]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_pageout.c
Generalize lazy dequeue logic for wired pages.
[FreeBSD/FreeBSD.git] / sys / vm / vm_pageout.c
1 /*-
2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  * Copyright (c) 2005 Yahoo! Technologies Norway AS
11  * All rights reserved.
12  *
13  * This code is derived from software contributed to Berkeley by
14  * The Mach Operating System project at Carnegie-Mellon University.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. All advertising materials mentioning features or use of this software
25  *    must display the following acknowledgement:
26  *      This product includes software developed by the University of
27  *      California, Berkeley and its contributors.
28  * 4. Neither the name of the University nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  *
44  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
45  *
46  *
47  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
48  * All rights reserved.
49  *
50  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
51  *
52  * Permission to use, copy, modify and distribute this software and
53  * its documentation is hereby granted, provided that both the copyright
54  * notice and this permission notice appear in all copies of the
55  * software, derivative works or modified versions, and any portions
56  * thereof, and that both notices appear in supporting documentation.
57  *
58  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
59  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
60  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
61  *
62  * Carnegie Mellon requests users of this software to return to
63  *
64  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
65  *  School of Computer Science
66  *  Carnegie Mellon University
67  *  Pittsburgh PA 15213-3890
68  *
69  * any improvements or extensions that they make and grant Carnegie the
70  * rights to redistribute these changes.
71  */
72
73 /*
74  *      The proverbial page-out daemon.
75  */
76
77 #include <sys/cdefs.h>
78 __FBSDID("$FreeBSD$");
79
80 #include "opt_vm.h"
81
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/eventhandler.h>
86 #include <sys/lock.h>
87 #include <sys/mutex.h>
88 #include <sys/proc.h>
89 #include <sys/kthread.h>
90 #include <sys/ktr.h>
91 #include <sys/mount.h>
92 #include <sys/racct.h>
93 #include <sys/resourcevar.h>
94 #include <sys/sched.h>
95 #include <sys/sdt.h>
96 #include <sys/signalvar.h>
97 #include <sys/smp.h>
98 #include <sys/time.h>
99 #include <sys/vnode.h>
100 #include <sys/vmmeter.h>
101 #include <sys/rwlock.h>
102 #include <sys/sx.h>
103 #include <sys/sysctl.h>
104
105 #include <vm/vm.h>
106 #include <vm/vm_param.h>
107 #include <vm/vm_object.h>
108 #include <vm/vm_page.h>
109 #include <vm/vm_map.h>
110 #include <vm/vm_pageout.h>
111 #include <vm/vm_pager.h>
112 #include <vm/vm_phys.h>
113 #include <vm/vm_pagequeue.h>
114 #include <vm/swap_pager.h>
115 #include <vm/vm_extern.h>
116 #include <vm/uma.h>
117
118 /*
119  * System initialization
120  */
121
122 /* the kernel process "vm_pageout"*/
123 static void vm_pageout(void);
124 static void vm_pageout_init(void);
125 static int vm_pageout_clean(vm_page_t m, int *numpagedout);
126 static int vm_pageout_cluster(vm_page_t m);
127 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
128     int starting_page_shortage);
129
130 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init,
131     NULL);
132
133 struct proc *pageproc;
134
135 static struct kproc_desc page_kp = {
136         "pagedaemon",
137         vm_pageout,
138         &pageproc
139 };
140 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start,
141     &page_kp);
142
143 SDT_PROVIDER_DEFINE(vm);
144 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan);
145
146 /* Pagedaemon activity rates, in subdivisions of one second. */
147 #define VM_LAUNDER_RATE         10
148 #define VM_INACT_SCAN_RATE      10
149
150 static int vm_pageout_oom_seq = 12;
151
152 static int vm_pageout_update_period;
153 static int disable_swap_pageouts;
154 static int lowmem_period = 10;
155 static int swapdev_enabled;
156
157 static int vm_panic_on_oom = 0;
158
159 SYSCTL_INT(_vm, OID_AUTO, panic_on_oom,
160         CTLFLAG_RWTUN, &vm_panic_on_oom, 0,
161         "panic on out of memory instead of killing the largest process");
162
163 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period,
164         CTLFLAG_RWTUN, &vm_pageout_update_period, 0,
165         "Maximum active LRU update period");
166   
167 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RWTUN, &lowmem_period, 0,
168         "Low memory callback period");
169
170 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
171         CTLFLAG_RWTUN, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
172
173 static int pageout_lock_miss;
174 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
175         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
176
177 SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq,
178         CTLFLAG_RWTUN, &vm_pageout_oom_seq, 0,
179         "back-to-back calls to oom detector to start OOM");
180
181 static int act_scan_laundry_weight = 3;
182 SYSCTL_INT(_vm, OID_AUTO, act_scan_laundry_weight, CTLFLAG_RWTUN,
183     &act_scan_laundry_weight, 0,
184     "weight given to clean vs. dirty pages in active queue scans");
185
186 static u_int vm_background_launder_rate = 4096;
187 SYSCTL_UINT(_vm, OID_AUTO, background_launder_rate, CTLFLAG_RWTUN,
188     &vm_background_launder_rate, 0,
189     "background laundering rate, in kilobytes per second");
190
191 static u_int vm_background_launder_max = 20 * 1024;
192 SYSCTL_UINT(_vm, OID_AUTO, background_launder_max, CTLFLAG_RWTUN,
193     &vm_background_launder_max, 0, "background laundering cap, in kilobytes");
194
195 int vm_pageout_page_count = 32;
196
197 u_long vm_page_max_user_wired;
198 SYSCTL_ULONG(_vm, OID_AUTO, max_user_wired, CTLFLAG_RW,
199     &vm_page_max_user_wired, 0,
200     "system-wide limit to user-wired page count");
201
202 static u_int isqrt(u_int num);
203 static int vm_pageout_launder(struct vm_domain *vmd, int launder,
204     bool in_shortfall);
205 static void vm_pageout_laundry_worker(void *arg);
206
207 struct scan_state {
208         struct vm_batchqueue bq;
209         struct vm_pagequeue *pq;
210         vm_page_t       marker;
211         int             maxscan;
212         int             scanned;
213 };
214
215 static void
216 vm_pageout_init_scan(struct scan_state *ss, struct vm_pagequeue *pq,
217     vm_page_t marker, vm_page_t after, int maxscan)
218 {
219
220         vm_pagequeue_assert_locked(pq);
221         KASSERT((marker->a.flags & PGA_ENQUEUED) == 0,
222             ("marker %p already enqueued", marker));
223
224         if (after == NULL)
225                 TAILQ_INSERT_HEAD(&pq->pq_pl, marker, plinks.q);
226         else
227                 TAILQ_INSERT_AFTER(&pq->pq_pl, after, marker, plinks.q);
228         vm_page_aflag_set(marker, PGA_ENQUEUED);
229
230         vm_batchqueue_init(&ss->bq);
231         ss->pq = pq;
232         ss->marker = marker;
233         ss->maxscan = maxscan;
234         ss->scanned = 0;
235         vm_pagequeue_unlock(pq);
236 }
237
238 static void
239 vm_pageout_end_scan(struct scan_state *ss)
240 {
241         struct vm_pagequeue *pq;
242
243         pq = ss->pq;
244         vm_pagequeue_assert_locked(pq);
245         KASSERT((ss->marker->a.flags & PGA_ENQUEUED) != 0,
246             ("marker %p not enqueued", ss->marker));
247
248         TAILQ_REMOVE(&pq->pq_pl, ss->marker, plinks.q);
249         vm_page_aflag_clear(ss->marker, PGA_ENQUEUED);
250         pq->pq_pdpages += ss->scanned;
251 }
252
253 /*
254  * Add a small number of queued pages to a batch queue for later processing
255  * without the corresponding queue lock held.  The caller must have enqueued a
256  * marker page at the desired start point for the scan.  Pages will be
257  * physically dequeued if the caller so requests.  Otherwise, the returned
258  * batch may contain marker pages, and it is up to the caller to handle them.
259  *
260  * When processing the batch queue, vm_page_queue() must be used to
261  * determine whether the page has been logically dequeued by another thread.
262  * Once this check is performed, the page lock guarantees that the page will
263  * not be disassociated from the queue.
264  */
265 static __always_inline void
266 vm_pageout_collect_batch(struct scan_state *ss, const bool dequeue)
267 {
268         struct vm_pagequeue *pq;
269         vm_page_t m, marker, n;
270
271         marker = ss->marker;
272         pq = ss->pq;
273
274         KASSERT((marker->a.flags & PGA_ENQUEUED) != 0,
275             ("marker %p not enqueued", ss->marker));
276
277         vm_pagequeue_lock(pq);
278         for (m = TAILQ_NEXT(marker, plinks.q); m != NULL &&
279             ss->scanned < ss->maxscan && ss->bq.bq_cnt < VM_BATCHQUEUE_SIZE;
280             m = n, ss->scanned++) {
281                 n = TAILQ_NEXT(m, plinks.q);
282                 if ((m->flags & PG_MARKER) == 0) {
283                         KASSERT((m->a.flags & PGA_ENQUEUED) != 0,
284                             ("page %p not enqueued", m));
285                         KASSERT((m->flags & PG_FICTITIOUS) == 0,
286                             ("Fictitious page %p cannot be in page queue", m));
287                         KASSERT((m->oflags & VPO_UNMANAGED) == 0,
288                             ("Unmanaged page %p cannot be in page queue", m));
289                 } else if (dequeue)
290                         continue;
291
292                 (void)vm_batchqueue_insert(&ss->bq, m);
293                 if (dequeue) {
294                         TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
295                         vm_page_aflag_clear(m, PGA_ENQUEUED);
296                 }
297         }
298         TAILQ_REMOVE(&pq->pq_pl, marker, plinks.q);
299         if (__predict_true(m != NULL))
300                 TAILQ_INSERT_BEFORE(m, marker, plinks.q);
301         else
302                 TAILQ_INSERT_TAIL(&pq->pq_pl, marker, plinks.q);
303         if (dequeue)
304                 vm_pagequeue_cnt_add(pq, -ss->bq.bq_cnt);
305         vm_pagequeue_unlock(pq);
306 }
307
308 /*
309  * Return the next page to be scanned, or NULL if the scan is complete.
310  */
311 static __always_inline vm_page_t
312 vm_pageout_next(struct scan_state *ss, const bool dequeue)
313 {
314
315         if (ss->bq.bq_cnt == 0)
316                 vm_pageout_collect_batch(ss, dequeue);
317         return (vm_batchqueue_pop(&ss->bq));
318 }
319
320 /*
321  * Determine whether processing of a page should be deferred and ensure that any
322  * outstanding queue operations are processed.
