]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_pageout.c
Merge sendmail 8.14.5 to HEAD
[FreeBSD/FreeBSD.git] / sys / vm / vm_pageout.c
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  * Copyright (c) 2005 Yahoo! Technologies Norway AS
9  * All rights reserved.
10  *
11  * This code is derived from software contributed to Berkeley by
12  * The Mach Operating System project at Carnegie-Mellon University.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *      This product includes software developed by the University of
25  *      California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
43  *
44  *
45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46  * All rights reserved.
47  *
48  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49  *
50  * Permission to use, copy, modify and distribute this software and
51  * its documentation is hereby granted, provided that both the copyright
52  * notice and this permission notice appear in all copies of the
53  * software, derivative works or modified versions, and any portions
54  * thereof, and that both notices appear in supporting documentation.
55  *
56  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59  *
60  * Carnegie Mellon requests users of this software to return to
61  *
62  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63  *  School of Computer Science
64  *  Carnegie Mellon University
65  *  Pittsburgh PA 15213-3890
66  *
67  * any improvements or extensions that they make and grant Carnegie the
68  * rights to redistribute these changes.
69  */
70
71 /*
72  *      The proverbial page-out daemon.
73  */
74
75 #include <sys/cdefs.h>
76 __FBSDID("$FreeBSD$");
77
78 #include "opt_vm.h"
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/eventhandler.h>
83 #include <sys/lock.h>
84 #include <sys/mutex.h>
85 #include <sys/proc.h>
86 #include <sys/kthread.h>
87 #include <sys/ktr.h>
88 #include <sys/mount.h>
89 #include <sys/racct.h>
90 #include <sys/resourcevar.h>
91 #include <sys/sched.h>
92 #include <sys/signalvar.h>
93 #include <sys/vnode.h>
94 #include <sys/vmmeter.h>
95 #include <sys/sx.h>
96 #include <sys/sysctl.h>
97
98 #include <vm/vm.h>
99 #include <vm/vm_param.h>
100 #include <vm/vm_object.h>
101 #include <vm/vm_page.h>
102 #include <vm/vm_map.h>
103 #include <vm/vm_pageout.h>
104 #include <vm/vm_pager.h>
105 #include <vm/swap_pager.h>
106 #include <vm/vm_extern.h>
107 #include <vm/uma.h>
108
109 /*
110  * System initialization
111  */
112
113 /* the kernel process "vm_pageout"*/
114 static void vm_pageout(void);
115 static int vm_pageout_clean(vm_page_t);
116 static void vm_pageout_scan(int pass);
117
118 struct proc *pageproc;
119
120 static struct kproc_desc page_kp = {
121         "pagedaemon",
122         vm_pageout,
123         &pageproc
124 };
125 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start,
126     &page_kp);
127
128 #if !defined(NO_SWAPPING)
129 /* the kernel process "vm_daemon"*/
130 static void vm_daemon(void);
131 static struct   proc *vmproc;
132
133 static struct kproc_desc vm_kp = {
134         "vmdaemon",
135         vm_daemon,
136         &vmproc
137 };
138 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
139 #endif
140
141
142 int vm_pages_needed;            /* Event on which pageout daemon sleeps */
143 int vm_pageout_deficit;         /* Estimated number of pages deficit */
144 int vm_pageout_pages_needed;    /* flag saying that the pageout daemon needs pages */
145
146 #if !defined(NO_SWAPPING)
147 static int vm_pageout_req_swapout;      /* XXX */
148 static int vm_daemon_needed;
149 static struct mtx vm_daemon_mtx;
150 /* Allow for use by vm_pageout before vm_daemon is initialized. */
151 MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
152 #endif
153 static int vm_max_launder = 32;
154 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
155 static int vm_pageout_full_stats_interval = 0;
156 static int vm_pageout_algorithm=0;
157 static int defer_swap_pageouts=0;
158 static int disable_swap_pageouts=0;
159
160 #if defined(NO_SWAPPING)
161 static int vm_swap_enabled=0;
162 static int vm_swap_idle_enabled=0;
163 #else
164 static int vm_swap_enabled=1;
165 static int vm_swap_idle_enabled=0;
166 #endif
167
168 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
169         CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
170
171 SYSCTL_INT(_vm, OID_AUTO, max_launder,
172         CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
173
174 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
175         CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
176
177 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
178         CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
179
180 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
181         CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
182
183 #if defined(NO_SWAPPING)
184 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
185         CTLFLAG_RD, &vm_swap_enabled, 0, "Enable entire process swapout");
186 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
187         CTLFLAG_RD, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
188 #else
189 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
190         CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
191 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
192         CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
193 #endif
194
195 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
196         CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
197
198 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
199         CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
200
201 static int pageout_lock_miss;
202 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
203         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
204
205 #define VM_PAGEOUT_PAGE_COUNT 16
206 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
207
208 int vm_page_max_wired;          /* XXX max # of wired pages system-wide */
209 SYSCTL_INT(_vm, OID_AUTO, max_wired,
210         CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
211
212 #if !defined(NO_SWAPPING)
213 static void vm_pageout_map_deactivate_pages(vm_map_t, long);
214 static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
215 static void vm_req_vmdaemon(int req);
216 #endif
217 static void vm_pageout_page_stats(void);
218
219 static void
220 vm_pageout_init_marker(vm_page_t marker, u_short queue)
221 {
222
223         bzero(marker, sizeof(*marker));
224         marker->flags = PG_FICTITIOUS | PG_MARKER;
225         marker->oflags = VPO_BUSY;
226         marker->queue = queue;
227         marker->wire_count = 1;
228 }
229
230 /*
231  * vm_pageout_fallback_object_lock:
232  * 
233  * Lock vm object currently associated with `m'. VM_OBJECT_TRYLOCK is
234  * known to have failed and page queue must be either PQ_ACTIVE or
235  * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
236  * while locking the vm object.  Use marker page to detect page queue
237  * changes and maintain notion of next page on page queue.  Return
238  * TRUE if no changes were detected, FALSE otherwise.  vm object is
239  * locked on return.
240  * 
241  * This function depends on both the lock portion of struct vm_object
242  * and normal struct vm_page being type stable.
243  */
244 boolean_t
245 vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
246 {
247         struct vm_page marker;
248         boolean_t unchanged;
249         u_short queue;
250         vm_object_t object;
251
252         queue = m->queue;
253         vm_pageout_init_marker(&marker, queue);
254         object = m->object;
255         
256         TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl,
257                            m, &marker, pageq);
258         vm_page_unlock_queues();
259         vm_page_unlock(m);
260         VM_OBJECT_LOCK(object);
261         vm_page_lock(m);
262         vm_page_lock_queues();
263
264         /* Page queue might have changed. */
265         *next = TAILQ_NEXT(&marker, pageq);
266         unchanged = (m->queue == queue &&
267                      m->object == object &&
268                      &marker == TAILQ_NEXT(m, pageq));
269         TAILQ_REMOVE(&vm_page_queues[queue].pl,
270                      &marker, pageq);
271         return (unchanged);
272 }
273
274 /*
275  * Lock the page while holding the page queue lock.  Use marker page
276  * to detect page queue changes and maintain notion of next page on
277  * page queue.  Return TRUE if no changes were detected, FALSE
278  * otherwise.  The page is locked on return. The page queue lock might
279  * be dropped and reacquired.
280  *
281  * This function depends on normal struct vm_page being type stable.
