]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_pageout.c
Eliminate the conditional for releasing the page queues lock in
[FreeBSD/FreeBSD.git] / sys / vm / vm_pageout.c
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  * Copyright (c) 2005 Yahoo! Technologies Norway AS
9  * All rights reserved.
10  *
11  * This code is derived from software contributed to Berkeley by
12  * The Mach Operating System project at Carnegie-Mellon University.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *      This product includes software developed by the University of
25  *      California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
43  *
44  *
45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46  * All rights reserved.
47  *
48  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49  *
50  * Permission to use, copy, modify and distribute this software and
51  * its documentation is hereby granted, provided that both the copyright
52  * notice and this permission notice appear in all copies of the
53  * software, derivative works or modified versions, and any portions
54  * thereof, and that both notices appear in supporting documentation.
55  *
56  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59  *
60  * Carnegie Mellon requests users of this software to return to
61  *
62  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63  *  School of Computer Science
64  *  Carnegie Mellon University
65  *  Pittsburgh PA 15213-3890
66  *
67  * any improvements or extensions that they make and grant Carnegie the
68  * rights to redistribute these changes.
69  */
70
71 /*
72  *      The proverbial page-out daemon.
73  */
74
75 #include <sys/cdefs.h>
76 __FBSDID("$FreeBSD$");
77
78 #include "opt_vm.h"
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/eventhandler.h>
83 #include <sys/lock.h>
84 #include <sys/mutex.h>
85 #include <sys/proc.h>
86 #include <sys/kthread.h>
87 #include <sys/ktr.h>
88 #include <sys/mount.h>
89 #include <sys/racct.h>
90 #include <sys/resourcevar.h>
91 #include <sys/sched.h>
92 #include <sys/signalvar.h>
93 #include <sys/vnode.h>
94 #include <sys/vmmeter.h>
95 #include <sys/sx.h>
96 #include <sys/sysctl.h>
97
98 #include <vm/vm.h>
99 #include <vm/vm_param.h>
100 #include <vm/vm_object.h>
101 #include <vm/vm_page.h>
102 #include <vm/vm_map.h>
103 #include <vm/vm_pageout.h>
104 #include <vm/vm_pager.h>
105 #include <vm/swap_pager.h>
106 #include <vm/vm_extern.h>
107 #include <vm/uma.h>
108
109 /*
110  * System initialization
111  */
112
113 /* the kernel process "vm_pageout"*/
114 static void vm_pageout(void);
115 static int vm_pageout_clean(vm_page_t);
116 static void vm_pageout_scan(int pass);
117
118 struct proc *pageproc;
119
120 static struct kproc_desc page_kp = {
121         "pagedaemon",
122         vm_pageout,
123         &pageproc
124 };
125 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start,
126     &page_kp);
127
128 #if !defined(NO_SWAPPING)
129 /* the kernel process "vm_daemon"*/
130 static void vm_daemon(void);
131 static struct   proc *vmproc;
132
133 static struct kproc_desc vm_kp = {
134         "vmdaemon",
135         vm_daemon,
136         &vmproc
137 };
138 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
139 #endif
140
141
142 int vm_pages_needed;            /* Event on which pageout daemon sleeps */
143 int vm_pageout_deficit;         /* Estimated number of pages deficit */
144 int vm_pageout_pages_needed;    /* flag saying that the pageout daemon needs pages */
145
146 #if !defined(NO_SWAPPING)
147 static int vm_pageout_req_swapout;      /* XXX */
148 static int vm_daemon_needed;
149 static struct mtx vm_daemon_mtx;
150 /* Allow for use by vm_pageout before vm_daemon is initialized. */
151 MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
152 #endif
153 static int vm_max_launder = 32;
154 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
155 static int vm_pageout_full_stats_interval = 0;
156 static int vm_pageout_algorithm=0;
157 static int defer_swap_pageouts=0;
158 static int disable_swap_pageouts=0;
159
160 #if defined(NO_SWAPPING)
161 static int vm_swap_enabled=0;
162 static int vm_swap_idle_enabled=0;
163 #else
164 static int vm_swap_enabled=1;
165 static int vm_swap_idle_enabled=0;
166 #endif
167
168 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
169         CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
170
171 SYSCTL_INT(_vm, OID_AUTO, max_launder,
172         CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
173
174 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
175         CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
176
177 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
178         CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
179
180 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
181         CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
182
183 #if defined(NO_SWAPPING)
184 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
185         CTLFLAG_RD, &vm_swap_enabled, 0, "Enable entire process swapout");
186 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
187         CTLFLAG_RD, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
188 #else
189 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
190         CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
191 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
192         CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
193 #endif
194
195 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
196         CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
197
198 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
199         CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
200
201 static int pageout_lock_miss;
202 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
203         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
204
205 #define VM_PAGEOUT_PAGE_COUNT 16
206 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
207
208 int vm_page_max_wired;          /* XXX max # of wired pages system-wide */
209 SYSCTL_INT(_vm, OID_AUTO, max_wired,
210         CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
211
212 static boolean_t vm_pageout_fallback_object_lock(vm_page_t, vm_page_t *);
213 static boolean_t vm_pageout_launder(int, int, vm_paddr_t, vm_paddr_t);
214 #if !defined(NO_SWAPPING)
215 static void vm_pageout_map_deactivate_pages(vm_map_t, long);
216 static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
217 static void vm_req_vmdaemon(int req);
218 #endif
219 static boolean_t vm_pageout_page_lock(vm_page_t, vm_page_t *);
220 static void vm_pageout_page_stats(void);
221
222 /*
223  * Initialize a dummy page for marking the caller's place in the specified
224  * paging queue.  In principle, this function only needs to set the flag
225  * PG_MARKER.  Nonetheless, it sets the flag VPO_BUSY and initializes the hold
226  * count to one as safety precautions.
227  */ 
228 static void
229 vm_pageout_init_marker(vm_page_t marker, u_short queue)
230 {
231
232         bzero(marker, sizeof(*marker));
233         marker->flags = PG_MARKER;
234         marker->oflags = VPO_BUSY;
235         marker->queue = queue;
236         marker->hold_count = 1;
237 }
238
239 /*
240  * vm_pageout_fallback_object_lock:
241  * 
242  * Lock vm object currently associated with `m'. VM_OBJECT_TRYLOCK is
243  * known to have failed and page queue must be either PQ_ACTIVE or
244  * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
245  * while locking the vm object.  Use marker page to detect page queue
246  * changes and maintain notion of next page on page queue.  Return
247  * TRUE if no changes were detected, FALSE otherwise.  vm object is
248  * locked on return.
249  * 
250  * This function depends on both the lock portion of struct vm_object
251  * and normal struct vm_page being type stable.
252  */
253 static boolean_t
254 vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
255 {
256         struct vm_page marker;
257         boolean_t unchanged;
258         u_short queue;
259         vm_object_t object;
260
261         queue = m->queue;
262         vm_pageout_init_marker(&marker, queue);
263         object = m->object;
264         
265         TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl,
266                            m, &marker, pageq);
267         vm_page_unlock_queues();
268         vm_page_unlock(m);
269         VM_OBJECT_LOCK(object);
270         vm_page_lock(m);
271         vm_page_lock_queues();
272
273         /* Page queue might have changed. */
274         *next = TAILQ_NEXT(&marker, pageq);
275         unchanged = (m->queue == queue &&
276                      m->object == object &&
277                      &marker == TAILQ_NEXT(m, pageq));
278         TAILQ_REMOVE(&vm_page_queues[queue].pl,
279                      &marker, pageq);
280         return (unchanged);
281 }
282
283 /*
284  * Lock the page while holding the page queue lock.  Use marker page
285  * to detect page queue changes and maintain notion of next page on
286  * page queue.  Return TRUE if no changes were detected, FALSE
287  * otherwise.  The page is locked on return. The page queue lock might
288  * be dropped and reacquired.
289  *
290  * This function depends on normal struct vm_page being type stable.
