]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_pageout.c
Fix ticks wrap issue of lowmem test in vm_pageout_scan
[FreeBSD/FreeBSD.git] / sys / vm / vm_pageout.c
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  * Copyright (c) 2005 Yahoo! Technologies Norway AS
9  * All rights reserved.
10  *
11  * This code is derived from software contributed to Berkeley by
12  * The Mach Operating System project at Carnegie-Mellon University.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *      This product includes software developed by the University of
25  *      California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
43  *
44  *
45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46  * All rights reserved.
47  *
48  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49  *
50  * Permission to use, copy, modify and distribute this software and
51  * its documentation is hereby granted, provided that both the copyright
52  * notice and this permission notice appear in all copies of the
53  * software, derivative works or modified versions, and any portions
54  * thereof, and that both notices appear in supporting documentation.
55  *
56  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59  *
60  * Carnegie Mellon requests users of this software to return to
61  *
62  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63  *  School of Computer Science
64  *  Carnegie Mellon University
65  *  Pittsburgh PA 15213-3890
66  *
67  * any improvements or extensions that they make and grant Carnegie the
68  * rights to redistribute these changes.
69  */
70
71 /*
72  *      The proverbial page-out daemon.
73  */
74
75 #include <sys/cdefs.h>
76 __FBSDID("$FreeBSD$");
77
78 #include "opt_vm.h"
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/eventhandler.h>
83 #include <sys/lock.h>
84 #include <sys/mutex.h>
85 #include <sys/proc.h>
86 #include <sys/kthread.h>
87 #include <sys/ktr.h>
88 #include <sys/mount.h>
89 #include <sys/racct.h>
90 #include <sys/resourcevar.h>
91 #include <sys/sched.h>
92 #include <sys/signalvar.h>
93 #include <sys/smp.h>
94 #include <sys/vnode.h>
95 #include <sys/vmmeter.h>
96 #include <sys/rwlock.h>
97 #include <sys/sx.h>
98 #include <sys/sysctl.h>
99
100 #include <vm/vm.h>
101 #include <vm/vm_param.h>
102 #include <vm/vm_object.h>
103 #include <vm/vm_page.h>
104 #include <vm/vm_map.h>
105 #include <vm/vm_pageout.h>
106 #include <vm/vm_pager.h>
107 #include <vm/vm_phys.h>
108 #include <vm/swap_pager.h>
109 #include <vm/vm_extern.h>
110 #include <vm/uma.h>
111
112 /*
113  * System initialization
114  */
115
116 /* the kernel process "vm_pageout"*/
117 static void vm_pageout(void);
118 static void vm_pageout_init(void);
119 static int vm_pageout_clean(vm_page_t);
120 static void vm_pageout_scan(struct vm_domain *vmd, int pass);
121 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int pass);
122
123 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init,
124     NULL);
125
126 struct proc *pageproc;
127
128 static struct kproc_desc page_kp = {
129         "pagedaemon",
130         vm_pageout,
131         &pageproc
132 };
133 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start,
134     &page_kp);
135
136 #if !defined(NO_SWAPPING)
137 /* the kernel process "vm_daemon"*/
138 static void vm_daemon(void);
139 static struct   proc *vmproc;
140
141 static struct kproc_desc vm_kp = {
142         "vmdaemon",
143         vm_daemon,
144         &vmproc
145 };
146 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
147 #endif
148
149
150 int vm_pages_needed;            /* Event on which pageout daemon sleeps */
151 int vm_pageout_deficit;         /* Estimated number of pages deficit */
152 int vm_pageout_pages_needed;    /* flag saying that the pageout daemon needs pages */
153 int vm_pageout_wakeup_thresh;
154
155 #if !defined(NO_SWAPPING)
156 static int vm_pageout_req_swapout;      /* XXX */
157 static int vm_daemon_needed;
158 static struct mtx vm_daemon_mtx;
159 /* Allow for use by vm_pageout before vm_daemon is initialized. */
160 MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
161 #endif
162 static int vm_max_launder = 32;
163 static int vm_pageout_update_period;
164 static int defer_swap_pageouts;
165 static int disable_swap_pageouts;
166 static int lowmem_period = 10;
167 static int lowmem_ticks;
168
169 #if defined(NO_SWAPPING)
170 static int vm_swap_enabled = 0;
171 static int vm_swap_idle_enabled = 0;
172 #else
173 static int vm_swap_enabled = 1;
174 static int vm_swap_idle_enabled = 0;
175 #endif
176
177 SYSCTL_INT(_vm, OID_AUTO, pageout_wakeup_thresh,
178         CTLFLAG_RW, &vm_pageout_wakeup_thresh, 0,
179         "free page threshold for waking up the pageout daemon");
180
181 SYSCTL_INT(_vm, OID_AUTO, max_launder,
182         CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
183
184 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period,
185         CTLFLAG_RW, &vm_pageout_update_period, 0,
186         "Maximum active LRU update period");
187   
188 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RW, &lowmem_period, 0,
189         "Low memory callback period");
190
191 #if defined(NO_SWAPPING)
192 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
193         CTLFLAG_RD, &vm_swap_enabled, 0, "Enable entire process swapout");
194 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
195         CTLFLAG_RD, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
196 #else
197 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
198         CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
199 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
200         CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
201 #endif
202
203 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
204         CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
205
206 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
207         CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
208
209 static int pageout_lock_miss;
210 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
211         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
212
213 #define VM_PAGEOUT_PAGE_COUNT 16
214 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
215
216 int vm_page_max_wired;          /* XXX max # of wired pages system-wide */
217 SYSCTL_INT(_vm, OID_AUTO, max_wired,
218         CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
219
220 static boolean_t vm_pageout_fallback_object_lock(vm_page_t, vm_page_t *);
221 static boolean_t vm_pageout_launder(struct vm_pagequeue *pq, int, vm_paddr_t,
222     vm_paddr_t);
223 #if !defined(NO_SWAPPING)
224 static void vm_pageout_map_deactivate_pages(vm_map_t, long);
225 static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
226 static void vm_req_vmdaemon(int req);
227 #endif
228 static boolean_t vm_pageout_page_lock(vm_page_t, vm_page_t *);
229
230 /*
231  * Initialize a dummy page for marking the caller's place in the specified
232  * paging queue.  In principle, this function only needs to set the flag
233  * PG_MARKER.  Nonetheless, it wirte busies and initializes the hold count
234  * to one as safety precautions.
235  */ 
236 static void
237 vm_pageout_init_marker(vm_page_t marker, u_short queue)
238 {
239
240         bzero(marker, sizeof(*marker));
241         marker->flags = PG_MARKER;
242         marker->busy_lock = VPB_SINGLE_EXCLUSIVER;
243         marker->queue = queue;
244         marker->hold_count = 1;
245 }
246
247 /*
248  * vm_pageout_fallback_object_lock:
249  * 
250  * Lock vm object currently associated with `m'. VM_OBJECT_TRYWLOCK is
251  * known to have failed and page queue must be either PQ_ACTIVE or
252  * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
253  * while locking the vm object.  Use marker page to detect page queue
254  * changes and maintain notion of next page on page queue.  Return
255  * TRUE if no changes were detected, FALSE otherwise.  vm object is
256  * locked on return.
257  * 
258  * This function depends on both the lock portion of struct vm_object
259  * and normal struct vm_page being type stable.
260  */
261 static boolean_t
262 vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
263 {
264         struct vm_page marker;
265         struct vm_pagequeue *pq;
266         boolean_t unchanged;
267         u_short queue;
268         vm_object_t object;
269
270         queue = m->queue;
271         vm_pageout_init_marker(&marker, queue);
272         pq = vm_page_pagequeue(m);
273         object = m->object;
274         
275         TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q);
276         vm_pagequeue_unlock(pq);
277         vm_page_unlock(m);
278         VM_OBJECT_WLOCK(object);
279         vm_page_lock(m);
280         vm_pagequeue_lock(pq);
281
282         /* Page queue might have changed. */
283         *next = TAILQ_NEXT(&marker, plinks.q);
284         unchanged = (m->queue == queue &&
285                      m->object == object &&
286                      &marker == TAILQ_NEXT(m, plinks.q));
287         TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q);
288         return (unchanged);
289 }
290
291 /*
292  * Lock the page while holding the page queue lock.  Use marker page
293  * to detect page queue changes and maintain notion of next page on
294  * page queue.  Return TRUE if no changes were detected, FALSE
295  * otherwise.  The page is locked on return. The page queue lock might
296  * be dropped and reacquired.
