]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_pageout.c
Update llvm/clang to trunk r126547.
[FreeBSD/FreeBSD.git] / sys / vm / vm_pageout.c
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  * Copyright (c) 2005 Yahoo! Technologies Norway AS
9  * All rights reserved.
10  *
11  * This code is derived from software contributed to Berkeley by
12  * The Mach Operating System project at Carnegie-Mellon University.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *      This product includes software developed by the University of
25  *      California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
43  *
44  *
45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46  * All rights reserved.
47  *
48  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49  *
50  * Permission to use, copy, modify and distribute this software and
51  * its documentation is hereby granted, provided that both the copyright
52  * notice and this permission notice appear in all copies of the
53  * software, derivative works or modified versions, and any portions
54  * thereof, and that both notices appear in supporting documentation.
55  *
56  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59  *
60  * Carnegie Mellon requests users of this software to return to
61  *
62  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63  *  School of Computer Science
64  *  Carnegie Mellon University
65  *  Pittsburgh PA 15213-3890
66  *
67  * any improvements or extensions that they make and grant Carnegie the
68  * rights to redistribute these changes.
69  */
70
71 /*
72  *      The proverbial page-out daemon.
73  */
74
75 #include <sys/cdefs.h>
76 __FBSDID("$FreeBSD$");
77
78 #include "opt_vm.h"
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/eventhandler.h>
83 #include <sys/lock.h>
84 #include <sys/mutex.h>
85 #include <sys/proc.h>
86 #include <sys/kthread.h>
87 #include <sys/ktr.h>
88 #include <sys/mount.h>
89 #include <sys/resourcevar.h>
90 #include <sys/sched.h>
91 #include <sys/signalvar.h>
92 #include <sys/vnode.h>
93 #include <sys/vmmeter.h>
94 #include <sys/sx.h>
95 #include <sys/sysctl.h>
96
97 #include <vm/vm.h>
98 #include <vm/vm_param.h>
99 #include <vm/vm_object.h>
100 #include <vm/vm_page.h>
101 #include <vm/vm_map.h>
102 #include <vm/vm_pageout.h>
103 #include <vm/vm_pager.h>
104 #include <vm/swap_pager.h>
105 #include <vm/vm_extern.h>
106 #include <vm/uma.h>
107
108 /*
109  * System initialization
110  */
111
112 /* the kernel process "vm_pageout"*/
113 static void vm_pageout(void);
114 static int vm_pageout_clean(vm_page_t);
115 static void vm_pageout_scan(int pass);
116
117 struct proc *pageproc;
118
119 static struct kproc_desc page_kp = {
120         "pagedaemon",
121         vm_pageout,
122         &pageproc
123 };
124 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start,
125     &page_kp);
126
127 #if !defined(NO_SWAPPING)
128 /* the kernel process "vm_daemon"*/
129 static void vm_daemon(void);
130 static struct   proc *vmproc;
131
132 static struct kproc_desc vm_kp = {
133         "vmdaemon",
134         vm_daemon,
135         &vmproc
136 };
137 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
138 #endif
139
140
141 int vm_pages_needed;            /* Event on which pageout daemon sleeps */
142 int vm_pageout_deficit;         /* Estimated number of pages deficit */
143 int vm_pageout_pages_needed;    /* flag saying that the pageout daemon needs pages */
144
145 #if !defined(NO_SWAPPING)
146 static int vm_pageout_req_swapout;      /* XXX */
147 static int vm_daemon_needed;
148 static struct mtx vm_daemon_mtx;
149 /* Allow for use by vm_pageout before vm_daemon is initialized. */
150 MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
151 #endif
152 static int vm_max_launder = 32;
153 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
154 static int vm_pageout_full_stats_interval = 0;
155 static int vm_pageout_algorithm=0;
156 static int defer_swap_pageouts=0;
157 static int disable_swap_pageouts=0;
158
159 #if defined(NO_SWAPPING)
160 static int vm_swap_enabled=0;
161 static int vm_swap_idle_enabled=0;
162 #else
163 static int vm_swap_enabled=1;
164 static int vm_swap_idle_enabled=0;
165 #endif
166
167 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
168         CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
169
170 SYSCTL_INT(_vm, OID_AUTO, max_launder,
171         CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
172
173 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
174         CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
175
176 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
177         CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
178
179 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
180         CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
181
182 #if defined(NO_SWAPPING)
183 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
184         CTLFLAG_RD, &vm_swap_enabled, 0, "Enable entire process swapout");
185 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
186         CTLFLAG_RD, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
187 #else
188 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
189         CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
190 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
191         CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
192 #endif
193
194 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
195         CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
196
197 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
198         CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
199
200 static int pageout_lock_miss;
201 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
202         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
203
204 #define VM_PAGEOUT_PAGE_COUNT 16
205 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
206
207 int vm_page_max_wired;          /* XXX max # of wired pages system-wide */
208 SYSCTL_INT(_vm, OID_AUTO, max_wired,
209         CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
210
211 #if !defined(NO_SWAPPING)
212 static void vm_pageout_map_deactivate_pages(vm_map_t, long);
213 static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
214 static void vm_req_vmdaemon(int req);
215 #endif
216 static void vm_pageout_page_stats(void);
217
218 static void
219 vm_pageout_init_marker(vm_page_t marker, u_short queue)
220 {
221
222         bzero(marker, sizeof(*marker));
223         marker->flags = PG_FICTITIOUS | PG_MARKER;
224         marker->oflags = VPO_BUSY;
225         marker->queue = queue;
226         marker->wire_count = 1;
227 }
228
229 /*
230  * vm_pageout_fallback_object_lock:
231  * 
232  * Lock vm object currently associated with `m'. VM_OBJECT_TRYLOCK is
233  * known to have failed and page queue must be either PQ_ACTIVE or
234  * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
235  * while locking the vm object.  Use marker page to detect page queue
236  * changes and maintain notion of next page on page queue.  Return
237  * TRUE if no changes were detected, FALSE otherwise.  vm object is
238  * locked on return.
239  * 
240  * This function depends on both the lock portion of struct vm_object
241  * and normal struct vm_page being type stable.
242  */
243 boolean_t
244 vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
245 {
246         struct vm_page marker;
247         boolean_t unchanged;
248         u_short queue;
249         vm_object_t object;
250
251         queue = m->queue;
252         vm_pageout_init_marker(&marker, queue);
253         object = m->object;
254         
255         TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl,
256                            m, &marker, pageq);
257         vm_page_unlock_queues();
258         vm_page_unlock(m);
259         VM_OBJECT_LOCK(object);
260         vm_page_lock(m);
261         vm_page_lock_queues();
262
263         /* Page queue might have changed. */
264         *next = TAILQ_NEXT(&marker, pageq);
265         unchanged = (m->queue == queue &&
266                      m->object == object &&
267                      &marker == TAILQ_NEXT(m, pageq));
268         TAILQ_REMOVE(&vm_page_queues[queue].pl,
269                      &marker, pageq);
270         return (unchanged);
271 }
272
273 /*
274  * Lock the page while holding the page queue lock.  Use marker page
275  * to detect page queue changes and maintain notion of next page on
276  * page queue.  Return TRUE if no changes were detected, FALSE
277  * otherwise.  The page is locked on return. The page queue lock might
278  * be dropped and reacquired.