291  */
292 static boolean_t
293 vm_pageout_page_lock(vm_page_t m, vm_page_t *next)
294 {
295         struct vm_page marker;
296         boolean_t unchanged;
297         u_short queue;
298
299         vm_page_lock_assert(m, MA_NOTOWNED);
300         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
301
302         if (vm_page_trylock(m))
303                 return (TRUE);
304
305         queue = m->queue;
306         vm_pageout_init_marker(&marker, queue);
307
308         TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl, m, &marker, pageq);
309         vm_page_unlock_queues();
310         vm_page_lock(m);
311         vm_page_lock_queues();
312
313         /* Page queue might have changed. */
314         *next = TAILQ_NEXT(&marker, pageq);
315         unchanged = (m->queue == queue && &marker == TAILQ_NEXT(m, pageq));
316         TAILQ_REMOVE(&vm_page_queues[queue].pl, &marker, pageq);
317         return (unchanged);
318 }
319
320 /*
321  * vm_pageout_clean:
322  *
323  * Clean the page and remove it from the laundry.
324  * 
325  * We set the busy bit to cause potential page faults on this page to
326  * block.  Note the careful timing, however, the busy bit isn't set till
327  * late and we cannot do anything that will mess with the page.
328  */
329 static int
330 vm_pageout_clean(vm_page_t m)
331 {
332         vm_object_t object;
333         vm_page_t mc[2*vm_pageout_page_count], pb, ps;
334         int pageout_count;
335         int ib, is, page_base;
336         vm_pindex_t pindex = m->pindex;
337
338         vm_page_lock_assert(m, MA_OWNED);
339         object = m->object;
340         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
341
342         /*
343          * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
344          * with the new swapper, but we could have serious problems paging
345          * out other object types if there is insufficient memory.  
346          *
347          * Unfortunately, checking free memory here is far too late, so the
348          * check has been moved up a procedural level.
349          */
350
351         /*
352          * Can't clean the page if it's busy or held.
353          */
354         KASSERT(m->busy == 0 && (m->oflags & VPO_BUSY) == 0,
355             ("vm_pageout_clean: page %p is busy", m));
356         KASSERT(m->hold_count == 0, ("vm_pageout_clean: page %p is held", m));
357         vm_page_unlock(m);
358
359         mc[vm_pageout_page_count] = pb = ps = m;
360         pageout_count = 1;
361         page_base = vm_pageout_page_count;
362         ib = 1;
363         is = 1;
364
365         /*
366          * Scan object for clusterable pages.
367          *
368          * We can cluster ONLY if: ->> the page is NOT
369          * clean, wired, busy, held, or mapped into a
370          * buffer, and one of the following:
371          * 1) The page is inactive, or a seldom used
372          *    active page.
373          * -or-
374          * 2) we force the issue.
375          *
376          * During heavy mmap/modification loads the pageout
377          * daemon can really fragment the underlying file
378          * due to flushing pages out of order and not trying
379          * align the clusters (which leave sporatic out-of-order
380          * holes).  To solve this problem we do the reverse scan
381          * first and attempt to align our cluster, then do a 
382          * forward scan if room remains.
383          */
384 more:
385         while (ib && pageout_count < vm_pageout_page_count) {
386                 vm_page_t p;
387
388                 if (ib > pindex) {
389                         ib = 0;
390                         break;
391                 }
392
393                 if ((p = vm_page_prev(pb)) == NULL ||
394                     (p->oflags & VPO_BUSY) != 0 || p->busy != 0) {
395                         ib = 0;
396                         break;
397                 }
398                 vm_page_lock(p);
399                 vm_page_test_dirty(p);
400                 if (p->dirty == 0 ||
401                     p->queue != PQ_INACTIVE ||
402                     p->hold_count != 0) {       /* may be undergoing I/O */
403                         vm_page_unlock(p);
404                         ib = 0;
405                         break;
406                 }
407                 vm_page_unlock(p);
408                 mc[--page_base] = pb = p;
409                 ++pageout_count;
410                 ++ib;
411                 /*
412                  * alignment boundry, stop here and switch directions.  Do
413                  * not clear ib.
414                  */
415                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
416                         break;
417         }
418
419         while (pageout_count < vm_pageout_page_count && 
420             pindex + is < object->size) {
421                 vm_page_t p;
422
423                 if ((p = vm_page_next(ps)) == NULL ||
424                     (p->oflags & VPO_BUSY) != 0 || p->busy != 0)
425                         break;
426                 vm_page_lock(p);
427                 vm_page_test_dirty(p);
428                 if (p->dirty == 0 ||
429                     p->queue != PQ_INACTIVE ||
430                     p->hold_count != 0) {       /* may be undergoing I/O */
431                         vm_page_unlock(p);
432                         break;
433                 }
434                 vm_page_unlock(p);
435                 mc[page_base + pageout_count] = ps = p;
436                 ++pageout_count;
437                 ++is;
438         }
439
440         /*
441          * If we exhausted our forward scan, continue with the reverse scan
442          * when possible, even past a page boundry.  This catches boundry
443          * conditions.
444          */
445         if (ib && pageout_count < vm_pageout_page_count)
446                 goto more;
447
448         /*
449          * we allow reads during pageouts...
450          */
451         return (vm_pageout_flush(&mc[page_base], pageout_count, 0, 0, NULL,
452             NULL));
453 }
454
455 /*
456  * vm_pageout_flush() - launder the given pages
457  *
458  *      The given pages are laundered.  Note that we setup for the start of
459  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
460  *      reference count all in here rather then in the parent.  If we want
461  *      the parent to do more sophisticated things we may have to change
462  *      the ordering.
463  *
464  *      Returned runlen is the count of pages between mreq and first
465  *      page after mreq with status VM_PAGER_AGAIN.
466  *      *eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
467  *      for any page in runlen set.
468  */
469 int
470 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
471     boolean_t *eio)
472 {
473         vm_object_t object = mc[0]->object;
474         int pageout_status[count];
475         int numpagedout = 0;
476         int i, runlen;
477
478         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
479
480         /*
481          * Initiate I/O.  Bump the vm_page_t->busy counter and
482          * mark the pages read-only.
483          *
484          * We do not have to fixup the clean/dirty bits here... we can
485          * allow the pager to do it after the I/O completes.
486          *
487          * NOTE! mc[i]->dirty may be partial or fragmented due to an
488          * edge case with file fragments.
489          */
490         for (i = 0; i < count; i++) {
491                 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
492                     ("vm_pageout_flush: partially invalid page %p index %d/%d",
493                         mc[i], i, count));
494                 vm_page_io_start(mc[i]);
495                 pmap_remove_write(mc[i]);
496         }
497         vm_object_pip_add(object, count);
498
499         vm_pager_put_pages(object, mc, count, flags, pageout_status);
500
501         runlen = count - mreq;
502         if (eio != NULL)
503                 *eio = FALSE;
504         for (i = 0; i < count; i++) {
505                 vm_page_t mt = mc[i];
506
507                 KASSERT(pageout_status[i] == VM_PAGER_PEND ||
508                     !pmap_page_is_write_mapped(mt),
509                     ("vm_pageout_flush: page %p is not write protected", mt));
510                 switch (pageout_status[i]) {
511                 case VM_PAGER_OK:
512                 case VM_PAGER_PEND:
513                         numpagedout++;
514                         break;
515                 case VM_PAGER_BAD:
516                         /*
517                          * Page outside of range of object. Right now we
518                          * essentially lose the changes by pretending it
519                          * worked.
520                          */
521                         vm_page_undirty(mt);
522                         break;
523                 case VM_PAGER_ERROR:
524                 case VM_PAGER_FAIL:
525                         /*
526                          * If page couldn't be paged out, then reactivate the
527                          * page so it doesn't clog the inactive list.  (We
528                          * will try paging out it again later).
529                          */
530                         vm_page_lock(mt);
531                         vm_page_activate(mt);
532                         vm_page_unlock(mt);
533                         if (eio != NULL && i >= mreq && i - mreq < runlen)
534                                 *eio = TRUE;
535                         break;
536                 case VM_PAGER_AGAIN:
537                         if (i >= mreq && i - mreq < runlen)
538                                 runlen = i - mreq;
539                         break;
540                 }
541
542                 /*
543                  * If the operation is still going, leave the page busy to
544                  * block all other accesses. Also, leave the paging in
545                  * progress indicator set so that we don't attempt an object
546                  * collapse.