282  */
283 boolean_t
284 vm_pageout_page_lock(vm_page_t m, vm_page_t *next)
285 {
286         struct vm_page marker;
287         boolean_t unchanged;
288         u_short queue;
289
290         vm_page_lock_assert(m, MA_NOTOWNED);
291         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
292
293         if (vm_page_trylock(m))
294                 return (TRUE);
295
296         queue = m->queue;
297         vm_pageout_init_marker(&marker, queue);
298
299         TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl, m, &marker, pageq);
300         vm_page_unlock_queues();
301         vm_page_lock(m);
302         vm_page_lock_queues();
303
304         /* Page queue might have changed. */
305         *next = TAILQ_NEXT(&marker, pageq);
306         unchanged = (m->queue == queue && &marker == TAILQ_NEXT(m, pageq));
307         TAILQ_REMOVE(&vm_page_queues[queue].pl, &marker, pageq);
308         return (unchanged);
309 }
310
311 /*
312  * vm_pageout_clean:
313  *
314  * Clean the page and remove it from the laundry.
315  * 
316  * We set the busy bit to cause potential page faults on this page to
317  * block.  Note the careful timing, however, the busy bit isn't set till
318  * late and we cannot do anything that will mess with the page.
319  */
320 static int
321 vm_pageout_clean(vm_page_t m)
322 {
323         vm_object_t object;
324         vm_page_t mc[2*vm_pageout_page_count], pb, ps;
325         int pageout_count;
326         int ib, is, page_base;
327         vm_pindex_t pindex = m->pindex;
328
329         vm_page_lock_assert(m, MA_OWNED);
330         object = m->object;
331         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
332
333         /*
334          * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
335          * with the new swapper, but we could have serious problems paging
336          * out other object types if there is insufficient memory.  
337          *
338          * Unfortunately, checking free memory here is far too late, so the
339          * check has been moved up a procedural level.
340          */
341
342         /*
343          * Can't clean the page if it's busy or held.
344          */
345         KASSERT(m->busy == 0 && (m->oflags & VPO_BUSY) == 0,
346             ("vm_pageout_clean: page %p is busy", m));
347         KASSERT(m->hold_count == 0, ("vm_pageout_clean: page %p is held", m));
348         vm_page_unlock(m);
349
350         mc[vm_pageout_page_count] = pb = ps = m;
351         pageout_count = 1;
352         page_base = vm_pageout_page_count;
353         ib = 1;
354         is = 1;
355
356         /*
357          * Scan object for clusterable pages.
358          *
359          * We can cluster ONLY if: ->> the page is NOT
360          * clean, wired, busy, held, or mapped into a
361          * buffer, and one of the following:
362          * 1) The page is inactive, or a seldom used
363          *    active page.
364          * -or-
365          * 2) we force the issue.
366          *
367          * During heavy mmap/modification loads the pageout
368          * daemon can really fragment the underlying file
369          * due to flushing pages out of order and not trying
370          * align the clusters (which leave sporatic out-of-order
371          * holes).  To solve this problem we do the reverse scan
372          * first and attempt to align our cluster, then do a 
373          * forward scan if room remains.
374          */
375 more:
376         while (ib && pageout_count < vm_pageout_page_count) {
377                 vm_page_t p;
378
379                 if (ib > pindex) {
380                         ib = 0;
381                         break;
382                 }
383
384                 if ((p = vm_page_prev(pb)) == NULL ||
385                     (p->oflags & VPO_BUSY) != 0 || p->busy != 0) {
386                         ib = 0;
387                         break;
388                 }
389                 vm_page_lock(p);
390                 vm_page_test_dirty(p);
391                 if (p->dirty == 0 ||
392                     p->queue != PQ_INACTIVE ||
393                     p->hold_count != 0) {       /* may be undergoing I/O */
394                         vm_page_unlock(p);
395                         ib = 0;
396                         break;
397                 }
398                 vm_page_unlock(p);
399                 mc[--page_base] = pb = p;
400                 ++pageout_count;
401                 ++ib;
402                 /*
403                  * alignment boundry, stop here and switch directions.  Do
404                  * not clear ib.
405                  */
406                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
407                         break;
408         }
409
410         while (pageout_count < vm_pageout_page_count && 
411             pindex + is < object->size) {
412                 vm_page_t p;
413
414                 if ((p = vm_page_next(ps)) == NULL ||
415                     (p->oflags & VPO_BUSY) != 0 || p->busy != 0)
416                         break;
417                 vm_page_lock(p);
418                 vm_page_test_dirty(p);
419                 if (p->dirty == 0 ||
420                     p->queue != PQ_INACTIVE ||
421                     p->hold_count != 0) {       /* may be undergoing I/O */
422                         vm_page_unlock(p);
423                         break;
424                 }
425                 vm_page_unlock(p);
426                 mc[page_base + pageout_count] = ps = p;
427                 ++pageout_count;
428                 ++is;
429         }
430
431         /*
432          * If we exhausted our forward scan, continue with the reverse scan
433          * when possible, even past a page boundry.  This catches boundry
434          * conditions.
435          */
436         if (ib && pageout_count < vm_pageout_page_count)
437                 goto more;
438
439         /*
440          * we allow reads during pageouts...
441          */
442         return (vm_pageout_flush(&mc[page_base], pageout_count, 0, 0, NULL));
443 }
444
445 /*
446  * vm_pageout_flush() - launder the given pages
447  *
448  *      The given pages are laundered.  Note that we setup for the start of
449  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
450  *      reference count all in here rather then in the parent.  If we want
451  *      the parent to do more sophisticated things we may have to change
452  *      the ordering.
453  *
454  *      Returned runlen is the count of pages between mreq and first
455  *      page after mreq with status VM_PAGER_AGAIN.
456  */
457 int
458 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen)
459 {
460         vm_object_t object = mc[0]->object;
461         int pageout_status[count];
462         int numpagedout = 0;
463         int i, runlen;
464
465         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
466         mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
467
468         /*
469          * Initiate I/O.  Bump the vm_page_t->busy counter and
470          * mark the pages read-only.
471          *
472          * We do not have to fixup the clean/dirty bits here... we can
473          * allow the pager to do it after the I/O completes.
474          *
475          * NOTE! mc[i]->dirty may be partial or fragmented due to an
476          * edge case with file fragments.
477          */
478         for (i = 0; i < count; i++) {
479                 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
480                     ("vm_pageout_flush: partially invalid page %p index %d/%d",
481                         mc[i], i, count));
482                 vm_page_io_start(mc[i]);
483                 pmap_remove_write(mc[i]);
484         }
485         vm_object_pip_add(object, count);
486
487         vm_pager_put_pages(object, mc, count, flags, pageout_status);
488
489         runlen = count - mreq;
490         for (i = 0; i < count; i++) {
491                 vm_page_t mt = mc[i];
492
493                 KASSERT(pageout_status[i] == VM_PAGER_PEND ||
494                     (mt->flags & PG_WRITEABLE) == 0,
495                     ("vm_pageout_flush: page %p is not write protected", mt));
496                 switch (pageout_status[i]) {
497                 case VM_PAGER_OK:
498                 case VM_PAGER_PEND:
499                         numpagedout++;
500                         break;
501                 case VM_PAGER_BAD:
502                         /*
503                          * Page outside of range of object. Right now we
504                          * essentially lose the changes by pretending it
505                          * worked.
506                          */
507                         vm_page_undirty(mt);
508                         break;
509                 case VM_PAGER_ERROR:
510                 case VM_PAGER_FAIL:
511                         /*
512                          * If page couldn't be paged out, then reactivate the
513                          * page so it doesn't clog the inactive list.  (We
514                          * will try paging out it again later).