279  *
280  * This function depends on normal struct vm_page being type stable.
281  */
282 boolean_t
283 vm_pageout_page_lock(vm_page_t m, vm_page_t *next)
284 {
285         struct vm_page marker;
286         boolean_t unchanged;
287         u_short queue;
288
289         vm_page_lock_assert(m, MA_NOTOWNED);
290         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
291
292         if (vm_page_trylock(m))
293                 return (TRUE);
294
295         queue = m->queue;
296         vm_pageout_init_marker(&marker, queue);
297
298         TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl, m, &marker, pageq);
299         vm_page_unlock_queues();
300         vm_page_lock(m);
301         vm_page_lock_queues();
302
303         /* Page queue might have changed. */
304         *next = TAILQ_NEXT(&marker, pageq);
305         unchanged = (m->queue == queue && &marker == TAILQ_NEXT(m, pageq));
306         TAILQ_REMOVE(&vm_page_queues[queue].pl, &marker, pageq);
307         return (unchanged);
308 }
309
310 /*
311  * vm_pageout_clean:
312  *
313  * Clean the page and remove it from the laundry.
314  * 
315  * We set the busy bit to cause potential page faults on this page to
316  * block.  Note the careful timing, however, the busy bit isn't set till
317  * late and we cannot do anything that will mess with the page.
318  */
319 static int
320 vm_pageout_clean(vm_page_t m)
321 {
322         vm_object_t object;
323         vm_page_t mc[2*vm_pageout_page_count], pb, ps;
324         int pageout_count;
325         int ib, is, page_base;
326         vm_pindex_t pindex = m->pindex;
327
328         vm_page_lock_assert(m, MA_OWNED);
329         object = m->object;
330         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
331
332         /*
333          * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
334          * with the new swapper, but we could have serious problems paging
335          * out other object types if there is insufficient memory.  
336          *
337          * Unfortunately, checking free memory here is far too late, so the
338          * check has been moved up a procedural level.
339          */
340
341         /*
342          * Can't clean the page if it's busy or held.
343          */
344         KASSERT(m->busy == 0 && (m->oflags & VPO_BUSY) == 0,
345             ("vm_pageout_clean: page %p is busy", m));
346         KASSERT(m->hold_count == 0, ("vm_pageout_clean: page %p is held", m));
347         vm_page_unlock(m);
348
349         mc[vm_pageout_page_count] = pb = ps = m;
350         pageout_count = 1;
351         page_base = vm_pageout_page_count;
352         ib = 1;
353         is = 1;
354
355         /*
356          * Scan object for clusterable pages.
357          *
358          * We can cluster ONLY if: ->> the page is NOT
359          * clean, wired, busy, held, or mapped into a
360          * buffer, and one of the following:
361          * 1) The page is inactive, or a seldom used
362          *    active page.
363          * -or-
364          * 2) we force the issue.
365          *
366          * During heavy mmap/modification loads the pageout
367          * daemon can really fragment the underlying file
368          * due to flushing pages out of order and not trying
369          * align the clusters (which leave sporatic out-of-order
370          * holes).  To solve this problem we do the reverse scan
371          * first and attempt to align our cluster, then do a 
372          * forward scan if room remains.
373          */
374 more:
375         while (ib && pageout_count < vm_pageout_page_count) {
376                 vm_page_t p;
377
378                 if (ib > pindex) {
379                         ib = 0;
380                         break;
381                 }
382
383                 if ((p = vm_page_prev(pb)) == NULL ||
384                     (p->oflags & VPO_BUSY) != 0 || p->busy != 0) {
385                         ib = 0;
386                         break;
387                 }
388                 vm_page_lock(p);
389                 vm_page_test_dirty(p);
390                 if (p->dirty == 0 ||
391                     p->queue != PQ_INACTIVE ||
392                     p->hold_count != 0) {       /* may be undergoing I/O */
393                         vm_page_unlock(p);
394                         ib = 0;
395                         break;
396                 }
397                 vm_page_unlock(p);
398                 mc[--page_base] = pb = p;
399                 ++pageout_count;
400                 ++ib;
401                 /*
402                  * alignment boundry, stop here and switch directions.  Do
403                  * not clear ib.
404                  */
405                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
406                         break;
407         }
408
409         while (pageout_count < vm_pageout_page_count && 
410             pindex + is < object->size) {
411                 vm_page_t p;
412
413                 if ((p = vm_page_next(ps)) == NULL ||
414                     (p->oflags & VPO_BUSY) != 0 || p->busy != 0)
415                         break;
416                 vm_page_lock(p);
417                 vm_page_test_dirty(p);
418                 if (p->dirty == 0 ||
419                     p->queue != PQ_INACTIVE ||
420                     p->hold_count != 0) {       /* may be undergoing I/O */
421                         vm_page_unlock(p);
422                         break;
423                 }
424                 vm_page_unlock(p);
425                 mc[page_base + pageout_count] = ps = p;
426                 ++pageout_count;
427                 ++is;
428         }
429
430         /*
431          * If we exhausted our forward scan, continue with the reverse scan
432          * when possible, even past a page boundry.  This catches boundry
433          * conditions.
434          */
435         if (ib && pageout_count < vm_pageout_page_count)
436                 goto more;
437
438         /*
439          * we allow reads during pageouts...
440          */
441         return (vm_pageout_flush(&mc[page_base], pageout_count, 0, 0, NULL));
442 }
443
444 /*
445  * vm_pageout_flush() - launder the given pages
446  *
447  *      The given pages are laundered.  Note that we setup for the start of
448  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
449  *      reference count all in here rather then in the parent.  If we want
450  *      the parent to do more sophisticated things we may have to change
451  *      the ordering.
452  *
453  *      Returned runlen is the count of pages between mreq and first
454  *      page after mreq with status VM_PAGER_AGAIN.
455  */
456 int
457 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen)
458 {
459         vm_object_t object = mc[0]->object;
460         int pageout_status[count];
461         int numpagedout = 0;
462         int i, runlen;
463
464         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
465         mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
466
467         /*
468          * Initiate I/O.  Bump the vm_page_t->busy counter and
469          * mark the pages read-only.
470          *
471          * We do not have to fixup the clean/dirty bits here... we can
472          * allow the pager to do it after the I/O completes.
473          *
474          * NOTE! mc[i]->dirty may be partial or fragmented due to an
475          * edge case with file fragments.
476          */
477         for (i = 0; i < count; i++) {
478                 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
479                     ("vm_pageout_flush: partially invalid page %p index %d/%d",
480                         mc[i], i, count));
481                 vm_page_io_start(mc[i]);
482                 pmap_remove_write(mc[i]);
483         }
484         vm_object_pip_add(object, count);
485
486         vm_pager_put_pages(object, mc, count, flags, pageout_status);
487
488         runlen = count - mreq;
489         for (i = 0; i < count; i++) {
490                 vm_page_t mt = mc[i];
491
492                 KASSERT(pageout_status[i] == VM_PAGER_PEND ||
493                     (mt->flags & PG_WRITEABLE) == 0,
494                     ("vm_pageout_flush: page %p is not write protected", mt));
495                 switch (pageout_status[i]) {
496                 case VM_PAGER_OK:
497                 case VM_PAGER_PEND:
498                         numpagedout++;
499                         break;
500                 case VM_PAGER_BAD:
501                         /*
502                          * Page outside of range of object. Right now we
503                          * essentially lose the changes by pretending it
504                          * worked.