547                  */
548                 if (pageout_status[i] != VM_PAGER_PEND) {
549                         vm_object_pip_wakeup(object);
550                         vm_page_io_finish(mt);
551                         if (vm_page_count_severe()) {
552                                 vm_page_lock(mt);
553                                 vm_page_try_to_cache(mt);
554                                 vm_page_unlock(mt);
555                         }
556                 }
557         }
558         if (prunlen != NULL)
559                 *prunlen = runlen;
560         return (numpagedout);
561 }
562
563 static boolean_t
564 vm_pageout_launder(int queue, int tries, vm_paddr_t low, vm_paddr_t high)
565 {
566         struct mount *mp;
567         struct vnode *vp;
568         vm_object_t object;
569         vm_paddr_t pa;
570         vm_page_t m, m_tmp, next;
571         int vfslocked;
572
573         vm_page_lock_queues();
574         TAILQ_FOREACH_SAFE(m, &vm_page_queues[queue].pl, pageq, next) {
575                 KASSERT(m->queue == queue,
576                     ("vm_pageout_launder: page %p's queue is not %d", m,
577                     queue));
578                 if ((m->flags & PG_MARKER) != 0)
579                         continue;
580                 pa = VM_PAGE_TO_PHYS(m);
581                 if (pa < low || pa + PAGE_SIZE > high)
582                         continue;
583                 if (!vm_pageout_page_lock(m, &next) || m->hold_count != 0) {
584                         vm_page_unlock(m);
585                         continue;
586                 }
587                 object = m->object;
588                 if ((!VM_OBJECT_TRYLOCK(object) &&
589                     (!vm_pageout_fallback_object_lock(m, &next) ||
590                     m->hold_count != 0)) || (m->oflags & VPO_BUSY) != 0 ||
591                     m->busy != 0) {
592                         vm_page_unlock(m);
593                         VM_OBJECT_UNLOCK(object);
594                         continue;
595                 }
596                 vm_page_test_dirty(m);
597                 if (m->dirty == 0)
598                         pmap_remove_all(m);
599                 if (m->dirty != 0) {
600                         vm_page_unlock(m);
601                         if (tries == 0 || (object->flags & OBJ_DEAD) != 0) {
602                                 VM_OBJECT_UNLOCK(object);
603                                 continue;
604                         }
605                         if (object->type == OBJT_VNODE) {
606                                 vm_page_unlock_queues();
607                                 vp = object->handle;
608                                 vm_object_reference_locked(object);
609                                 VM_OBJECT_UNLOCK(object);
610                                 (void)vn_start_write(vp, &mp, V_WAIT);
611                                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
612                                 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
613                                 VM_OBJECT_LOCK(object);
614                                 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
615                                 VM_OBJECT_UNLOCK(object);
616                                 VOP_UNLOCK(vp, 0);
617                                 VFS_UNLOCK_GIANT(vfslocked);
618                                 vm_object_deallocate(object);
619                                 vn_finished_write(mp);
620                                 return (TRUE);
621                         } else if (object->type == OBJT_SWAP ||
622                             object->type == OBJT_DEFAULT) {
623                                 vm_page_unlock_queues();
624                                 m_tmp = m;
625                                 vm_pageout_flush(&m_tmp, 1, VM_PAGER_PUT_SYNC,
626                                     0, NULL, NULL);
627                                 VM_OBJECT_UNLOCK(object);
628                                 return (TRUE);
629                         }
630                 } else {
631                         vm_page_cache(m);
632                         vm_page_unlock(m);
633                 }
634                 VM_OBJECT_UNLOCK(object);
635         }
636         vm_page_unlock_queues();
637         return (FALSE);
638 }
639
640 /*
641  * Increase the number of cached pages.  The specified value, "tries",
642  * determines which categories of pages are cached:
643  *
644  *  0: All clean, inactive pages within the specified physical address range
645  *     are cached.  Will not sleep.
646  *  1: The vm_lowmem handlers are called.  All inactive pages within
647  *     the specified physical address range are cached.  May sleep.
648  *  2: The vm_lowmem handlers are called.  All inactive and active pages
649  *     within the specified physical address range are cached.  May sleep.
650  */
651 void
652 vm_pageout_grow_cache(int tries, vm_paddr_t low, vm_paddr_t high)
653 {
654         int actl, actmax, inactl, inactmax;
655
656         if (tries > 0) {
657                 /*
658                  * Decrease registered cache sizes.  The vm_lowmem handlers
659                  * may acquire locks and/or sleep, so they can only be invoked
660                  * when "tries" is greater than zero.
661                  */
662                 EVENTHANDLER_INVOKE(vm_lowmem, 0);
663
664                 /*
665                  * We do this explicitly after the caches have been drained
666                  * above.
667                  */
668                 uma_reclaim();
669         }
670         inactl = 0;
671         inactmax = cnt.v_inactive_count;
672         actl = 0;
673         actmax = tries < 2 ? 0 : cnt.v_active_count;
674 again:
675         if (inactl < inactmax && vm_pageout_launder(PQ_INACTIVE, tries, low,
676             high)) {
677                 inactl++;
678                 goto again;
679         }
680         if (actl < actmax && vm_pageout_launder(PQ_ACTIVE, tries, low, high)) {
681                 actl++;
682                 goto again;
683         }
684 }
685
686 #if !defined(NO_SWAPPING)
687 /*
688  *      vm_pageout_object_deactivate_pages
689  *
690  *      Deactivate enough pages to satisfy the inactive target
691  *      requirements.
692  *
693  *      The object and map must be locked.
694  */
695 static void
696 vm_pageout_object_deactivate_pages(pmap_t pmap, vm_object_t first_object,
697     long desired)
698 {
699         vm_object_t backing_object, object;
700         vm_page_t p;
701         int actcount, remove_mode;
702
703         VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
704         if (first_object->type == OBJT_DEVICE ||
705             first_object->type == OBJT_SG)
706                 return;
707         for (object = first_object;; object = backing_object) {
708                 if (pmap_resident_count(pmap) <= desired)
709                         goto unlock_return;
710                 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
711                 if (object->type == OBJT_PHYS || object->paging_in_progress)
712                         goto unlock_return;
713
714                 remove_mode = 0;
715                 if (object->shadow_count > 1)
716                         remove_mode = 1;
717                 /*
718                  * Scan the object's entire memory queue.
719                  */
720                 TAILQ_FOREACH(p, &object->memq, listq) {
721                         if (pmap_resident_count(pmap) <= desired)
722                                 goto unlock_return;
723                         if ((p->oflags & VPO_BUSY) != 0 || p->busy != 0)
724                                 continue;
725                         PCPU_INC(cnt.v_pdpages);
726                         vm_page_lock(p);
727                         if (p->wire_count != 0 || p->hold_count != 0 ||
728                             !pmap_page_exists_quick(pmap, p)) {
729                                 vm_page_unlock(p);
730                                 continue;
731                         }
732                         actcount = pmap_ts_referenced(p);
733                         if ((p->aflags & PGA_REFERENCED) != 0) {
734                                 if (actcount == 0)
735                                         actcount = 1;
736                                 vm_page_aflag_clear(p, PGA_REFERENCED);
737                         }
738                         if (p->queue != PQ_ACTIVE && actcount != 0) {
739                                 vm_page_activate(p);
740                                 p->act_count += actcount;
741                         } else if (p->queue == PQ_ACTIVE) {
742                                 if (actcount == 0) {
743                                         p->act_count -= min(p->act_count,
744                                             ACT_DECLINE);
745                                         if (!remove_mode &&
746                                             (vm_pageout_algorithm ||
747                                             p->act_count == 0)) {
748                                                 pmap_remove_all(p);
749                                                 vm_page_deactivate(p);
750                                         } else {
751                                                 vm_page_lock_queues();
752                                                 vm_page_requeue(p);
753                                                 vm_page_unlock_queues();
754                                         }
755                                 } else {
756                                         vm_page_activate(p);
757                                         if (p->act_count < ACT_MAX -
758                                             ACT_ADVANCE)
759                                                 p->act_count += ACT_ADVANCE;
760                                         vm_page_lock_queues();
761                                         vm_page_requeue(p);
762                                         vm_page_unlock_queues();
763                                 }
764                         } else if (p->queue == PQ_INACTIVE)
765                                 pmap_remove_all(p);
766                         vm_page_unlock(p);
767                 }
768                 if ((backing_object = object->backing_object) == NULL)
769                         goto unlock_return;
770                 VM_OBJECT_LOCK(backing_object);
771                 if (object != first_object)
772                         VM_OBJECT_UNLOCK(object);
773         }
774 unlock_return:
775         if (object != first_object)
776                 VM_OBJECT_UNLOCK(object);
777 }
778
779 /*
780  * deactivate some number of pages in a map, try to do it fairly, but
781  * that is really hard to do.
