                 PROC_UNLOCK(p);
1660                 size = vmspace_swap_count(vm);
1661                 if (shortage == VM_OOM_MEM)
1662                         size += vm_pageout_oom_pagecount(vm);
1663                 vm_map_unlock_read(&vm->vm_map);
1664                 vmspace_free(vm);
1665
1666                 /*
1667                  * If this process is bigger than the biggest one,
1668                  * remember it.
1669                  */
1670                 if (size > bigsize) {
1671                         if (bigproc != NULL)
1672                                 PRELE(bigproc);
1673                         bigproc = p;
1674                         bigsize = size;
1675                 } else {
1676                         PRELE(p);
1677                 }
1678         }
1679         sx_sunlock(&allproc_lock);
1680         if (bigproc != NULL) {
1681                 if (vm_panic_on_oom != 0)
1682                         panic("out of swap space");
1683                 PROC_LOCK(bigproc);
1684                 killproc(bigproc, "out of swap space");
1685                 sched_nice(bigproc, PRIO_MIN);
1686                 _PRELE(bigproc);
1687                 PROC_UNLOCK(bigproc);
1688                 wakeup(&vm_cnt.v_free_count);
1689         }
1690 }
1691
1692 static void
1693 vm_pageout_worker(void *arg)
1694 {
1695         struct vm_domain *domain;
1696         int domidx;
1697
1698         domidx = (uintptr_t)arg;
1699         domain = &vm_dom[domidx];
1700
1701         /*
1702          * XXXKIB It could be useful to bind pageout daemon threads to
1703          * the cores belonging to the domain, from which vm_page_array
1704          * is allocated.
1705          */
1706
1707         KASSERT(domain->vmd_segs != 0, ("domain without segments"));
1708         domain->vmd_last_active_scan = ticks;
1709         vm_pageout_init_marker(&domain->vmd_marker, PQ_INACTIVE);
1710         vm_pageout_init_marker(&domain->vmd_inacthead, PQ_INACTIVE);
1711         TAILQ_INSERT_HEAD(&domain->vmd_pagequeues[PQ_INACTIVE].pq_pl,
1712             &domain->vmd_inacthead, plinks.q);
1713
1714         /*
1715          * The pageout daemon worker is never done, so loop forever.
1716          */
1717         while (TRUE) {
1718                 /*
1719                  * If we have enough free memory, wakeup waiters.  Do
1720                  * not clear vm_pages_needed until we reach our target,
1721                  * otherwise we may be woken up over and over again and
1722                  * waste a lot of cpu.
1723                  */
1724                 mtx_lock(&vm_page_queue_free_mtx);
1725                 if (vm_pages_needed && !vm_page_count_min()) {
1726                         if (!vm_paging_needed())
1727                                 vm_pages_needed = 0;
1728                         wakeup(&vm_cnt.v_free_count);
1729                 }
1730                 if (vm_pages_needed) {
1731                         /*
1732                          * We're still not done.  Either vm_pages_needed was
1733                          * set by another thread during the previous scan
1734                          * (typically, this happens during a level 0 scan) or
1735                          * vm_pages_needed was already set and the scan failed
1736                          * to free enough pages.  If we haven't yet performed
1737                          * a level >= 2 scan (unlimited dirty cleaning), then
1738                          * upgrade the level and scan again now.  Otherwise,
1739                          * sleep a bit and try again later.  While sleeping,
1740                          * vm_pages_needed can be cleared.
1741                          */
1742                         if (domain->vmd_pass > 1)
1743                                 msleep(&vm_pages_needed,
1744                                     &vm_page_queue_free_mtx, PVM, "psleep",
1745                                     hz / 2);
1746                 } else {
1747                         /*
1748                          * Good enough, sleep until required to refresh
1749                          * stats.
1750                          */
1751                         msleep(&vm_pages_needed, &vm_page_queue_free_mtx,
1752                             PVM, "psleep", hz);
1753                 }
1754                 if (vm_pages_needed) {
1755                         vm_cnt.v_pdwakeups++;
1756                         domain->vmd_pass++;
1757                 } else
1758                         domain->vmd_pass = 0;
1759                 mtx_unlock(&vm_page_queue_free_mtx);
1760                 vm_pageout_scan(domain, domain->vmd_pass);
1761         }
1762 }
1763
1764 /*
1765  *      vm_pageout_init initialises basic pageout daemon settings.
1766  */
1767 static void
1768 vm_pageout_init(void)
1769 {
1770         /*
1771          * Initialize some paging parameters.
1772          */
1773         vm_cnt.v_interrupt_free_min = 2;
1774         if (vm_cnt.v_page_count < 2000)
1775                 vm_pageout_page_count = 8;
1776
1777         /*
1778          * v_free_reserved needs to include enough for the largest
1779          * swap pager structures plus enough for any pv_entry structs
1780          * when paging. 
