]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_pageout.c
Update llvm to trunk r256945.
[FreeBSD/FreeBSD.git] / sys / vm / vm_pageout.c
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  * Copyright (c) 2005 Yahoo! Technologies Norway AS
9  * All rights reserved.
10  *
11  * This code is derived from software contributed to Berkeley by
12  * The Mach Operating System project at Carnegie-Mellon University.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *      This product includes software developed by the University of
25  *      California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
43  *
44  *
45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46  * All rights reserved.
47  *
48  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49  *
50  * Permission to use, copy, modify and distribute this software and
51  * its documentation is hereby granted, provided that both the copyright
52  * notice and this permission notice appear in all copies of the
53  * software, derivative works or modified versions, and any portions
54  * thereof, and that both notices appear in supporting documentation.
55  *
56  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59  *
60  * Carnegie Mellon requests users of this software to return to
61  *
62  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63  *  School of Computer Science
64  *  Carnegie Mellon University
65  *  Pittsburgh PA 15213-3890
66  *
67  * any improvements or extensions that they make and grant Carnegie the
68  * rights to redistribute these changes.
69  */
70
71 /*
72  *      The proverbial page-out daemon.
73  */
74
75 #include <sys/cdefs.h>
76 __FBSDID("$FreeBSD$");
77
78 #include "opt_vm.h"
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/kernel.h>
83 #include <sys/eventhandler.h>
84 #include <sys/lock.h>
85 #include <sys/mutex.h>
86 #include <sys/proc.h>
87 #include <sys/kthread.h>
88 #include <sys/ktr.h>
89 #include <sys/mount.h>
90 #include <sys/racct.h>
91 #include <sys/resourcevar.h>
92 #include <sys/sched.h>
93 #include <sys/sdt.h>
94 #include <sys/signalvar.h>
95 #include <sys/smp.h>
96 #include <sys/time.h>
97 #include <sys/vnode.h>
98 #include <sys/vmmeter.h>
99 #include <sys/rwlock.h>
100 #include <sys/sx.h>
101 #include <sys/sysctl.h>
102
103 #include <vm/vm.h>
104 #include <vm/vm_param.h>
105 #include <vm/vm_object.h>
106 #include <vm/vm_page.h>
107 #include <vm/vm_map.h>
108 #include <vm/vm_pageout.h>
109 #include <vm/vm_pager.h>
110 #include <vm/vm_phys.h>
111 #include <vm/swap_pager.h>
112 #include <vm/vm_extern.h>
113 #include <vm/uma.h>
114
115 /*
116  * System initialization
117  */
118
119 /* the kernel process "vm_pageout"*/
120 static void vm_pageout(void);
121 static void vm_pageout_init(void);
122 static int vm_pageout_clean(vm_page_t m);
123 static int vm_pageout_cluster(vm_page_t m);
124 static void vm_pageout_scan(struct vm_domain *vmd, int pass);
125 static void vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
126     int starting_page_shortage);
127
128 SYSINIT(pagedaemon_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, vm_pageout_init,
129     NULL);
130
131 struct proc *pageproc;
132
133 static struct kproc_desc page_kp = {
134         "pagedaemon",
135         vm_pageout,
136         &pageproc
137 };
138 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start,
139     &page_kp);
140
141 SDT_PROVIDER_DEFINE(vm);
142 SDT_PROBE_DEFINE(vm, , , vm__lowmem_cache);
143 SDT_PROBE_DEFINE(vm, , , vm__lowmem_scan);
144
145 #if !defined(NO_SWAPPING)
146 /* the kernel process "vm_daemon"*/
147 static void vm_daemon(void);
148 static struct   proc *vmproc;
149
150 static struct kproc_desc vm_kp = {
151         "vmdaemon",
152         vm_daemon,
153         &vmproc
154 };
155 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
156 #endif
157
158
159 int vm_pages_needed;            /* Event on which pageout daemon sleeps */
160 int vm_pageout_deficit;         /* Estimated number of pages deficit */
161 int vm_pageout_wakeup_thresh;
162 static int vm_pageout_oom_seq = 12;
163
164 #if !defined(NO_SWAPPING)
165 static int vm_pageout_req_swapout;      /* XXX */
166 static int vm_daemon_needed;
167 static struct mtx vm_daemon_mtx;
168 /* Allow for use by vm_pageout before vm_daemon is initialized. */
169 MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
170 #endif
171 static int vm_max_launder = 32;
172 static int vm_pageout_update_period;
173 static int defer_swap_pageouts;
174 static int disable_swap_pageouts;
175 static int lowmem_period = 10;
176 static time_t lowmem_uptime;
177