297  *
298  * This function depends on normal struct vm_page being type stable.
299  */
300 static boolean_t
301 vm_pageout_page_lock(vm_page_t m, vm_page_t *next)
302 {
303         struct vm_page marker;
304         struct vm_pagequeue *pq;
305         boolean_t unchanged;
306         u_short queue;
307
308         vm_page_lock_assert(m, MA_NOTOWNED);
309         if (vm_page_trylock(m))
310                 return (TRUE);
311
312         queue = m->queue;
313         vm_pageout_init_marker(&marker, queue);
314         pq = vm_page_pagequeue(m);
315
316         TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q);
317         vm_pagequeue_unlock(pq);
318         vm_page_lock(m);
319         vm_pagequeue_lock(pq);
320
321         /* Page queue might have changed. */
322         *next = TAILQ_NEXT(&marker, plinks.q);
323         unchanged = (m->queue == queue && &marker == TAILQ_NEXT(m, plinks.q));
324         TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q);
325         return (unchanged);
326 }
327
328 /*
329  * vm_pageout_clean:
330  *
331  * Clean the page and remove it from the laundry.
332  * 
333  * We set the busy bit to cause potential page faults on this page to
334  * block.  Note the careful timing, however, the busy bit isn't set till
335  * late and we cannot do anything that will mess with the page.
336  */
337 static int
338 vm_pageout_clean(vm_page_t m)
339 {
340         vm_object_t object;
341         vm_page_t mc[2*vm_pageout_page_count], pb, ps;
342         int pageout_count;
343         int ib, is, page_base;
344         vm_pindex_t pindex = m->pindex;
345
346         vm_page_lock_assert(m, MA_OWNED);
347         object = m->object;
348         VM_OBJECT_ASSERT_WLOCKED(object);
349
350         /*
351          * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
352          * with the new swapper, but we could have serious problems paging
353          * out other object types if there is insufficient memory.  
354          *
355          * Unfortunately, checking free memory here is far too late, so the
356          * check has been moved up a procedural level.
357          */
358
359         /*
360          * Can't clean the page if it's busy or held.
361          */
362         vm_page_assert_unbusied(m);
363         KASSERT(m->hold_count == 0, ("vm_pageout_clean: page %p is held", m));
364         vm_page_unlock(m);
365
366         mc[vm_pageout_page_count] = pb = ps = m;
367         pageout_count = 1;
368         page_base = vm_pageout_page_count;
369         ib = 1;
370         is = 1;
371
372         /*
373          * Scan object for clusterable pages.
374          *
375          * We can cluster ONLY if: ->> the page is NOT
376          * clean, wired, busy, held, or mapped into a
377          * buffer, and one of the following:
378          * 1) The page is inactive, or a seldom used
379          *    active page.
380          * -or-
381          * 2) we force the issue.
382          *
383          * During heavy mmap/modification loads the pageout
384          * daemon can really fragment the underlying file
385          * due to flushing pages out of order and not trying
386          * align the clusters (which leave sporatic out-of-order
387          * holes).  To solve this problem we do the reverse scan
388          * first and attempt to align our cluster, then do a 
389          * forward scan if room remains.
390          */
391 more:
392         while (ib && pageout_count < vm_pageout_page_count) {
393                 vm_page_t p;
394
395                 if (ib > pindex) {
396                         ib = 0;
397                         break;
398                 }
399
400                 if ((p = vm_page_prev(pb)) == NULL || vm_page_busied(p)) {
401                         ib = 0;
402                         break;
403                 }
404                 vm_page_lock(p);
405                 vm_page_test_dirty(p);
406                 if (p->dirty == 0 ||
407                     p->queue != PQ_INACTIVE ||
408                     p->hold_count != 0) {       /* may be undergoing I/O */
409                         vm_page_unlock(p);
410                         ib = 0;
411                         break;
412                 }
413                 vm_page_unlock(p);
414                 mc[--page_base] = pb = p;
415                 ++pageout_count;
416                 ++ib;
417                 /*
418                  * alignment boundry, stop here and switch directions.  Do
419                  * not clear ib.
420                  */
421                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
422                         break;
423         }
424
425         while (pageout_count < vm_pageout_page_count && 
426             pindex + is < object->size) {
427                 vm_page_t p;
428
429                 if ((p = vm_page_next(ps)) == NULL || vm_page_busied(p))
430                         break;
431                 vm_page_lock(p);
432                 vm_page_test_dirty(p);
433                 if (p->dirty == 0 ||
434                     p->queue != PQ_INACTIVE ||
435                     p->hold_count != 0) {       /* may be undergoing I/O */
436                         vm_page_unlock(p);
437                         break;
438                 }
439                 vm_page_unlock(p);
440                 mc[page_base + pageout_count] = ps = p;
441                 ++pageout_count;
442                 ++is;
443         }
444
445         /*
446          * If we exhausted our forward scan, continue with the reverse scan
447          * when possible, even past a page boundry.  This catches boundry
448          * conditions.
449          */
450         if (ib && pageout_count < vm_pageout_page_count)
451                 goto more;
452
453         /*
454          * we allow reads during pageouts...
455          */
456         return (vm_pageout_flush(&mc[page_base], pageout_count, 0, 0, NULL,
457             NULL));
458 }
459
460 /*
461  * vm_pageout_flush() - launder the given pages
462  *
463  *      The given pages are laundered.  Note that we setup for the start of
464  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
465  *      reference count all in here rather then in the parent.  If we want
466  *      the parent to do more sophisticated things we may have to change
467  *      the ordering.
468  *
469  *      Returned runlen is the count of pages between mreq and first
470  *      page after mreq with status VM_PAGER_AGAIN.
471  *      *eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
472  *      for any page in runlen set.
473  */
474 int
475 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
476     boolean_t *eio)
477 {
478         vm_object_t object = mc[0]->object;
479         int pageout_status[count];
480         int numpagedout = 0;
481         int i, runlen;
482
483         VM_OBJECT_ASSERT_WLOCKED(object);
484
485         /*
486          * Initiate I/O.  Bump the vm_page_t->busy counter and
487          * mark the pages read-only.
488          *
489          * We do not have to fixup the clean/dirty bits here... we can
490          * allow the pager to do it after the I/O completes.
491          *
492          * NOTE! mc[i]->dirty may be partial or fragmented due to an
493          * edge case with file fragments.
494          */
495         for (i = 0; i < count; i++) {
496                 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
497                     ("vm_pageout_flush: partially invalid page %p index %d/%d",
498                         mc[i], i, count));
499                 vm_page_sbusy(mc[i]);
500                 pmap_remove_write(mc[i]);
501         }
502         vm_object_pip_add(object, count);
503
504         vm_pager_put_pages(object, mc, count, flags, pageout_status);
505
506         runlen = count - mreq;
507         if (eio != NULL)
508                 *eio = FALSE;
509         for (i = 0; i < count; i++) {
510                 vm_page_t mt = mc[i];
511
512                 KASSERT(pageout_status[i] == VM_PAGER_PEND ||
513                     !pmap_page_is_write_mapped(mt),
514                     ("vm_pageout_flush: page %p is not write protected", mt));
515                 switch (pageout_status[i]) {
516                 case VM_PAGER_OK:
517                 case VM_PAGER_PEND:
518                         numpagedout++;
519                         break;
520                 case VM_PAGER_BAD:
521                         /*
522                          * Page outside of range of object. Right now we
523                          * essentially lose the changes by pretending it
524                          * worked.
525                          */
526                         vm_page_undirty(mt);
527                         break;
528                 case VM_PAGER_ERROR:
529                 case VM_PAGER_FAIL:
530                         /*
531                          * If page couldn't be paged out, then reactivate the
532                          * page so it doesn't clog the inactive list.  (We
533                          * will try paging out it again later).
534                          */
535                         vm_page_lock(mt);
536                         vm_page_activate(mt);
537                         vm_page_unlock(mt);
538                         if (eio != NULL && i >= mreq && i - mreq < runlen)
539                                 *eio = TRUE;
540                         break;
541                 case VM_PAGER_AGAIN:
542                         if (i >= mreq && i - mreq < runlen)
543                                 runlen = i - mreq;
544                         break;
545                 }
546
547                 /*
548                  * If the operation is still going, leave the page busy to
549                  * block all other accesses. Also, leave the paging in
550                  * progress indicator set so that we don't attempt an object
551                  * collapse.