515                          */
516                         vm_page_lock(mt);
517                         vm_page_activate(mt);
518                         vm_page_unlock(mt);
519                         break;
520                 case VM_PAGER_AGAIN:
521                         if (i >= mreq && i - mreq < runlen)
522                                 runlen = i - mreq;
523                         break;
524                 }
525
526                 /*
527                  * If the operation is still going, leave the page busy to
528                  * block all other accesses. Also, leave the paging in
529                  * progress indicator set so that we don't attempt an object
530                  * collapse.
531                  */
532                 if (pageout_status[i] != VM_PAGER_PEND) {
533                         vm_object_pip_wakeup(object);
534                         vm_page_io_finish(mt);
535                         if (vm_page_count_severe()) {
536                                 vm_page_lock(mt);
537                                 vm_page_try_to_cache(mt);
538                                 vm_page_unlock(mt);
539                         }
540                 }
541         }
542         if (prunlen != NULL)
543                 *prunlen = runlen;
544         return (numpagedout);
545 }
546
547 #if !defined(NO_SWAPPING)
548 /*
549  *      vm_pageout_object_deactivate_pages
550  *
551  *      Deactivate enough pages to satisfy the inactive target
552  *      requirements.
553  *
554  *      The object and map must be locked.
555  */
556 static void
557 vm_pageout_object_deactivate_pages(pmap_t pmap, vm_object_t first_object,
558     long desired)
559 {
560         vm_object_t backing_object, object;
561         vm_page_t p;
562         int actcount, remove_mode;
563
564         VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
565         if (first_object->type == OBJT_DEVICE ||
566             first_object->type == OBJT_SG)
567                 return;
568         for (object = first_object;; object = backing_object) {
569                 if (pmap_resident_count(pmap) <= desired)
570                         goto unlock_return;
571                 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
572                 if (object->type == OBJT_PHYS || object->paging_in_progress)
573                         goto unlock_return;
574
575                 remove_mode = 0;
576                 if (object->shadow_count > 1)
577                         remove_mode = 1;
578                 /*
579                  * Scan the object's entire memory queue.
580                  */
581                 TAILQ_FOREACH(p, &object->memq, listq) {
582                         if (pmap_resident_count(pmap) <= desired)
583                                 goto unlock_return;
584                         if ((p->oflags & VPO_BUSY) != 0 || p->busy != 0)
585                                 continue;
586                         PCPU_INC(cnt.v_pdpages);
587                         vm_page_lock(p);
588                         if (p->wire_count != 0 || p->hold_count != 0 ||
589                             !pmap_page_exists_quick(pmap, p)) {
590                                 vm_page_unlock(p);
591                                 continue;
592                         }
593                         actcount = pmap_ts_referenced(p);
594                         if ((p->flags & PG_REFERENCED) != 0) {
595                                 if (actcount == 0)
596                                         actcount = 1;
597                                 vm_page_lock_queues();
598                                 vm_page_flag_clear(p, PG_REFERENCED);
599                                 vm_page_unlock_queues();
600                         }
601                         if (p->queue != PQ_ACTIVE && actcount != 0) {
602                                 vm_page_activate(p);
603                                 p->act_count += actcount;
604                         } else if (p->queue == PQ_ACTIVE) {
605                                 if (actcount == 0) {
606                                         p->act_count -= min(p->act_count,
607                                             ACT_DECLINE);
608                                         if (!remove_mode &&
609                                             (vm_pageout_algorithm ||
610                                             p->act_count == 0)) {
611                                                 pmap_remove_all(p);
612                                                 vm_page_deactivate(p);
613                                         } else {
614                                                 vm_page_lock_queues();
615                                                 vm_page_requeue(p);
616                                                 vm_page_unlock_queues();
617                                         }
618                                 } else {
619                                         vm_page_activate(p);
620                                         if (p->act_count < ACT_MAX -
621                                             ACT_ADVANCE)
622                                                 p->act_count += ACT_ADVANCE;
623                                         vm_page_lock_queues();
624                                         vm_page_requeue(p);
625                                         vm_page_unlock_queues();
626                                 }
627                         } else if (p->queue == PQ_INACTIVE)
628                                 pmap_remove_all(p);
629                         vm_page_unlock(p);
630                 }
631                 if ((backing_object = object->backing_object) == NULL)
632                         goto unlock_return;
633                 VM_OBJECT_LOCK(backing_object);
634                 if (object != first_object)
635                         VM_OBJECT_UNLOCK(object);
636         }
637 unlock_return:
638         if (object != first_object)
639                 VM_OBJECT_UNLOCK(object);
640 }
641
642 /*
643  * deactivate some number of pages in a map, try to do it fairly, but
644  * that is really hard to do.
645  */
646 static void
647 vm_pageout_map_deactivate_pages(map, desired)
648         vm_map_t map;
649         long desired;
650 {
651         vm_map_entry_t tmpe;
652         vm_object_t obj, bigobj;
653         int nothingwired;
654
655         if (!vm_map_trylock(map))
656                 return;
657
658         bigobj = NULL;
659         nothingwired = TRUE;
660
661         /*
662          * first, search out the biggest object, and try to free pages from
663          * that.
664          */
665         tmpe = map->header.next;
666         while (tmpe != &map->header) {
667                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
668                         obj = tmpe->object.vm_object;
669                         if (obj != NULL && VM_OBJECT_TRYLOCK(obj)) {
670                                 if (obj->shadow_count <= 1 &&
671                                     (bigobj == NULL ||
672                                      bigobj->resident_page_count < obj->resident_page_count)) {
673                                         if (bigobj != NULL)
674                                                 VM_OBJECT_UNLOCK(bigobj);
675                                         bigobj = obj;
676                                 } else
677                                         VM_OBJECT_UNLOCK(obj);
678                         }
679                 }
680                 if (tmpe->wired_count > 0)
681                         nothingwired = FALSE;
682                 tmpe = tmpe->next;
683         }
684
685         if (bigobj != NULL) {
686                 vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
687                 VM_OBJECT_UNLOCK(bigobj);
688         }
689         /*
690          * Next, hunt around for other pages to deactivate.  We actually
691          * do this search sort of wrong -- .text first is not the best idea.
692          */
693         tmpe = map->header.next;
694         while (tmpe != &map->header) {
695                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
696                         break;
697                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
698                         obj = tmpe->object.vm_object;
699                         if (obj != NULL) {
700                                 VM_OBJECT_LOCK(obj);
701                                 vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
702                                 VM_OBJECT_UNLOCK(obj);
703                         }
704                 }
705                 tmpe = tmpe->next;
706         }
707
708         /*
709          * Remove all mappings if a process is swapped out, this will free page
710          * table pages.
711          */
712         if (desired == 0 && nothingwired) {
713                 tmpe = map->header.next;
714                 while (tmpe != &map->header) {
715                         pmap_remove(vm_map_pmap(map), tmpe->start, tmpe->end);
716                         tmpe = tmpe->next;
717                 }
718         }
719         vm_map_unlock(map);
720 }
721 #endif          /* !defined(NO_SWAPPING) */
722
723 /*
724  *      vm_pageout_scan does the dirty work for the pageout daemon.