323  */
324 static __always_inline bool
325 vm_pageout_defer(vm_page_t m, const uint8_t queue, const bool enqueued)
326 {
327         vm_page_astate_t as;
328
329         as = vm_page_astate_load(m);
330         if (__predict_false(as.queue != queue ||
331             ((as.flags & PGA_ENQUEUED) != 0) != enqueued))
332                 return (true);
333         if ((as.flags & PGA_QUEUE_OP_MASK) != 0) {
334                 vm_page_pqbatch_submit(m, queue);
335                 return (true);
336         }
337         return (false);
338 }
339
340 /*
341  * Scan for pages at adjacent offsets within the given page's object that are
342  * eligible for laundering, form a cluster of these pages and the given page,
343  * and launder that cluster.
344  */
345 static int
346 vm_pageout_cluster(vm_page_t m)
347 {
348         vm_object_t object;
349         vm_page_t mc[2 * vm_pageout_page_count], p, pb, ps;
350         vm_pindex_t pindex;
351         int ib, is, page_base, pageout_count;
352
353         object = m->object;
354         VM_OBJECT_ASSERT_WLOCKED(object);
355         pindex = m->pindex;
356
357         vm_page_assert_xbusied(m);
358
359         mc[vm_pageout_page_count] = pb = ps = m;
360         pageout_count = 1;
361         page_base = vm_pageout_page_count;
362         ib = 1;
363         is = 1;
364
365         /*
366          * We can cluster only if the page is not clean, busy, or held, and
367          * the page is in the laundry queue.
368          *
369          * During heavy mmap/modification loads the pageout
370          * daemon can really fragment the underlying file
371          * due to flushing pages out of order and not trying to
372          * align the clusters (which leaves sporadic out-of-order
373          * holes).  To solve this problem we do the reverse scan
374          * first and attempt to align our cluster, then do a 
375          * forward scan if room remains.
376          */
377 more:
378         while (ib != 0 && pageout_count < vm_pageout_page_count) {
379                 if (ib > pindex) {
380                         ib = 0;
381                         break;
382                 }
383                 if ((p = vm_page_prev(pb)) == NULL ||
384                     vm_page_tryxbusy(p) == 0) {
385                         ib = 0;
386                         break;
387                 }
388                 if (vm_page_wired(p)) {
389                         ib = 0;
390                         vm_page_xunbusy(p);
391                         break;
392                 }
393                 vm_page_test_dirty(p);
394                 if (p->dirty == 0) {
395                         ib = 0;
396                         vm_page_xunbusy(p);
397                         break;
398                 }
399                 vm_page_lock(p);
400                 if (!vm_page_in_laundry(p) || !vm_page_try_remove_write(p)) {
401                         vm_page_unlock(p);
402                         vm_page_xunbusy(p);
403                         ib = 0;
404                         break;
405                 }
406                 vm_page_unlock(p);
407                 mc[--page_base] = pb = p;
408                 ++pageout_count;
409                 ++ib;
410
411                 /*
412                  * We are at an alignment boundary.  Stop here, and switch
413                  * directions.  Do not clear ib.
414                  */
415                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
416                         break;
417         }
418         while (pageout_count < vm_pageout_page_count && 
419             pindex + is < object->size) {
420                 if ((p = vm_page_next(ps)) == NULL ||
421                     vm_page_tryxbusy(p) == 0)
422                         break;
423                 if (vm_page_wired(p)) {
424                         vm_page_xunbusy(p);
425                         break;
426                 }
427                 vm_page_test_dirty(p);
428                 if (p->dirty == 0) {
429                         vm_page_xunbusy(p);
430                         break;
431                 }
432                 vm_page_lock(p);
433                 if (!vm_page_in_laundry(p) || !vm_page_try_remove_write(p)) {
434                         vm_page_unlock(p);
435                         vm_page_xunbusy(p);
436                         break;
437                 }
438                 vm_page_unlock(p);
439                 mc[page_base + pageout_count] = ps = p;
440                 ++pageout_count;
441                 ++is;
442         }
443
444         /*
445          * If we exhausted our forward scan, continue with the reverse scan
446          * when possible, even past an alignment boundary.  This catches
447          * boundary conditions.
448          */
449         if (ib != 0 && pageout_count < vm_pageout_page_count)
450                 goto more;
451
452         return (vm_pageout_flush(&mc[page_base], pageout_count,
453             VM_PAGER_PUT_NOREUSE, 0, NULL, NULL));
454 }
455
456 /*
457  * vm_pageout_flush() - launder the given pages
458  *
459  *      The given pages are laundered.  Note that we setup for the start of
460  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
461  *      reference count all in here rather then in the parent.  If we want
462  *      the parent to do more sophisticated things we may have to change
463  *      the ordering.
464  *
465  *      Returned runlen is the count of pages between mreq and first
466  *      page after mreq with status VM_PAGER_AGAIN.
467  *      *eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
468  *      for any page in runlen set.
469  */
470 int
471 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
472     boolean_t *eio)
473 {
474         vm_object_t object = mc[0]->object;
475         int pageout_status[count];
476         int numpagedout = 0;
477         int i, runlen;
478
479         VM_OBJECT_ASSERT_WLOCKED(object);
480
481         /*
482          * Initiate I/O.  Mark the pages shared busy and verify that they're
483          * valid and read-only.
484          *
485          * We do not have to fixup the clean/dirty bits here... we can
486          * allow the pager to do it after the I/O completes.
487          *
488          * NOTE! mc[i]->dirty may be partial or fragmented due to an
489          * edge case with file fragments.
490          */
491         for (i = 0; i < count; i++) {
492                 KASSERT(vm_page_all_valid(mc[i]),
493                     ("vm_pageout_flush: partially invalid page %p index %d/%d",
494                         mc[i], i, count));
495                 KASSERT((mc[i]->a.flags & PGA_WRITEABLE) == 0,
496                     ("vm_pageout_flush: writeable page %p", mc[i]));
497                 vm_page_busy_downgrade(mc[i]);
498         }
499         vm_object_pip_add(object, count);
500
501         vm_pager_put_pages(object, mc, count, flags, pageout_status);
502
503         runlen = count - mreq;
504         if (eio != NULL)
505                 *eio = FALSE;
506         for (i = 0; i < count; i++) {
507                 vm_page_t mt = mc[i];
508
509                 KASSERT(pageout_status[i] == VM_PAGER_PEND ||
510                     !pmap_page_is_write_mapped(mt),
511                     ("vm_pageout_flush: page %p is not write protected", mt));
512                 switch (pageout_status[i]) {
513                 case VM_PAGER_OK:
514                         vm_page_lock(mt);
515                         if (vm_page_in_laundry(mt))
516                                 vm_page_deactivate_noreuse(mt);
517                         vm_page_unlock(mt);
518                         /* FALLTHROUGH */
519                 case VM_PAGER_PEND:
520                         numpagedout++;
521                         break;
522                 case VM_PAGER_BAD:
523                         /*
524                          * The page is outside the object's range.  We pretend
525                          * that the page out worked and clean the page, so the
526                          * changes will be lost if the page is reclaimed by
527                          * the page daemon.
528                          */
529                         vm_page_undirty(mt);
530                         vm_page_lock(mt);
531                         if (vm_page_in_laundry(mt))
532                                 vm_page_deactivate_noreuse(mt);
533                         vm_page_unlock(mt);
534                         break;
535                 case VM_PAGER_ERROR:
536                 case VM_PAGER_FAIL:
537                         /*
538                          * If the page couldn't be paged out to swap because the
539                          * pager wasn't able to find space, place the page in
540                          * the PQ_UNSWAPPABLE holding queue.  This is an
541                          * optimization that prevents the page daemon from
542                          * wasting CPU cycles on pages that cannot be reclaimed
543                          * becase no swap device is configured.
544                          *
545                          * Otherwise, reactivate the page so that it doesn't
546                          * clog the laundry and inactive queues.  (We will try
547                          * paging it out again later.)
548                          */
549                         vm_page_lock(mt);
550                         if (object->type == OBJT_SWAP &&
551                             pageout_status[i] == VM_PAGER_FAIL) {
552                                 vm_page_unswappable(mt);
553                                 numpagedout++;
554                         } else
555                                 vm_page_activate(mt);
556                         vm_page_unlock(mt);
557                         if (eio != NULL && i >= mreq && i - mreq < runlen)
558                                 *eio = TRUE;
559                         break;
560                 case VM_PAGER_AGAIN:
561                         if (i >= mreq && i - mreq < runlen)
562                                 runlen = i - mreq;
563                         break;
564                 }
565
566                 /*
567                  * If the operation is still going, leave the page busy to
568                  * block all other accesses. Also, leave the paging in
569                  * progress indicator set so that we don't attempt an object
570                  * collapse.
571                  */
572                 if (pageout_status[i] != VM_PAGER_PEND) {
573                         vm_object_pip_wakeup(object);
574                         vm_page_sunbusy(mt);
575                 }
576         }
577         if (prunlen != NULL)
578                 *prunlen = runlen;
579         return (numpagedout);
580 }
581
582 static void
583 vm_pageout_swapon(void *arg __unused, struct swdevt *sp __unused)
584 {
585
586         atomic_store_rel_int(&swapdev_enabled, 1);
587 }
588
589 static void
590 vm_pageout_swapoff(void *arg __unused, struct swdevt *sp __unused)
591 {
592
593         if (swap_pager_nswapdev() == 1)
594                 atomic_store_rel_int(&swapdev_enabled, 0);
595 }
596
597 /*
598  * Attempt to acquire all of the necessary locks to launder a page and
599  * then call through the clustering layer to PUTPAGES.  Wait a short
600  * time for a vnode lock.
601  *
602  * Requires the page and object lock on entry, releases both before return.
603  * Returns 0 on success and an errno otherwise.
604  */
605 static int
606 vm_pageout_clean(vm_page_t m, int *numpagedout)
607 {
608         struct vnode *vp;
609         struct mount *mp;
610         vm_object_t object;
611         vm_pindex_t pindex;
612         int error, lockmode;
613
614         vm_page_assert_locked(m);
615         object = m->object;
616         VM_OBJECT_ASSERT_WLOCKED(object);
617         error = 0;
618         vp = NULL;
619         mp = NULL;
620
621         /*
622          * The object is already known NOT to be dead.   It
623          * is possible for the vget() to block the whole
624          * pageout daemon, but the new low-memory handling
625          * code should prevent it.
626          *
627          * We can't wait forever for the vnode lock, we might
628          * deadlock due to a vn_read() getting stuck in
629          * vm_wait while holding this vnode.  We skip the 
630          * vnode if we can't get it in a reasonable amount
631          * of time.