782  */
783 static void
784 vm_pageout_map_deactivate_pages(map, desired)
785         vm_map_t map;
786         long desired;
787 {
788         vm_map_entry_t tmpe;
789         vm_object_t obj, bigobj;
790         int nothingwired;
791
792         if (!vm_map_trylock(map))
793                 return;
794
795         bigobj = NULL;
796         nothingwired = TRUE;
797
798         /*
799          * first, search out the biggest object, and try to free pages from
800          * that.
801          */
802         tmpe = map->header.next;
803         while (tmpe != &map->header) {
804                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
805                         obj = tmpe->object.vm_object;
806                         if (obj != NULL && VM_OBJECT_TRYLOCK(obj)) {
807                                 if (obj->shadow_count <= 1 &&
808                                     (bigobj == NULL ||
809                                      bigobj->resident_page_count < obj->resident_page_count)) {
810                                         if (bigobj != NULL)
811                                                 VM_OBJECT_UNLOCK(bigobj);
812                                         bigobj = obj;
813                                 } else
814                                         VM_OBJECT_UNLOCK(obj);
815                         }
816                 }
817                 if (tmpe->wired_count > 0)
818                         nothingwired = FALSE;
819                 tmpe = tmpe->next;
820         }
821
822         if (bigobj != NULL) {
823                 vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
824                 VM_OBJECT_UNLOCK(bigobj);
825         }
826         /*
827          * Next, hunt around for other pages to deactivate.  We actually
828          * do this search sort of wrong -- .text first is not the best idea.
829          */
830         tmpe = map->header.next;
831         while (tmpe != &map->header) {
832                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
833                         break;
834                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
835                         obj = tmpe->object.vm_object;
836                         if (obj != NULL) {
837                                 VM_OBJECT_LOCK(obj);
838                                 vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
839                                 VM_OBJECT_UNLOCK(obj);
840                         }
841                 }
842                 tmpe = tmpe->next;
843         }
844
845         /*
846          * Remove all mappings if a process is swapped out, this will free page
847          * table pages.
848          */
849         if (desired == 0 && nothingwired) {
850                 pmap_remove(vm_map_pmap(map), vm_map_min(map),
851                     vm_map_max(map));
852         }
853         vm_map_unlock(map);
854 }
855 #endif          /* !defined(NO_SWAPPING) */
856
857 /*
858  *      vm_pageout_scan does the dirty work for the pageout daemon.
859  */
860 static void
861 vm_pageout_scan(int pass)
862 {
863         vm_page_t m, next;
864         struct vm_page marker;
865         int page_shortage, maxscan, pcount;
866         int addl_page_shortage;
867         vm_object_t object;
868         int actcount;
869         int vnodes_skipped = 0;
870         int maxlaunder;
871         boolean_t queues_locked;
872
873         /*
874          * Decrease registered cache sizes.
875          */
876         EVENTHANDLER_INVOKE(vm_lowmem, 0);
877         /*
878          * We do this explicitly after the caches have been drained above.
879          */
880         uma_reclaim();
881
882         /*
883          * The addl_page_shortage is the number of temporarily
884          * stuck pages in the inactive queue.  In other words, the
885          * number of pages from cnt.v_inactive_count that should be
886          * discounted in setting the target for the active queue scan.
887          */
888         addl_page_shortage = atomic_readandclear_int(&vm_pageout_deficit);
889
890         /*
891          * Calculate the number of pages we want to either free or move
892          * to the cache.
893          */
894         page_shortage = vm_paging_target() + addl_page_shortage;
895
896         vm_pageout_init_marker(&marker, PQ_INACTIVE);
897
898         /*
899          * Start scanning the inactive queue for pages we can move to the
900          * cache or free.  The scan will stop when the target is reached or
901          * we have scanned the entire inactive queue.  Note that m->act_count
902          * is not used to form decisions for the inactive queue, only for the
903          * active queue.
904          *
905          * maxlaunder limits the number of dirty pages we flush per scan.
906          * For most systems a smaller value (16 or 32) is more robust under
907          * extreme memory and disk pressure because any unnecessary writes
908          * to disk can result in extreme performance degredation.  However,
909          * systems with excessive dirty pages (especially when MAP_NOSYNC is
910          * used) will die horribly with limited laundering.  If the pageout
911          * daemon cannot clean enough pages in the first pass, we let it go
912          * all out in succeeding passes.
913          */
914         if ((maxlaunder = vm_max_launder) <= 1)
915                 maxlaunder = 1;
916         if (pass)
917                 maxlaunder = 10000;
918         vm_page_lock_queues();
919         queues_locked = TRUE;
920         maxscan = cnt.v_inactive_count;
921
922         for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
923              m != NULL && maxscan-- > 0 && page_shortage > 0;
924              m = next) {
925                 KASSERT(queues_locked, ("unlocked queues"));
926                 mtx_assert(&vm_page_queue_mtx, MA_OWNED);
927                 KASSERT(m->queue == PQ_INACTIVE, ("Inactive queue %p", m));
928
929                 cnt.v_pdpages++;
930                 next = TAILQ_NEXT(m, pageq);
931
932                 /*
933                  * skip marker pages
934                  */
935                 if (m->flags & PG_MARKER)
936                         continue;
937
938                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
939                     ("Fictitious page %p cannot be in inactive queue", m));
940                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
941                     ("Unmanaged page %p cannot be in inactive queue", m));
942
943                 /*
944                  * The page or object lock acquisitions fail if the
945                  * page was removed from the queue or moved to a
946                  * different position within the queue.  In either
947                  * case, addl_page_shortage should not be incremented.
948                  */
949                 if (!vm_pageout_page_lock(m, &next)) {
950                         vm_page_unlock(m);
951                         continue;
952                 }
953                 object = m->object;
954                 if (!VM_OBJECT_TRYLOCK(object) &&
955                     !vm_pageout_fallback_object_lock(m, &next)) {
956                         vm_page_unlock(m);
957                         VM_OBJECT_UNLOCK(object);
958                         continue;
959                 }
960
961                 /*
962                  * Don't mess with busy pages, keep them at at the
963                  * front of the queue, most likely they are being
964                  * paged out.  Increment addl_page_shortage for busy
965                  * pages, because they may leave the inactive queue
966                  * shortly after page scan is finished.
967                  */
968                 if (m->busy != 0 || (m->oflags & VPO_BUSY) != 0) {
969                         vm_page_unlock(m);
970                         VM_OBJECT_UNLOCK(object);
971                         addl_page_shortage++;
972                         continue;
973                 }
974
975                 /*
976                  * We unlock vm_page_queue_mtx, invalidating the
977                  * 'next' pointer.  Use our marker to remember our
978                  * place.
979                  */
980                 TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl,
981                     m, &marker, pageq);
982                 vm_page_unlock_queues();
983                 queues_locked = FALSE;
984
985                 /*
986                  * If the object is not being used, we ignore previous 
987                  * references.
988                  */
989                 if (object->ref_count == 0) {
990                         vm_page_aflag_clear(m, PGA_REFERENCED);
991                         KASSERT(!pmap_page_is_mapped(m),
992                             ("vm_pageout_scan: page %p is mapped", m));
993
994                 /*
995                  * Otherwise, if the page has been referenced while in the 
996                  * inactive queue, we bump the "activation count" upwards, 
997                  * making it less likely that the page will be added back to 
998                  * the inactive queue prematurely again.  Here we check the 
999                  * page tables (or emulated bits, if any), given the upper 
1000                  * level VM system not knowing anything about existing 
1001                  * references.
1002                  */
1003                 } else if ((m->aflags & PGA_REFERENCED) == 0 &&
1004                     (actcount = pmap_ts_referenced(m)) != 0) {
1005                         vm_page_activate(m);
1006                         vm_page_unlock(m);
1007                         m->act_count += actcount + ACT_ADVANCE;
1008                         VM_OBJECT_UNLOCK(object);
1009                         goto relock_queues;
1010                 }
1011
1012                 /*
1013                  * If the upper level VM system knows about any page 
1014                  * references, we activate the page.  We also set the 
1015                  * "activation count" higher than normal so that we will less 
1016                  * likely place pages back onto the inactive queue again.