725  */
726 static void
727 vm_pageout_scan(int pass)
728 {
729         vm_page_t m, next;
730         struct vm_page marker;
731         int page_shortage, maxscan, pcount;
732         int addl_page_shortage, addl_page_shortage_init;
733         vm_object_t object;
734         int actcount;
735         int vnodes_skipped = 0;
736         int maxlaunder;
737
738         /*
739          * Decrease registered cache sizes.
740          */
741         EVENTHANDLER_INVOKE(vm_lowmem, 0);
742         /*
743          * We do this explicitly after the caches have been drained above.
744          */
745         uma_reclaim();
746
747         addl_page_shortage_init = atomic_readandclear_int(&vm_pageout_deficit);
748
749         /*
750          * Calculate the number of pages we want to either free or move
751          * to the cache.
752          */
753         page_shortage = vm_paging_target() + addl_page_shortage_init;
754
755         vm_pageout_init_marker(&marker, PQ_INACTIVE);
756
757         /*
758          * Start scanning the inactive queue for pages we can move to the
759          * cache or free.  The scan will stop when the target is reached or
760          * we have scanned the entire inactive queue.  Note that m->act_count
761          * is not used to form decisions for the inactive queue, only for the
762          * active queue.
763          *
764          * maxlaunder limits the number of dirty pages we flush per scan.
765          * For most systems a smaller value (16 or 32) is more robust under
766          * extreme memory and disk pressure because any unnecessary writes
767          * to disk can result in extreme performance degredation.  However,
768          * systems with excessive dirty pages (especially when MAP_NOSYNC is
769          * used) will die horribly with limited laundering.  If the pageout
770          * daemon cannot clean enough pages in the first pass, we let it go
771          * all out in succeeding passes.
772          */
773         if ((maxlaunder = vm_max_launder) <= 1)
774                 maxlaunder = 1;
775         if (pass)
776                 maxlaunder = 10000;
777         vm_page_lock_queues();
778 rescan0:
779         addl_page_shortage = addl_page_shortage_init;
780         maxscan = cnt.v_inactive_count;
781
782         for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
783              m != NULL && maxscan-- > 0 && page_shortage > 0;
784              m = next) {
785
786                 cnt.v_pdpages++;
787
788                 if (m->queue != PQ_INACTIVE)
789                         goto rescan0;
790
791                 next = TAILQ_NEXT(m, pageq);
792
793                 /*
794                  * skip marker pages
795                  */
796                 if (m->flags & PG_MARKER)
797                         continue;
798
799                 /*
800                  * Lock the page.
801                  */
802                 if (!vm_pageout_page_lock(m, &next)) {
803                         vm_page_unlock(m);
804                         addl_page_shortage++;
805                         continue;
806                 }
807
808                 /*
809                  * A held page may be undergoing I/O, so skip it.
810                  */
811                 if (m->hold_count) {
812                         vm_page_unlock(m);
813                         vm_page_requeue(m);
814                         addl_page_shortage++;
815                         continue;
816                 }
817
818                 /*
819                  * Don't mess with busy pages, keep in the front of the
820                  * queue, most likely are being paged out.
821                  */
822                 object = m->object;
823                 if (!VM_OBJECT_TRYLOCK(object) &&
824                     (!vm_pageout_fallback_object_lock(m, &next) ||
825                         m->hold_count != 0)) {
826                         VM_OBJECT_UNLOCK(object);
827                         vm_page_unlock(m);
828                         addl_page_shortage++;
829                         continue;
830                 }
831                 if (m->busy || (m->oflags & VPO_BUSY)) {
832                         vm_page_unlock(m);
833                         VM_OBJECT_UNLOCK(object);
834                         addl_page_shortage++;
835                         continue;
836                 }
837
838                 /*
839                  * If the object is not being used, we ignore previous 
840                  * references.
841                  */
842                 if (object->ref_count == 0) {
843                         vm_page_flag_clear(m, PG_REFERENCED);
844                         KASSERT(!pmap_page_is_mapped(m),
845                             ("vm_pageout_scan: page %p is mapped", m));
846
847                 /*
848                  * Otherwise, if the page has been referenced while in the 
849                  * inactive queue, we bump the "activation count" upwards, 
850                  * making it less likely that the page will be added back to 
851                  * the inactive queue prematurely again.  Here we check the 
852                  * page tables (or emulated bits, if any), given the upper 
853                  * level VM system not knowing anything about existing 
854                  * references.
855                  */
856                 } else if (((m->flags & PG_REFERENCED) == 0) &&
857                         (actcount = pmap_ts_referenced(m))) {
858                         vm_page_activate(m);
859                         vm_page_unlock(m);
860                         m->act_count += actcount + ACT_ADVANCE;
861                         VM_OBJECT_UNLOCK(object);
862                         continue;
863                 }
864
865                 /*
866                  * If the upper level VM system knows about any page 
867                  * references, we activate the page.  We also set the 
868                  * "activation count" higher than normal so that we will less 
869                  * likely place pages back onto the inactive queue again.
870                  */
871                 if ((m->flags & PG_REFERENCED) != 0) {
872                         vm_page_flag_clear(m, PG_REFERENCED);
873                         actcount = pmap_ts_referenced(m);
874                         vm_page_activate(m);
875                         vm_page_unlock(m);
876                         m->act_count += actcount + ACT_ADVANCE + 1;
877                         VM_OBJECT_UNLOCK(object);
878                         continue;
879                 }
880
881                 /*
882                  * If the upper level VM system does not believe that the page
883                  * is fully dirty, but it is mapped for write access, then we
884                  * consult the pmap to see if the page's dirty status should
885                  * be updated.
886                  */
887                 if (m->dirty != VM_PAGE_BITS_ALL &&
888                     (m->flags & PG_WRITEABLE) != 0) {
889                         /*
890                          * Avoid a race condition: Unless write access is
891                          * removed from the page, another processor could
892                          * modify it before all access is removed by the call
893                          * to vm_page_cache() below.  If vm_page_cache() finds
894                          * that the page has been modified when it removes all
895                          * access, it panics because it cannot cache dirty
896                          * pages.  In principle, we could eliminate just write
897                          * access here rather than all access.  In the expected
898                          * case, when there are no last instant modifications
899                          * to the page, removing all access will be cheaper
900                          * overall.
901                          */
902                         if (pmap_is_modified(m))
903                                 vm_page_dirty(m);
904                         else if (m->dirty == 0)
905                                 pmap_remove_all(m);
906                 }
907
908                 if (m->valid == 0) {
909                         /*
910                          * Invalid pages can be easily freed
911                          */
912                         vm_page_free(m);
913                         cnt.v_dfree++;
914                         --page_shortage;
915                 } else if (m->dirty == 0) {
916                         /*
917                          * Clean pages can be placed onto the cache queue.
918                          * This effectively frees them.
919                          */
920                         vm_page_cache(m);
921                         --page_shortage;
922                 } else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
923                         /*
924                          * Dirty pages need to be paged out, but flushing
925                          * a page is extremely expensive verses freeing
926                          * a clean page.  Rather then artificially limiting
927                          * the number of pages we can flush, we instead give
928                          * dirty pages extra priority on the inactive queue
929                          * by forcing them to be cycled through the queue
930                          * twice before being flushed, after which the
931                          * (now clean) page will cycle through once more
932                          * before being freed.  This significantly extends
933                          * the thrash point for a heavily loaded machine.
934                          */
935                         vm_page_flag_set(m, PG_WINATCFLS);
936                         vm_page_requeue(m);
937                 } else if (maxlaunder > 0) {
938                         /*
939                          * We always want to try to flush some dirty pages if
940                          * we encounter them, to keep the system stable.