505                          */
506                         vm_page_undirty(mt);
507                         break;
508                 case VM_PAGER_ERROR:
509                 case VM_PAGER_FAIL:
510                         /*
511                          * If page couldn't be paged out, then reactivate the
512                          * page so it doesn't clog the inactive list.  (We
513                          * will try paging out it again later).
514                          */
515                         vm_page_lock(mt);
516                         vm_page_activate(mt);
517                         vm_page_unlock(mt);
518                         break;
519                 case VM_PAGER_AGAIN:
520                         if (i >= mreq && i - mreq < runlen)
521                                 runlen = i - mreq;
522                         break;
523                 }
524
525                 /*
526                  * If the operation is still going, leave the page busy to
527                  * block all other accesses. Also, leave the paging in
528                  * progress indicator set so that we don't attempt an object
529                  * collapse.
530                  */
531                 if (pageout_status[i] != VM_PAGER_PEND) {
532                         vm_object_pip_wakeup(object);
533                         vm_page_io_finish(mt);
534                         if (vm_page_count_severe()) {
535                                 vm_page_lock(mt);
536                                 vm_page_try_to_cache(mt);
537                                 vm_page_unlock(mt);
538                         }
539                 }
540         }
541         if (prunlen != NULL)
542                 *prunlen = runlen;
543         return (numpagedout);
544 }
545
546 #if !defined(NO_SWAPPING)
547 /*
548  *      vm_pageout_object_deactivate_pages
549  *
550  *      Deactivate enough pages to satisfy the inactive target
551  *      requirements.
552  *
553  *      The object and map must be locked.
554  */
555 static void
556 vm_pageout_object_deactivate_pages(pmap_t pmap, vm_object_t first_object,
557     long desired)
558 {
559         vm_object_t backing_object, object;
560         vm_page_t p;
561         int actcount, remove_mode;
562
563         VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
564         if (first_object->type == OBJT_DEVICE ||
565             first_object->type == OBJT_SG)
566                 return;
567         for (object = first_object;; object = backing_object) {
568                 if (pmap_resident_count(pmap) <= desired)
569                         goto unlock_return;
570                 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
571                 if (object->type == OBJT_PHYS || object->paging_in_progress)
572                         goto unlock_return;
573
574                 remove_mode = 0;
575                 if (object->shadow_count > 1)
576                         remove_mode = 1;
577                 /*
578                  * Scan the object's entire memory queue.
579                  */
580                 TAILQ_FOREACH(p, &object->memq, listq) {
581                         if (pmap_resident_count(pmap) <= desired)
582                                 goto unlock_return;
583                         if ((p->oflags & VPO_BUSY) != 0 || p->busy != 0)
584                                 continue;
585                         PCPU_INC(cnt.v_pdpages);
586                         vm_page_lock(p);
587                         if (p->wire_count != 0 || p->hold_count != 0 ||
588                             !pmap_page_exists_quick(pmap, p)) {
589                                 vm_page_unlock(p);
590                                 continue;
591                         }
592                         actcount = pmap_ts_referenced(p);
593                         if ((p->flags & PG_REFERENCED) != 0) {
594                                 if (actcount == 0)
595                                         actcount = 1;
596                                 vm_page_lock_queues();
597                                 vm_page_flag_clear(p, PG_REFERENCED);
598                                 vm_page_unlock_queues();
599                         }
600                         if (p->queue != PQ_ACTIVE && actcount != 0) {
601                                 vm_page_activate(p);
602                                 p->act_count += actcount;
603                         } else if (p->queue == PQ_ACTIVE) {
604                                 if (actcount == 0) {
605                                         p->act_count -= min(p->act_count,
606                                             ACT_DECLINE);
607                                         if (!remove_mode &&
608                                             (vm_pageout_algorithm ||
609                                             p->act_count == 0)) {
610                                                 pmap_remove_all(p);
611                                                 vm_page_deactivate(p);
612                                         } else {
613                                                 vm_page_lock_queues();
614                                                 vm_page_requeue(p);
615                                                 vm_page_unlock_queues();
616                                         }
617                                 } else {
618                                         vm_page_activate(p);
619                                         if (p->act_count < ACT_MAX -
620                                             ACT_ADVANCE)
621                                                 p->act_count += ACT_ADVANCE;
622                                         vm_page_lock_queues();
623                                         vm_page_requeue(p);
624                                         vm_page_unlock_queues();
625                                 }
626                         } else if (p->queue == PQ_INACTIVE)
627                                 pmap_remove_all(p);
628                         vm_page_unlock(p);
629                 }
630                 if ((backing_object = object->backing_object) == NULL)
631                         goto unlock_return;
632                 VM_OBJECT_LOCK(backing_object);
633                 if (object != first_object)
634                         VM_OBJECT_UNLOCK(object);
635         }
636 unlock_return:
637         if (object != first_object)
638                 VM_OBJECT_UNLOCK(object);
639 }
640
641 /*
642  * deactivate some number of pages in a map, try to do it fairly, but
643  * that is really hard to do.
644  */
645 static void
646 vm_pageout_map_deactivate_pages(map, desired)
647         vm_map_t map;
648         long desired;
649 {
650         vm_map_entry_t tmpe;
651         vm_object_t obj, bigobj;
652         int nothingwired;
653
654         if (!vm_map_trylock(map))
655                 return;
656
657         bigobj = NULL;
658         nothingwired = TRUE;
659
660         /*
661          * first, search out the biggest object, and try to free pages from
662          * that.
663          */
664         tmpe = map->header.next;
665         while (tmpe != &map->header) {
666                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
667                         obj = tmpe->object.vm_object;
668                         if (obj != NULL && VM_OBJECT_TRYLOCK(obj)) {
669                                 if (obj->shadow_count <= 1 &&
670                                     (bigobj == NULL ||
671                                      bigobj->resident_page_count < obj->resident_page_count)) {
672                                         if (bigobj != NULL)
673                                                 VM_OBJECT_UNLOCK(bigobj);
674                                         bigobj = obj;
675                                 } else
676                                         VM_OBJECT_UNLOCK(obj);
677                         }
678                 }
679                 if (tmpe->wired_count > 0)
680                         nothingwired = FALSE;
681                 tmpe = tmpe->next;
682         }
683
684         if (bigobj != NULL) {
685                 vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
686                 VM_OBJECT_UNLOCK(bigobj);
687         }
688         /*
689          * Next, hunt around for other pages to deactivate.  We actually
690          * do this search sort of wrong -- .text first is not the best idea.
691          */
692         tmpe = map->header.next;
693         while (tmpe != &map->header) {
694                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
695                         break;
696                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
697                         obj = tmpe->object.vm_object;
698                         if (obj != NULL) {
699                                 VM_OBJECT_LOCK(obj);
700                                 vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
701                                 VM_OBJECT_UNLOCK(obj);
702                         }
703                 }
704                 tmpe = tmpe->next;
705         }
706
707         /*
708          * Remove all mappings if a process is swapped out, this will free page
709          * table pages.