1017                  */
1018                 if ((m->aflags & PGA_REFERENCED) != 0) {
1019                         vm_page_aflag_clear(m, PGA_REFERENCED);
1020                         actcount = pmap_ts_referenced(m);
1021                         vm_page_activate(m);
1022                         vm_page_unlock(m);
1023                         m->act_count += actcount + ACT_ADVANCE + 1;
1024                         VM_OBJECT_UNLOCK(object);
1025                         goto relock_queues;
1026                 }
1027
1028                 if (m->hold_count != 0) {
1029                         vm_page_unlock(m);
1030                         VM_OBJECT_UNLOCK(object);
1031
1032                         /*
1033                          * Held pages are essentially stuck in the
1034                          * queue.  So, they ought to be discounted
1035                          * from cnt.v_inactive_count.  See the
1036                          * calculation of the page_shortage for the
1037                          * loop over the active queue below.
1038                          */
1039                         addl_page_shortage++;
1040                         goto relock_queues;
1041                 }
1042
1043                 /*
1044                  * If the upper level VM system does not believe that the page
1045                  * is fully dirty, but it is mapped for write access, then we
1046                  * consult the pmap to see if the page's dirty status should
1047                  * be updated.
1048                  */
1049                 if (m->dirty != VM_PAGE_BITS_ALL &&
1050                     pmap_page_is_write_mapped(m)) {
1051                         /*
1052                          * Avoid a race condition: Unless write access is
1053                          * removed from the page, another processor could
1054                          * modify it before all access is removed by the call
1055                          * to vm_page_cache() below.  If vm_page_cache() finds
1056                          * that the page has been modified when it removes all
1057                          * access, it panics because it cannot cache dirty
1058                          * pages.  In principle, we could eliminate just write
1059                          * access here rather than all access.  In the expected
1060                          * case, when there are no last instant modifications
1061                          * to the page, removing all access will be cheaper
1062                          * overall.
1063                          */
1064                         if (pmap_is_modified(m))
1065                                 vm_page_dirty(m);
1066                         else if (m->dirty == 0)
1067                                 pmap_remove_all(m);
1068                 }
1069
1070                 if (m->valid == 0) {
1071                         /*
1072                          * Invalid pages can be easily freed
1073                          */
1074                         vm_page_free(m);
1075                         PCPU_INC(cnt.v_dfree);
1076                         --page_shortage;
1077                 } else if (m->dirty == 0) {
1078                         /*
1079                          * Clean pages can be placed onto the cache queue.
1080                          * This effectively frees them.
1081                          */
1082                         vm_page_cache(m);
1083                         --page_shortage;
1084                 } else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
1085                         /*
1086                          * Dirty pages need to be paged out, but flushing
1087                          * a page is extremely expensive verses freeing
1088                          * a clean page.  Rather then artificially limiting
1089                          * the number of pages we can flush, we instead give
1090                          * dirty pages extra priority on the inactive queue
1091                          * by forcing them to be cycled through the queue
1092                          * twice before being flushed, after which the
1093                          * (now clean) page will cycle through once more
1094                          * before being freed.  This significantly extends
1095                          * the thrash point for a heavily loaded machine.
1096                          */
1097                         m->flags |= PG_WINATCFLS;
1098                         vm_page_lock_queues();
1099                         queues_locked = TRUE;
1100                         vm_page_requeue(m);
1101                 } else if (maxlaunder > 0) {
1102                         /*
1103                          * We always want to try to flush some dirty pages if
1104                          * we encounter them, to keep the system stable.
1105                          * Normally this number is small, but under extreme
1106                          * pressure where there are insufficient clean pages
1107                          * on the inactive queue, we may have to go all out.
1108                          */
1109                         int swap_pageouts_ok, vfslocked = 0;
1110                         struct vnode *vp = NULL;
1111                         struct mount *mp = NULL;
1112
1113                         if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
1114                                 swap_pageouts_ok = 1;
1115                         } else {
1116                                 swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
1117                                 swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
1118                                 vm_page_count_min());
1119                                                                                 
1120                         }
1121
1122                         /*
1123                          * We don't bother paging objects that are "dead".  
1124                          * Those objects are in a "rundown" state.
1125                          */
1126                         if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
1127                                 vm_page_lock_queues();
1128                                 vm_page_unlock(m);
1129                                 VM_OBJECT_UNLOCK(object);
1130                                 queues_locked = TRUE;
1131                                 vm_page_requeue(m);
1132                                 goto relock_queues;
1133                         }
1134
1135                         /*
1136                          * The object is already known NOT to be dead.   It
1137                          * is possible for the vget() to block the whole
1138                          * pageout daemon, but the new low-memory handling
1139                          * code should prevent it.
1140                          *
1141                          * The previous code skipped locked vnodes and, worse,
1142                          * reordered pages in the queue.  This results in
1143                          * completely non-deterministic operation and, on a
1144                          * busy system, can lead to extremely non-optimal
1145                          * pageouts.  For example, it can cause clean pages
1146                          * to be freed and dirty pages to be moved to the end
1147                          * of the queue.  Since dirty pages are also moved to
1148                          * the end of the queue once-cleaned, this gives
1149                          * way too large a weighting to defering the freeing
1150                          * of dirty pages.
1151                          *
1152                          * We can't wait forever for the vnode lock, we might
1153                          * deadlock due to a vn_read() getting stuck in
1154                          * vm_wait while holding this vnode.  We skip the 
1155                          * vnode if we can't get it in a reasonable amount
1156                          * of time.
1157                          */
1158                         if (object->type == OBJT_VNODE) {
1159                                 vm_page_unlock(m);
1160                                 vp = object->handle;
1161                                 if (vp->v_type == VREG &&
1162                                     vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1163                                         mp = NULL;
1164                                         ++pageout_lock_miss;
1165                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1166                                                 vnodes_skipped++;
1167                                         goto unlock_and_continue;
1168                                 }
1169                                 KASSERT(mp != NULL,
1170                                     ("vp %p with NULL v_mount", vp));
1171                                 vm_object_reference_locked(object);
1172                                 VM_OBJECT_UNLOCK(object);
1173                                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1174                                 if (vget(vp, LK_EXCLUSIVE | LK_TIMELOCK,
1175                                     curthread)) {
1176                                         VM_OBJECT_LOCK(object);
1177                                         ++pageout_lock_miss;
1178                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1179                                                 vnodes_skipped++;
1180                                         vp = NULL;
1181                                         goto unlock_and_continue;
1182                                 }
1183                                 VM_OBJECT_LOCK(object);
1184                                 vm_page_lock(m);
1185                                 vm_page_lock_queues();
1186                                 queues_locked = TRUE;
1187                                 /*
1188                                  * The page might have been moved to another
1189                                  * queue during potential blocking in vget()
1190                                  * above.  The page might have been freed and
1191                                  * reused for another vnode.
1192                                  */
1193                                 if (m->queue != PQ_INACTIVE ||
1194                                     m->object != object ||
1195                                     TAILQ_NEXT(m, pageq) != &marker) {
1196                                         vm_page_unlock(m);
1197                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1198                                                 vnodes_skipped++;
1199                                         goto unlock_and_continue;
1200                                 }
1201         
1202                                 /*
1203                                  * The page may have been busied during the
1204                                  * blocking in vget().  We don't move the
1205                                  * page back onto the end of the queue so that
1206                                  * statistics are more correct if we don't.
1207                                  */
1208                                 if (m->busy || (m->oflags & VPO_BUSY)) {
1209                                         vm_page_unlock(m);
1210                                         goto unlock_and_continue;
1211                                 }
1212
1213                                 /*
1214                                  * If the page has become held it might
1215                                  * be undergoing I/O, so skip it
1216                                  */
1217                                 if (m->hold_count) {
1218                                         vm_page_unlock(m);
1219                                         vm_page_requeue(m);
1220                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1221                                                 vnodes_skipped++;
1222                                         goto unlock_and_continue;
1223                                 }
1224                                 vm_page_unlock_queues();
1225                                 queues_locked = FALSE;
1226                         }
1227
1228                         /*
1229                          * If a page is dirty, then it is either being washed
1230                          * (but not yet cleaned) or it is still in the
1231                          * laundry.  If it is still in the laundry, then we
1232                          * start the cleaning operation. 
1233                          *
1234                          * decrement page_shortage on success to account for
1235                          * the (future) cleaned page.  Otherwise we could wind
1236                          * up laundering or cleaning too many pages.