552                  */
553                 if (pageout_status[i] != VM_PAGER_PEND) {
554                         vm_object_pip_wakeup(object);
555                         vm_page_sunbusy(mt);
556                         if (vm_page_count_severe()) {
557                                 vm_page_lock(mt);
558                                 vm_page_try_to_cache(mt);
559                                 vm_page_unlock(mt);
560                         }
561                 }
562         }
563         if (prunlen != NULL)
564                 *prunlen = runlen;
565         return (numpagedout);
566 }
567
568 static boolean_t
569 vm_pageout_launder(struct vm_pagequeue *pq, int tries, vm_paddr_t low,
570     vm_paddr_t high)
571 {
572         struct mount *mp;
573         struct vnode *vp;
574         vm_object_t object;
575         vm_paddr_t pa;
576         vm_page_t m, m_tmp, next;
577         int lockmode;
578
579         vm_pagequeue_lock(pq);
580         TAILQ_FOREACH_SAFE(m, &pq->pq_pl, plinks.q, next) {
581                 if ((m->flags & PG_MARKER) != 0)
582                         continue;
583                 pa = VM_PAGE_TO_PHYS(m);
584                 if (pa < low || pa + PAGE_SIZE > high)
585                         continue;
586                 if (!vm_pageout_page_lock(m, &next) || m->hold_count != 0) {
587                         vm_page_unlock(m);
588                         continue;
589                 }
590                 object = m->object;
591                 if ((!VM_OBJECT_TRYWLOCK(object) &&
592                     (!vm_pageout_fallback_object_lock(m, &next) ||
593                     m->hold_count != 0)) || vm_page_busied(m)) {
594                         vm_page_unlock(m);
595                         VM_OBJECT_WUNLOCK(object);
596                         continue;
597                 }
598                 vm_page_test_dirty(m);
599                 if (m->dirty == 0 && object->ref_count != 0)
600                         pmap_remove_all(m);
601                 if (m->dirty != 0) {
602                         vm_page_unlock(m);
603                         if (tries == 0 || (object->flags & OBJ_DEAD) != 0) {
604                                 VM_OBJECT_WUNLOCK(object);
605                                 continue;
606                         }
607                         if (object->type == OBJT_VNODE) {
608                                 vm_pagequeue_unlock(pq);
609                                 vp = object->handle;
610                                 vm_object_reference_locked(object);
611                                 VM_OBJECT_WUNLOCK(object);
612                                 (void)vn_start_write(vp, &mp, V_WAIT);
613                                 lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
614                                     LK_SHARED : LK_EXCLUSIVE;
615                                 vn_lock(vp, lockmode | LK_RETRY);
616                                 VM_OBJECT_WLOCK(object);
617                                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
618                                 VM_OBJECT_WUNLOCK(object);
619                                 VOP_UNLOCK(vp, 0);
620                                 vm_object_deallocate(object);
621                                 vn_finished_write(mp);
622                                 return (TRUE);
623                         } else if (object->type == OBJT_SWAP ||
624                             object->type == OBJT_DEFAULT) {
625                                 vm_pagequeue_unlock(pq);
626                                 m_tmp = m;
627                                 vm_pageout_flush(&m_tmp, 1, VM_PAGER_PUT_SYNC,
628                                     0, NULL, NULL);
629                                 VM_OBJECT_WUNLOCK(object);
630                                 return (TRUE);
631                         }
632                 } else {
633                         /*
634                          * Dequeue here to prevent lock recursion in
635                          * vm_page_cache().
636                          */
637                         vm_page_dequeue_locked(m);
638                         vm_page_cache(m);
639                         vm_page_unlock(m);
640                 }
641                 VM_OBJECT_WUNLOCK(object);
642         }
643         vm_pagequeue_unlock(pq);
644         return (FALSE);
645 }
646
647 /*
648  * Increase the number of cached pages.  The specified value, "tries",
649  * determines which categories of pages are cached:
650  *
651  *  0: All clean, inactive pages within the specified physical address range
652  *     are cached.  Will not sleep.
653  *  1: The vm_lowmem handlers are called.  All inactive pages within
654  *     the specified physical address range are cached.  May sleep.
655  *  2: The vm_lowmem handlers are called.  All inactive and active pages
656  *     within the specified physical address range are cached.  May sleep.
657  */
658 void
659 vm_pageout_grow_cache(int tries, vm_paddr_t low, vm_paddr_t high)
660 {
661         int actl, actmax, inactl, inactmax, dom, initial_dom;
662         static int start_dom = 0;
663
664         if (tries > 0) {
665                 /*
666                  * Decrease registered cache sizes.  The vm_lowmem handlers
667                  * may acquire locks and/or sleep, so they can only be invoked
668                  * when "tries" is greater than zero.
669                  */
670                 EVENTHANDLER_INVOKE(vm_lowmem, 0);
671
672                 /*
673                  * We do this explicitly after the caches have been drained
674                  * above.
675                  */
676                 uma_reclaim();
677         }
678
679         /*
680          * Make the next scan start on the next domain.
681          */
682         initial_dom = atomic_fetchadd_int(&start_dom, 1) % vm_ndomains;
683
684         inactl = 0;
685         inactmax = vm_cnt.v_inactive_count;
686         actl = 0;
687         actmax = tries < 2 ? 0 : vm_cnt.v_active_count;
688         dom = initial_dom;
689
690         /*
691          * Scan domains in round-robin order, first inactive queues,
692          * then active.  Since domain usually owns large physically
693          * contiguous chunk of memory, it makes sense to completely
694          * exhaust one domain before switching to next, while growing
695          * the pool of contiguous physical pages.
696          *
697          * Do not even start launder a domain which cannot contain
698          * the specified address range, as indicated by segments
699          * constituting the domain.
700          */
701 again:
702         if (inactl < inactmax) {
703                 if (vm_phys_domain_intersects(vm_dom[dom].vmd_segs,
704                     low, high) &&
705                     vm_pageout_launder(&vm_dom[dom].vmd_pagequeues[PQ_INACTIVE],
706                     tries, low, high)) {
707                         inactl++;
708                         goto again;
709                 }
710                 if (++dom == vm_ndomains)
711                         dom = 0;
712                 if (dom != initial_dom)
713                         goto again;
714         }
715         if (actl < actmax) {
716                 if (vm_phys_domain_intersects(vm_dom[dom].vmd_segs,
717                     low, high) &&
718                     vm_pageout_launder(&vm_dom[dom].vmd_pagequeues[PQ_ACTIVE],
719                       tries, low, high)) {
720                         actl++;
721                         goto again;
722                 }
723                 if (++dom == vm_ndomains)
724                         dom = 0;
725                 if (dom != initial_dom)
726                         goto again;
727         }
728 }
729
730 #if !defined(NO_SWAPPING)
731 /*
732  *      vm_pageout_object_deactivate_pages
733  *
734  *      Deactivate enough pages to satisfy the inactive target
735  *      requirements.
736  *
737  *      The object and map must be locked.
738  */
739 static void
740 vm_pageout_object_deactivate_pages(pmap_t pmap, vm_object_t first_object,
741     long desired)
742 {
743         vm_object_t backing_object, object;
744         vm_page_t p;
745         int act_delta, remove_mode;
746
747         VM_OBJECT_ASSERT_LOCKED(first_object);
748         if ((first_object->flags & OBJ_FICTITIOUS) != 0)
749                 return;
750         for (object = first_object;; object = backing_object) {
751                 if (pmap_resident_count(pmap) <= desired)
752                         goto unlock_return;
753                 VM_OBJECT_ASSERT_LOCKED(object);
754                 if ((object->flags & OBJ_UNMANAGED) != 0 ||
755                     object->paging_in_progress != 0)
756                         goto unlock_return;
757
758                 remove_mode = 0;
759                 if (object->shadow_count > 1)
760                         remove_mode = 1;
761                 /*
762                  * Scan the object's entire memory queue.