632          */
633         if (object->type == OBJT_VNODE) {
634                 vm_page_unlock(m);
635                 vm_page_xunbusy(m);
636                 vp = object->handle;
637                 if (vp->v_type == VREG &&
638                     vn_start_write(vp, &mp, V_NOWAIT) != 0) {
639                         mp = NULL;
640                         error = EDEADLK;
641                         goto unlock_all;
642                 }
643                 KASSERT(mp != NULL,
644                     ("vp %p with NULL v_mount", vp));
645                 vm_object_reference_locked(object);
646                 pindex = m->pindex;
647                 VM_OBJECT_WUNLOCK(object);
648                 lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
649                     LK_SHARED : LK_EXCLUSIVE;
650                 if (vget(vp, lockmode | LK_TIMELOCK, curthread)) {
651                         vp = NULL;
652                         error = EDEADLK;
653                         goto unlock_mp;
654                 }
655                 VM_OBJECT_WLOCK(object);
656
657                 /*
658                  * Ensure that the object and vnode were not disassociated
659                  * while locks were dropped.
660                  */
661                 if (vp->v_object != object) {
662                         error = ENOENT;
663                         goto unlock_all;
664                 }
665                 vm_page_lock(m);
666
667                 /*
668                  * While the object and page were unlocked, the page
669                  * may have been:
670                  * (1) moved to a different queue,
671                  * (2) reallocated to a different object,
672                  * (3) reallocated to a different offset, or
673                  * (4) cleaned.
674                  */
675                 if (!vm_page_in_laundry(m) || m->object != object ||
676                     m->pindex != pindex || m->dirty == 0) {
677                         vm_page_unlock(m);
678                         error = ENXIO;
679                         goto unlock_all;
680                 }
681
682                 /*
683                  * The page may have been busied while the object and page
684                  * locks were released.
685                  */
686                 if (vm_page_tryxbusy(m) == 0) {
687                         vm_page_unlock(m);
688                         error = EBUSY;
689                         goto unlock_all;
690                 }
691         }
692
693         /*
694          * Remove all writeable mappings, failing if the page is wired.
695          */
696         if (!vm_page_try_remove_write(m)) {
697                 vm_page_xunbusy(m);
698                 vm_page_unlock(m);
699                 error = EBUSY;
700                 goto unlock_all;
701         }
702         vm_page_unlock(m);
703
704         /*
705          * If a page is dirty, then it is either being washed
706          * (but not yet cleaned) or it is still in the
707          * laundry.  If it is still in the laundry, then we
708          * start the cleaning operation. 
709          */
710         if ((*numpagedout = vm_pageout_cluster(m)) == 0)
711                 error = EIO;
712
713 unlock_all:
714         VM_OBJECT_WUNLOCK(object);
715
716 unlock_mp:
717         vm_page_lock_assert(m, MA_NOTOWNED);
718         if (mp != NULL) {
719                 if (vp != NULL)
720                         vput(vp);
721                 vm_object_deallocate(object);
722                 vn_finished_write(mp);
723         }
724
725         return (error);
726 }
727
728 /*
729  * Attempt to launder the specified number of pages.
730  *
731  * Returns the number of pages successfully laundered.
732  */
733 static int
734 vm_pageout_launder(struct vm_domain *vmd, int launder, bool in_shortfall)
735 {
736         struct scan_state ss;
737         struct vm_pagequeue *pq;
738         struct mtx *mtx;
739         vm_object_t object;
740         vm_page_t m, marker;
741         vm_page_astate_t new, old;
742         int act_delta, error, numpagedout, queue, refs, starting_target;
743         int vnodes_skipped;
744         bool pageout_ok;
745
746         mtx = NULL;
747         object = NULL;
748         starting_target = launder;
749         vnodes_skipped = 0;
750
751         /*
752          * Scan the laundry queues for pages eligible to be laundered.  We stop
753          * once the target number of dirty pages have been laundered, or once
754          * we've reached the end of the queue.  A single iteration of this loop
755          * may cause more than one page to be laundered because of clustering.
756          *
757          * As an optimization, we avoid laundering from PQ_UNSWAPPABLE when no
758          * swap devices are configured.
759          */
760         if (atomic_load_acq_int(&swapdev_enabled))
761                 queue = PQ_UNSWAPPABLE;
762         else
763                 queue = PQ_LAUNDRY;
764
765 scan:
766         marker = &vmd->vmd_markers[queue];
767         pq = &vmd->vmd_pagequeues[queue];
768         vm_pagequeue_lock(pq);
769         vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
770         while (launder > 0 && (m = vm_pageout_next(&ss, false)) != NULL) {
771                 if (__predict_false((m->flags & PG_MARKER) != 0))
772                         continue;
773
774                 vm_page_change_lock(m, &mtx);
775
776 recheck:
777                 /*
778                  * Don't touch a page that was removed from the queue after the
779                  * page queue lock was released.  Otherwise, ensure that any
780                  * pending queue operations, such as dequeues for wired pages,
781                  * are handled.
782                  */
783                 if (vm_pageout_defer(m, queue, true))
784                         continue;
785
786                 if (object != m->object) {
787                         if (object != NULL)
788                                 VM_OBJECT_WUNLOCK(object);
789
790                         /*
791                          * A page's object pointer may be set to NULL before
792                          * the object lock is acquired.
793                          */
794                         object = (vm_object_t)atomic_load_ptr(&m->object);
795                         if (object != NULL && !VM_OBJECT_TRYWLOCK(object)) {
796                                 mtx_unlock(mtx);
797                                 /* Depends on type-stability. */
798                                 VM_OBJECT_WLOCK(object);
799                                 mtx_lock(mtx);
800                                 goto recheck;
801                         }
802                 }
803                 if (__predict_false(m->object == NULL))
804                         /*
805                          * The page has been removed from its object.
806                          */
807                         continue;
808                 KASSERT(m->object == object, ("page %p does not belong to %p",
809                     m, object));
810
811                 if (vm_page_tryxbusy(m) == 0)
812                         continue;
813
814                 /*
815                  * Check for wirings now that we hold the object lock and have
816                  * verified that the page is unbusied.  If the page is mapped,
817                  * it may still be wired by pmap lookups.  The call to
818                  * vm_page_try_remove_all() below atomically checks for such
819                  * wirings and removes mappings.  If the page is unmapped, the
820                  * wire count is guaranteed not to increase.
821                  */
822                 if (__predict_false(vm_page_wired(m))) {
823                         vm_page_dequeue_deferred(m);
824                         goto skip_page;
825                 }
826
827                 /*
828                  * Invalid pages can be easily freed.  They cannot be
829                  * mapped; vm_page_free() asserts this.
830                  */
831                 if (vm_page_none_valid(m))
832                         goto free_page;
833
834                 refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0;
835
836                 for (old = vm_page_astate_load(m);;) {
837                         /*
838                          * Check to see if the page has been removed from the
839                          * queue since the first such check.  Leave it alone if
840                          * so, discarding any references collected by
841                          * pmap_ts_referenced().
842                          */
843                         if (__predict_false(_vm_page_queue(old) == PQ_NONE))
844                                 goto skip_page;
845
846                         new = old;
847                         act_delta = refs;
848                         if ((old.flags & PGA_REFERENCED) != 0) {
849                                 new.flags &= ~PGA_REFERENCED;
850                                 act_delta++;
851                         }
852                         if (act_delta == 0) {
853                                 ;
854                         } else if (object->ref_count != 0) {
855                                 /*
856                                  * Increase the activation count if the page was
857                                  * referenced while in the laundry queue.  This
858                                  * makes it less likely that the page will be
859                                  * returned prematurely to the laundry queue.
860                                  */
861                                 new.act_count += ACT_ADVANCE +
862                                     act_delta;
863                                 if (new.act_count > ACT_MAX)
864                                         new.act_count = ACT_MAX;
865
866                                 new.flags |= PGA_REQUEUE;
867                                 new.queue = PQ_ACTIVE;
868                                 if (!vm_page_pqstate_commit(m, &old, new))
869                                         continue;
870
871                                 /*
872                                  * If this was a background laundering, count
873                                  * activated pages towards our target.  The
874                                  * purpose of background laundering is to ensure
875                                  * that pages are eventually cycled through the
876                                  * laundry queue, and an activation is a valid
877                                  * way out.
878                                  */
879                                 if (!in_shortfall)
880                                         launder--;
881                                 VM_CNT_INC(v_reactivated);
882                                 goto skip_page;
883                         } else if ((object->flags & OBJ_DEAD) == 0) {
884                                 new.flags |= PGA_REQUEUE;
885                                 if (!vm_page_pqstate_commit(m, &old, new))
886                                         continue;
887                                 goto skip_page;
888                         }
889                         break;
890                 }
891
892                 /*
893                  * If the page appears to be clean at the machine-independent
894                  * layer, then remove all of its mappings from the pmap in
895                  * anticipation of freeing it.  If, however, any of the page's
896                  * mappings allow write access, then the page may still be
897                  * modified until the last of those mappings are removed.
898                  */
899                 if (object->ref_count != 0) {
900                         vm_page_test_dirty(m);
901                         if (m->dirty == 0 && !vm_page_try_remove_all(m)) {
902                                 vm_page_dequeue_deferred(m);
903                                 goto skip_page;
904                         }
905                 }
906
907                 /*
908                  * Clean pages are freed, and dirty pages are paged out unless
909                  * they belong to a dead object.  Requeueing dirty pages from
910                  * dead objects is pointless, as they are being paged out and
911                  * freed by the thread that destroyed the object.
912                  */
913                 if (m->dirty == 0) {
914 free_page:
915                         vm_page_free(m);
916                         VM_CNT_INC(v_dfree);
917                 } else if ((object->flags & OBJ_DEAD) == 0) {
918                         if (object->type != OBJT_SWAP &&
919                             object->type != OBJT_DEFAULT)
920                                 pageout_ok = true;
921                         else if (disable_swap_pageouts)
922                                 pageout_ok = false;
923                         else
924                                 pageout_ok = true;
925                         if (!pageout_ok) {
926                                 vm_page_launder(m);
927                                 goto skip_page;
928                         }
929
930                         /*
931                          * Form a cluster with adjacent, dirty pages from the
932                          * same object, and page out that entire cluster.
933                          *
934                          * The adjacent, dirty pages must also be in the
935                          * laundry.  However, their mappings are not checked
936                          * for new references.  Consequently, a recently
937                          * referenced page may be paged out.  However, that
938                          * page will not be prematurely reclaimed.  After page
939                          * out, the page will be placed in the inactive queue,
940                          * where any new references will be detected and the
941                          * page reactivated.