1237                          */
1238                         if (vm_pageout_clean(m) != 0) {
1239                                 --page_shortage;
1240                                 --maxlaunder;
1241                         }
1242 unlock_and_continue:
1243                         vm_page_lock_assert(m, MA_NOTOWNED);
1244                         VM_OBJECT_UNLOCK(object);
1245                         if (mp != NULL) {
1246                                 if (queues_locked) {
1247                                         vm_page_unlock_queues();
1248                                         queues_locked = FALSE;
1249                                 }
1250                                 if (vp != NULL)
1251                                         vput(vp);
1252                                 VFS_UNLOCK_GIANT(vfslocked);
1253                                 vm_object_deallocate(object);
1254                                 vn_finished_write(mp);
1255                         }
1256                         vm_page_lock_assert(m, MA_NOTOWNED);
1257                         goto relock_queues;
1258                 }
1259                 vm_page_unlock(m);
1260                 VM_OBJECT_UNLOCK(object);
1261 relock_queues:
1262                 if (!queues_locked) {
1263                         vm_page_lock_queues();
1264                         queues_locked = TRUE;
1265                 }
1266                 next = TAILQ_NEXT(&marker, pageq);
1267                 TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl,
1268                     &marker, pageq);
1269         }
1270
1271         /*
1272          * Compute the number of pages we want to try to move from the
1273          * active queue to the inactive queue.
1274          */
1275         page_shortage = vm_paging_target() +
1276                 cnt.v_inactive_target - cnt.v_inactive_count;
1277         page_shortage += addl_page_shortage;
1278
1279         /*
1280          * Scan the active queue for things we can deactivate. We nominally
1281          * track the per-page activity counter and use it to locate
1282          * deactivation candidates.
1283          */
1284         pcount = cnt.v_active_count;
1285         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1286         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1287
1288         while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1289
1290                 KASSERT(m->queue == PQ_ACTIVE,
1291                     ("vm_pageout_scan: page %p isn't active", m));
1292
1293                 next = TAILQ_NEXT(m, pageq);
1294                 if ((m->flags & PG_MARKER) != 0) {
1295                         m = next;
1296                         continue;
1297                 }
1298                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
1299                     ("Fictitious page %p cannot be in active queue", m));
1300                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1301                     ("Unmanaged page %p cannot be in active queue", m));
1302                 if (!vm_pageout_page_lock(m, &next)) {
1303                         vm_page_unlock(m);
1304                         m = next;
1305                         continue;
1306                 }
1307                 object = m->object;
1308                 if (!VM_OBJECT_TRYLOCK(object) &&
1309                     !vm_pageout_fallback_object_lock(m, &next)) {
1310                         VM_OBJECT_UNLOCK(object);
1311                         vm_page_unlock(m);
1312                         m = next;
1313                         continue;
1314                 }
1315
1316                 /*
1317                  * Don't deactivate pages that are busy.
1318                  */
1319                 if ((m->busy != 0) ||
1320                     (m->oflags & VPO_BUSY) ||
1321                     (m->hold_count != 0)) {
1322                         vm_page_unlock(m);
1323                         VM_OBJECT_UNLOCK(object);
1324                         vm_page_requeue(m);
1325                         m = next;
1326                         continue;
1327                 }
1328
1329                 /*
1330                  * The count for pagedaemon pages is done after checking the
1331                  * page for eligibility...
1332                  */
1333                 cnt.v_pdpages++;
1334
1335                 /*
1336                  * Check to see "how much" the page has been used.
1337                  */
1338                 actcount = 0;
1339                 if (object->ref_count != 0) {
1340                         if (m->aflags & PGA_REFERENCED) {
1341                                 actcount += 1;
1342                         }
1343                         actcount += pmap_ts_referenced(m);
1344                         if (actcount) {
1345                                 m->act_count += ACT_ADVANCE + actcount;
1346                                 if (m->act_count > ACT_MAX)
1347                                         m->act_count = ACT_MAX;
1348                         }
1349                 }
1350
1351                 /*
1352                  * Since we have "tested" this bit, we need to clear it now.
1353                  */
1354                 vm_page_aflag_clear(m, PGA_REFERENCED);
1355
1356                 /*
1357                  * Only if an object is currently being used, do we use the
1358                  * page activation count stats.
1359                  */
1360                 if (actcount && (object->ref_count != 0)) {
1361                         vm_page_requeue(m);
1362                 } else {
1363                         m->act_count -= min(m->act_count, ACT_DECLINE);
1364                         if (vm_pageout_algorithm ||
1365                             object->ref_count == 0 ||
1366                             m->act_count == 0) {
1367                                 page_shortage--;
1368                                 if (object->ref_count == 0) {
1369                                         KASSERT(!pmap_page_is_mapped(m),
1370                                     ("vm_pageout_scan: page %p is mapped", m));
1371                                         if (m->dirty == 0)
1372                                                 vm_page_cache(m);
1373                                         else
1374                                                 vm_page_deactivate(m);
1375                                 } else {
1376                                         vm_page_deactivate(m);
1377                                 }
1378                         } else {
1379                                 vm_page_requeue(m);
1380                         }
1381                 }
1382                 vm_page_unlock(m);
1383                 VM_OBJECT_UNLOCK(object);
1384                 m = next;
1385         }
1386         vm_page_unlock_queues();
1387 #if !defined(NO_SWAPPING)
1388         /*
1389          * Idle process swapout -- run once per second.
1390          */
1391         if (vm_swap_idle_enabled) {
1392                 static long lsec;
1393                 if (time_second != lsec) {
1394                         vm_req_vmdaemon(VM_SWAP_IDLE);
1395                         lsec = time_second;
1396                 }
1397         }
1398 #endif
1399                 
1400         /*
1401          * If we didn't get enough free pages, and we have skipped a vnode
1402          * in a writeable object, wakeup the sync daemon.  And kick swapout
1403          * if we did not get enough free pages.
1404          */
1405         if (vm_paging_target() > 0) {
1406                 if (vnodes_skipped && vm_page_count_min())
1407                         (void) speedup_syncer();
1408 #if !defined(NO_SWAPPING)
1409                 if (vm_swap_enabled && vm_page_count_target())
1410                         vm_req_vmdaemon(VM_SWAP_NORMAL);
1411 #endif
1412         }
1413
1414         /*
1415          * If we are critically low on one of RAM or swap and low on
1416          * the other, kill the largest process.  However, we avoid
1417          * doing this on the first pass in order to give ourselves a
1418          * chance to flush out dirty vnode-backed pages and to allow
1419          * active pages to be moved to the inactive queue and reclaimed.
1420          */
1421         if (pass != 0 &&
1422             ((swap_pager_avail < 64 && vm_page_count_min()) ||
1423              (swap_pager_full && vm_paging_target() > 0)))
1424                 vm_pageout_oom(VM_OOM_MEM);
1425 }
1426
1427
1428 void
1429 vm_pageout_oom(int shortage)
1430 {
1431         struct proc *p, *bigproc;
1432         vm_offset_t size, bigsize;
1433         struct thread *td;
1434         struct vmspace *vm;
1435
1436         /*
1437          * We keep the process bigproc locked once we find it to keep anyone
1438          * from messing with it; however, there is a possibility of
1439          * deadlock if process B is bigproc and one of it's child processes
1440          * attempts to propagate a signal to B while we are waiting for A's
1441          * lock while walking this list.  To avoid this, we don't block on
1442          * the process lock but just skip a process if it is already locked.
1443          */
1444         bigproc = NULL;
1445         bigsize = 0;
1446         sx_slock(&allproc_lock);
1447         FOREACH_PROC_IN_SYSTEM(p) {
1448                 int breakout;
1449
1450                 if (PROC_TRYLOCK(p) == 0)
1451                         continue;
1452                 /*
1453                  * If this is a system, protected or killed process, skip it.
1454                  */
1455                 if (p->p_state != PRS_NORMAL ||
1456                     (p->p_flag & (P_INEXEC | P_PROTECTED | P_SYSTEM)) ||
1457                     (p->p_pid == 1) || P_KILLED(p) ||
1458                     ((p->p_pid < 48) && (swap_pager_avail != 0))) {
1459                         PROC_UNLOCK(p);
1460                         continue;
1461                 }
1462                 /*
1463                  * If the process is in a non-running type state,
1464                  * don't touch it.  Check all the threads individually.