710          */
711         if (desired == 0 && nothingwired) {
712                 tmpe = map->header.next;
713                 while (tmpe != &map->header) {
714                         pmap_remove(vm_map_pmap(map), tmpe->start, tmpe->end);
715                         tmpe = tmpe->next;
716                 }
717         }
718         vm_map_unlock(map);
719 }
720 #endif          /* !defined(NO_SWAPPING) */
721
722 /*
723  *      vm_pageout_scan does the dirty work for the pageout daemon.
724  */
725 static void
726 vm_pageout_scan(int pass)
727 {
728         vm_page_t m, next;
729         struct vm_page marker;
730         int page_shortage, maxscan, pcount;
731         int addl_page_shortage, addl_page_shortage_init;
732         vm_object_t object;
733         int actcount;
734         int vnodes_skipped = 0;
735         int maxlaunder;
736
737         /*
738          * Decrease registered cache sizes.
739          */
740         EVENTHANDLER_INVOKE(vm_lowmem, 0);
741         /*
742          * We do this explicitly after the caches have been drained above.
743          */
744         uma_reclaim();
745
746         addl_page_shortage_init = atomic_readandclear_int(&vm_pageout_deficit);
747
748         /*
749          * Calculate the number of pages we want to either free or move
750          * to the cache.
751          */
752         page_shortage = vm_paging_target() + addl_page_shortage_init;
753
754         vm_pageout_init_marker(&marker, PQ_INACTIVE);
755
756         /*
757          * Start scanning the inactive queue for pages we can move to the
758          * cache or free.  The scan will stop when the target is reached or
759          * we have scanned the entire inactive queue.  Note that m->act_count
760          * is not used to form decisions for the inactive queue, only for the
761          * active queue.
762          *
763          * maxlaunder limits the number of dirty pages we flush per scan.
764          * For most systems a smaller value (16 or 32) is more robust under
765          * extreme memory and disk pressure because any unnecessary writes
766          * to disk can result in extreme performance degredation.  However,
767          * systems with excessive dirty pages (especially when MAP_NOSYNC is
768          * used) will die horribly with limited laundering.  If the pageout
769          * daemon cannot clean enough pages in the first pass, we let it go
770          * all out in succeeding passes.
771          */
772         if ((maxlaunder = vm_max_launder) <= 1)
773                 maxlaunder = 1;
774         if (pass)
775                 maxlaunder = 10000;
776         vm_page_lock_queues();
777 rescan0:
778         addl_page_shortage = addl_page_shortage_init;
779         maxscan = cnt.v_inactive_count;
780
781         for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
782              m != NULL && maxscan-- > 0 && page_shortage > 0;
783              m = next) {
784
785                 cnt.v_pdpages++;
786
787                 if (m->queue != PQ_INACTIVE)
788                         goto rescan0;
789
790                 next = TAILQ_NEXT(m, pageq);
791
792                 /*
793                  * skip marker pages
794                  */
795                 if (m->flags & PG_MARKER)
796                         continue;
797
798                 /*
799                  * Lock the page.
800                  */
801                 if (!vm_pageout_page_lock(m, &next)) {
802                         vm_page_unlock(m);
803                         addl_page_shortage++;
804                         continue;
805                 }
806
807                 /*
808                  * A held page may be undergoing I/O, so skip it.
809                  */
810                 if (m->hold_count) {
811                         vm_page_unlock(m);
812                         vm_page_requeue(m);
813                         addl_page_shortage++;
814                         continue;
815                 }
816
817                 /*
818                  * Don't mess with busy pages, keep in the front of the
819                  * queue, most likely are being paged out.
820                  */
821                 object = m->object;
822                 if (!VM_OBJECT_TRYLOCK(object) &&
823                     (!vm_pageout_fallback_object_lock(m, &next) ||
824                         m->hold_count != 0)) {
825                         VM_OBJECT_UNLOCK(object);
826                         vm_page_unlock(m);
827                         addl_page_shortage++;
828                         continue;
829                 }
830                 if (m->busy || (m->oflags & VPO_BUSY)) {
831                         vm_page_unlock(m);
832                         VM_OBJECT_UNLOCK(object);
833                         addl_page_shortage++;
834                         continue;
835                 }
836
837                 /*
838                  * If the object is not being used, we ignore previous 
839                  * references.
840                  */
841                 if (object->ref_count == 0) {
842                         vm_page_flag_clear(m, PG_REFERENCED);
843                         KASSERT(!pmap_page_is_mapped(m),
844                             ("vm_pageout_scan: page %p is mapped", m));
845
846                 /*
847                  * Otherwise, if the page has been referenced while in the 
848                  * inactive queue, we bump the "activation count" upwards, 
849                  * making it less likely that the page will be added back to 
850                  * the inactive queue prematurely again.  Here we check the 
851                  * page tables (or emulated bits, if any), given the upper 
852                  * level VM system not knowing anything about existing 
853                  * references.
854                  */
855                 } else if (((m->flags & PG_REFERENCED) == 0) &&
856                         (actcount = pmap_ts_referenced(m))) {
857                         vm_page_activate(m);
858                         vm_page_unlock(m);
859                         m->act_count += actcount + ACT_ADVANCE;
860                         VM_OBJECT_UNLOCK(object);
861                         continue;
862                 }
863
864                 /*
865                  * If the upper level VM system knows about any page 
866                  * references, we activate the page.  We also set the 
867                  * "activation count" higher than normal so that we will less 
868                  * likely place pages back onto the inactive queue again.
869                  */
870                 if ((m->flags & PG_REFERENCED) != 0) {
871                         vm_page_flag_clear(m, PG_REFERENCED);
872                         actcount = pmap_ts_referenced(m);
873                         vm_page_activate(m);
874                         vm_page_unlock(m);
875                         m->act_count += actcount + ACT_ADVANCE + 1;
876                         VM_OBJECT_UNLOCK(object);
877                         continue;
878                 }
879
880                 /*
881                  * If the upper level VM system does not believe that the page
882                  * is fully dirty, but it is mapped for write access, then we
883                  * consult the pmap to see if the page's dirty status should
884                  * be updated.
885                  */
886                 if (m->dirty != VM_PAGE_BITS_ALL &&
887                     (m->flags & PG_WRITEABLE) != 0) {
888                         /*
889                          * Avoid a race condition: Unless write access is
890                          * removed from the page, another processor could
891                          * modify it before all access is removed by the call
892                          * to vm_page_cache() below.  If vm_page_cache() finds
893                          * that the page has been modified when it removes all
894                          * access, it panics because it cannot cache dirty
895                          * pages.  In principle, we could eliminate just write
896                          * access here rather than all access.  In the expected
897                          * case, when there are no last instant modifications
898                          * to the page, removing all access will be cheaper
899                          * overall.
900                          */
901                         if (pmap_is_modified(m))
902                                 vm_page_dirty(m);
903                         else if (m->dirty == 0)
904                                 pmap_remove_all(m);
905                 }
906
907                 if (m->valid == 0) {
908                         /*
909                          * Invalid pages can be easily freed
910                          */
911                         vm_page_free(m);
912                         cnt.v_dfree++;
913                         --page_shortage;
914                 } else if (m->dirty == 0) {
915                         /*
916                          * Clean pages can be placed onto the cache queue.