942                          */
943                         error = vm_pageout_clean(m, &numpagedout);
944                         if (error == 0) {
945                                 launder -= numpagedout;
946                                 ss.scanned += numpagedout;
947                         } else if (error == EDEADLK) {
948                                 pageout_lock_miss++;
949                                 vnodes_skipped++;
950                         }
951                         mtx = NULL;
952                         object = NULL;
953                 } else {
954 skip_page:
955                         vm_page_xunbusy(m);
956                 }
957         }
958         if (mtx != NULL) {
959                 mtx_unlock(mtx);
960                 mtx = NULL;
961         }
962         if (object != NULL) {
963                 VM_OBJECT_WUNLOCK(object);
964                 object = NULL;
965         }
966         vm_pagequeue_lock(pq);
967         vm_pageout_end_scan(&ss);
968         vm_pagequeue_unlock(pq);
969
970         if (launder > 0 && queue == PQ_UNSWAPPABLE) {
971                 queue = PQ_LAUNDRY;
972                 goto scan;
973         }
974
975         /*
976          * Wakeup the sync daemon if we skipped a vnode in a writeable object
977          * and we didn't launder enough pages.
978          */
979         if (vnodes_skipped > 0 && launder > 0)
980                 (void)speedup_syncer();
981
982         return (starting_target - launder);
983 }
984
985 /*
986  * Compute the integer square root.
987  */
988 static u_int
989 isqrt(u_int num)
990 {
991         u_int bit, root, tmp;
992
993         bit = num != 0 ? (1u << ((fls(num) - 1) & ~1)) : 0;
994         root = 0;
995         while (bit != 0) {
996                 tmp = root + bit;
997                 root >>= 1;
998                 if (num >= tmp) {
999                         num -= tmp;
1000                         root += bit;
1001                 }
1002                 bit >>= 2;
1003         }
1004         return (root);
1005 }
1006
1007 /*
1008  * Perform the work of the laundry thread: periodically wake up and determine
1009  * whether any pages need to be laundered.  If so, determine the number of pages
1010  * that need to be laundered, and launder them.
1011  */
1012 static void
1013 vm_pageout_laundry_worker(void *arg)
1014 {
1015         struct vm_domain *vmd;
1016         struct vm_pagequeue *pq;
1017         uint64_t nclean, ndirty, nfreed;
1018         int domain, last_target, launder, shortfall, shortfall_cycle, target;
1019         bool in_shortfall;
1020
1021         domain = (uintptr_t)arg;
1022         vmd = VM_DOMAIN(domain);
1023         pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
1024         KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
1025
1026         shortfall = 0;
1027         in_shortfall = false;
1028         shortfall_cycle = 0;
1029         last_target = target = 0;
1030         nfreed = 0;
1031
1032         /*
1033          * Calls to these handlers are serialized by the swap syscall lock.
1034          */
1035         (void)EVENTHANDLER_REGISTER(swapon, vm_pageout_swapon, vmd,
1036             EVENTHANDLER_PRI_ANY);
1037         (void)EVENTHANDLER_REGISTER(swapoff, vm_pageout_swapoff, vmd,
1038             EVENTHANDLER_PRI_ANY);
1039
1040         /*
1041          * The pageout laundry worker is never done, so loop forever.
1042          */
1043         for (;;) {
1044                 KASSERT(target >= 0, ("negative target %d", target));
1045                 KASSERT(shortfall_cycle >= 0,
1046                     ("negative cycle %d", shortfall_cycle));
1047                 launder = 0;
1048
1049                 /*
1050                  * First determine whether we need to launder pages to meet a
1051                  * shortage of free pages.
1052                  */
1053                 if (shortfall > 0) {
1054                         in_shortfall = true;
1055                         shortfall_cycle = VM_LAUNDER_RATE / VM_INACT_SCAN_RATE;
1056                         target = shortfall;
1057                 } else if (!in_shortfall)
1058                         goto trybackground;
1059                 else if (shortfall_cycle == 0 || vm_laundry_target(vmd) <= 0) {
1060                         /*
1061                          * We recently entered shortfall and began laundering
1062                          * pages.  If we have completed that laundering run
1063                          * (and we are no longer in shortfall) or we have met
1064                          * our laundry target through other activity, then we
1065                          * can stop laundering pages.
1066                          */
1067                         in_shortfall = false;
1068                         target = 0;
1069                         goto trybackground;
1070                 }
1071                 launder = target / shortfall_cycle--;
1072                 goto dolaundry;
1073
1074                 /*
1075                  * There's no immediate need to launder any pages; see if we
1076                  * meet the conditions to perform background laundering:
1077                  *
1078                  * 1. The ratio of dirty to clean inactive pages exceeds the
1079                  *    background laundering threshold, or
1080                  * 2. we haven't yet reached the target of the current
1081                  *    background laundering run.
1082                  *
1083                  * The background laundering threshold is not a constant.
1084                  * Instead, it is a slowly growing function of the number of
1085                  * clean pages freed by the page daemon since the last
1086                  * background laundering.  Thus, as the ratio of dirty to
1087                  * clean inactive pages grows, the amount of memory pressure
1088                  * required to trigger laundering decreases.  We ensure
1089                  * that the threshold is non-zero after an inactive queue
1090                  * scan, even if that scan failed to free a single clean page.
1091                  */
1092 trybackground:
1093                 nclean = vmd->vmd_free_count +
1094                     vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt;
1095                 ndirty = vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt;
1096                 if (target == 0 && ndirty * isqrt(howmany(nfreed + 1,
1097                     vmd->vmd_free_target - vmd->vmd_free_min)) >= nclean) {
1098                         target = vmd->vmd_background_launder_target;
1099                 }
1100
1101                 /*
1102                  * We have a non-zero background laundering target.  If we've
1103                  * laundered up to our maximum without observing a page daemon
1104                  * request, just stop.  This is a safety belt that ensures we
1105                  * don't launder an excessive amount if memory pressure is low
1106                  * and the ratio of dirty to clean pages is large.  Otherwise,
1107                  * proceed at the background laundering rate.
1108                  */
1109                 if (target > 0) {
1110                         if (nfreed > 0) {
1111                                 nfreed = 0;
1112                                 last_target = target;
1113                         } else if (last_target - target >=
1114                             vm_background_launder_max * PAGE_SIZE / 1024) {
1115                                 target = 0;
1116                         }
1117                         launder = vm_background_launder_rate * PAGE_SIZE / 1024;
1118                         launder /= VM_LAUNDER_RATE;
1119                         if (launder > target)
1120                                 launder = target;
1121                 }
1122
1123 dolaundry:
1124                 if (launder > 0) {
1125                         /*
1126                          * Because of I/O clustering, the number of laundered
1127                          * pages could exceed "target" by the maximum size of
1128                          * a cluster minus one. 
1129                          */
1130                         target -= min(vm_pageout_launder(vmd, launder,
1131                             in_shortfall), target);
1132                         pause("laundp", hz / VM_LAUNDER_RATE);
1133                 }
1134
1135                 /*
1136                  * If we're not currently laundering pages and the page daemon
1137                  * hasn't posted a new request, sleep until the page daemon
1138                  * kicks us.
1139                  */
1140                 vm_pagequeue_lock(pq);
1141                 if (target == 0 && vmd->vmd_laundry_request == VM_LAUNDRY_IDLE)
1142                         (void)mtx_sleep(&vmd->vmd_laundry_request,
1143                             vm_pagequeue_lockptr(pq), PVM, "launds", 0);
1144
1145                 /*
1146                  * If the pagedaemon has indicated that it's in shortfall, start
1147                  * a shortfall laundering unless we're already in the middle of
1148                  * one.  This may preempt a background laundering.
1149                  */
1150                 if (vmd->vmd_laundry_request == VM_LAUNDRY_SHORTFALL &&
1151                     (!in_shortfall || shortfall_cycle == 0)) {
1152                         shortfall = vm_laundry_target(vmd) +
1153                             vmd->vmd_pageout_deficit;
1154                         target = 0;
1155                 } else
1156                         shortfall = 0;
1157
1158                 if (target == 0)
1159                         vmd->vmd_laundry_request = VM_LAUNDRY_IDLE;
1160                 nfreed += vmd->vmd_clean_pages_freed;
1161                 vmd->vmd_clean_pages_freed = 0;
1162                 vm_pagequeue_unlock(pq);
1163         }
1164 }
1165
1166 /*
1167  * Compute the number of pages we want to try to move from the
1168  * active queue to either the inactive or laundry queue.
1169  *
1170  * When scanning active pages during a shortage, we make clean pages
1171  * count more heavily towards the page shortage than dirty pages.
1172  * This is because dirty pages must be laundered before they can be
1173  * reused and thus have less utility when attempting to quickly
1174  * alleviate a free page shortage.  However, this weighting also
1175  * causes the scan to deactivate dirty pages more aggressively,
1176  * improving the effectiveness of clustering.
1177  */
1178 static int
1179 vm_pageout_active_target(struct vm_domain *vmd)
1180 {
1181         int shortage;
1182
1183         shortage = vmd->vmd_inactive_target + vm_paging_target(vmd) -
1184             (vmd->vmd_pagequeues[PQ_INACTIVE].pq_cnt +
1185             vmd->vmd_pagequeues[PQ_LAUNDRY].pq_cnt / act_scan_laundry_weight);
1186         shortage *= act_scan_laundry_weight;
1187         return (shortage);
1188 }
1189
1190 /*
1191  * Scan the active queue.  If there is no shortage of inactive pages, scan a
1192  * small portion of the queue in order to maintain quasi-LRU.
1193  */
1194 static void
1195 vm_pageout_scan_active(struct vm_domain *vmd, int page_shortage)
1196 {
1197         struct scan_state ss;
1198         struct mtx *mtx;
1199         vm_object_t object;
1200         vm_page_t m, marker;
1201         struct vm_pagequeue *pq;
1202         vm_page_astate_t old, new;
1203         long min_scan;
1204         int act_delta, max_scan, ps_delta, refs, scan_tick;
1205         uint8_t nqueue;
1206
1207         marker = &vmd->vmd_markers[PQ_ACTIVE];
1208         pq = &vmd->vmd_pagequeues[PQ_ACTIVE];
1209         vm_pagequeue_lock(pq);
1210
1211         /*
1212          * If we're just idle polling attempt to visit every
1213          * active page within 'update_period' seconds.