1465                  */
1466                 breakout = 0;
1467                 FOREACH_THREAD_IN_PROC(p, td) {
1468                         thread_lock(td);
1469                         if (!TD_ON_RUNQ(td) &&
1470                             !TD_IS_RUNNING(td) &&
1471                             !TD_IS_SLEEPING(td) &&
1472                             !TD_IS_SUSPENDED(td)) {
1473                                 thread_unlock(td);
1474                                 breakout = 1;
1475                                 break;
1476                         }
1477                         thread_unlock(td);
1478                 }
1479                 if (breakout) {
1480                         PROC_UNLOCK(p);
1481                         continue;
1482                 }
1483                 /*
1484                  * get the process size
1485                  */
1486                 vm = vmspace_acquire_ref(p);
1487                 if (vm == NULL) {
1488                         PROC_UNLOCK(p);
1489                         continue;
1490                 }
1491                 if (!vm_map_trylock_read(&vm->vm_map)) {
1492                         vmspace_free(vm);
1493                         PROC_UNLOCK(p);
1494                         continue;
1495                 }
1496                 size = vmspace_swap_count(vm);
1497                 vm_map_unlock_read(&vm->vm_map);
1498                 if (shortage == VM_OOM_MEM)
1499                         size += vmspace_resident_count(vm);
1500                 vmspace_free(vm);
1501                 /*
1502                  * if the this process is bigger than the biggest one
1503                  * remember it.
1504                  */
1505                 if (size > bigsize) {
1506                         if (bigproc != NULL)
1507                                 PROC_UNLOCK(bigproc);
1508                         bigproc = p;
1509                         bigsize = size;
1510                 } else
1511                         PROC_UNLOCK(p);
1512         }
1513         sx_sunlock(&allproc_lock);
1514         if (bigproc != NULL) {
1515                 killproc(bigproc, "out of swap space");
1516                 sched_nice(bigproc, PRIO_MIN);
1517                 PROC_UNLOCK(bigproc);
1518                 wakeup(&cnt.v_free_count);
1519         }
1520 }
1521
1522 /*
1523  * This routine tries to maintain the pseudo LRU active queue,
1524  * so that during long periods of time where there is no paging,
1525  * that some statistic accumulation still occurs.  This code
1526  * helps the situation where paging just starts to occur.
1527  */
1528 static void
1529 vm_pageout_page_stats()
1530 {
1531         vm_object_t object;
1532         vm_page_t m,next;
1533         int pcount,tpcount;             /* Number of pages to check */
1534         static int fullintervalcount = 0;
1535         int page_shortage;
1536
1537         page_shortage = 
1538             (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1539             (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1540
1541         if (page_shortage <= 0)
1542                 return;
1543
1544         vm_page_lock_queues();
1545         pcount = cnt.v_active_count;
1546         fullintervalcount += vm_pageout_stats_interval;
1547         if (fullintervalcount < vm_pageout_full_stats_interval) {
1548                 tpcount = (int64_t)vm_pageout_stats_max * cnt.v_active_count /
1549                     cnt.v_page_count;
1550                 if (pcount > tpcount)
1551                         pcount = tpcount;
1552         } else {
1553                 fullintervalcount = 0;
1554         }
1555
1556         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1557         while ((m != NULL) && (pcount-- > 0)) {
1558                 int actcount;
1559
1560                 KASSERT(m->queue == PQ_ACTIVE,
1561                     ("vm_pageout_page_stats: page %p isn't active", m));
1562
1563                 next = TAILQ_NEXT(m, pageq);
1564                 if ((m->flags & PG_MARKER) != 0) {
1565                         m = next;
1566                         continue;
1567                 }
1568                 vm_page_lock_assert(m, MA_NOTOWNED);
1569                 if (!vm_pageout_page_lock(m, &next)) {
1570                         vm_page_unlock(m);
1571                         m = next;
1572                         continue;
1573                 }
1574                 object = m->object;
1575                 if (!VM_OBJECT_TRYLOCK(object) &&
1576                     !vm_pageout_fallback_object_lock(m, &next)) {
1577                         VM_OBJECT_UNLOCK(object);
1578                         vm_page_unlock(m);
1579                         m = next;
1580                         continue;
1581                 }
1582
1583                 /*
1584                  * Don't deactivate pages that are busy.
1585                  */
1586                 if ((m->busy != 0) ||
1587                     (m->oflags & VPO_BUSY) ||
1588                     (m->hold_count != 0)) {
1589                         vm_page_unlock(m);
1590                         VM_OBJECT_UNLOCK(object);
1591                         vm_page_requeue(m);
1592                         m = next;
1593                         continue;
1594                 }
1595
1596                 actcount = 0;
1597                 if (m->aflags & PGA_REFERENCED) {
1598                         vm_page_aflag_clear(m, PGA_REFERENCED);
1599                         actcount += 1;
1600                 }
1601
1602                 actcount += pmap_ts_referenced(m);
1603                 if (actcount) {
1604                         m->act_count += ACT_ADVANCE + actcount;
1605                         if (m->act_count > ACT_MAX)
1606                                 m->act_count = ACT_MAX;
1607                         vm_page_requeue(m);
1608                 } else {
1609                         if (m->act_count == 0) {
1610                                 /*
1611                                  * We turn off page access, so that we have
1612                                  * more accurate RSS stats.  We don't do this
1613                                  * in the normal page deactivation when the
1614                                  * system is loaded VM wise, because the
1615                                  * cost of the large number of page protect
1616                                  * operations would be higher than the value
1617                                  * of doing the operation.
1618                                  */
1619                                 pmap_remove_all(m);
1620                                 vm_page_deactivate(m);
1621                         } else {
1622                                 m->act_count -= min(m->act_count, ACT_DECLINE);
1623                                 vm_page_requeue(m);
1624                         }
1625                 }
1626                 vm_page_unlock(m);
1627                 VM_OBJECT_UNLOCK(object);
1628                 m = next;
1629         }
1630         vm_page_unlock_queues();
1631 }
1632
1633 /*
1634  *      vm_pageout is the high level pageout daemon.
1635  */
1636 static void
1637 vm_pageout()
1638 {
1639         int error, pass;
1640
1641         /*
1642          * Initialize some paging parameters.
1643          */
1644         cnt.v_interrupt_free_min = 2;
1645         if (cnt.v_page_count < 2000)
1646                 vm_pageout_page_count = 8;
1647
1648         /*
1649          * v_free_reserved needs to include enough for the largest
1650          * swap pager structures plus enough for any pv_entry structs
1651          * when paging. 
1652          */
1653         if (cnt.v_page_count > 1024)
1654                 cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1655         else
1656                 cnt.v_free_min = 4;
1657         cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1658             cnt.v_interrupt_free_min;
1659         cnt.v_free_reserved = vm_pageout_page_count +
1660             cnt.v_pageout_free_min + (cnt.v_page_count / 768);
1661         cnt.v_free_severe = cnt.v_free_min / 2;
1662         cnt.v_free_min += cnt.v_free_reserved;
1663         cnt.v_free_severe += cnt.v_free_reserved;
1664
1665         /*
1666          * v_free_target and v_cache_min control pageout hysteresis.  Note
1667          * that these are more a measure of the VM cache queue hysteresis
1668          * then the VM free queue.  Specifically, v_free_target is the
1669          * high water mark (free+cache pages).
1670          *
1671          * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1672          * low water mark, while v_free_min is the stop.  v_cache_min must
1673          * be big enough to handle memory needs while the pageout daemon
1674          * is signalled and run to free more pages.
1675          */
1676         if (cnt.v_free_count > 6144)
1677                 cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1678         else
1679                 cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1680
1681         if (cnt.v_free_count > 2048) {
1682                 cnt.v_cache_min = cnt.v_free_target;
1683                 cnt.v_cache_max = 2 * cnt.v_cache_min;
1684                 cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1685         } else {
1686                 cnt.v_cache_min = 0;
1687                 cnt.v_cache_max = 0;
1688                 cnt.v_inactive_target = cnt.v_free_count / 4;
1689         }
1690         if (cnt.v_inactive_target > cnt.v_free_count / 3)
1691                 cnt.v_inactive_target = cnt.v_free_count / 3;
1692
1693         /* XXX does not really belong here */
1694         if (vm_page_max_wired == 0)
1695                 vm_page_max_wired = cnt.v_free_count / 3;
1696
1697         if (vm_pageout_stats_max == 0)
1698                 vm_pageout_stats_max = cnt.v_free_target;
1699
1700         /*
1701          * Set interval in seconds for stats scan.