763                  */
764                 TAILQ_FOREACH(p, &object->memq, listq) {
765                         if (pmap_resident_count(pmap) <= desired)
766                                 goto unlock_return;
767                         if (vm_page_busied(p))
768                                 continue;
769                         PCPU_INC(cnt.v_pdpages);
770                         vm_page_lock(p);
771                         if (p->wire_count != 0 || p->hold_count != 0 ||
772                             !pmap_page_exists_quick(pmap, p)) {
773                                 vm_page_unlock(p);
774                                 continue;
775                         }
776                         act_delta = pmap_ts_referenced(p);
777                         if ((p->aflags & PGA_REFERENCED) != 0) {
778                                 if (act_delta == 0)
779                                         act_delta = 1;
780                                 vm_page_aflag_clear(p, PGA_REFERENCED);
781                         }
782                         if (p->queue != PQ_ACTIVE && act_delta != 0) {
783                                 vm_page_activate(p);
784                                 p->act_count += act_delta;
785                         } else if (p->queue == PQ_ACTIVE) {
786                                 if (act_delta == 0) {
787                                         p->act_count -= min(p->act_count,
788                                             ACT_DECLINE);
789                                         if (!remove_mode && p->act_count == 0) {
790                                                 pmap_remove_all(p);
791                                                 vm_page_deactivate(p);
792                                         } else
793                                                 vm_page_requeue(p);
794                                 } else {
795                                         vm_page_activate(p);
796                                         if (p->act_count < ACT_MAX -
797                                             ACT_ADVANCE)
798                                                 p->act_count += ACT_ADVANCE;
799                                         vm_page_requeue(p);
800                                 }
801                         } else if (p->queue == PQ_INACTIVE)
802                                 pmap_remove_all(p);
803                         vm_page_unlock(p);
804                 }
805                 if ((backing_object = object->backing_object) == NULL)
806                         goto unlock_return;
807                 VM_OBJECT_RLOCK(backing_object);
808                 if (object != first_object)
809                         VM_OBJECT_RUNLOCK(object);
810         }
811 unlock_return:
812         if (object != first_object)
813                 VM_OBJECT_RUNLOCK(object);
814 }
815
816 /*
817  * deactivate some number of pages in a map, try to do it fairly, but
818  * that is really hard to do.
819  */
820 static void
821 vm_pageout_map_deactivate_pages(map, desired)
822         vm_map_t map;
823         long desired;
824 {
825         vm_map_entry_t tmpe;
826         vm_object_t obj, bigobj;
827         int nothingwired;
828
829         if (!vm_map_trylock(map))
830                 return;
831
832         bigobj = NULL;
833         nothingwired = TRUE;
834
835         /*
836          * first, search out the biggest object, and try to free pages from
837          * that.
838          */
839         tmpe = map->header.next;
840         while (tmpe != &map->header) {
841                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
842                         obj = tmpe->object.vm_object;
843                         if (obj != NULL && VM_OBJECT_TRYRLOCK(obj)) {
844                                 if (obj->shadow_count <= 1 &&
845                                     (bigobj == NULL ||
846                                      bigobj->resident_page_count < obj->resident_page_count)) {
847                                         if (bigobj != NULL)
848                                                 VM_OBJECT_RUNLOCK(bigobj);
849                                         bigobj = obj;
850                                 } else
851                                         VM_OBJECT_RUNLOCK(obj);
852                         }
853                 }
854                 if (tmpe->wired_count > 0)
855                         nothingwired = FALSE;
856                 tmpe = tmpe->next;
857         }
858
859         if (bigobj != NULL) {
860                 vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
861                 VM_OBJECT_RUNLOCK(bigobj);
862         }
863         /*
864          * Next, hunt around for other pages to deactivate.  We actually
865          * do this search sort of wrong -- .text first is not the best idea.
866          */
867         tmpe = map->header.next;
868         while (tmpe != &map->header) {
869                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
870                         break;
871                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
872                         obj = tmpe->object.vm_object;
873                         if (obj != NULL) {
874                                 VM_OBJECT_RLOCK(obj);
875                                 vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
876                                 VM_OBJECT_RUNLOCK(obj);
877                         }
878                 }
879                 tmpe = tmpe->next;
880         }
881
882         /*
883          * Remove all mappings if a process is swapped out, this will free page
884          * table pages.
885          */
886         if (desired == 0 && nothingwired) {
887                 pmap_remove(vm_map_pmap(map), vm_map_min(map),
888                     vm_map_max(map));
889         }
890
891         vm_map_unlock(map);
892 }
893 #endif          /* !defined(NO_SWAPPING) */
894
895 /*
896  *      vm_pageout_scan does the dirty work for the pageout daemon.
897  *
898  *      pass 0 - Update active LRU/deactivate pages
899  *      pass 1 - Move inactive to cache or free
900  *      pass 2 - Launder dirty pages
901  */
902 static void
903 vm_pageout_scan(struct vm_domain *vmd, int pass)
904 {
905         vm_page_t m, next;
906         struct vm_pagequeue *pq;
907         vm_object_t object;
908         int act_delta, addl_page_shortage, deficit, maxscan, page_shortage;
909         int vnodes_skipped = 0;
910         int maxlaunder;
911         int lockmode;
912         boolean_t queues_locked;
913
914         /*
915          * If we need to reclaim memory ask kernel caches to return
916          * some.  We rate limit to avoid thrashing.
917          */
918         if (vmd == &vm_dom[0] && pass > 0 &&
919             (ticks - lowmem_ticks) / hz >= lowmem_period) {
920                 /*
921                  * Decrease registered cache sizes.
922                  */
923                 EVENTHANDLER_INVOKE(vm_lowmem, 0);
924                 /*
925                  * We do this explicitly after the caches have been
926                  * drained above.
927                  */
928                 uma_reclaim();
929                 lowmem_ticks = ticks;
930         }
931
932         /*
933          * The addl_page_shortage is the number of temporarily
934          * stuck pages in the inactive queue.  In other words, the
935          * number of pages from the inactive count that should be
936          * discounted in setting the target for the active queue scan.
937          */
938         addl_page_shortage = 0;
939
940         /*
941          * Calculate the number of pages we want to either free or move
942          * to the cache.
943          */
944         if (pass > 0) {
945                 deficit = atomic_readandclear_int(&vm_pageout_deficit);
946                 page_shortage = vm_paging_target() + deficit;
947         } else
948                 page_shortage = deficit = 0;
949
950         /*
951          * maxlaunder limits the number of dirty pages we flush per scan.
952          * For most systems a smaller value (16 or 32) is more robust under
953          * extreme memory and disk pressure because any unnecessary writes
954          * to disk can result in extreme performance degredation.  However,
955          * systems with excessive dirty pages (especially when MAP_NOSYNC is
956          * used) will die horribly with limited laundering.  If the pageout
957          * daemon cannot clean enough pages in the first pass, we let it go
958          * all out in succeeding passes.
959          */
960         if ((maxlaunder = vm_max_launder) <= 1)
961                 maxlaunder = 1;
962         if (pass > 1)
963                 maxlaunder = 10000;
964
965         /*
966          * Start scanning the inactive queue for pages we can move to the
967          * cache or free.  The scan will stop when the target is reached or
968          * we have scanned the entire inactive queue.  Note that m->act_count
969          * is not used to form decisions for the inactive queue, only for the
970          * active queue.
971          */
972         pq = &vmd->vmd_pagequeues[PQ_INACTIVE];
973         maxscan = pq->pq_cnt;
974         vm_pagequeue_lock(pq);
975         queues_locked = TRUE;
976         for (m = TAILQ_FIRST(&pq->pq_pl);
977              m != NULL && maxscan-- > 0 && page_shortage > 0;
978              m = next) {
979                 vm_pagequeue_assert_locked(pq);
980                 KASSERT(queues_locked, ("unlocked queues"));
981                 KASSERT(m->queue == PQ_INACTIVE, ("Inactive queue %p", m));
982
983                 PCPU_INC(cnt.v_pdpages);
984                 next = TAILQ_NEXT(m, plinks.q);
985
986                 /*
987                  * skip marker pages
988                  */
989                 if (m->flags & PG_MARKER)
990                         continue;
991
992                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
993                     ("Fictitious page %p cannot be in inactive queue", m));
994                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
995                     ("Unmanaged page %p cannot be in inactive queue", m));
996
997                 /*
998                  * The page or object lock acquisitions fail if the
999                  * page was removed from the queue or moved to a
1000                  * different position within the queue.  In either
1001                  * case, addl_page_shortage should not be incremented.