1214          */
1215         scan_tick = ticks;
1216         if (vm_pageout_update_period != 0) {
1217                 min_scan = pq->pq_cnt;
1218                 min_scan *= scan_tick - vmd->vmd_last_active_scan;
1219                 min_scan /= hz * vm_pageout_update_period;
1220         } else
1221                 min_scan = 0;
1222         if (min_scan > 0 || (page_shortage > 0 && pq->pq_cnt > 0))
1223                 vmd->vmd_last_active_scan = scan_tick;
1224
1225         /*
1226          * Scan the active queue for pages that can be deactivated.  Update
1227          * the per-page activity counter and use it to identify deactivation
1228          * candidates.  Held pages may be deactivated.
1229          *
1230          * To avoid requeuing each page that remains in the active queue, we
1231          * implement the CLOCK algorithm.  To keep the implementation of the
1232          * enqueue operation consistent for all page queues, we use two hands,
1233          * represented by marker pages. Scans begin at the first hand, which
1234          * precedes the second hand in the queue.  When the two hands meet,
1235          * they are moved back to the head and tail of the queue, respectively,
1236          * and scanning resumes.
1237          */
1238         max_scan = page_shortage > 0 ? pq->pq_cnt : min_scan;
1239         mtx = NULL;
1240 act_scan:
1241         vm_pageout_init_scan(&ss, pq, marker, &vmd->vmd_clock[0], max_scan);
1242         while ((m = vm_pageout_next(&ss, false)) != NULL) {
1243                 if (__predict_false(m == &vmd->vmd_clock[1])) {
1244                         vm_pagequeue_lock(pq);
1245                         TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
1246                         TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[1], plinks.q);
1247                         TAILQ_INSERT_HEAD(&pq->pq_pl, &vmd->vmd_clock[0],
1248                             plinks.q);
1249                         TAILQ_INSERT_TAIL(&pq->pq_pl, &vmd->vmd_clock[1],
1250                             plinks.q);
1251                         max_scan -= ss.scanned;
1252                         vm_pageout_end_scan(&ss);
1253                         goto act_scan;
1254                 }
1255                 if (__predict_false((m->flags & PG_MARKER) != 0))
1256                         continue;
1257
1258                 vm_page_change_lock(m, &mtx);
1259
1260                 /*
1261                  * Don't touch a page that was removed from the queue after the
1262                  * page queue lock was released.  Otherwise, ensure that any
1263                  * pending queue operations, such as dequeues for wired pages,
1264                  * are handled.
1265                  */
1266                 if (vm_pageout_defer(m, PQ_ACTIVE, true))
1267                         continue;
1268
1269                 /*
1270                  * A page's object pointer may be set to NULL before
1271                  * the object lock is acquired.
1272                  */
1273                 object = (vm_object_t)atomic_load_ptr(&m->object);
1274                 if (__predict_false(object == NULL))
1275                         /*
1276                          * The page has been removed from its object.
1277                          */
1278                         continue;
1279
1280                 /* Deferred free of swap space. */
1281                 if ((m->a.flags & PGA_SWAP_FREE) != 0 &&
1282                     VM_OBJECT_TRYWLOCK(object)) {
1283                         if (m->object == object)
1284                                 vm_pager_page_unswapped(m);
1285                         VM_OBJECT_WUNLOCK(object);
1286                 }
1287
1288                 /*
1289                  * Check to see "how much" the page has been used.
1290                  *
1291                  * Test PGA_REFERENCED after calling pmap_ts_referenced() so
1292                  * that a reference from a concurrently destroyed mapping is
1293                  * observed here and now.
1294                  *
1295                  * Perform an unsynchronized object ref count check.  While
1296                  * the page lock ensures that the page is not reallocated to
1297                  * another object, in particular, one with unmanaged mappings
1298                  * that cannot support pmap_ts_referenced(), two races are,
1299                  * nonetheless, possible:
1300                  * 1) The count was transitioning to zero, but we saw a non-
1301                  *    zero value.  pmap_ts_referenced() will return zero
1302                  *    because the page is not mapped.
1303                  * 2) The count was transitioning to one, but we saw zero.
1304                  *    This race delays the detection of a new reference.  At
1305                  *    worst, we will deactivate and reactivate the page.
1306                  */
1307                 refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0;
1308
1309                 old = vm_page_astate_load(m);
1310                 do {
1311                         /*
1312                          * Check to see if the page has been removed from the
1313                          * queue since the first such check.  Leave it alone if
1314                          * so, discarding any references collected by
1315                          * pmap_ts_referenced().
1316                          */
1317                         if (__predict_false(_vm_page_queue(old) == PQ_NONE))
1318                                 break;
1319
1320                         /*
1321                          * Advance or decay the act_count based on recent usage.
1322                          */
1323                         new = old;
1324                         act_delta = refs;
1325                         if ((old.flags & PGA_REFERENCED) != 0) {
1326                                 new.flags &= ~PGA_REFERENCED;
1327                                 act_delta++;
1328                         }
1329                         if (act_delta != 0) {
1330                                 new.act_count += ACT_ADVANCE + act_delta;
1331                                 if (new.act_count > ACT_MAX)
1332                                         new.act_count = ACT_MAX;
1333                         } else {
1334                                 new.act_count -= min(new.act_count,
1335                                     ACT_DECLINE);
1336                         }
1337
1338                         if (new.act_count > 0) {
1339                                 /*
1340                                  * Adjust the activation count and keep the page
1341                                  * in the active queue.  The count might be left
1342                                  * unchanged if it is saturated.  The page may
1343                                  * have been moved to a different queue since we
1344                                  * started the scan, in which case we move it
1345                                  * back.
1346                                  */
1347                                 ps_delta = 0;
1348                                 if (old.queue != PQ_ACTIVE) {
1349                                         old.queue = PQ_ACTIVE;
1350                                         old.flags |= PGA_REQUEUE;
1351                                 }
1352                         } else {
1353                                 /*
1354                                  * When not short for inactive pages, let dirty
1355                                  * pages go through the inactive queue before
1356                                  * moving to the laundry queue.  This gives them
1357                                  * some extra time to be reactivated,
1358                                  * potentially avoiding an expensive pageout.
1359                                  * However, during a page shortage, the inactive
1360                                  * queue is necessarily small, and so dirty
1361                                  * pages would only spend a trivial amount of
1362                                  * time in the inactive queue.  Therefore, we
1363                                  * might as well place them directly in the
1364                                  * laundry queue to reduce queuing overhead.
1365                                  *
1366                                  * Calling vm_page_test_dirty() here would
1367                                  * require acquisition of the object's write
1368                                  * lock.  However, during a page shortage,
1369                                  * directing dirty pages into the laundry queue
1370                                  * is only an optimization and not a
1371                                  * requirement.  Therefore, we simply rely on
1372                                  * the opportunistic updates to the page's dirty
1373                                  * field by the pmap.
1374                                  */
1375                                 if (page_shortage <= 0) {
1376                                         nqueue = PQ_INACTIVE;
1377                                         ps_delta = 0;
1378                                 } else if (m->dirty == 0) {
1379                                         nqueue = PQ_INACTIVE;
1380                                         ps_delta = act_scan_laundry_weight;
1381                                 } else {
1382                                         nqueue = PQ_LAUNDRY;
1383                                         ps_delta = 1;
1384                                 }
1385
1386                                 new.flags |= PGA_REQUEUE;
1387                                 new.queue = nqueue;
1388                         }
1389                 } while (!vm_page_pqstate_commit(m, &old, new));
1390
1391                 page_shortage -= ps_delta;
1392         }
1393         if (mtx != NULL) {
1394                 mtx_unlock(mtx);
1395                 mtx = NULL;
1396         }
1397         vm_pagequeue_lock(pq);
1398         TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_clock[0], plinks.q);
1399         TAILQ_INSERT_AFTER(&pq->pq_pl, marker, &vmd->vmd_clock[0], plinks.q);
1400         vm_pageout_end_scan(&ss);
1401         vm_pagequeue_unlock(pq);
1402 }
1403
1404 static int
1405 vm_pageout_reinsert_inactive_page(struct vm_pagequeue *pq, vm_page_t marker,
1406     vm_page_t m)
1407 {
1408         vm_page_astate_t as;
1409
1410         vm_pagequeue_assert_locked(pq);
1411
1412         as = vm_page_astate_load(m);
1413         if (as.queue != PQ_INACTIVE || (as.flags & PGA_ENQUEUED) != 0)
1414                 return (0);
1415         vm_page_aflag_set(m, PGA_ENQUEUED);
1416         TAILQ_INSERT_BEFORE(marker, m, plinks.q);
1417         return (1);
1418 }
1419
1420 /*
1421  * Re-add stuck pages to the inactive queue.  We will examine them again
1422  * during the next scan.  If the queue state of a page has changed since
1423  * it was physically removed from the page queue in
1424  * vm_pageout_collect_batch(), don't do anything with that page.
1425  */
1426 static void
1427 vm_pageout_reinsert_inactive(struct scan_state *ss, struct vm_batchqueue *bq,
1428     vm_page_t m)
1429 {
1430         struct vm_pagequeue *pq;
1431         vm_page_t marker;
1432         int delta;
1433
1434         delta = 0;
1435         marker = ss->marker;
1436         pq = ss->pq;
1437
1438         if (m != NULL) {
1439                 if (vm_batchqueue_insert(bq, m))
1440                         return;
1441                 vm_pagequeue_lock(pq);
1442                 delta += vm_pageout_reinsert_inactive_page(pq, marker, m);
1443         } else
1444                 vm_pagequeue_lock(pq);
1445         while ((m = vm_batchqueue_pop(bq)) != NULL)
1446                 delta += vm_pageout_reinsert_inactive_page(pq, marker, m);
1447         vm_pagequeue_cnt_add(pq, delta);
1448         vm_pagequeue_unlock(pq);
1449         vm_batchqueue_init(bq);
1450 }
1451
1452 /*
1453  * Attempt to reclaim the requested number of pages from the inactive queue.
1454  * Returns true if the shortage was addressed.
1455  */
1456 static int
1457 vm_pageout_scan_inactive(struct vm_domain *vmd, int shortage,
1458     int *addl_shortage)
1459 {
1460         struct scan_state ss;
1461         struct vm_batchqueue rq;
1462         struct mtx *mtx;
1463         vm_page_t m, marker;
1464         struct vm_pagequeue *pq;
1465         vm_object_t object;
1466         vm_page_astate_t old, new;
1467         int act_delta, addl_page_shortage, deficit, page_shortage, refs;
1468         int starting_page_shortage;
1469
1470         /*
1471          * The addl_page_shortage is an estimate of the number of temporarily
1472          * stuck pages in the inactive queue.  In other words, the
1473          * number of pages from the inactive count that should be
1474          * discounted in setting the target for the active queue scan.