941                          * Normally this number is small, but under extreme
942                          * pressure where there are insufficient clean pages
943                          * on the inactive queue, we may have to go all out.
944                          */
945                         int swap_pageouts_ok, vfslocked = 0;
946                         struct vnode *vp = NULL;
947                         struct mount *mp = NULL;
948
949                         if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
950                                 swap_pageouts_ok = 1;
951                         } else {
952                                 swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
953                                 swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
954                                 vm_page_count_min());
955                                                                                 
956                         }
957
958                         /*
959                          * We don't bother paging objects that are "dead".  
960                          * Those objects are in a "rundown" state.
961                          */
962                         if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
963                                 vm_page_unlock(m);
964                                 VM_OBJECT_UNLOCK(object);
965                                 vm_page_requeue(m);
966                                 continue;
967                         }
968
969                         /*
970                          * Following operations may unlock
971                          * vm_page_queue_mtx, invalidating the 'next'
972                          * pointer.  To prevent an inordinate number
973                          * of restarts we use our marker to remember
974                          * our place.
975                          *
976                          */
977                         TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl,
978                                            m, &marker, pageq);
979                         /*
980                          * The object is already known NOT to be dead.   It
981                          * is possible for the vget() to block the whole
982                          * pageout daemon, but the new low-memory handling
983                          * code should prevent it.
984                          *
985                          * The previous code skipped locked vnodes and, worse,
986                          * reordered pages in the queue.  This results in
987                          * completely non-deterministic operation and, on a
988                          * busy system, can lead to extremely non-optimal
989                          * pageouts.  For example, it can cause clean pages
990                          * to be freed and dirty pages to be moved to the end
991                          * of the queue.  Since dirty pages are also moved to
992                          * the end of the queue once-cleaned, this gives
993                          * way too large a weighting to defering the freeing
994                          * of dirty pages.
995                          *
996                          * We can't wait forever for the vnode lock, we might
997                          * deadlock due to a vn_read() getting stuck in
998                          * vm_wait while holding this vnode.  We skip the 
999                          * vnode if we can't get it in a reasonable amount
1000                          * of time.
1001                          */
1002                         if (object->type == OBJT_VNODE) {
1003                                 vm_page_unlock_queues();
1004                                 vm_page_unlock(m);
1005                                 vp = object->handle;
1006                                 if (vp->v_type == VREG &&
1007                                     vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1008                                         mp = NULL;
1009                                         ++pageout_lock_miss;
1010                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1011                                                 vnodes_skipped++;
1012                                         vm_page_lock_queues();
1013                                         goto unlock_and_continue;
1014                                 }
1015                                 KASSERT(mp != NULL,
1016                                     ("vp %p with NULL v_mount", vp));
1017                                 vm_object_reference_locked(object);
1018                                 VM_OBJECT_UNLOCK(object);
1019                                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1020                                 if (vget(vp, LK_EXCLUSIVE | LK_TIMELOCK,
1021                                     curthread)) {
1022                                         VM_OBJECT_LOCK(object);
1023                                         vm_page_lock_queues();
1024                                         ++pageout_lock_miss;
1025                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1026                                                 vnodes_skipped++;
1027                                         vp = NULL;
1028                                         goto unlock_and_continue;
1029                                 }
1030                                 VM_OBJECT_LOCK(object);
1031                                 vm_page_lock(m);
1032                                 vm_page_lock_queues();
1033                                 /*
1034                                  * The page might have been moved to another
1035                                  * queue during potential blocking in vget()
1036                                  * above.  The page might have been freed and
1037                                  * reused for another vnode.
1038                                  */
1039                                 if (m->queue != PQ_INACTIVE ||
1040                                     m->object != object ||
1041                                     TAILQ_NEXT(m, pageq) != &marker) {
1042                                         vm_page_unlock(m);
1043                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1044                                                 vnodes_skipped++;
1045                                         goto unlock_and_continue;
1046                                 }
1047         
1048                                 /*
1049                                  * The page may have been busied during the
1050                                  * blocking in vget().  We don't move the
1051                                  * page back onto the end of the queue so that
1052                                  * statistics are more correct if we don't.
1053                                  */
1054                                 if (m->busy || (m->oflags & VPO_BUSY)) {
1055                                         vm_page_unlock(m);
1056                                         goto unlock_and_continue;
1057                                 }
1058
1059                                 /*
1060                                  * If the page has become held it might
1061                                  * be undergoing I/O, so skip it
1062                                  */
1063                                 if (m->hold_count) {
1064                                         vm_page_unlock(m);
1065                                         vm_page_requeue(m);
1066                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1067                                                 vnodes_skipped++;
1068                                         goto unlock_and_continue;
1069                                 }
1070                         }
1071
1072                         /*
1073                          * If a page is dirty, then it is either being washed
1074                          * (but not yet cleaned) or it is still in the
1075                          * laundry.  If it is still in the laundry, then we
1076                          * start the cleaning operation. 
1077                          *
1078                          * decrement page_shortage on success to account for
1079                          * the (future) cleaned page.  Otherwise we could wind
1080                          * up laundering or cleaning too many pages.
1081                          */
1082                         vm_page_unlock_queues();
1083                         if (vm_pageout_clean(m) != 0) {
1084                                 --page_shortage;
1085                                 --maxlaunder;
1086                         }
1087                         vm_page_lock_queues();
1088 unlock_and_continue:
1089                         vm_page_lock_assert(m, MA_NOTOWNED);
1090                         VM_OBJECT_UNLOCK(object);
1091                         if (mp != NULL) {
1092                                 vm_page_unlock_queues();
1093                                 if (vp != NULL)
1094                                         vput(vp);
1095                                 VFS_UNLOCK_GIANT(vfslocked);
1096                                 vm_object_deallocate(object);
1097                                 vn_finished_write(mp);
1098                                 vm_page_lock_queues();
1099                         }
1100                         next = TAILQ_NEXT(&marker, pageq);
1101                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl,
1102                                      &marker, pageq);
1103                         vm_page_lock_assert(m, MA_NOTOWNED);
1104                         continue;
1105                 }
1106                 vm_page_unlock(m);
1107                 VM_OBJECT_UNLOCK(object);
1108         }
1109
1110         /*
1111          * Compute the number of pages we want to try to move from the
1112          * active queue to the inactive queue.
1113          */
1114         page_shortage = vm_paging_target() +
1115                 cnt.v_inactive_target - cnt.v_inactive_count;
1116         page_shortage += addl_page_shortage;
1117
1118         /*
1119          * Scan the active queue for things we can deactivate. We nominally
1120          * track the per-page activity counter and use it to locate
1121          * deactivation candidates.
1122          */
1123         pcount = cnt.v_active_count;
1124         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1125         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1126
1127         while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1128
1129                 KASSERT(m->queue == PQ_ACTIVE,
1130                     ("vm_pageout_scan: page %p isn't active", m));
1131
1132                 next = TAILQ_NEXT(m, pageq);
1133                 if ((m->flags & PG_MARKER) != 0) {
1134                         m = next;
1135                         continue;
1136                 }
1137                 if (!vm_pageout_page_lock(m, &next)) {
1138                         vm_page_unlock(m);
1139                         m = next;
1140                         continue;
1141                 }
1142                 object = m->object;
1143                 if (!VM_OBJECT_TRYLOCK(object) &&
1144                     !vm_pageout_fallback_object_lock(m, &next)) {
1145                         VM_OBJECT_UNLOCK(object);
1146                         vm_page_unlock(m);
1147                         m = next;
1148                         continue;
1149                 }
1150
1151                 /*
1152                  * Don't deactivate pages that are busy.