1002                  */
1003                 if (!vm_pageout_page_lock(m, &next)) {
1004                         vm_page_unlock(m);
1005                         continue;
1006                 }
1007                 object = m->object;
1008                 if (!VM_OBJECT_TRYWLOCK(object) &&
1009                     !vm_pageout_fallback_object_lock(m, &next)) {
1010                         vm_page_unlock(m);
1011                         VM_OBJECT_WUNLOCK(object);
1012                         continue;
1013                 }
1014
1015                 /*
1016                  * Don't mess with busy pages, keep them at at the
1017                  * front of the queue, most likely they are being
1018                  * paged out.  Increment addl_page_shortage for busy
1019                  * pages, because they may leave the inactive queue
1020                  * shortly after page scan is finished.
1021                  */
1022                 if (vm_page_busied(m)) {
1023                         vm_page_unlock(m);
1024                         VM_OBJECT_WUNLOCK(object);
1025                         addl_page_shortage++;
1026                         continue;
1027                 }
1028
1029                 /*
1030                  * We unlock the inactive page queue, invalidating the
1031                  * 'next' pointer.  Use our marker to remember our
1032                  * place.
1033                  */
1034                 TAILQ_INSERT_AFTER(&pq->pq_pl, m, &vmd->vmd_marker, plinks.q);
1035                 vm_pagequeue_unlock(pq);
1036                 queues_locked = FALSE;
1037
1038                 /*
1039                  * We bump the activation count if the page has been
1040                  * referenced while in the inactive queue.  This makes
1041                  * it less likely that the page will be added back to the
1042                  * inactive queue prematurely again.  Here we check the 
1043                  * page tables (or emulated bits, if any), given the upper 
1044                  * level VM system not knowing anything about existing 
1045                  * references.
1046                  */
1047                 if ((m->aflags & PGA_REFERENCED) != 0) {
1048                         vm_page_aflag_clear(m, PGA_REFERENCED);
1049                         act_delta = 1;
1050                 } else
1051                         act_delta = 0;
1052                 if (object->ref_count != 0) {
1053                         act_delta += pmap_ts_referenced(m);
1054                 } else {
1055                         KASSERT(!pmap_page_is_mapped(m),
1056                             ("vm_pageout_scan: page %p is mapped", m));
1057                 }
1058
1059                 /*
1060                  * If the upper level VM system knows about any page 
1061                  * references, we reactivate the page or requeue it.
1062                  */
1063                 if (act_delta != 0) {
1064                         if (object->ref_count != 0) {
1065                                 vm_page_activate(m);
1066                                 m->act_count += act_delta + ACT_ADVANCE;
1067                         } else {
1068                                 vm_pagequeue_lock(pq);
1069                                 queues_locked = TRUE;
1070                                 vm_page_requeue_locked(m);
1071                         }
1072                         VM_OBJECT_WUNLOCK(object);
1073                         vm_page_unlock(m);
1074                         goto relock_queues;
1075                 }
1076
1077                 if (m->hold_count != 0) {
1078                         vm_page_unlock(m);
1079                         VM_OBJECT_WUNLOCK(object);
1080
1081                         /*
1082                          * Held pages are essentially stuck in the
1083                          * queue.  So, they ought to be discounted
1084                          * from the inactive count.  See the
1085                          * calculation of the page_shortage for the
1086                          * loop over the active queue below.
1087                          */
1088                         addl_page_shortage++;
1089                         goto relock_queues;
1090                 }
1091
1092                 /*
1093                  * If the page appears to be clean at the machine-independent
1094                  * layer, then remove all of its mappings from the pmap in
1095                  * anticipation of placing it onto the cache queue.  If,
1096                  * however, any of the page's mappings allow write access,
1097                  * then the page may still be modified until the last of those
1098                  * mappings are removed.
1099                  */
1100                 vm_page_test_dirty(m);
1101                 if (m->dirty == 0 && object->ref_count != 0)
1102                         pmap_remove_all(m);
1103
1104                 if (m->valid == 0) {
1105                         /*
1106                          * Invalid pages can be easily freed
1107                          */
1108                         vm_page_free(m);
1109                         PCPU_INC(cnt.v_dfree);
1110                         --page_shortage;
1111                 } else if (m->dirty == 0) {
1112                         /*
1113                          * Clean pages can be placed onto the cache queue.
1114                          * This effectively frees them.
1115                          */
1116                         vm_page_cache(m);
1117                         --page_shortage;
1118                 } else if ((m->flags & PG_WINATCFLS) == 0 && pass < 2) {
1119                         /*
1120                          * Dirty pages need to be paged out, but flushing
1121                          * a page is extremely expensive versus freeing
1122                          * a clean page.  Rather then artificially limiting
1123                          * the number of pages we can flush, we instead give
1124                          * dirty pages extra priority on the inactive queue
1125                          * by forcing them to be cycled through the queue
1126                          * twice before being flushed, after which the
1127                          * (now clean) page will cycle through once more
1128                          * before being freed.  This significantly extends
1129                          * the thrash point for a heavily loaded machine.
1130                          */
1131                         m->flags |= PG_WINATCFLS;
1132                         vm_pagequeue_lock(pq);
1133                         queues_locked = TRUE;
1134                         vm_page_requeue_locked(m);
1135                 } else if (maxlaunder > 0) {
1136                         /*
1137                          * We always want to try to flush some dirty pages if
1138                          * we encounter them, to keep the system stable.
1139                          * Normally this number is small, but under extreme
1140                          * pressure where there are insufficient clean pages
1141                          * on the inactive queue, we may have to go all out.
1142                          */
1143                         int swap_pageouts_ok;
1144                         struct vnode *vp = NULL;
1145                         struct mount *mp = NULL;
1146
1147                         if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
1148                                 swap_pageouts_ok = 1;
1149                         } else {
1150                                 swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
1151                                 swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
1152                                 vm_page_count_min());
1153                                                                                 
1154                         }
1155
1156                         /*
1157                          * We don't bother paging objects that are "dead".  
1158                          * Those objects are in a "rundown" state.
1159                          */
1160                         if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
1161                                 vm_pagequeue_lock(pq);
1162                                 vm_page_unlock(m);
1163                                 VM_OBJECT_WUNLOCK(object);
1164                                 queues_locked = TRUE;
1165                                 vm_page_requeue_locked(m);
1166                                 goto relock_queues;
1167                         }
1168
1169                         /*
1170                          * The object is already known NOT to be dead.   It
1171                          * is possible for the vget() to block the whole
1172                          * pageout daemon, but the new low-memory handling
1173                          * code should prevent it.
1174                          *
1175                          * The previous code skipped locked vnodes and, worse,
1176                          * reordered pages in the queue.  This results in
1177                          * completely non-deterministic operation and, on a
1178                          * busy system, can lead to extremely non-optimal
1179                          * pageouts.  For example, it can cause clean pages
1180                          * to be freed and dirty pages to be moved to the end
1181                          * of the queue.  Since dirty pages are also moved to
1182                          * the end of the queue once-cleaned, this gives
1183                          * way too large a weighting to deferring the freeing
1184                          * of dirty pages.
1185                          *
1186                          * We can't wait forever for the vnode lock, we might
1187                          * deadlock due to a vn_read() getting stuck in
1188                          * vm_wait while holding this vnode.  We skip the 
1189                          * vnode if we can't get it in a reasonable amount
1190                          * of time.
1191                          */
1192                         if (object->type == OBJT_VNODE) {
1193                                 vm_page_unlock(m);
1194                                 vp = object->handle;
1195                                 if (vp->v_type == VREG &&
1196                                     vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1197                                         mp = NULL;
1198                                         ++pageout_lock_miss;
1199                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1200                                                 vnodes_skipped++;
1201                                         goto unlock_and_continue;
1202                                 }
1203                                 KASSERT(mp != NULL,
1204                                     ("vp %p with NULL v_mount", vp));
1205                                 vm_object_reference_locked(object);
1206                                 VM_OBJECT_WUNLOCK(object);
1207                                 lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
1208                                     LK_SHARED : LK_EXCLUSIVE;
1209                                 if (vget(vp, lockmode | LK_TIMELOCK,
1210                                     curthread)) {
1211                                         VM_OBJECT_WLOCK(object);
1212                                         ++pageout_lock_miss;
1213                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1214                                                 vnodes_skipped++;
1215                                         vp = NULL;
1216                                         goto unlock_and_continue;
1217                                 }
1218                                 VM_OBJECT_WLOCK(object);
1219                                 vm_page_lock(m);
1220                                 vm_pagequeue_lock(pq);
1221                                 queues_locked = TRUE;
1222                                 /*
1223                                  * The page might have been moved to another
1224                                  * queue during potential blocking in vget()
1225                                  * above.  The page might have been freed and
1226                                  * reused for another vnode.