1475          */
1476         addl_page_shortage = 0;
1477
1478         /*
1479          * vmd_pageout_deficit counts the number of pages requested in
1480          * allocations that failed because of a free page shortage.  We assume
1481          * that the allocations will be reattempted and thus include the deficit
1482          * in our scan target.
1483          */
1484         deficit = atomic_readandclear_int(&vmd->vmd_pageout_deficit);
1485         starting_page_shortage = page_shortage = shortage + deficit;
1486
1487         mtx = NULL;
1488         object = NULL;
1489         vm_batchqueue_init(&rq);
1490
1491         /*
1492          * Start scanning the inactive queue for pages that we can free.  The
1493          * scan will stop when we reach the target or we have scanned the
1494          * entire queue.  (Note that m->a.act_count is not used to make
1495          * decisions for the inactive queue, only for the active queue.)
1496          */
1497         marker = &vmd->vmd_markers[PQ_INACTIVE];
1498         pq = &vmd->vmd_pagequeues[PQ_INACTIVE];
1499         vm_pagequeue_lock(pq);
1500         vm_pageout_init_scan(&ss, pq, marker, NULL, pq->pq_cnt);
1501         while (page_shortage > 0 && (m = vm_pageout_next(&ss, true)) != NULL) {
1502                 KASSERT((m->flags & PG_MARKER) == 0,
1503                     ("marker page %p was dequeued", m));
1504
1505                 vm_page_change_lock(m, &mtx);
1506
1507 recheck:
1508                 /*
1509                  * Don't touch a page that was removed from the queue after the
1510                  * page queue lock was released.  Otherwise, ensure that any
1511                  * pending queue operations, such as dequeues for wired pages,
1512                  * are handled.
1513                  */
1514                 if (vm_pageout_defer(m, PQ_INACTIVE, false))
1515                         continue;
1516
1517                 if (object != m->object) {
1518                         if (object != NULL)
1519                                 VM_OBJECT_WUNLOCK(object);
1520
1521                         /*
1522                          * A page's object pointer may be set to NULL before
1523                          * the object lock is acquired.
1524                          */
1525                         object = (vm_object_t)atomic_load_ptr(&m->object);
1526                         if (object != NULL && !VM_OBJECT_TRYWLOCK(object)) {
1527                                 mtx_unlock(mtx);
1528                                 /* Depends on type-stability. */
1529                                 VM_OBJECT_WLOCK(object);
1530                                 mtx_lock(mtx);
1531                                 goto recheck;
1532                         }
1533                 }
1534                 if (__predict_false(m->object == NULL))
1535                         /*
1536                          * The page has been removed from its object.
1537                          */
1538                         continue;
1539                 KASSERT(m->object == object, ("page %p does not belong to %p",
1540                     m, object));
1541
1542                 if (vm_page_tryxbusy(m) == 0) {
1543                         /*
1544                          * Don't mess with busy pages.  Leave them at
1545                          * the front of the queue.  Most likely, they
1546                          * are being paged out and will leave the
1547                          * queue shortly after the scan finishes.  So,
1548                          * they ought to be discounted from the
1549                          * inactive count.
1550                          */
1551                         addl_page_shortage++;
1552                         goto reinsert;
1553                 }
1554
1555                 /* Deferred free of swap space. */
1556                 if ((m->a.flags & PGA_SWAP_FREE) != 0)
1557                         vm_pager_page_unswapped(m);
1558
1559                 /*
1560                  * Re-check for wirings now that we hold the object lock and
1561                  * have verified that the page is unbusied.  If the page is
1562                  * mapped, it may still be wired by pmap lookups.  The call to
1563                  * vm_page_try_remove_all() below atomically checks for such
1564                  * wirings and removes mappings.  If the page is unmapped, the
1565                  * wire count is guaranteed not to increase.
1566                  */
1567                 if (__predict_false(vm_page_wired(m))) {
1568                         vm_page_dequeue_deferred(m);
1569                         goto skip_page;
1570                 }
1571
1572                 /*
1573                  * Invalid pages can be easily freed. They cannot be
1574                  * mapped, vm_page_free() asserts this.
1575                  */
1576                 if (vm_page_none_valid(m))
1577                         goto free_page;
1578
1579                 refs = object->ref_count != 0 ? pmap_ts_referenced(m) : 0;
1580
1581                 for (old = vm_page_astate_load(m);;) {
1582                         /*
1583                          * Check to see if the page has been removed from the
1584                          * queue since the first such check.  Leave it alone if
1585                          * so, discarding any references collected by
1586                          * pmap_ts_referenced().
1587                          */
1588                         if (__predict_false(_vm_page_queue(old) == PQ_NONE))
1589                                 goto skip_page;
1590
1591                         new = old;
1592                         act_delta = refs;
1593                         if ((old.flags & PGA_REFERENCED) != 0) {
1594                                 new.flags &= ~PGA_REFERENCED;
1595                                 act_delta++;
1596                         }
1597                         if (act_delta == 0) {
1598                                 ;
1599                         } else if (object->ref_count != 0) {
1600                                 /*
1601                                  * Increase the activation count if the
1602                                  * page was referenced while in the
1603                                  * inactive queue.  This makes it less
1604                                  * likely that the page will be returned
1605                                  * prematurely to the inactive queue.
1606                                  */
1607                                 new.act_count += ACT_ADVANCE +
1608                                     act_delta;
1609                                 if (new.act_count > ACT_MAX)
1610                                         new.act_count = ACT_MAX;
1611
1612                                 new.flags |= PGA_REQUEUE;
1613                                 new.queue = PQ_ACTIVE;
1614                                 if (!vm_page_pqstate_commit(m, &old, new))
1615                                         continue;
1616
1617                                 VM_CNT_INC(v_reactivated);
1618                                 goto skip_page;
1619                         } else if ((object->flags & OBJ_DEAD) == 0) {
1620                                 new.queue = PQ_INACTIVE;
1621                                 new.flags |= PGA_REQUEUE;
1622                                 if (!vm_page_pqstate_commit(m, &old, new))
1623                                         continue;
1624                                 goto skip_page;
1625                         }
1626                         break;
1627                 }
1628
1629                 /*
1630                  * If the page appears to be clean at the machine-independent
1631                  * layer, then remove all of its mappings from the pmap in
1632                  * anticipation of freeing it.  If, however, any of the page's
1633                  * mappings allow write access, then the page may still be
1634                  * modified until the last of those mappings are removed.
1635                  */
1636                 if (object->ref_count != 0) {
1637                         vm_page_test_dirty(m);
1638                         if (m->dirty == 0 && !vm_page_try_remove_all(m)) {
1639                                 vm_page_dequeue_deferred(m);
1640                                 goto skip_page;
1641                         }
1642                 }
1643
1644                 /*
1645                  * Clean pages can be freed, but dirty pages must be sent back
1646                  * to the laundry, unless they belong to a dead object.
1647                  * Requeueing dirty pages from dead objects is pointless, as
1648                  * they are being paged out and freed by the thread that
1649                  * destroyed the object.
1650                  */
1651                 if (m->dirty == 0) {
1652 free_page:
1653                         /*
1654                          * Because we dequeued the page and have already
1655                          * checked for concurrent dequeue and enqueue
1656                          * requests, we can safely disassociate the page
1657                          * from the inactive queue.
1658                          */
1659                         KASSERT((m->a.flags & PGA_QUEUE_STATE_MASK) == 0,
1660                             ("page %p has queue state", m));
1661                         m->a.queue = PQ_NONE;
1662                         vm_page_free(m);
1663                         page_shortage--;
1664                         continue;
1665                 }
1666                 if ((object->flags & OBJ_DEAD) == 0)
1667                         vm_page_launder(m);
1668 skip_page:
1669                 vm_page_xunbusy(m);
1670                 continue;
1671 reinsert:
1672                 vm_pageout_reinsert_inactive(&ss, &rq, m);
1673         }
1674         if (mtx != NULL)
1675                 mtx_unlock(mtx);
1676         if (object != NULL)
1677                 VM_OBJECT_WUNLOCK(object);
1678         vm_pageout_reinsert_inactive(&ss, &rq, NULL);
1679         vm_pageout_reinsert_inactive(&ss, &ss.bq, NULL);
1680         vm_pagequeue_lock(pq);
1681         vm_pageout_end_scan(&ss);
1682         vm_pagequeue_unlock(pq);
1683
1684         VM_CNT_ADD(v_dfree, starting_page_shortage - page_shortage);
1685
1686         /*
1687          * Wake up the laundry thread so that it can perform any needed
1688          * laundering.  If we didn't meet our target, we're in shortfall and
1689          * need to launder more aggressively.  If PQ_LAUNDRY is empty and no
1690          * swap devices are configured, the laundry thread has no work to do, so
1691          * don't bother waking it up.
1692          *
1693          * The laundry thread uses the number of inactive queue scans elapsed
1694          * since the last laundering to determine whether to launder again, so
1695          * keep count.
1696          */
1697         if (starting_page_shortage > 0) {
1698                 pq = &vmd->vmd_pagequeues[PQ_LAUNDRY];
1699                 vm_pagequeue_lock(pq);
1700                 if (vmd->vmd_laundry_request == VM_LAUNDRY_IDLE &&
1701                     (pq->pq_cnt > 0 || atomic_load_acq_int(&swapdev_enabled))) {
1702                         if (page_shortage > 0) {
1703                                 vmd->vmd_laundry_request = VM_LAUNDRY_SHORTFALL;
1704                                 VM_CNT_INC(v_pdshortfalls);
1705                         } else if (vmd->vmd_laundry_request !=
1706                             VM_LAUNDRY_SHORTFALL)
1707                                 vmd->vmd_laundry_request =
1708                                     VM_LAUNDRY_BACKGROUND;
1709                         wakeup(&vmd->vmd_laundry_request);
1710                 }
1711                 vmd->vmd_clean_pages_freed +=
1712                     starting_page_shortage - page_shortage;
1713                 vm_pagequeue_unlock(pq);
1714         }
1715
1716         /*
1717          * Wakeup the swapout daemon if we didn't free the targeted number of
1718          * pages.
1719          */
1720         if (page_shortage > 0)
1721                 vm_swapout_run();
1722
1723         /*
1724          * If the inactive queue scan fails repeatedly to meet its
1725          * target, kill the largest process.
1726          */
1727         vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage);
1728
1729         /*
1730          * Reclaim pages by swapping out idle processes, if configured to do so.
1731          */
1732         vm_swapout_run_idle();
1733
1734         /*
1735          * See the description of addl_page_shortage above.