1153                  */
1154                 if ((m->busy != 0) ||
1155                     (m->oflags & VPO_BUSY) ||
1156                     (m->hold_count != 0)) {
1157                         vm_page_unlock(m);
1158                         VM_OBJECT_UNLOCK(object);
1159                         vm_page_requeue(m);
1160                         m = next;
1161                         continue;
1162                 }
1163
1164                 /*
1165                  * The count for pagedaemon pages is done after checking the
1166                  * page for eligibility...
1167                  */
1168                 cnt.v_pdpages++;
1169
1170                 /*
1171                  * Check to see "how much" the page has been used.
1172                  */
1173                 actcount = 0;
1174                 if (object->ref_count != 0) {
1175                         if (m->flags & PG_REFERENCED) {
1176                                 actcount += 1;
1177                         }
1178                         actcount += pmap_ts_referenced(m);
1179                         if (actcount) {
1180                                 m->act_count += ACT_ADVANCE + actcount;
1181                                 if (m->act_count > ACT_MAX)
1182                                         m->act_count = ACT_MAX;
1183                         }
1184                 }
1185
1186                 /*
1187                  * Since we have "tested" this bit, we need to clear it now.
1188                  */
1189                 vm_page_flag_clear(m, PG_REFERENCED);
1190
1191                 /*
1192                  * Only if an object is currently being used, do we use the
1193                  * page activation count stats.
1194                  */
1195                 if (actcount && (object->ref_count != 0)) {
1196                         vm_page_requeue(m);
1197                 } else {
1198                         m->act_count -= min(m->act_count, ACT_DECLINE);
1199                         if (vm_pageout_algorithm ||
1200                             object->ref_count == 0 ||
1201                             m->act_count == 0) {
1202                                 page_shortage--;
1203                                 if (object->ref_count == 0) {
1204                                         KASSERT(!pmap_page_is_mapped(m),
1205                                     ("vm_pageout_scan: page %p is mapped", m));
1206                                         if (m->dirty == 0)
1207                                                 vm_page_cache(m);
1208                                         else
1209                                                 vm_page_deactivate(m);
1210                                 } else {
1211                                         vm_page_deactivate(m);
1212                                 }
1213                         } else {
1214                                 vm_page_requeue(m);
1215                         }
1216                 }
1217                 vm_page_unlock(m);
1218                 VM_OBJECT_UNLOCK(object);
1219                 m = next;
1220         }
1221         vm_page_unlock_queues();
1222 #if !defined(NO_SWAPPING)
1223         /*
1224          * Idle process swapout -- run once per second.
1225          */
1226         if (vm_swap_idle_enabled) {
1227                 static long lsec;
1228                 if (time_second != lsec) {
1229                         vm_req_vmdaemon(VM_SWAP_IDLE);
1230                         lsec = time_second;
1231                 }
1232         }
1233 #endif
1234                 
1235         /*
1236          * If we didn't get enough free pages, and we have skipped a vnode
1237          * in a writeable object, wakeup the sync daemon.  And kick swapout
1238          * if we did not get enough free pages.
1239          */
1240         if (vm_paging_target() > 0) {
1241                 if (vnodes_skipped && vm_page_count_min())
1242                         (void) speedup_syncer();
1243 #if !defined(NO_SWAPPING)
1244                 if (vm_swap_enabled && vm_page_count_target())
1245                         vm_req_vmdaemon(VM_SWAP_NORMAL);
1246 #endif
1247         }
1248
1249         /*
1250          * If we are critically low on one of RAM or swap and low on
1251          * the other, kill the largest process.  However, we avoid
1252          * doing this on the first pass in order to give ourselves a
1253          * chance to flush out dirty vnode-backed pages and to allow
1254          * active pages to be moved to the inactive queue and reclaimed.
1255          */
1256         if (pass != 0 &&
1257             ((swap_pager_avail < 64 && vm_page_count_min()) ||
1258              (swap_pager_full && vm_paging_target() > 0)))
1259                 vm_pageout_oom(VM_OOM_MEM);
1260 }
1261
1262
1263 void
1264 vm_pageout_oom(int shortage)
1265 {
1266         struct proc *p, *bigproc;
1267         vm_offset_t size, bigsize;
1268         struct thread *td;
1269         struct vmspace *vm;
1270
1271         /*
1272          * We keep the process bigproc locked once we find it to keep anyone
1273          * from messing with it; however, there is a possibility of
1274          * deadlock if process B is bigproc and one of it's child processes
1275          * attempts to propagate a signal to B while we are waiting for A's
1276          * lock while walking this list.  To avoid this, we don't block on
1277          * the process lock but just skip a process if it is already locked.
1278          */
1279         bigproc = NULL;
1280         bigsize = 0;
1281         sx_slock(&allproc_lock);
1282         FOREACH_PROC_IN_SYSTEM(p) {
1283                 int breakout;
1284
1285                 if (PROC_TRYLOCK(p) == 0)
1286                         continue;
1287                 /*
1288                  * If this is a system, protected or killed process, skip it.
1289                  */
1290                 if (p->p_state != PRS_NORMAL ||
1291                     (p->p_flag & (P_INEXEC | P_PROTECTED | P_SYSTEM)) ||
1292                     (p->p_pid == 1) || P_KILLED(p) ||
1293                     ((p->p_pid < 48) && (swap_pager_avail != 0))) {
1294                         PROC_UNLOCK(p);
1295                         continue;
1296                 }
1297                 /*
1298                  * If the process is in a non-running type state,
1299                  * don't touch it.  Check all the threads individually.
1300                  */
1301                 breakout = 0;
1302                 FOREACH_THREAD_IN_PROC(p, td) {
1303                         thread_lock(td);
1304                         if (!TD_ON_RUNQ(td) &&
1305                             !TD_IS_RUNNING(td) &&
1306                             !TD_IS_SLEEPING(td) &&
1307                             !TD_IS_SUSPENDED(td)) {
1308                                 thread_unlock(td);
1309                                 breakout = 1;
1310                                 break;
1311                         }
1312                         thread_unlock(td);
1313                 }
1314                 if (breakout) {
1315                         PROC_UNLOCK(p);
1316                         continue;
1317                 }
1318                 /*
1319                  * get the process size
1320                  */
1321                 vm = vmspace_acquire_ref(p);
1322                 if (vm == NULL) {
1323                         PROC_UNLOCK(p);
1324                         continue;
1325                 }
1326                 if (!vm_map_trylock_read(&vm->vm_map)) {
1327                         vmspace_free(vm);
1328                         PROC_UNLOCK(p);
1329                         continue;
1330                 }
1331                 size = vmspace_swap_count(vm);
1332                 vm_map_unlock_read(&vm->vm_map);
1333                 if (shortage == VM_OOM_MEM)
1334                         size += vmspace_resident_count(vm);
1335                 vmspace_free(vm);
1336                 /*
1337                  * if the this process is bigger than the biggest one
1338                  * remember it.