1781          */
1782         if (vm_cnt.v_page_count > 1024)
1783                 vm_cnt.v_free_min = 4 + (vm_cnt.v_page_count - 1024) / 200;
1784         else
1785                 vm_cnt.v_free_min = 4;
1786         vm_cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1787             vm_cnt.v_interrupt_free_min;
1788         vm_cnt.v_free_reserved = vm_pageout_page_count +
1789             vm_cnt.v_pageout_free_min + (vm_cnt.v_page_count / 768);
1790         vm_cnt.v_free_severe = vm_cnt.v_free_min / 2;
1791         vm_cnt.v_free_target = 4 * vm_cnt.v_free_min + vm_cnt.v_free_reserved;
1792         vm_cnt.v_free_min += vm_cnt.v_free_reserved;
1793         vm_cnt.v_free_severe += vm_cnt.v_free_reserved;
1794         vm_cnt.v_inactive_target = (3 * vm_cnt.v_free_target) / 2;
1795         if (vm_cnt.v_inactive_target > vm_cnt.v_free_count / 3)
1796                 vm_cnt.v_inactive_target = vm_cnt.v_free_count / 3;
1797
1798         /*
1799          * Set the default wakeup threshold to be 10% above the minimum
1800          * page limit.  This keeps the steady state out of shortfall.
1801          */
1802         vm_pageout_wakeup_thresh = (vm_cnt.v_free_min / 10) * 11;
1803
1804         /*
1805          * Set interval in seconds for active scan.  We want to visit each
1806          * page at least once every ten minutes.  This is to prevent worst
1807          * case paging behaviors with stale active LRU.
1808          */
1809         if (vm_pageout_update_period == 0)
1810                 vm_pageout_update_period = 600;
1811
1812         /* XXX does not really belong here */
1813         if (vm_page_max_wired == 0)
1814                 vm_page_max_wired = vm_cnt.v_free_count / 3;
1815 }
1816
1817 /*
1818  *     vm_pageout is the high level pageout daemon.
1819  */
1820 static void
1821 vm_pageout(void)
1822 {
1823         int error;
1824 #if MAXMEMDOM > 1
1825         int i;
1826 #endif
1827
1828         swap_pager_swap_init();
1829 #if MAXMEMDOM > 1
1830         for (i = 1; i < vm_ndomains; i++) {
1831                 error = kthread_add(vm_pageout_worker, (void *)(uintptr_t)i,
1832                     curproc, NULL, 0, 0, "dom%d", i);
1833                 if (error != 0) {
1834                         panic("starting pageout for domain %d, error %d\n",
1835                             i, error);
1836                 }
1837         }
1838 #endif
1839         error = kthread_add(uma_reclaim_worker, NULL, curproc, NULL,
1840             0, 0, "uma");
1841         if (error != 0)
1842                 panic("starting uma_reclaim helper, error %d\n", error);
1843         vm_pageout_worker((void *)(uintptr_t)0);
1844 }
1845
1846 /*
1847  * Unless the free page queue lock is held by the caller, this function
1848  * should be regarded as advisory.  Specifically, the caller should
1849  * not msleep() on &vm_cnt.v_free_count following this function unless
1850  * the free page queue lock is held until the msleep() is performed.
1851  */
1852 void
1853 pagedaemon_wakeup(void)
1854 {
1855
1856         if (!vm_pages_needed && curthread->td_proc != pageproc) {
1857                 vm_pages_needed = 1;
1858                 wakeup(&vm_pages_needed);
1859         }
1860 }
1861
1862 #if !defined(NO_SWAPPING)
1863 static void
1864 vm_req_vmdaemon(int req)
1865 {
1866         static int lastrun = 0;
1867
1868         mtx_lock(&vm_daemon_mtx);
1869         vm_pageout_req_swapout |= req;
1870         if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1871                 wakeup(&vm_daemon_needed);
1872                 lastrun = ticks;
1873         }
1874         mtx_unlock(&vm_daemon_mtx);
1875 }
1876
1877 static void
1878 vm_daemon(void)
1879 {
1880         struct rlimit rsslim;
1881         struct proc *p;
1882         struct thread *td;
1883         struct vmspace *vm;
1884         int breakout, swapout_flags, tryagain, attempts;
1885 #ifdef RACCT
1886         uint64_t rsize, ravailable;
1887 #endif
1888
1889         while (TRUE) {
1890                 mtx_lock(&vm_daemon_mtx);
1891                 msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep",
1892 #ifdef RACCT
1893                     racct_enable ? hz : 0
1894 #else
1895                     0
1896 #endif
1897                 );
1898                 swapout_flags = vm_pageout_req_swapout;
1899                 vm_pageout_req_swapout = 0;
1900                 mtx_unlock(&vm_daemon_mtx);
1901                 if (swapout_flags)
1902                         swapout_procs(swapout_flags);
1903
1904                 /*
1905                  * scan the processes for exceeding their rlimits or if
1906                  * process is swapped out -- deactivate pages
1907                  */
1908                 tryagain = 0;
1909                 attempts = 0;
1910 again:
1911                 attempts++;
1912                 sx_slock(&allproc_lock);
1913                 FOREACH_PROC_IN_SYSTEM(p) {
1914                         vm_pindex_t limit, size;
1915
1916                         /*
1917                          * if this is a system process or if we have already
1918                          * looked at this process, skip it.