1736          */
1737         *addl_shortage = addl_page_shortage + deficit;
1738
1739         return (page_shortage <= 0);
1740 }
1741
1742 static int vm_pageout_oom_vote;
1743
1744 /*
1745  * The pagedaemon threads randlomly select one to perform the
1746  * OOM.  Trying to kill processes before all pagedaemons
1747  * failed to reach free target is premature.
1748  */
1749 static void
1750 vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
1751     int starting_page_shortage)
1752 {
1753         int old_vote;
1754
1755         if (starting_page_shortage <= 0 || starting_page_shortage !=
1756             page_shortage)
1757                 vmd->vmd_oom_seq = 0;
1758         else
1759                 vmd->vmd_oom_seq++;
1760         if (vmd->vmd_oom_seq < vm_pageout_oom_seq) {
1761                 if (vmd->vmd_oom) {
1762                         vmd->vmd_oom = FALSE;
1763                         atomic_subtract_int(&vm_pageout_oom_vote, 1);
1764                 }
1765                 return;
1766         }
1767
1768         /*
1769          * Do not follow the call sequence until OOM condition is
1770          * cleared.
1771          */
1772         vmd->vmd_oom_seq = 0;
1773
1774         if (vmd->vmd_oom)
1775                 return;
1776
1777         vmd->vmd_oom = TRUE;
1778         old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1);
1779         if (old_vote != vm_ndomains - 1)
1780                 return;
1781
1782         /*
1783          * The current pagedaemon thread is the last in the quorum to
1784          * start OOM.  Initiate the selection and signaling of the
1785          * victim.
1786          */
1787         vm_pageout_oom(VM_OOM_MEM);
1788
1789         /*
1790          * After one round of OOM terror, recall our vote.  On the
1791          * next pass, current pagedaemon would vote again if the low
1792          * memory condition is still there, due to vmd_oom being
1793          * false.
1794          */
1795         vmd->vmd_oom = FALSE;
1796         atomic_subtract_int(&vm_pageout_oom_vote, 1);
1797 }
1798
1799 /*
1800  * The OOM killer is the page daemon's action of last resort when
1801  * memory allocation requests have been stalled for a prolonged period
1802  * of time because it cannot reclaim memory.  This function computes
1803  * the approximate number of physical pages that could be reclaimed if
1804  * the specified address space is destroyed.
1805  *
1806  * Private, anonymous memory owned by the address space is the
1807  * principal resource that we expect to recover after an OOM kill.
1808  * Since the physical pages mapped by the address space's COW entries
1809  * are typically shared pages, they are unlikely to be released and so
1810  * they are not counted.
1811  *
1812  * To get to the point where the page daemon runs the OOM killer, its
1813  * efforts to write-back vnode-backed pages may have stalled.  This
1814  * could be caused by a memory allocation deadlock in the write path
1815  * that might be resolved by an OOM kill.  Therefore, physical pages
1816  * belonging to vnode-backed objects are counted, because they might
1817  * be freed without being written out first if the address space holds
1818  * the last reference to an unlinked vnode.
1819  *
1820  * Similarly, physical pages belonging to OBJT_PHYS objects are
1821  * counted because the address space might hold the last reference to
1822  * the object.
1823  */
1824 static long
1825 vm_pageout_oom_pagecount(struct vmspace *vmspace)
1826 {
1827         vm_map_t map;
1828         vm_map_entry_t entry;
1829         vm_object_t obj;
1830         long res;
1831
1832         map = &vmspace->vm_map;
1833         KASSERT(!map->system_map, ("system map"));
1834         sx_assert(&map->lock, SA_LOCKED);
1835         res = 0;
1836         VM_MAP_ENTRY_FOREACH(entry, map) {
1837                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
1838                         continue;
1839                 obj = entry->object.vm_object;
1840                 if (obj == NULL)
1841                         continue;
1842                 if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 &&
1843                     obj->ref_count != 1)
1844                         continue;
1845                 switch (obj->type) {
1846                 case OBJT_DEFAULT:
1847                 case OBJT_SWAP:
1848                 case OBJT_PHYS:
1849                 case OBJT_VNODE:
1850                         res += obj->resident_page_count;
1851                         break;
1852                 }
1853         }
1854         return (res);
1855 }
1856
1857 static int vm_oom_ratelim_last;
1858 static int vm_oom_pf_secs = 10;
1859 SYSCTL_INT(_vm, OID_AUTO, oom_pf_secs, CTLFLAG_RWTUN, &vm_oom_pf_secs, 0,
1860     "");
1861 static struct mtx vm_oom_ratelim_mtx;
1862
1863 void
1864 vm_pageout_oom(int shortage)
1865 {
1866         struct proc *p, *bigproc;
1867         vm_offset_t size, bigsize;
1868         struct thread *td;
1869         struct vmspace *vm;
1870         int now;
1871         bool breakout;
1872
1873         /*
1874          * For OOM requests originating from vm_fault(), there is a high
1875          * chance that a single large process faults simultaneously in
1876          * several threads.  Also, on an active system running many
1877          * processes of middle-size, like buildworld, all of them
1878          * could fault almost simultaneously as well.
1879          *
1880          * To avoid killing too many processes, rate-limit OOMs
1881          * initiated by vm_fault() time-outs on the waits for free
1882          * pages.
1883          */
1884         mtx_lock(&vm_oom_ratelim_mtx);
1885         now = ticks;
1886         if (shortage == VM_OOM_MEM_PF &&
1887             (u_int)(now - vm_oom_ratelim_last) < hz * vm_oom_pf_secs) {
1888                 mtx_unlock(&vm_oom_ratelim_mtx);
1889                 return;
1890         }
1891         vm_oom_ratelim_last = now;
1892         mtx_unlock(&vm_oom_ratelim_mtx);
1893
1894         /*
1895          * We keep the process bigproc locked once we find it to keep anyone
1896          * from messing with it; however, there is a possibility of
1897          * deadlock if process B is bigproc and one of its child processes
1898          * attempts to propagate a signal to B while we are waiting for A's
1899          * lock while walking this list.  To avoid this, we don't block on
1900          * the process lock but just skip a process if it is already locked.
1901          */
1902         bigproc = NULL;
1903         bigsize = 0;
1904         sx_slock(&allproc_lock);
1905         FOREACH_PROC_IN_SYSTEM(p) {
1906                 PROC_LOCK(p);
1907
1908                 /*
1909                  * If this is a system, protected or killed process, skip it.
1910                  */
1911                 if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC |
1912                     P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 ||
1913                     p->p_pid == 1 || P_KILLED(p) ||
1914                     (p->p_pid < 48 && swap_pager_avail != 0)) {
1915                         PROC_UNLOCK(p);
1916                         continue;
1917                 }
1918                 /*
1919                  * If the process is in a non-running type state,
1920                  * don't touch it.  Check all the threads individually.
1921                  */
1922                 breakout = false;
1923                 FOREACH_THREAD_IN_PROC(p, td) {
1924                         thread_lock(td);
1925                         if (!TD_ON_RUNQ(td) &&
1926                             !TD_IS_RUNNING(td) &&
1927                             !TD_IS_SLEEPING(td) &&
1928                             !TD_IS_SUSPENDED(td) &&
1929                             !TD_IS_SWAPPED(td)) {
1930                                 thread_unlock(td);
1931                                 breakout = true;
1932                                 break;
1933                         }
1934                         thread_unlock(td);
1935                 }
1936                 if (breakout) {
1937                         PROC_UNLOCK(p);
1938                         continue;
1939                 }
1940                 /*
1941                  * get the process size
1942                  */
1943                 vm = vmspace_acquire_ref(p);
1944                 if (vm == NULL) {
1945                         PROC_UNLOCK(p);
1946                         continue;
1947                 }
1948                 _PHOLD_LITE(p);
1949                 PROC_UNLOCK(p);
1950                 sx_sunlock(&allproc_lock);
1951                 if (!vm_map_trylock_read(&vm->vm_map)) {
1952                         vmspace_free(vm);
1953                         sx_slock(&allproc_lock);
1954                         PRELE(p);
1955                         continue;
1956                 }
1957                 size = vmspace_swap_count(vm);
1958                 if (shortage == VM_OOM_MEM || shortage == VM_OOM_MEM_PF)
1959                         size += vm_pageout_oom_pagecount(vm);
1960                 vm_map_unlock_read(&vm->vm_map);
1961                 vmspace_free(vm);
1962                 sx_slock(&allproc_lock);
1963
1964                 /*
1965                  * If this process is bigger than the biggest one,
1966                  * remember it.
1967                  */
1968                 if (size > bigsize) {
1969                         if (bigproc != NULL)
1970                                 PRELE(bigproc);
1971                         bigproc = p;
1972                         bigsize = size;
1973                 } else {
1974                         PRELE(p);
1975                 }
1976         }
1977         sx_sunlock(&allproc_lock);
1978         if (bigproc != NULL) {
1979                 if (vm_panic_on_oom != 0)
1980                         panic("out of swap space");
1981                 PROC_LOCK(bigproc);
1982                 killproc(bigproc, "out of swap space");
1983                 sched_nice(bigproc, PRIO_MIN);
1984                 _PRELE(bigproc);
1985                 PROC_UNLOCK(bigproc);
1986         }
1987 }
1988
1989 /*
1990  * Signal a free page shortage to subsystems that have registered an event
1991  * handler.  Reclaim memory from UMA in the event of a severe shortage.
1992  * Return true if the free page count should be re-evaluated.
1993  */
1994 static bool
1995 vm_pageout_lowmem(void)
1996 {
1997         static int lowmem_ticks = 0;
1998         int last;
1999         bool ret;
2000
2001         ret = false;
2002
2003         last = atomic_load_int(&lowmem_ticks);
2004         while ((u_int)(ticks - last) / hz >= lowmem_period) {
2005                 if (atomic_fcmpset_int(&lowmem_ticks, &last, ticks) == 0)
2006                         continue;
2007
2008                 /*
2009                  * Decrease registered cache sizes.
2010                  */
2011                 SDT_PROBE0(vm, , , vm__lowmem_scan);
2012                 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_PAGES);
2013
2014                 /*
2015                  * We do this explicitly after the caches have been
2016                  * drained above.
2017                  */
2018                 uma_reclaim(UMA_RECLAIM_TRIM);
2019                 ret = true;
2020         }
2021
2022         /*
2023          * Kick off an asynchronous reclaim of cached memory if one of the
2024          * page daemons is failing to keep up with demand.  Use the "severe"
2025          * threshold instead of "min" to ensure that we do not blow away the
2026          * caches if a subset of the NUMA domains are depleted by kernel memory
2027          * allocations; the domainset iterators automatically skip domains
2028          * below the "min" threshold on the first pass.