1339                  */
1340                 if (size > bigsize) {
1341                         if (bigproc != NULL)
1342                                 PROC_UNLOCK(bigproc);
1343                         bigproc = p;
1344                         bigsize = size;
1345                 } else
1346                         PROC_UNLOCK(p);
1347         }
1348         sx_sunlock(&allproc_lock);
1349         if (bigproc != NULL) {
1350                 killproc(bigproc, "out of swap space");
1351                 sched_nice(bigproc, PRIO_MIN);
1352                 PROC_UNLOCK(bigproc);
1353                 wakeup(&cnt.v_free_count);
1354         }
1355 }
1356
1357 /*
1358  * This routine tries to maintain the pseudo LRU active queue,
1359  * so that during long periods of time where there is no paging,
1360  * that some statistic accumulation still occurs.  This code
1361  * helps the situation where paging just starts to occur.
1362  */
1363 static void
1364 vm_pageout_page_stats()
1365 {
1366         vm_object_t object;
1367         vm_page_t m,next;
1368         int pcount,tpcount;             /* Number of pages to check */
1369         static int fullintervalcount = 0;
1370         int page_shortage;
1371
1372         page_shortage = 
1373             (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1374             (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1375
1376         if (page_shortage <= 0)
1377                 return;
1378
1379         vm_page_lock_queues();
1380         pcount = cnt.v_active_count;
1381         fullintervalcount += vm_pageout_stats_interval;
1382         if (fullintervalcount < vm_pageout_full_stats_interval) {
1383                 tpcount = (int64_t)vm_pageout_stats_max * cnt.v_active_count /
1384                     cnt.v_page_count;
1385                 if (pcount > tpcount)
1386                         pcount = tpcount;
1387         } else {
1388                 fullintervalcount = 0;
1389         }
1390
1391         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1392         while ((m != NULL) && (pcount-- > 0)) {
1393                 int actcount;
1394
1395                 KASSERT(m->queue == PQ_ACTIVE,
1396                     ("vm_pageout_page_stats: page %p isn't active", m));
1397
1398                 next = TAILQ_NEXT(m, pageq);
1399                 if ((m->flags & PG_MARKER) != 0) {
1400                         m = next;
1401                         continue;
1402                 }
1403                 vm_page_lock_assert(m, MA_NOTOWNED);
1404                 if (!vm_pageout_page_lock(m, &next)) {
1405                         vm_page_unlock(m);
1406                         m = next;
1407                         continue;
1408                 }
1409                 object = m->object;
1410                 if (!VM_OBJECT_TRYLOCK(object) &&
1411                     !vm_pageout_fallback_object_lock(m, &next)) {
1412                         VM_OBJECT_UNLOCK(object);
1413                         vm_page_unlock(m);
1414                         m = next;
1415                         continue;
1416                 }
1417
1418                 /*
1419                  * Don't deactivate pages that are busy.
1420                  */
1421                 if ((m->busy != 0) ||
1422                     (m->oflags & VPO_BUSY) ||
1423                     (m->hold_count != 0)) {
1424                         vm_page_unlock(m);
1425                         VM_OBJECT_UNLOCK(object);
1426                         vm_page_requeue(m);
1427                         m = next;
1428                         continue;
1429                 }
1430
1431                 actcount = 0;
1432                 if (m->flags & PG_REFERENCED) {
1433                         vm_page_flag_clear(m, PG_REFERENCED);
1434                         actcount += 1;
1435                 }
1436
1437                 actcount += pmap_ts_referenced(m);
1438                 if (actcount) {
1439                         m->act_count += ACT_ADVANCE + actcount;
1440                         if (m->act_count > ACT_MAX)
1441                                 m->act_count = ACT_MAX;
1442                         vm_page_requeue(m);
1443                 } else {
1444                         if (m->act_count == 0) {
1445                                 /*
1446                                  * We turn off page access, so that we have
1447                                  * more accurate RSS stats.  We don't do this
1448                                  * in the normal page deactivation when the
1449                                  * system is loaded VM wise, because the
1450                                  * cost of the large number of page protect
1451                                  * operations would be higher than the value
1452                                  * of doing the operation.
1453                                  */
1454                                 pmap_remove_all(m);
1455                                 vm_page_deactivate(m);
1456                         } else {
1457                                 m->act_count -= min(m->act_count, ACT_DECLINE);
1458                                 vm_page_requeue(m);
1459                         }
1460                 }
1461                 vm_page_unlock(m);
1462                 VM_OBJECT_UNLOCK(object);
1463                 m = next;
1464         }
1465         vm_page_unlock_queues();
1466 }
1467
1468 /*
1469  *      vm_pageout is the high level pageout daemon.
1470  */
1471 static void
1472 vm_pageout()
1473 {
1474         int error, pass;
1475
1476         /*
1477          * Initialize some paging parameters.
1478          */
1479         cnt.v_interrupt_free_min = 2;
1480         if (cnt.v_page_count < 2000)
1481                 vm_pageout_page_count = 8;
1482
1483         /*
1484          * v_free_reserved needs to include enough for the largest
1485          * swap pager structures plus enough for any pv_entry structs
1486          * when paging. 
1487          */
1488         if (cnt.v_page_count > 1024)
1489                 cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1490         else
1491                 cnt.v_free_min = 4;
1492         cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1493             cnt.v_interrupt_free_min;
1494         cnt.v_free_reserved = vm_pageout_page_count +
1495             cnt.v_pageout_free_min + (cnt.v_page_count / 768);
1496         cnt.v_free_severe = cnt.v_free_min / 2;
1497         cnt.v_free_min += cnt.v_free_reserved;
1498         cnt.v_free_severe += cnt.v_free_reserved;
1499
1500         /*
1501          * v_free_target and v_cache_min control pageout hysteresis.  Note
1502          * that these are more a measure of the VM cache queue hysteresis
1503          * then the VM free queue.  Specifically, v_free_target is the
1504          * high water mark (free+cache pages).
1505          *
1506          * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1507          * low water mark, while v_free_min is the stop.  v_cache_min must
1508          * be big enough to handle memory needs while the pageout daemon
1509          * is signalled and run to free more pages.
1510          */
1511         if (cnt.v_free_count > 6144)
1512                 cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1513         else
1514                 cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1515
1516         if (cnt.v_free_count > 2048) {
1517                 cnt.v_cache_min = cnt.v_free_target;
1518                 cnt.v_cache_max = 2 * cnt.v_cache_min;
1519                 cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1520         } else {
1521                 cnt.v_cache_min = 0;
1522                 cnt.v_cache_max = 0;
1523                 cnt.v_inactive_target = cnt.v_free_count / 4;
1524         }
1525         if (cnt.v_inactive_target > cnt.v_free_count / 3)
1526                 cnt.v_inactive_target = cnt.v_free_count / 3;
1527
1528         /* XXX does not really belong here */
1529         if (vm_page_max_wired == 0)
1530                 vm_page_max_wired = cnt.v_free_count / 3;
1531
1532         if (vm_pageout_stats_max == 0)
1533                 vm_pageout_stats_max = cnt.v_free_target;
1534
1535         /*
1536          * Set interval in seconds for stats scan.
1537          */
1538         if (vm_pageout_stats_interval == 0)
1539                 vm_pageout_stats_interval = 5;
1540         if (vm_pageout_full_stats_interval == 0)
1541                 vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1542
1543         swap_pager_swap_init();
1544         pass = 0;
1545         /*
1546          * The pageout daemon is never done, so loop forever.
1547          */
1548         while (TRUE) {
1549                 /*
1550                  * If we have enough free memory, wakeup waiters.  Do
1551                  * not clear vm_pages_needed until we reach our target,
1552                  * otherwise we may be woken up over and over again and
1553                  * waste a lot of cpu.