1919                          */
1920                         PROC_LOCK(p);
1921                         if (p->p_state != PRS_NORMAL ||
1922                             p->p_flag & (P_INEXEC | P_SYSTEM | P_WEXIT)) {
1923                                 PROC_UNLOCK(p);
1924                                 continue;
1925                         }
1926                         /*
1927                          * if the process is in a non-running type state,
1928                          * don't touch it.
1929                          */
1930                         breakout = 0;
1931                         FOREACH_THREAD_IN_PROC(p, td) {
1932                                 thread_lock(td);
1933                                 if (!TD_ON_RUNQ(td) &&
1934                                     !TD_IS_RUNNING(td) &&
1935                                     !TD_IS_SLEEPING(td) &&
1936                                     !TD_IS_SUSPENDED(td)) {
1937                                         thread_unlock(td);
1938                                         breakout = 1;
1939                                         break;
1940                                 }
1941                                 thread_unlock(td);
1942                         }
1943                         if (breakout) {
1944                                 PROC_UNLOCK(p);
1945                                 continue;
1946                         }
1947                         /*
1948                          * get a limit
1949                          */
1950                         lim_rlimit_proc(p, RLIMIT_RSS, &rsslim);
1951                         limit = OFF_TO_IDX(
1952                             qmin(rsslim.rlim_cur, rsslim.rlim_max));
1953
1954                         /*
1955                          * let processes that are swapped out really be
1956                          * swapped out set the limit to nothing (will force a
1957                          * swap-out.)
1958                          */
1959                         if ((p->p_flag & P_INMEM) == 0)
1960                                 limit = 0;      /* XXX */
1961                         vm = vmspace_acquire_ref(p);
1962                         PROC_UNLOCK(p);
1963                         if (vm == NULL)
1964                                 continue;
1965
1966                         size = vmspace_resident_count(vm);
1967                         if (size >= limit) {
1968                                 vm_pageout_map_deactivate_pages(
1969                                     &vm->vm_map, limit);
1970                         }
1971 #ifdef RACCT
1972                         if (racct_enable) {
1973                                 rsize = IDX_TO_OFF(size);
1974                                 PROC_LOCK(p);
1975                                 racct_set(p, RACCT_RSS, rsize);
1976                                 ravailable = racct_get_available(p, RACCT_RSS);
1977                                 PROC_UNLOCK(p);
1978                                 if (rsize > ravailable) {
1979                                         /*
1980                                          * Don't be overly aggressive; this
1981                                          * might be an innocent process,
1982                                          * and the limit could've been exceeded
1983                                          * by some memory hog.  Don't try
1984                                          * to deactivate more than 1/4th
1985                                          * of process' resident set size.
1986                                          */
1987                                         if (attempts <= 8) {
1988                                                 if (ravailable < rsize -
1989                                                     (rsize / 4)) {
1990                                                         ravailable = rsize -
1991                                                             (rsize / 4);
1992                                                 }
1993                                         }
1994                                         vm_pageout_map_deactivate_pages(
1995                                             &vm->vm_map,
1996                                             OFF_TO_IDX(ravailable));
1997                                         /* Update RSS usage after paging out. */
1998                                         size = vmspace_resident_count(vm);
1999                                         rsize = IDX_TO_OFF(size);
2000                                         PROC_LOCK(p);
2001                                         racct_set(p, RACCT_RSS, rsize);
2002                                         PROC_UNLOCK(p);
2003                                         if (rsize > ravailable)
2004                                                 tryagain = 1;
2005                                 }
2006                         }
2007 #endif
2008                         vmspace_free(vm);
2009                 }
2010                 sx_sunlock(&allproc_lock);
2011                 if (tryagain != 0 && attempts <= 10)
2012                         goto again;
2013         }
2014 }
2015 #endif                  /* !defined(NO_SWAPPING) */