1227                                  */
1228                                 if (m->queue != PQ_INACTIVE ||
1229                                     m->object != object ||
1230                                     TAILQ_NEXT(m, plinks.q) != &vmd->vmd_marker) {
1231                                         vm_page_unlock(m);
1232                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1233                                                 vnodes_skipped++;
1234                                         goto unlock_and_continue;
1235                                 }
1236         
1237                                 /*
1238                                  * The page may have been busied during the
1239                                  * blocking in vget().  We don't move the
1240                                  * page back onto the end of the queue so that
1241                                  * statistics are more correct if we don't.
1242                                  */
1243                                 if (vm_page_busied(m)) {
1244                                         vm_page_unlock(m);
1245                                         addl_page_shortage++;
1246                                         goto unlock_and_continue;
1247                                 }
1248
1249                                 /*
1250                                  * If the page has become held it might
1251                                  * be undergoing I/O, so skip it
1252                                  */
1253                                 if (m->hold_count != 0) {
1254                                         vm_page_unlock(m);
1255                                         addl_page_shortage++;
1256                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1257                                                 vnodes_skipped++;
1258                                         goto unlock_and_continue;
1259                                 }
1260                                 vm_pagequeue_unlock(pq);
1261                                 queues_locked = FALSE;
1262                         }
1263
1264                         /*
1265                          * If a page is dirty, then it is either being washed
1266                          * (but not yet cleaned) or it is still in the
1267                          * laundry.  If it is still in the laundry, then we
1268                          * start the cleaning operation. 
1269                          *
1270                          * decrement page_shortage on success to account for
1271                          * the (future) cleaned page.  Otherwise we could wind
1272                          * up laundering or cleaning too many pages.
1273                          */
1274                         if (vm_pageout_clean(m) != 0) {
1275                                 --page_shortage;
1276                                 --maxlaunder;
1277                         }
1278 unlock_and_continue:
1279                         vm_page_lock_assert(m, MA_NOTOWNED);
1280                         VM_OBJECT_WUNLOCK(object);
1281                         if (mp != NULL) {
1282                                 if (queues_locked) {
1283                                         vm_pagequeue_unlock(pq);
1284                                         queues_locked = FALSE;
1285                                 }
1286                                 if (vp != NULL)
1287                                         vput(vp);
1288                                 vm_object_deallocate(object);
1289                                 vn_finished_write(mp);
1290                         }
1291                         vm_page_lock_assert(m, MA_NOTOWNED);
1292                         goto relock_queues;
1293                 }
1294                 vm_page_unlock(m);
1295                 VM_OBJECT_WUNLOCK(object);
1296 relock_queues:
1297                 if (!queues_locked) {
1298                         vm_pagequeue_lock(pq);
1299                         queues_locked = TRUE;
1300                 }
1301                 next = TAILQ_NEXT(&vmd->vmd_marker, plinks.q);
1302                 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_marker, plinks.q);
1303         }
1304         vm_pagequeue_unlock(pq);
1305
1306 #if !defined(NO_SWAPPING)
1307         /*
1308          * Wakeup the swapout daemon if we didn't cache or free the targeted
1309          * number of pages. 
1310          */
1311         if (vm_swap_enabled && page_shortage > 0)
1312                 vm_req_vmdaemon(VM_SWAP_NORMAL);
1313 #endif
1314
1315         /*
1316          * Wakeup the sync daemon if we skipped a vnode in a writeable object
1317          * and we didn't cache or free enough pages.
1318          */
1319         if (vnodes_skipped > 0 && page_shortage > vm_cnt.v_free_target -
1320             vm_cnt.v_free_min)
1321                 (void)speedup_syncer();
1322
1323         /*
1324          * Compute the number of pages we want to try to move from the
1325          * active queue to the inactive queue.
1326          */
1327         page_shortage = vm_cnt.v_inactive_target - vm_cnt.v_inactive_count +
1328             vm_paging_target() + deficit + addl_page_shortage;
1329
1330         pq = &vmd->vmd_pagequeues[PQ_ACTIVE];
1331         vm_pagequeue_lock(pq);
1332         maxscan = pq->pq_cnt;
1333
1334         /*
1335          * If we're just idle polling attempt to visit every
1336          * active page within 'update_period' seconds.
1337          */
1338         if (pass == 0 && vm_pageout_update_period != 0) {
1339                 maxscan /= vm_pageout_update_period;
1340                 page_shortage = maxscan;
1341         }
1342
1343         /*
1344          * Scan the active queue for things we can deactivate. We nominally
1345          * track the per-page activity counter and use it to locate
1346          * deactivation candidates.
1347          */
1348         m = TAILQ_FIRST(&pq->pq_pl);
1349         while (m != NULL && maxscan-- > 0 && page_shortage > 0) {
1350
1351                 KASSERT(m->queue == PQ_ACTIVE,
1352                     ("vm_pageout_scan: page %p isn't active", m));
1353
1354                 next = TAILQ_NEXT(m, plinks.q);
1355                 if ((m->flags & PG_MARKER) != 0) {
1356                         m = next;
1357                         continue;
1358                 }
1359                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
1360                     ("Fictitious page %p cannot be in active queue", m));
1361                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1362                     ("Unmanaged page %p cannot be in active queue", m));
1363                 if (!vm_pageout_page_lock(m, &next)) {
1364                         vm_page_unlock(m);
1365                         m = next;
1366                         continue;
1367                 }
1368
1369                 /*
1370                  * The count for pagedaemon pages is done after checking the
1371                  * page for eligibility...
1372                  */
1373                 PCPU_INC(cnt.v_pdpages);
1374
1375                 /*
1376                  * Check to see "how much" the page has been used.
1377                  */
1378                 if ((m->aflags & PGA_REFERENCED) != 0) {
1379                         vm_page_aflag_clear(m, PGA_REFERENCED);
1380                         act_delta = 1;
1381                 } else
1382                         act_delta = 0;
1383
1384                 /*
1385                  * Unlocked object ref count check.  Two races are possible.
1386                  * 1) The ref was transitioning to zero and we saw non-zero,
1387                  *    the pmap bits will be checked unnecessarily.
1388                  * 2) The ref was transitioning to one and we saw zero. 
1389                  *    The page lock prevents a new reference to this page so
1390                  *    we need not check the reference bits.
1391                  */
1392                 if (m->object->ref_count != 0)
1393                         act_delta += pmap_ts_referenced(m);
1394
1395                 /*
1396                  * Advance or decay the act_count based on recent usage.
1397                  */
1398                 if (act_delta != 0) {
1399                         m->act_count += ACT_ADVANCE + act_delta;
1400                         if (m->act_count > ACT_MAX)
1401                                 m->act_count = ACT_MAX;
1402                 } else
1403                         m->act_count -= min(m->act_count, ACT_DECLINE);
1404
1405                 /*
1406                  * Move this page to the tail of the active or inactive
1407                  * queue depending on usage.
1408                  */
1409                 if (m->act_count == 0) {
1410                         /* Dequeue to avoid later lock recursion. */
1411                         vm_page_dequeue_locked(m);
1412                         vm_page_deactivate(m);
1413                         page_shortage--;
1414                 } else
1415                         vm_page_requeue_locked(m);
1416                 vm_page_unlock(m);
1417                 m = next;
1418         }
1419         vm_pagequeue_unlock(pq);
1420 #if !defined(NO_SWAPPING)
1421         /*
1422          * Idle process swapout -- run once per second.
1423          */
1424         if (vm_swap_idle_enabled) {
1425                 static long lsec;
1426                 if (time_second != lsec) {
1427                         vm_req_vmdaemon(VM_SWAP_IDLE);
1428                         lsec = time_second;
1429                 }
1430         }
1431 #endif
1432
1433         /*
1434          * If we are critically low on one of RAM or swap and low on
1435          * the other, kill the largest process.  However, we avoid
1436          * doing this on the first pass in order to give ourselves a
1437          * chance to flush out dirty vnode-backed pages and to allow
1438          * active pages to be moved to the inactive queue and reclaimed.