1554                  */
1555                 mtx_lock(&vm_page_queue_free_mtx);
1556                 if (vm_pages_needed && !vm_page_count_min()) {
1557                         if (!vm_paging_needed())
1558                                 vm_pages_needed = 0;
1559                         wakeup(&cnt.v_free_count);
1560                 }
1561                 if (vm_pages_needed) {
1562                         /*
1563                          * Still not done, take a second pass without waiting
1564                          * (unlimited dirty cleaning), otherwise sleep a bit
1565                          * and try again.
1566                          */
1567                         ++pass;
1568                         if (pass > 1)
1569                                 msleep(&vm_pages_needed,
1570                                     &vm_page_queue_free_mtx, PVM, "psleep",
1571                                     hz / 2);
1572                 } else {
1573                         /*
1574                          * Good enough, sleep & handle stats.  Prime the pass
1575                          * for the next run.
1576                          */
1577                         if (pass > 1)
1578                                 pass = 1;
1579                         else
1580                                 pass = 0;
1581                         error = msleep(&vm_pages_needed,
1582                             &vm_page_queue_free_mtx, PVM, "psleep",
1583                             vm_pageout_stats_interval * hz);
1584                         if (error && !vm_pages_needed) {
1585                                 mtx_unlock(&vm_page_queue_free_mtx);
1586                                 pass = 0;
1587                                 vm_pageout_page_stats();
1588                                 continue;
1589                         }
1590                 }
1591                 if (vm_pages_needed)
1592                         cnt.v_pdwakeups++;
1593                 mtx_unlock(&vm_page_queue_free_mtx);
1594                 vm_pageout_scan(pass);
1595         }
1596 }
1597
1598 /*
1599  * Unless the free page queue lock is held by the caller, this function
1600  * should be regarded as advisory.  Specifically, the caller should
1601  * not msleep() on &cnt.v_free_count following this function unless
1602  * the free page queue lock is held until the msleep() is performed.
1603  */
1604 void
1605 pagedaemon_wakeup()
1606 {
1607
1608         if (!vm_pages_needed && curthread->td_proc != pageproc) {
1609                 vm_pages_needed = 1;
1610                 wakeup(&vm_pages_needed);
1611         }
1612 }
1613
1614 #if !defined(NO_SWAPPING)
1615 static void
1616 vm_req_vmdaemon(int req)
1617 {
1618         static int lastrun = 0;
1619
1620         mtx_lock(&vm_daemon_mtx);
1621         vm_pageout_req_swapout |= req;
1622         if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1623                 wakeup(&vm_daemon_needed);
1624                 lastrun = ticks;
1625         }
1626         mtx_unlock(&vm_daemon_mtx);
1627 }
1628
1629 static void
1630 vm_daemon()
1631 {
1632         struct rlimit rsslim;
1633         struct proc *p;
1634         struct thread *td;
1635         struct vmspace *vm;
1636         int breakout, swapout_flags, tryagain, attempts;
1637         uint64_t rsize, ravailable;
1638
1639         while (TRUE) {
1640                 mtx_lock(&vm_daemon_mtx);
1641 #ifdef RACCT
1642                 msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", hz);
1643 #else
1644                 msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", 0);
1645 #endif
1646                 swapout_flags = vm_pageout_req_swapout;
1647                 vm_pageout_req_swapout = 0;
1648                 mtx_unlock(&vm_daemon_mtx);
1649                 if (swapout_flags)
1650                         swapout_procs(swapout_flags);
1651
1652                 /*
1653                  * scan the processes for exceeding their rlimits or if
1654                  * process is swapped out -- deactivate pages
1655                  */
1656                 tryagain = 0;
1657                 attempts = 0;
1658 again:
1659                 attempts++;
1660                 sx_slock(&allproc_lock);
1661                 FOREACH_PROC_IN_SYSTEM(p) {
1662                         vm_pindex_t limit, size;
1663
1664                         /*
1665                          * if this is a system process or if we have already
1666                          * looked at this process, skip it.
1667                          */
1668                         PROC_LOCK(p);
1669                         if (p->p_state != PRS_NORMAL ||
1670                             p->p_flag & (P_INEXEC | P_SYSTEM | P_WEXIT)) {
1671                                 PROC_UNLOCK(p);
1672                                 continue;
1673                         }
1674                         /*
1675                          * if the process is in a non-running type state,
1676                          * don't touch it.
1677                          */
1678                         breakout = 0;
1679                         FOREACH_THREAD_IN_PROC(p, td) {
1680                                 thread_lock(td);
1681                                 if (!TD_ON_RUNQ(td) &&
1682                                     !TD_IS_RUNNING(td) &&
1683                                     !TD_IS_SLEEPING(td) &&
1684                                     !TD_IS_SUSPENDED(td)) {
1685                                         thread_unlock(td);
1686                                         breakout = 1;
1687                                         break;
1688                                 }
1689                                 thread_unlock(td);
1690                         }
1691                         if (breakout) {
1692                                 PROC_UNLOCK(p);
1693                                 continue;
1694                         }
1695                         /*
1696                          * get a limit
1697                          */
1698                         lim_rlimit(p, RLIMIT_RSS, &rsslim);
1699                         limit = OFF_TO_IDX(
1700                             qmin(rsslim.rlim_cur, rsslim.rlim_max));
1701
1702                         /*
1703                          * let processes that are swapped out really be
1704                          * swapped out set the limit to nothing (will force a
1705                          * swap-out.)
1706                          */
1707                         if ((p->p_flag & P_INMEM) == 0)
1708                                 limit = 0;      /* XXX */
1709                         vm = vmspace_acquire_ref(p);
1710                         PROC_UNLOCK(p);
1711                         if (vm == NULL)
1712                                 continue;
1713
1714                         size = vmspace_resident_count(vm);
1715                         if (limit >= 0 && size >= limit) {
1716                                 vm_pageout_map_deactivate_pages(
1717                                     &vm->vm_map, limit);
1718                         }
1719                         rsize = IDX_TO_OFF(size);
1720                         PROC_LOCK(p);
1721                         racct_set(p, RACCT_RSS, rsize);
1722                         ravailable = racct_get_available(p, RACCT_RSS);
1723                         PROC_UNLOCK(p);
1724                         if (rsize > ravailable) {
1725                                 /*
1726                                  * Don't be overly aggressive; this might be
1727                                  * an innocent process, and the limit could've
1728                                  * been exceeded by some memory hog.  Don't
1729                                  * try to deactivate more than 1/4th of process'
1730                                  * resident set size.
1731                                  */
1732                                 if (attempts <= 8) {
1733                                         if (ravailable < rsize - (rsize / 4))
1734                                                 ravailable = rsize - (rsize / 4);
1735                                 }
1736                                 vm_pageout_map_deactivate_pages(
1737                                     &vm->vm_map, OFF_TO_IDX(ravailable));
1738                                 /* Update RSS usage after paging out. */
1739                                 size = vmspace_resident_count(vm);
1740                                 rsize = IDX_TO_OFF(size);
1741                                 PROC_LOCK(p);
1742                                 racct_set(p, RACCT_RSS, rsize);
1743                                 PROC_UNLOCK(p);
1744                                 if (rsize > ravailable)
1745                                         tryagain = 1;
1746                         }
1747                         vmspace_free(vm);
1748                 }
1749                 sx_sunlock(&allproc_lock);
1750                 if (tryagain != 0 && attempts <= 10)
1751                         goto again;
1752         }
1753 }
1754 #endif                  /* !defined(NO_SWAPPING) */