917                          * This effectively frees them.
918                          */
919                         vm_page_cache(m);
920                         --page_shortage;
921                 } else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
922                         /*
923                          * Dirty pages need to be paged out, but flushing
924                          * a page is extremely expensive verses freeing
925                          * a clean page.  Rather then artificially limiting
926                          * the number of pages we can flush, we instead give
927                          * dirty pages extra priority on the inactive queue
928                          * by forcing them to be cycled through the queue
929                          * twice before being flushed, after which the
930                          * (now clean) page will cycle through once more
931                          * before being freed.  This significantly extends
932                          * the thrash point for a heavily loaded machine.
933                          */
934                         vm_page_flag_set(m, PG_WINATCFLS);
935                         vm_page_requeue(m);
936                 } else if (maxlaunder > 0) {
937                         /*
938                          * We always want to try to flush some dirty pages if
939                          * we encounter them, to keep the system stable.
940                          * Normally this number is small, but under extreme
941                          * pressure where there are insufficient clean pages
942                          * on the inactive queue, we may have to go all out.
943                          */
944                         int swap_pageouts_ok, vfslocked = 0;
945                         struct vnode *vp = NULL;
946                         struct mount *mp = NULL;
947
948                         if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
949                                 swap_pageouts_ok = 1;
950                         } else {
951                                 swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
952                                 swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
953                                 vm_page_count_min());
954                                                                                 
955                         }
956
957                         /*
958                          * We don't bother paging objects that are "dead".  
959                          * Those objects are in a "rundown" state.
960                          */
961                         if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
962                                 vm_page_unlock(m);
963                                 VM_OBJECT_UNLOCK(object);
964                                 vm_page_requeue(m);
965                                 continue;
966                         }
967
968                         /*
969                          * Following operations may unlock
970                          * vm_page_queue_mtx, invalidating the 'next'
971                          * pointer.  To prevent an inordinate number
972                          * of restarts we use our marker to remember
973                          * our place.
974                          *
975                          */
976                         TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl,
977                                            m, &marker, pageq);
978                         /*
979                          * The object is already known NOT to be dead.   It
980                          * is possible for the vget() to block the whole
981                          * pageout daemon, but the new low-memory handling
982                          * code should prevent it.
983                          *
984                          * The previous code skipped locked vnodes and, worse,
985                          * reordered pages in the queue.  This results in
986                          * completely non-deterministic operation and, on a
987                          * busy system, can lead to extremely non-optimal
988                          * pageouts.  For example, it can cause clean pages
989                          * to be freed and dirty pages to be moved to the end
990                          * of the queue.  Since dirty pages are also moved to
991                          * the end of the queue once-cleaned, this gives
992                          * way too large a weighting to defering the freeing
993                          * of dirty pages.
994                          *
995                          * We can't wait forever for the vnode lock, we might
996                          * deadlock due to a vn_read() getting stuck in
997                          * vm_wait while holding this vnode.  We skip the 
998                          * vnode if we can't get it in a reasonable amount
999                          * of time.
1000                          */
1001                         if (object->type == OBJT_VNODE) {
1002                                 vm_page_unlock_queues();
1003                                 vm_page_unlock(m);
1004                                 vp = object->handle;
1005                                 if (vp->v_type == VREG &&
1006                                     vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1007                                         mp = NULL;
1008                                         ++pageout_lock_miss;
1009                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1010                                                 vnodes_skipped++;
1011                                         vm_page_lock_queues();
1012                                         goto unlock_and_continue;
1013                                 }
1014                                 KASSERT(mp != NULL,
1015                                     ("vp %p with NULL v_mount", vp));
1016                                 vm_object_reference_locked(object);
1017                                 VM_OBJECT_UNLOCK(object);
1018                                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1019                                 if (vget(vp, LK_EXCLUSIVE | LK_TIMELOCK,
1020                                     curthread)) {
1021                                         VM_OBJECT_LOCK(object);
1022                                         vm_page_lock_queues();
1023                                         ++pageout_lock_miss;
1024                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1025                                                 vnodes_skipped++;
1026                                         vp = NULL;
1027                                         goto unlock_and_continue;
1028                                 }
1029                                 VM_OBJECT_LOCK(object);
1030                                 vm_page_lock(m);
1031                                 vm_page_lock_queues();
1032                                 /*
1033                                  * The page might have been moved to another
1034                                  * queue during potential blocking in vget()
1035                                  * above.  The page might have been freed and
1036                                  * reused for another vnode.
1037                                  */
1038                                 if (m->queue != PQ_INACTIVE ||
1039                                     m->object != object ||
1040                                     TAILQ_NEXT(m, pageq) != &marker) {
1041                                         vm_page_unlock(m);
1042                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1043                                                 vnodes_skipped++;
1044                                         goto unlock_and_continue;
1045                                 }
1046         
1047                                 /*
1048                                  * The page may have been busied during the
1049                                  * blocking in vget().  We don't move the
1050                                  * page back onto the end of the queue so that
1051                                  * statistics are more correct if we don't.
1052                                  */
1053                                 if (m->busy || (m->oflags & VPO_BUSY)) {
1054                                         vm_page_unlock(m);
1055                                         goto unlock_and_continue;
1056                                 }
1057
1058                                 /*
1059                                  * If the page has become held it might
1060                                  * be undergoing I/O, so skip it
1061                                  */
1062                                 if (m->hold_count) {
1063                                         vm_page_unlock(m);
1064                                         vm_page_requeue(m);
1065                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1066                                                 vnodes_skipped++;
1067                                         goto unlock_and_continue;
1068                                 }
1069                         }
1070
1071                         /*
1072                          * If a page is dirty, then it is either being washed
1073                          * (but not yet cleaned) or it is still in the
1074                          * laundry.  If it is still in the laundry, then we
1075                          * start the cleaning operation. 
1076                          *
1077                          * decrement page_shortage on success to account for
1078                          * the (future) cleaned page.  Otherwise we could wind
1079                          * up laundering or cleaning too many pages.
1080                          */
1081                         vm_page_unlock_queues();
1082                         if (vm_pageout_clean(m) != 0) {
1083                                 --page_shortage;
1084                                 --maxlaunder;
1085                         }
1086                         vm_page_lock_queues();
1087 unlock_and_continue:
1088                         vm_page_lock_assert(m, MA_NOTOWNED);
1089                         VM_OBJECT_UNLOCK(object);
1090                         if (mp != NULL) {
1091                                 vm_page_unlock_queues();
1092                                 if (vp != NULL)
1093                                         vput(vp);
1094                                 VFS_UNLOCK_GIANT(vfslocked);
1095                                 vm_object_deallocate(object);
1096                                 vn_finished_write(mp);
1097                                 vm_page_lock_queues();
1098                         }
1099                         next = TAILQ_NEXT(&marker, pageq);
1100                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl,
1101                                      &marker, pageq);
1102                         vm_page_lock_assert(m, MA_NOTOWNED);
1103                         continue;
1104                 }
1105                 vm_page_unlock(m);
1106                 VM_OBJECT_UNLOCK(object);
1107         }
1108
1109         /*
1110          * Compute the number of pages we want to try to move from the
1111          * active queue to the inactive queue.