1439          */
1440         vm_pageout_mightbe_oom(vmd, pass);
1441 }
1442
1443 static int vm_pageout_oom_vote;
1444
1445 /*
1446  * The pagedaemon threads randlomly select one to perform the
1447  * OOM.  Trying to kill processes before all pagedaemons
1448  * failed to reach free target is premature.
1449  */
1450 static void
1451 vm_pageout_mightbe_oom(struct vm_domain *vmd, int pass)
1452 {
1453         int old_vote;
1454
1455         if (pass <= 1 || !((swap_pager_avail < 64 && vm_page_count_min()) ||
1456             (swap_pager_full && vm_paging_target() > 0))) {
1457                 if (vmd->vmd_oom) {
1458                         vmd->vmd_oom = FALSE;
1459                         atomic_subtract_int(&vm_pageout_oom_vote, 1);
1460                 }
1461                 return;
1462         }
1463
1464         if (vmd->vmd_oom)
1465                 return;
1466
1467         vmd->vmd_oom = TRUE;
1468         old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1);
1469         if (old_vote != vm_ndomains - 1)
1470                 return;
1471
1472         /*
1473          * The current pagedaemon thread is the last in the quorum to
1474          * start OOM.  Initiate the selection and signaling of the
1475          * victim.
1476          */
1477         vm_pageout_oom(VM_OOM_MEM);
1478
1479         /*
1480          * After one round of OOM terror, recall our vote.  On the
1481          * next pass, current pagedaemon would vote again if the low
1482          * memory condition is still there, due to vmd_oom being
1483          * false.
1484          */
1485         vmd->vmd_oom = FALSE;
1486         atomic_subtract_int(&vm_pageout_oom_vote, 1);
1487 }
1488
1489 void
1490 vm_pageout_oom(int shortage)
1491 {
1492         struct proc *p, *bigproc;
1493         vm_offset_t size, bigsize;
1494         struct thread *td;
1495         struct vmspace *vm;
1496
1497         /*
1498          * We keep the process bigproc locked once we find it to keep anyone
1499          * from messing with it; however, there is a possibility of
1500          * deadlock if process B is bigproc and one of it's child processes
1501          * attempts to propagate a signal to B while we are waiting for A's
1502          * lock while walking this list.  To avoid this, we don't block on
1503          * the process lock but just skip a process if it is already locked.
1504          */
1505         bigproc = NULL;
1506         bigsize = 0;
1507         sx_slock(&allproc_lock);
1508         FOREACH_PROC_IN_SYSTEM(p) {
1509                 int breakout;
1510
1511                 if (PROC_TRYLOCK(p) == 0)
1512                         continue;
1513                 /*
1514                  * If this is a system, protected or killed process, skip it.
1515                  */
1516                 if (p->p_state != PRS_NORMAL ||
1517                     (p->p_flag & (P_INEXEC | P_PROTECTED | P_SYSTEM)) ||
1518                     (p->p_pid == 1) || P_KILLED(p) ||
1519                     ((p->p_pid < 48) && (swap_pager_avail != 0))) {
1520                         PROC_UNLOCK(p);
1521                         continue;
1522                 }
1523                 /*
1524                  * If the process is in a non-running type state,
1525                  * don't touch it.  Check all the threads individually.
1526                  */
1527                 breakout = 0;
1528                 FOREACH_THREAD_IN_PROC(p, td) {
1529                         thread_lock(td);
1530                         if (!TD_ON_RUNQ(td) &&
1531                             !TD_IS_RUNNING(td) &&
1532                             !TD_IS_SLEEPING(td) &&
1533                             !TD_IS_SUSPENDED(td)) {
1534                                 thread_unlock(td);
1535                                 breakout = 1;
1536                                 break;
1537                         }
1538                         thread_unlock(td);
1539                 }
1540                 if (breakout) {
1541                         PROC_UNLOCK(p);
1542                         continue;
1543                 }
1544                 /*
1545                  * get the process size
1546                  */
1547                 vm = vmspace_acquire_ref(p);
1548                 if (vm == NULL) {
1549                         PROC_UNLOCK(p);
1550                         continue;
1551                 }
1552                 if (!vm_map_trylock_read(&vm->vm_map)) {
1553                         vmspace_free(vm);
1554                         PROC_UNLOCK(p);
1555                         continue;
1556                 }
1557                 size = vmspace_swap_count(vm);
1558                 vm_map_unlock_read(&vm->vm_map);
1559                 if (shortage == VM_OOM_MEM)
1560                         size += vmspace_resident_count(vm);
1561                 vmspace_free(vm);
1562                 /*
1563                  * if the this process is bigger than the biggest one
1564                  * remember it.
1565                  */
1566                 if (size > bigsize) {
1567                         if (bigproc != NULL)
1568                                 PROC_UNLOCK(bigproc);
1569                         bigproc = p;
1570                         bigsize = size;
1571                 } else
1572                         PROC_UNLOCK(p);
1573         }
1574         sx_sunlock(&allproc_lock);
1575         if (bigproc != NULL) {
1576                 killproc(bigproc, "out of swap space");
1577                 sched_nice(bigproc, PRIO_MIN);
1578                 PROC_UNLOCK(bigproc);
1579                 wakeup(&vm_cnt.v_free_count);
1580         }
1581 }
1582
1583 static void
1584 vm_pageout_worker(void *arg)
1585 {
1586         struct vm_domain *domain;
1587         int domidx;
1588
1589         domidx = (uintptr_t)arg;
1590         domain = &vm_dom[domidx];
1591
1592         /*
1593          * XXXKIB It could be useful to bind pageout daemon threads to
1594          * the cores belonging to the domain, from which vm_page_array
1595          * is allocated.
1596          */
1597
1598         KASSERT(domain->vmd_segs != 0, ("domain without segments"));
1599         vm_pageout_init_marker(&domain->vmd_marker, PQ_INACTIVE);
1600
1601         /*
1602          * The pageout daemon worker is never done, so loop forever.
1603          */
1604         while (TRUE) {
1605                 /*
1606                  * If we have enough free memory, wakeup waiters.  Do
1607                  * not clear vm_pages_needed until we reach our target,
1608                  * otherwise we may be woken up over and over again and
1609                  * waste a lot of cpu.
1610                  */
1611                 mtx_lock(&vm_page_queue_free_mtx);
1612                 if (vm_pages_needed && !vm_page_count_min()) {
1613                         if (!vm_paging_needed())
1614                                 vm_pages_needed = 0;
1615                         wakeup(&vm_cnt.v_free_count);
1616                 }
1617                 if (vm_pages_needed) {
1618                         /*
1619                          * Still not done, take a second pass without waiting
1620                          * (unlimited dirty cleaning), otherwise sleep a bit
1621                          * and try again.
1622                          */
1623                         if (domain->vmd_pass > 1)
1624                                 msleep(&vm_pages_needed,
1625                                     &vm_page_queue_free_mtx, PVM, "psleep",
1626                                     hz / 2);
1627                 } else {
1628                         /*
1629                          * Good enough, sleep until required to refresh
1630                          * stats.
1631                          */
1632                         domain->vmd_pass = 0;
1633                         msleep(&vm_pages_needed, &vm_page_queue_free_mtx,
1634                             PVM, "psleep", hz);
1635
1636                 }
1637                 if (vm_pages_needed) {
1638                         vm_cnt.v_pdwakeups++;
1639                         domain->vmd_pass++;
1640                 }
1641                 mtx_unlock(&vm_page_queue_free_mtx);
1642                 vm_pageout_scan(domain, domain->vmd_pass);
1643         }
1644 }
1645
1646 /*
1647  *      vm_pageout_init initialises basic pageout daemon settings.
1648  */
1649 static void
1650 vm_pageout_init(void)
1651 {
1652         /*
1653          * Initialize some paging parameters.
1654          */
1655         vm_cnt.v_interrupt_free_min = 2;
1656         if (vm_cnt.v_page_count < 2000)
1657                 vm_pageout_page_count = 8;
1658
1659         /*
1660          * v_free_reserved needs to include enough for the largest
1661          * swap pager structures plus enough for any pv_entry structs
1662          * when paging. 