2029          *
2030          * UMA reclaim worker has its own rate-limiting mechanism, so don't
2031          * worry about kicking it too often.
2032          */
2033         if (vm_page_count_severe())
2034                 uma_reclaim_wakeup();
2035
2036         return (ret);
2037 }
2038
2039 static void
2040 vm_pageout_worker(void *arg)
2041 {
2042         struct vm_domain *vmd;
2043         u_int ofree;
2044         int addl_shortage, domain, shortage;
2045         bool target_met;
2046
2047         domain = (uintptr_t)arg;
2048         vmd = VM_DOMAIN(domain);
2049         shortage = 0;
2050         target_met = true;
2051
2052         /*
2053          * XXXKIB It could be useful to bind pageout daemon threads to
2054          * the cores belonging to the domain, from which vm_page_array
2055          * is allocated.
2056          */
2057
2058         KASSERT(vmd->vmd_segs != 0, ("domain without segments"));
2059         vmd->vmd_last_active_scan = ticks;
2060
2061         /*
2062          * The pageout daemon worker is never done, so loop forever.
2063          */
2064         while (TRUE) {
2065                 vm_domain_pageout_lock(vmd);
2066
2067                 /*
2068                  * We need to clear wanted before we check the limits.  This
2069                  * prevents races with wakers who will check wanted after they
2070                  * reach the limit.
2071                  */
2072                 atomic_store_int(&vmd->vmd_pageout_wanted, 0);
2073
2074                 /*
2075                  * Might the page daemon need to run again?
2076                  */
2077                 if (vm_paging_needed(vmd, vmd->vmd_free_count)) {
2078                         /*
2079                          * Yes.  If the scan failed to produce enough free
2080                          * pages, sleep uninterruptibly for some time in the
2081                          * hope that the laundry thread will clean some pages.
2082                          */
2083                         vm_domain_pageout_unlock(vmd);
2084                         if (!target_met)
2085                                 pause("pwait", hz / VM_INACT_SCAN_RATE);
2086                 } else {
2087                         /*
2088                          * No, sleep until the next wakeup or until pages
2089                          * need to have their reference stats updated.
2090                          */
2091                         if (mtx_sleep(&vmd->vmd_pageout_wanted,
2092                             vm_domain_pageout_lockptr(vmd), PDROP | PVM,
2093                             "psleep", hz / VM_INACT_SCAN_RATE) == 0)
2094                                 VM_CNT_INC(v_pdwakeups);
2095                 }
2096
2097                 /* Prevent spurious wakeups by ensuring that wanted is set. */
2098                 atomic_store_int(&vmd->vmd_pageout_wanted, 1);
2099
2100                 /*
2101                  * Use the controller to calculate how many pages to free in
2102                  * this interval, and scan the inactive queue.  If the lowmem
2103                  * handlers appear to have freed up some pages, subtract the
2104                  * difference from the inactive queue scan target.
2105                  */
2106                 shortage = pidctrl_daemon(&vmd->vmd_pid, vmd->vmd_free_count);
2107                 if (shortage > 0) {
2108                         ofree = vmd->vmd_free_count;
2109                         if (vm_pageout_lowmem() && vmd->vmd_free_count > ofree)
2110                                 shortage -= min(vmd->vmd_free_count - ofree,
2111                                     (u_int)shortage);
2112                         target_met = vm_pageout_scan_inactive(vmd, shortage,
2113                             &addl_shortage);
2114                 } else
2115                         addl_shortage = 0;
2116
2117                 /*
2118                  * Scan the active queue.  A positive value for shortage
2119                  * indicates that we must aggressively deactivate pages to avoid
2120                  * a shortfall.
2121                  */
2122                 shortage = vm_pageout_active_target(vmd) + addl_shortage;
2123                 vm_pageout_scan_active(vmd, shortage);
2124         }
2125 }
2126
2127 /*
2128  * Initialize basic pageout daemon settings.  See the comment above the
2129  * definition of vm_domain for some explanation of how these thresholds are
2130  * used.
2131  */
2132 static void
2133 vm_pageout_init_domain(int domain)
2134 {
2135         struct vm_domain *vmd;
2136         struct sysctl_oid *oid;
2137
2138         vmd = VM_DOMAIN(domain);
2139         vmd->vmd_interrupt_free_min = 2;
2140
2141         /*
2142          * v_free_reserved needs to include enough for the largest
2143          * swap pager structures plus enough for any pv_entry structs
2144          * when paging. 
2145          */
2146         vmd->vmd_pageout_free_min = 2 * MAXBSIZE / PAGE_SIZE +
2147             vmd->vmd_interrupt_free_min;
2148         vmd->vmd_free_reserved = vm_pageout_page_count +
2149             vmd->vmd_pageout_free_min + vmd->vmd_page_count / 768;
2150         vmd->vmd_free_min = vmd->vmd_page_count / 200;
2151         vmd->vmd_free_severe = vmd->vmd_free_min / 2;
2152         vmd->vmd_free_target = 4 * vmd->vmd_free_min + vmd->vmd_free_reserved;
2153         vmd->vmd_free_min += vmd->vmd_free_reserved;
2154         vmd->vmd_free_severe += vmd->vmd_free_reserved;
2155         vmd->vmd_inactive_target = (3 * vmd->vmd_free_target) / 2;
2156         if (vmd->vmd_inactive_target > vmd->vmd_free_count / 3)
2157                 vmd->vmd_inactive_target = vmd->vmd_free_count / 3;
2158
2159         /*
2160          * Set the default wakeup threshold to be 10% below the paging
2161          * target.  This keeps the steady state out of shortfall.
2162          */
2163         vmd->vmd_pageout_wakeup_thresh = (vmd->vmd_free_target / 10) * 9;
2164
2165         /*
2166          * Target amount of memory to move out of the laundry queue during a
2167          * background laundering.  This is proportional to the amount of system
2168          * memory.
2169          */
2170         vmd->vmd_background_launder_target = (vmd->vmd_free_target -
2171             vmd->vmd_free_min) / 10;
2172
2173         /* Initialize the pageout daemon pid controller. */
2174         pidctrl_init(&vmd->vmd_pid, hz / VM_INACT_SCAN_RATE,
2175             vmd->vmd_free_target, PIDCTRL_BOUND,
2176             PIDCTRL_KPD, PIDCTRL_KID, PIDCTRL_KDD);
2177         oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(vmd->vmd_oid), OID_AUTO,
2178             "pidctrl", CTLFLAG_RD, NULL, "");
2179         pidctrl_init_sysctl(&vmd->vmd_pid, SYSCTL_CHILDREN(oid));
2180 }
2181
2182 static void
2183 vm_pageout_init(void)
2184 {
2185         u_int freecount;
2186         int i;
2187
2188         /*
2189          * Initialize some paging parameters.
2190          */
2191         if (vm_cnt.v_page_count < 2000)
2192                 vm_pageout_page_count = 8;
2193
2194         freecount = 0;
2195         for (i = 0; i < vm_ndomains; i++) {
2196                 struct vm_domain *vmd;
2197
2198                 vm_pageout_init_domain(i);
2199                 vmd = VM_DOMAIN(i);
2200                 vm_cnt.v_free_reserved += vmd->vmd_free_reserved;
2201                 vm_cnt.v_free_target += vmd->vmd_free_target;
2202                 vm_cnt.v_free_min += vmd->vmd_free_min;
2203                 vm_cnt.v_inactive_target += vmd->vmd_inactive_target;
2204                 vm_cnt.v_pageout_free_min += vmd->vmd_pageout_free_min;
2205                 vm_cnt.v_interrupt_free_min += vmd->vmd_interrupt_free_min;
2206                 vm_cnt.v_free_severe += vmd->vmd_free_severe;
2207                 freecount += vmd->vmd_free_count;
2208         }
2209
2210         /*
2211          * Set interval in seconds for active scan.  We want to visit each
2212          * page at least once every ten minutes.  This is to prevent worst
2213          * case paging behaviors with stale active LRU.
2214          */
2215         if (vm_pageout_update_period == 0)
2216                 vm_pageout_update_period = 600;
2217
2218         if (vm_page_max_user_wired == 0)
2219                 vm_page_max_user_wired = freecount / 3;
2220 }
2221
2222 /*
2223  *     vm_pageout is the high level pageout daemon.
2224  */
2225 static void
2226 vm_pageout(void)
2227 {
2228         struct proc *p;
2229         struct thread *td;
2230         int error, first, i;
2231
2232         p = curproc;
2233         td = curthread;
2234
2235         mtx_init(&vm_oom_ratelim_mtx, "vmoomr", NULL, MTX_DEF);
2236         swap_pager_swap_init();
2237         for (first = -1, i = 0; i < vm_ndomains; i++) {
2238                 if (VM_DOMAIN_EMPTY(i)) {
2239                         if (bootverbose)
2240                                 printf("domain %d empty; skipping pageout\n",
2241                                     i);
2242                         continue;
2243                 }
2244                 if (first == -1)
2245                         first = i;
2246                 else {
2247                         error = kthread_add(vm_pageout_worker,
2248                             (void *)(uintptr_t)i, p, NULL, 0, 0, "dom%d", i);
2249                         if (error != 0)
2250                                 panic("starting pageout for domain %d: %d\n",
2251                                     i, error);
2252                 }
2253                 error = kthread_add(vm_pageout_laundry_worker,
2254                     (void *)(uintptr_t)i, p, NULL, 0, 0, "laundry: dom%d", i);
2255                 if (error != 0)
2256                         panic("starting laundry for domain %d: %d", i, error);
2257         }
2258         error = kthread_add(uma_reclaim_worker, NULL, p, NULL, 0, 0, "uma");
2259         if (error != 0)
2260                 panic("starting uma_reclaim helper, error %d\n", error);
2261
2262         snprintf(td->td_name, sizeof(td->td_name), "dom%d", first);
2263         vm_pageout_worker((void *)(uintptr_t)first);
2264 }
2265
2266 /*
2267  * Perform an advisory wakeup of the page daemon.
2268  */
2269 void
2270 pagedaemon_wakeup(int domain)
2271 {
2272         struct vm_domain *vmd;
2273
2274         vmd = VM_DOMAIN(domain);
2275         vm_domain_pageout_assert_unlocked(vmd);
2276         if (curproc == pageproc)
2277                 return;
2278
2279         if (atomic_fetchadd_int(&vmd->vmd_pageout_wanted, 1) == 0) {
2280                 vm_domain_pageout_lock(vmd);
2281                 atomic_store_int(&vmd->vmd_pageout_wanted, 1);
2282                 wakeup(&vmd->vmd_pageout_wanted);
2283                 vm_domain_pageout_unlock(vmd);
2284         }
2285 }