1112          */
1113         page_shortage = vm_paging_target() +
1114                 cnt.v_inactive_target - cnt.v_inactive_count;
1115         page_shortage += addl_page_shortage;
1116
1117         /*
1118          * Scan the active queue for things we can deactivate. We nominally
1119          * track the per-page activity counter and use it to locate
1120          * deactivation candidates.
1121          */
1122         pcount = cnt.v_active_count;
1123         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1124         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1125
1126         while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1127
1128                 KASSERT(m->queue == PQ_ACTIVE,
1129                     ("vm_pageout_scan: page %p isn't active", m));
1130
1131                 next = TAILQ_NEXT(m, pageq);
1132                 if ((m->flags & PG_MARKER) != 0) {
1133                         m = next;
1134                         continue;
1135                 }
1136                 if (!vm_pageout_page_lock(m, &next)) {
1137                         vm_page_unlock(m);
1138                         m = next;
1139                         continue;
1140                 }
1141                 object = m->object;
1142                 if (!VM_OBJECT_TRYLOCK(object) &&
1143                     !vm_pageout_fallback_object_lock(m, &next)) {
1144                         VM_OBJECT_UNLOCK(object);
1145                         vm_page_unlock(m);
1146                         m = next;
1147                         continue;
1148                 }
1149
1150                 /*
1151                  * Don't deactivate pages that are busy.
1152                  */
1153                 if ((m->busy != 0) ||
1154                     (m->oflags & VPO_BUSY) ||
1155                     (m->hold_count != 0)) {
1156                         vm_page_unlock(m);
1157                         VM_OBJECT_UNLOCK(object);
1158                         vm_page_requeue(m);
1159                         m = next;
1160                         continue;
1161                 }
1162
1163                 /*
1164                  * The count for pagedaemon pages is done after checking the
1165                  * page for eligibility...
1166                  */
1167                 cnt.v_pdpages++;
1168
1169                 /*
1170                  * Check to see "how much" the page has been used.
1171                  */
1172                 actcount = 0;
1173                 if (object->ref_count != 0) {
1174                         if (m->flags & PG_REFERENCED) {
1175                                 actcount += 1;
1176                         }
1177                         actcount += pmap_ts_referenced(m);
1178                         if (actcount) {
1179                                 m->act_count += ACT_ADVANCE + actcount;
1180                                 if (m->act_count > ACT_MAX)
1181                                         m->act_count = ACT_MAX;
1182                         }
1183                 }
1184
1185                 /*
1186                  * Since we have "tested" this bit, we need to clear it now.
1187                  */
1188                 vm_page_flag_clear(m, PG_REFERENCED);
1189
1190                 /*
1191                  * Only if an object is currently being used, do we use the
1192                  * page activation count stats.
1193                  */
1194                 if (actcount && (object->ref_count != 0)) {
1195                         vm_page_requeue(m);
1196                 } else {
1197                         m->act_count -= min(m->act_count, ACT_DECLINE);
1198                         if (vm_pageout_algorithm ||
1199                             object->ref_count == 0 ||
1200                             m->act_count == 0) {
1201                                 page_shortage--;
1202                                 if (object->ref_count == 0) {
1203                                         KASSERT(!pmap_page_is_mapped(m),
1204                                     ("vm_pageout_scan: page %p is mapped", m));
1205                                         if (m->dirty == 0)
1206                                                 vm_page_cache(m);
1207                                         else
1208                                                 vm_page_deactivate(m);
1209                                 } else {
1210                                         vm_page_deactivate(m);
1211                                 }
1212                         } else {
1213                                 vm_page_requeue(m);
1214                         }
1215                 }
1216                 vm_page_unlock(m);
1217                 VM_OBJECT_UNLOCK(object);
1218                 m = next;
1219         }
1220         vm_page_unlock_queues();
1221 #if !defined(NO_SWAPPING)
1222         /*
1223          * Idle process swapout -- run once per second.
1224          */
1225         if (vm_swap_idle_enabled) {
1226                 static long lsec;
1227                 if (time_second != lsec) {
1228                         vm_req_vmdaemon(VM_SWAP_IDLE);
1229                         lsec = time_second;
1230                 }
1231         }
1232 #endif
1233                 
1234         /*
1235          * If we didn't get enough free pages, and we have skipped a vnode
1236          * in a writeable object, wakeup the sync daemon.  And kick swapout
1237          * if we did not get enough free pages.
1238          */
1239         if (vm_paging_target() > 0) {
1240                 if (vnodes_skipped && vm_page_count_min())
1241                         (void) speedup_syncer();
1242 #if !defined(NO_SWAPPING)
1243                 if (vm_swap_enabled && vm_page_count_target())
1244                         vm_req_vmdaemon(VM_SWAP_NORMAL);
1245 #endif
1246         }
1247
1248         /*
1249          * If we are critically low on one of RAM or swap and low on
1250          * the other, kill the largest process.  However, we avoid
1251          * doing this on the first pass in order to give ourselves a
1252          * chance to flush out dirty vnode-backed pages and to allow
1253          * active pages to be moved to the inactive queue and reclaimed.
1254          */
1255         if (pass != 0 &&
1256             ((swap_pager_avail < 64 && vm_page_count_min()) ||
1257              (swap_pager_full && vm_paging_target() > 0)))
1258                 vm_pageout_oom(VM_OOM_MEM);
1259 }
1260
1261
1262 void
1263 vm_pageout_oom(int shortage)
1264 {
1265         struct proc *p, *bigproc;
1266         vm_offset_t size, bigsize;
1267         struct thread *td;
1268         struct vmspace *vm;
1269
1270         /*
1271          * We keep the process bigproc locked once we find it to keep anyone
1272          * from messing with it; however, there is a possibility of
1273          * deadlock if process B is bigproc and one of it's child processes
1274          * attempts to propagate a signal to B while we are waiting for A's
1275          * lock while walking this list.  To avoid this, we don't block on
1276          * the process lock but just skip a process if it is already locked.
1277          */
1278         bigproc = NULL;
1279         bigsize = 0;
1280         sx_slock(&allproc_lock);
1281         FOREACH_PROC_IN_SYSTEM(p) {
1282                 int breakout;
1283
1284                 if (PROC_TRYLOCK(p) == 0)
1285                         continue;
1286                 /*
1287                  * If this is a system, protected or killed process, skip it.
1288                  */
1289                 if ((p->p_flag & (P_INEXEC | P_PROTECTED | P_SYSTEM)) ||
1290                     (p->p_pid == 1) || P_KILLED(p) ||
1291                     ((p->p_pid < 48) && (swap_pager_avail != 0))) {
1292                         PROC_UNLOCK(p);
1293                         continue;
1294                 }
1295                 /*
1296                  * If the process is in a non-running type state,
1297                  * don't touch it.  Check all the threads individually.