1663          */
1664         if (vm_cnt.v_page_count > 1024)
1665                 vm_cnt.v_free_min = 4 + (vm_cnt.v_page_count - 1024) / 200;
1666         else
1667                 vm_cnt.v_free_min = 4;
1668         vm_cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1669             vm_cnt.v_interrupt_free_min;
1670         vm_cnt.v_free_reserved = vm_pageout_page_count +
1671             vm_cnt.v_pageout_free_min + (vm_cnt.v_page_count / 768);
1672         vm_cnt.v_free_severe = vm_cnt.v_free_min / 2;
1673         vm_cnt.v_free_target = 4 * vm_cnt.v_free_min + vm_cnt.v_free_reserved;
1674         vm_cnt.v_free_min += vm_cnt.v_free_reserved;
1675         vm_cnt.v_free_severe += vm_cnt.v_free_reserved;
1676         vm_cnt.v_inactive_target = (3 * vm_cnt.v_free_target) / 2;
1677         if (vm_cnt.v_inactive_target > vm_cnt.v_free_count / 3)
1678                 vm_cnt.v_inactive_target = vm_cnt.v_free_count / 3;
1679
1680         /*
1681          * Set the default wakeup threshold to be 10% above the minimum
1682          * page limit.  This keeps the steady state out of shortfall.
1683          */
1684         vm_pageout_wakeup_thresh = (vm_cnt.v_free_min / 10) * 11;
1685
1686         /*
1687          * Set interval in seconds for active scan.  We want to visit each
1688          * page at least once every ten minutes.  This is to prevent worst
1689          * case paging behaviors with stale active LRU.
1690          */
1691         if (vm_pageout_update_period == 0)
1692                 vm_pageout_update_period = 600;
1693
1694         /* XXX does not really belong here */
1695         if (vm_page_max_wired == 0)
1696                 vm_page_max_wired = vm_cnt.v_free_count / 3;
1697 }
1698
1699 /*
1700  *     vm_pageout is the high level pageout daemon.
1701  */
1702 static void
1703 vm_pageout(void)
1704 {
1705 #if MAXMEMDOM > 1
1706         int error, i;
1707 #endif
1708
1709         swap_pager_swap_init();
1710 #if MAXMEMDOM > 1
1711         for (i = 1; i < vm_ndomains; i++) {
1712                 error = kthread_add(vm_pageout_worker, (void *)(uintptr_t)i,
1713                     curproc, NULL, 0, 0, "dom%d", i);
1714                 if (error != 0) {
1715                         panic("starting pageout for domain %d, error %d\n",
1716                             i, error);
1717                 }
1718         }
1719 #endif
1720         vm_pageout_worker((void *)(uintptr_t)0);
1721 }
1722
1723 /*
1724  * Unless the free page queue lock is held by the caller, this function
1725  * should be regarded as advisory.  Specifically, the caller should
1726  * not msleep() on &vm_cnt.v_free_count following this function unless
1727  * the free page queue lock is held until the msleep() is performed.
1728  */
1729 void
1730 pagedaemon_wakeup(void)
1731 {
1732
1733         if (!vm_pages_needed && curthread->td_proc != pageproc) {
1734                 vm_pages_needed = 1;
1735                 wakeup(&vm_pages_needed);
1736         }
1737 }
1738
1739 #if !defined(NO_SWAPPING)
1740 static void
1741 vm_req_vmdaemon(int req)
1742 {
1743         static int lastrun = 0;
1744
1745         mtx_lock(&vm_daemon_mtx);
1746         vm_pageout_req_swapout |= req;
1747         if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1748                 wakeup(&vm_daemon_needed);
1749                 lastrun = ticks;
1750         }
1751         mtx_unlock(&vm_daemon_mtx);
1752 }
1753
1754 static void
1755 vm_daemon(void)
1756 {
1757         struct rlimit rsslim;
1758         struct proc *p;
1759         struct thread *td;
1760         struct vmspace *vm;
1761         int breakout, swapout_flags, tryagain, attempts;
1762 #ifdef RACCT
1763         uint64_t rsize, ravailable;
1764 #endif
1765
1766         while (TRUE) {
1767                 mtx_lock(&vm_daemon_mtx);
1768 #ifdef RACCT
1769                 msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", hz);
1770 #else
1771                 msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", 0);
1772 #endif
1773                 swapout_flags = vm_pageout_req_swapout;
1774                 vm_pageout_req_swapout = 0;
1775                 mtx_unlock(&vm_daemon_mtx);
1776                 if (swapout_flags)
1777                         swapout_procs(swapout_flags);
1778
1779                 /*
1780                  * scan the processes for exceeding their rlimits or if
1781                  * process is swapped out -- deactivate pages
1782                  */
1783                 tryagain = 0;
1784                 attempts = 0;
1785 again:
1786                 attempts++;
1787                 sx_slock(&allproc_lock);
1788                 FOREACH_PROC_IN_SYSTEM(p) {
1789                         vm_pindex_t limit, size;
1790
1791                         /*
1792                          * if this is a system process or if we have already
1793                          * looked at this process, skip it.
1794                          */
1795                         PROC_LOCK(p);
1796                         if (p->p_state != PRS_NORMAL ||
1797                             p->p_flag & (P_INEXEC | P_SYSTEM | P_WEXIT)) {
1798                                 PROC_UNLOCK(p);
1799                                 continue;
1800                         }
1801                         /*
1802                          * if the process is in a non-running type state,
1803                          * don't touch it.
1804                          */
1805                         breakout = 0;
1806                         FOREACH_THREAD_IN_PROC(p, td) {
1807                                 thread_lock(td);
1808                                 if (!TD_ON_RUNQ(td) &&
1809                                     !TD_IS_RUNNING(td) &&
1810                                     !TD_IS_SLEEPING(td) &&
1811                                     !TD_IS_SUSPENDED(td)) {
1812                                         thread_unlock(td);
1813                                         breakout = 1;
1814                                         break;
1815                                 }
1816                                 thread_unlock(td);
1817                         }
1818                         if (breakout) {
1819                                 PROC_UNLOCK(p);
1820                                 continue;
1821                         }
1822                         /*
1823                          * get a limit
1824                          */
1825                         lim_rlimit(p, RLIMIT_RSS, &rsslim);
1826                         limit = OFF_TO_IDX(
1827                             qmin(rsslim.rlim_cur, rsslim.rlim_max));
1828
1829                         /*
1830                          * let processes that are swapped out really be
1831                          * swapped out set the limit to nothing (will force a
1832                          * swap-out.)
1833                          */
1834                         if ((p->p_flag & P_INMEM) == 0)
1835                                 limit = 0;      /* XXX */
1836                         vm = vmspace_acquire_ref(p);
1837                         PROC_UNLOCK(p);
1838                         if (vm == NULL)
1839                                 continue;
1840
1841                         size = vmspace_resident_count(vm);
1842                         if (size >= limit) {
1843                                 vm_pageout_map_deactivate_pages(
1844                                     &vm->vm_map, limit);
1845                         }
1846 #ifdef RACCT
1847                         rsize = IDX_TO_OFF(size);
1848                         PROC_LOCK(p);
1849                         racct_set(p, RACCT_RSS, rsize);
1850                         ravailable = racct_get_available(p, RACCT_RSS);
1851                         PROC_UNLOCK(p);
1852                         if (rsize > ravailable) {
1853                                 /*
1854                                  * Don't be overly aggressive; this might be
1855                                  * an innocent process, and the limit could've
1856                                  * been exceeded by some memory hog.  Don't
1857                                  * try to deactivate more than 1/4th of process'
1858                                  * resident set size.
1859                                  */
1860                                 if (attempts <= 8) {
1861                                         if (ravailable < rsize - (rsize / 4))
1862                                                 ravailable = rsize - (rsize / 4);
1863                                 }
1864                                 vm_pageout_map_deactivate_pages(
1865                                     &vm->vm_map, OFF_TO_IDX(ravailable));
1866                                 /* Update RSS usage after paging out. */
1867                                 size = vmspace_resident_count(vm);
1868                                 rsize = IDX_TO_OFF(size);
1869                                 PROC_LOCK(p);
1870                                 racct_set(p, RACCT_RSS, rsize);
1871                                 PROC_UNLOCK(p);
1872                                 if (rsize > ravailable)
1873                                         tryagain = 1;
1874                         }
1875 #endif
1876                         vmspace_free(vm);
1877                 }
1878                 sx_sunlock(&allproc_lock);
1879                 if (tryagain != 0 && attempts <= 10)
1880                         goto again;
1881         }
1882 }
1883 #endif                  /* !defined(NO_SWAPPING) */