1702          */
1703         if (vm_pageout_stats_interval == 0)
1704                 vm_pageout_stats_interval = 5;
1705         if (vm_pageout_full_stats_interval == 0)
1706                 vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1707
1708         swap_pager_swap_init();
1709         pass = 0;
1710         /*
1711          * The pageout daemon is never done, so loop forever.
1712          */
1713         while (TRUE) {
1714                 /*
1715                  * If we have enough free memory, wakeup waiters.  Do
1716                  * not clear vm_pages_needed until we reach our target,
1717                  * otherwise we may be woken up over and over again and
1718                  * waste a lot of cpu.
1719                  */
1720                 mtx_lock(&vm_page_queue_free_mtx);
1721                 if (vm_pages_needed && !vm_page_count_min()) {
1722                         if (!vm_paging_needed())
1723                                 vm_pages_needed = 0;
1724                         wakeup(&cnt.v_free_count);
1725                 }
1726                 if (vm_pages_needed) {
1727                         /*
1728                          * Still not done, take a second pass without waiting
1729                          * (unlimited dirty cleaning), otherwise sleep a bit
1730                          * and try again.
1731                          */
1732                         ++pass;
1733                         if (pass > 1)
1734                                 msleep(&vm_pages_needed,
1735                                     &vm_page_queue_free_mtx, PVM, "psleep",
1736                                     hz / 2);
1737                 } else {
1738                         /*
1739                          * Good enough, sleep & handle stats.  Prime the pass
1740                          * for the next run.
1741                          */
1742                         if (pass > 1)
1743                                 pass = 1;
1744                         else
1745                                 pass = 0;
1746                         error = msleep(&vm_pages_needed,
1747                             &vm_page_queue_free_mtx, PVM, "psleep",
1748                             vm_pageout_stats_interval * hz);
1749                         if (error && !vm_pages_needed) {
1750                                 mtx_unlock(&vm_page_queue_free_mtx);
1751                                 pass = 0;
1752                                 vm_pageout_page_stats();
1753                                 continue;
1754                         }
1755                 }
1756                 if (vm_pages_needed)
1757                         cnt.v_pdwakeups++;
1758                 mtx_unlock(&vm_page_queue_free_mtx);
1759                 vm_pageout_scan(pass);
1760         }
1761 }
1762
1763 /*
1764  * Unless the free page queue lock is held by the caller, this function
1765  * should be regarded as advisory.  Specifically, the caller should
1766  * not msleep() on &cnt.v_free_count following this function unless
1767  * the free page queue lock is held until the msleep() is performed.
1768  */
1769 void
1770 pagedaemon_wakeup()
1771 {
1772
1773         if (!vm_pages_needed && curthread->td_proc != pageproc) {
1774                 vm_pages_needed = 1;
1775                 wakeup(&vm_pages_needed);
1776         }
1777 }
1778
1779 #if !defined(NO_SWAPPING)
1780 static void
1781 vm_req_vmdaemon(int req)
1782 {
1783         static int lastrun = 0;
1784
1785         mtx_lock(&vm_daemon_mtx);
1786         vm_pageout_req_swapout |= req;
1787         if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1788                 wakeup(&vm_daemon_needed);
1789                 lastrun = ticks;
1790         }
1791         mtx_unlock(&vm_daemon_mtx);
1792 }
1793
1794 static void
1795 vm_daemon()
1796 {
1797         struct rlimit rsslim;
1798         struct proc *p;
1799         struct thread *td;
1800         struct vmspace *vm;
1801         int breakout, swapout_flags, tryagain, attempts;
1802 #ifdef RACCT
1803         uint64_t rsize, ravailable;
1804 #endif
1805
1806         while (TRUE) {
1807                 mtx_lock(&vm_daemon_mtx);
1808 #ifdef RACCT
1809                 msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", hz);
1810 #else
1811                 msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", 0);
1812 #endif
1813                 swapout_flags = vm_pageout_req_swapout;
1814                 vm_pageout_req_swapout = 0;
1815                 mtx_unlock(&vm_daemon_mtx);
1816                 if (swapout_flags)
1817                         swapout_procs(swapout_flags);
1818
1819                 /*
1820                  * scan the processes for exceeding their rlimits or if
1821                  * process is swapped out -- deactivate pages
1822                  */
1823                 tryagain = 0;
1824                 attempts = 0;
1825 again:
1826                 attempts++;
1827                 sx_slock(&allproc_lock);
1828                 FOREACH_PROC_IN_SYSTEM(p) {
1829                         vm_pindex_t limit, size;
1830
1831                         /*
1832                          * if this is a system process or if we have already
1833                          * looked at this process, skip it.
1834                          */
1835                         PROC_LOCK(p);
1836                         if (p->p_state != PRS_NORMAL ||
1837                             p->p_flag & (P_INEXEC | P_SYSTEM | P_WEXIT)) {
1838                                 PROC_UNLOCK(p);
1839                                 continue;
1840                         }
1841                         /*
1842                          * if the process is in a non-running type state,
1843                          * don't touch it.
1844                          */
1845                         breakout = 0;
1846                         FOREACH_THREAD_IN_PROC(p, td) {
1847                                 thread_lock(td);
1848                                 if (!TD_ON_RUNQ(td) &&
1849                                     !TD_IS_RUNNING(td) &&
1850                                     !TD_IS_SLEEPING(td) &&
1851                                     !TD_IS_SUSPENDED(td)) {
1852                                         thread_unlock(td);
1853                                         breakout = 1;
1854                                         break;
1855                                 }
1856                                 thread_unlock(td);
1857                         }
1858                         if (breakout) {
1859                                 PROC_UNLOCK(p);
1860                                 continue;
1861                         }
1862                         /*
1863                          * get a limit
1864                          */
1865                         lim_rlimit(p, RLIMIT_RSS, &rsslim);
1866                         limit = OFF_TO_IDX(
1867                             qmin(rsslim.rlim_cur, rsslim.rlim_max));
1868
1869                         /*
1870                          * let processes that are swapped out really be
1871                          * swapped out set the limit to nothing (will force a
1872                          * swap-out.)
1873                          */
1874                         if ((p->p_flag & P_INMEM) == 0)
1875                                 limit = 0;      /* XXX */
1876                         vm = vmspace_acquire_ref(p);
1877                         PROC_UNLOCK(p);
1878                         if (vm == NULL)
1879                                 continue;
1880
1881                         size = vmspace_resident_count(vm);
1882                         if (limit >= 0 && size >= limit) {
1883                                 vm_pageout_map_deactivate_pages(
1884                                     &vm->vm_map, limit);
1885                         }
1886 #ifdef RACCT
1887                         rsize = IDX_TO_OFF(size);
1888                         PROC_LOCK(p);
1889                         racct_set(p, RACCT_RSS, rsize);
1890                         ravailable = racct_get_available(p, RACCT_RSS);
1891                         PROC_UNLOCK(p);
1892                         if (rsize > ravailable) {
1893                                 /*
1894                                  * Don't be overly aggressive; this might be
1895                                  * an innocent process, and the limit could've
1896                                  * been exceeded by some memory hog.  Don't
1897                                  * try to deactivate more than 1/4th of process'
1898                                  * resident set size.
1899                                  */
1900                                 if (attempts <= 8) {
1901                                         if (ravailable < rsize - (rsize / 4))
1902                                                 ravailable = rsize - (rsize / 4);
1903                                 }
1904                                 vm_pageout_map_deactivate_pages(
1905                                     &vm->vm_map, OFF_TO_IDX(ravailable));
1906                                 /* Update RSS usage after paging out. */
1907                                 size = vmspace_resident_count(vm);
1908                                 rsize = IDX_TO_OFF(size);
1909                                 PROC_LOCK(p);
1910                                 racct_set(p, RACCT_RSS, rsize);
1911                                 PROC_UNLOCK(p);
1912                                 if (rsize > ravailable)
1913                                         tryagain = 1;
1914                         }
1915 #endif
1916                         vmspace_free(vm);
1917                 }
1918                 sx_sunlock(&allproc_lock);
1919                 if (tryagain != 0 && attempts <= 10)
1920                         goto again;
1921         }
1922 }
1923 #endif                  /* !defined(NO_SWAPPING) */