1298                  */
1299                 breakout = 0;
1300                 FOREACH_THREAD_IN_PROC(p, td) {
1301                         thread_lock(td);
1302                         if (!TD_ON_RUNQ(td) &&
1303                             !TD_IS_RUNNING(td) &&
1304                             !TD_IS_SLEEPING(td)) {
1305                                 thread_unlock(td);
1306                                 breakout = 1;
1307                                 break;
1308                         }
1309                         thread_unlock(td);
1310                 }
1311                 if (breakout) {
1312                         PROC_UNLOCK(p);
1313                         continue;
1314                 }
1315                 /*
1316                  * get the process size
1317                  */
1318                 vm = vmspace_acquire_ref(p);
1319                 if (vm == NULL) {
1320                         PROC_UNLOCK(p);
1321                         continue;
1322                 }
1323                 if (!vm_map_trylock_read(&vm->vm_map)) {
1324                         vmspace_free(vm);
1325                         PROC_UNLOCK(p);
1326                         continue;
1327                 }
1328                 size = vmspace_swap_count(vm);
1329                 vm_map_unlock_read(&vm->vm_map);
1330                 if (shortage == VM_OOM_MEM)
1331                         size += vmspace_resident_count(vm);
1332                 vmspace_free(vm);
1333                 /*
1334                  * if the this process is bigger than the biggest one
1335                  * remember it.
1336                  */
1337                 if (size > bigsize) {
1338                         if (bigproc != NULL)
1339                                 PROC_UNLOCK(bigproc);
1340                         bigproc = p;
1341                         bigsize = size;
1342                 } else
1343                         PROC_UNLOCK(p);
1344         }
1345         sx_sunlock(&allproc_lock);
1346         if (bigproc != NULL) {
1347                 killproc(bigproc, "out of swap space");
1348                 sched_nice(bigproc, PRIO_MIN);
1349                 PROC_UNLOCK(bigproc);
1350                 wakeup(&cnt.v_free_count);
1351         }
1352 }
1353
1354 /*
1355  * This routine tries to maintain the pseudo LRU active queue,
1356  * so that during long periods of time where there is no paging,
1357  * that some statistic accumulation still occurs.  This code
1358  * helps the situation where paging just starts to occur.
1359  */
1360 static void
1361 vm_pageout_page_stats()
1362 {
1363         vm_object_t object;
1364         vm_page_t m,next;
1365         int pcount,tpcount;             /* Number of pages to check */
1366         static int fullintervalcount = 0;
1367         int page_shortage;
1368
1369         page_shortage = 
1370             (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1371             (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1372
1373         if (page_shortage <= 0)
1374                 return;
1375
1376         vm_page_lock_queues();
1377         pcount = cnt.v_active_count;
1378         fullintervalcount += vm_pageout_stats_interval;
1379         if (fullintervalcount < vm_pageout_full_stats_interval) {
1380                 tpcount = (int64_t)vm_pageout_stats_max * cnt.v_active_count /
1381                     cnt.v_page_count;
1382                 if (pcount > tpcount)
1383                         pcount = tpcount;
1384         } else {
1385                 fullintervalcount = 0;
1386         }
1387
1388         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1389         while ((m != NULL) && (pcount-- > 0)) {
1390                 int actcount;
1391
1392                 KASSERT(m->queue == PQ_ACTIVE,
1393                     ("vm_pageout_page_stats: page %p isn't active", m));
1394
1395                 next = TAILQ_NEXT(m, pageq);
1396                 if ((m->flags & PG_MARKER) != 0) {
1397                         m = next;
1398                         continue;
1399                 }
1400                 vm_page_lock_assert(m, MA_NOTOWNED);
1401                 if (!vm_pageout_page_lock(m, &next)) {
1402                         vm_page_unlock(m);
1403                         m = next;
1404                         continue;
1405                 }
1406                 object = m->object;
1407                 if (!VM_OBJECT_TRYLOCK(object) &&
1408                     !vm_pageout_fallback_object_lock(m, &next)) {
1409                         VM_OBJECT_UNLOCK(object);
1410                         vm_page_unlock(m);
1411                         m = next;
1412                         continue;
1413                 }
1414
1415                 /*
1416                  * Don't deactivate pages that are busy.
1417                  */
1418                 if ((m->busy != 0) ||
1419                     (m->oflags & VPO_BUSY) ||
1420                     (m->hold_count != 0)) {
1421                         vm_page_unlock(m);
1422                         VM_OBJECT_UNLOCK(object);
1423                         vm_page_requeue(m);
1424                         m = next;
1425                         continue;
1426                 }
1427
1428                 actcount = 0;
1429                 if (m->flags & PG_REFERENCED) {
1430                         vm_page_flag_clear(m, PG_REFERENCED);
1431                         actcount += 1;
1432                 }
1433
1434                 actcount += pmap_ts_referenced(m);
1435                 if (actcount) {
1436                         m->act_count += ACT_ADVANCE + actcount;
1437                         if (m->act_count > ACT_MAX)
1438                                 m->act_count = ACT_MAX;
1439                         vm_page_requeue(m);
1440                 } else {
1441                         if (m->act_count == 0) {
1442                                 /*
1443                                  * We turn off page access, so that we have
1444                                  * more accurate RSS stats.  We don't do this
1445                                  * in the normal page deactivation when the
1446                                  * system is loaded VM wise, because the
1447                                  * cost of the large number of page protect
1448                                  * operations would be higher than the value
1449                                  * of doing the operation.
1450                                  */
1451                                 pmap_remove_all(m);
1452                                 vm_page_deactivate(m);
1453                         } else {
1454                                 m->act_count -= min(m->act_count, ACT_DECLINE);
1455                                 vm_page_requeue(m);
1456                         }
1457                 }
1458                 vm_page_unlock(m);
1459                 VM_OBJECT_UNLOCK(object);
1460                 m = next;
1461         }
1462         vm_page_unlock_queues();
1463 }
1464
1465 /*
1466  *      vm_pageout is the high level pageout daemon.
1467  */
1468 static void
1469 vm_pageout()
1470 {
1471         int error, pass;
1472
1473         /*
1474          * Initialize some paging parameters.
1475          */
1476         cnt.v_interrupt_free_min = 2;
1477         if (cnt.v_page_count < 2000)
1478                 vm_pageout_page_count = 8;
1479
1480         /*
1481          * v_free_reserved needs to include enough for the largest
1482          * swap pager structures plus enough for any pv_entry structs
1483          * when paging. 
1484          */
1485         if (cnt.v_page_count > 1024)
1486                 cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1487         else
1488                 cnt.v_free_min = 4;
1489         cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1490             cnt.v_interrupt_free_min;
1491         cnt.v_free_reserved = vm_pageout_page_count +
1492             cnt.v_pageout_free_min + (cnt.v_page_count / 768);
1493         cnt.v_free_severe = cnt.v_free_min / 2;
1494         cnt.v_free_min += cnt.v_free_reserved;
1495         cnt.v_free_severe += cnt.v_free_reserved;
1496
1497         /*
1498          * v_free_target and v_cache_min control pageout hysteresis.  Note
1499          * that these are more a measure of the VM cache queue hysteresis
1500          * then the VM free queue.  Specifically, v_free_target is the
1501          * high water mark (free+cache pages).
1502          *
1503          * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1504          * low water mark, while v_free_min is the stop.  v_cache_min must
1505          * be big enough to handle memory needs while the pageout daemon
1506          * is signalled and run to free more pages.
1507          */
1508         if (cnt.v_free_count > 6144)
1509                 cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1510         else
1511                 cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1512
1513         if (cnt.v_free_count > 2048) {
1514                 cnt.v_cache_min = cnt.v_free_target;
1515                 cnt.v_cache_max = 2 * cnt.v_cache_min;
1516                 cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1517         } else {
1518                 cnt.v_cache_min = 0;
1519                 cnt.v_cache_max = 0;
1520                 cnt.v_inactive_target = cnt.v_free_count / 4;
1521         }
1522         if (cnt.v_inactive_target > cnt.v_free_count / 3)
1523                 cnt.v_inactive_target = cnt.v_free_count / 3;
1524
1525         /* XXX does not really belong here */
1526         if (vm_page_max_wired == 0)
1527                 vm_page_max_wired = cnt.v_free_count / 3;
1528
1529         if (vm_pageout_stats_max == 0)
1530                 vm_pageout_stats_max = cnt.v_free_target;
1531
1532         /*
1533          * Set interval in seconds for stats scan.
1534          */
1535         if (vm_pageout_stats_interval == 0)
1536                 vm_pageout_stats_interval = 5;
1537         if (vm_pageout_full_stats_interval == 0)
1538                 vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1539
1540         swap_pager_swap_init();
1541         pass = 0;
1542         /*
1543          * The pageout daemon is never done, so loop forever.
1544          */
1545         while (TRUE) {
1546                 /*
1547                  * If we have enough free memory, wakeup waiters.  Do
1548                  * not clear vm_pages_needed until we reach our target,
1549                  * otherwise we may be woken up over and over again and
1550                  * waste a lot of cpu.
1551                  */
1552                 mtx_lock(&vm_page_queue_free_mtx);
1553                 if (vm_pages_needed && !vm_page_count_min()) {
1554                         if (!vm_paging_needed())
1555                                 vm_pages_needed = 0;
1556                         wakeup(&cnt.v_free_count);
1557                 }
1558                 if (vm_pages_needed) {
1559                         /*
1560                          * Still not done, take a second pass without waiting
1561                          * (unlimited dirty cleaning), otherwise sleep a bit
1562                          * and try again.
1563                          */
1564                         ++pass;
1565                         if (pass > 1)
1566                                 msleep(&vm_pages_needed,
1567                                     &vm_page_queue_free_mtx, PVM, "psleep",
1568                                     hz / 2);
1569                 } else {
1570                         /*
1571                          * Good enough, sleep & handle stats.  Prime the pass
1572                          * for the next run.
1573                          */
1574                         if (pass > 1)
1575                                 pass = 1;
1576                         else
1577                                 pass = 0;
1578                         error = msleep(&vm_pages_needed,
1579                             &vm_page_queue_free_mtx, PVM, "psleep",
1580                             vm_pageout_stats_interval * hz);
1581                         if (error && !vm_pages_needed) {
1582                                 mtx_unlock(&vm_page_queue_free_mtx);
1583                                 pass = 0;
1584                                 vm_pageout_page_stats();
1585                                 continue;
1586                         }
1587                 }
1588                 if (vm_pages_needed)
1589                         cnt.v_pdwakeups++;
1590                 mtx_unlock(&vm_page_queue_free_mtx);
1591                 vm_pageout_scan(pass);
1592         }
1593 }
1594
1595 /*
1596  * Unless the free page queue lock is held by the caller, this function
1597  * should be regarded as advisory.  Specifically, the caller should
1598  * not msleep() on &cnt.v_free_count following this function unless
1599  * the free page queue lock is held until the msleep() is performed.
1600  */
1601 void
1602 pagedaemon_wakeup()
1603 {
1604
1605         if (!vm_pages_needed && curthread->td_proc != pageproc) {
1606                 vm_pages_needed = 1;
1607                 wakeup(&vm_pages_needed);
1608         }
1609 }
1610
1611 #if !defined(NO_SWAPPING)
1612 static void
1613 vm_req_vmdaemon(int req)
1614 {
1615         static int lastrun = 0;
1616
1617         mtx_lock(&vm_daemon_mtx);
1618         vm_pageout_req_swapout |= req;
1619         if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1620                 wakeup(&vm_daemon_needed);
1621                 lastrun = ticks;
1622         }
1623         mtx_unlock(&vm_daemon_mtx);
1624 }
1625
1626 static void
1627 vm_daemon()
1628 {
1629         struct rlimit rsslim;
1630         struct proc *p;
1631         struct thread *td;
1632         struct vmspace *vm;
1633         int breakout, swapout_flags;
1634
1635         while (TRUE) {
1636                 mtx_lock(&vm_daemon_mtx);
1637                 msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", 0);
1638                 swapout_flags = vm_pageout_req_swapout;
1639                 vm_pageout_req_swapout = 0;
1640                 mtx_unlock(&vm_daemon_mtx);
1641                 if (swapout_flags)
1642                         swapout_procs(swapout_flags);
1643
1644                 /*
1645                  * scan the processes for exceeding their rlimits or if
1646                  * process is swapped out -- deactivate pages
1647                  */
1648                 sx_slock(&allproc_lock);
1649                 FOREACH_PROC_IN_SYSTEM(p) {
1650                         vm_pindex_t limit, size;
1651
1652                         /*
1653                          * if this is a system process or if we have already
1654                          * looked at this process, skip it.
1655                          */
1656                         PROC_LOCK(p);
1657                         if (p->p_flag & (P_INEXEC | P_SYSTEM | P_WEXIT)) {
1658                                 PROC_UNLOCK(p);
1659                                 continue;
1660                         }
1661                         /*
1662                          * if the process is in a non-running type state,
1663                          * don't touch it.
1664                          */
1665                         breakout = 0;
1666                         FOREACH_THREAD_IN_PROC(p, td) {
1667                                 thread_lock(td);
1668                                 if (!TD_ON_RUNQ(td) &&
1669                                     !TD_IS_RUNNING(td) &&
1670                                     !TD_IS_SLEEPING(td)) {
1671                                         thread_unlock(td);
1672                                         breakout = 1;
1673                                         break;
1674                                 }
1675                                 thread_unlock(td);
1676                         }
1677                         if (breakout) {
1678                                 PROC_UNLOCK(p);
1679                                 continue;
1680                         }
1681                         /*
1682                          * get a limit
1683                          */
1684                         lim_rlimit(p, RLIMIT_RSS, &rsslim);
1685                         limit = OFF_TO_IDX(
1686                             qmin(rsslim.rlim_cur, rsslim.rlim_max));
1687
1688                         /*
1689                          * let processes that are swapped out really be
1690                          * swapped out set the limit to nothing (will force a
1691                          * swap-out.)
1692                          */
1693                         if ((p->p_flag & P_INMEM) == 0)
1694                                 limit = 0;      /* XXX */
1695                         vm = vmspace_acquire_ref(p);
1696                         PROC_UNLOCK(p);
1697                         if (vm == NULL)
1698                                 continue;
1699
1700                         size = vmspace_resident_count(vm);
1701                         if (limit >= 0 && size >= limit) {
1702                                 vm_pageout_map_deactivate_pages(
1703                                     &vm->vm_map, limit);
1704                         }
1705                         vmspace_free(vm);
1706                 }
1707                 sx_sunlock(&allproc_lock);
1708         }
1709 }
1710 #endif                  /* !defined(NO_SWAPPING) */