178 #if defined(NO_SWAPPING)
179 static int vm_swap_enabled = 0;
180 static int vm_swap_idle_enabled = 0;
181 #else
182 static int vm_swap_enabled = 1;
183 static int vm_swap_idle_enabled = 0;
184 #endif
185
186 static int vm_panic_on_oom = 0;
187
188 SYSCTL_INT(_vm, OID_AUTO, panic_on_oom,
189         CTLFLAG_RWTUN, &vm_panic_on_oom, 0,
190         "panic on out of memory instead of killing the largest process");
191
192 SYSCTL_INT(_vm, OID_AUTO, pageout_wakeup_thresh,
193         CTLFLAG_RW, &vm_pageout_wakeup_thresh, 0,
194         "free page threshold for waking up the pageout daemon");
195
196 SYSCTL_INT(_vm, OID_AUTO, max_launder,
197         CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
198
199 SYSCTL_INT(_vm, OID_AUTO, pageout_update_period,
200         CTLFLAG_RW, &vm_pageout_update_period, 0,
201         "Maximum active LRU update period");
202   
203 SYSCTL_INT(_vm, OID_AUTO, lowmem_period, CTLFLAG_RW, &lowmem_period, 0,
204         "Low memory callback period");
205
206 #if defined(NO_SWAPPING)
207 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
208         CTLFLAG_RD, &vm_swap_enabled, 0, "Enable entire process swapout");
209 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
210         CTLFLAG_RD, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
211 #else
212 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
213         CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
214 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
215         CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
216 #endif
217
218 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
219         CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
220
221 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
222         CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
223
224 static int pageout_lock_miss;
225 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
226         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
227
228 SYSCTL_INT(_vm, OID_AUTO, pageout_oom_seq,
229         CTLFLAG_RW, &vm_pageout_oom_seq, 0,
230         "back-to-back calls to oom detector to start OOM");
231
232 #define VM_PAGEOUT_PAGE_COUNT 16
233 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
234
235 int vm_page_max_wired;          /* XXX max # of wired pages system-wide */
236 SYSCTL_INT(_vm, OID_AUTO, max_wired,
237         CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
238
239 static boolean_t vm_pageout_fallback_object_lock(vm_page_t, vm_page_t *);
240 #if !defined(NO_SWAPPING)
241 static void vm_pageout_map_deactivate_pages(vm_map_t, long);
242 static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
243 static void vm_req_vmdaemon(int req);
244 #endif
245 static boolean_t vm_pageout_page_lock(vm_page_t, vm_page_t *);
246
247 /*
248  * Initialize a dummy page for marking the caller's place in the specified
249  * paging queue.  In principle, this function only needs to set the flag
250  * PG_MARKER.  Nonetheless, it wirte busies and initializes the hold count
251  * to one as safety precautions.
252  */ 
253 static void
254 vm_pageout_init_marker(vm_page_t marker, u_short queue)
255 {
256
257         bzero(marker, sizeof(*marker));
258         marker->flags = PG_MARKER;
259         marker->busy_lock = VPB_SINGLE_EXCLUSIVER;
260         marker->queue = queue;
261         marker->hold_count = 1;
262 }
263
264 /*
265  * vm_pageout_fallback_object_lock:
266  * 
267  * Lock vm object currently associated with `m'. VM_OBJECT_TRYWLOCK is
268  * known to have failed and page queue must be either PQ_ACTIVE or
269  * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
270  * while locking the vm object.  Use marker page to detect page queue
271  * changes and maintain notion of next page on page queue.  Return
272  * TRUE if no changes were detected, FALSE otherwise.  vm object is
273  * locked on return.
274  * 
275  * This function depends on both the lock portion of struct vm_object
276  * and normal struct vm_page being type stable.
277  */
278 static boolean_t
279 vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
280 {
281         struct vm_page marker;
282         struct vm_pagequeue *pq;
283         boolean_t unchanged;
284         u_short queue;
285         vm_object_t object;
286
287         queue = m->queue;
288         vm_pageout_init_marker(&marker, queue);
289         pq = vm_page_pagequeue(m);
290         object = m->object;
291         
292         TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q);
293         vm_pagequeue_unlock(pq);
294         vm_page_unlock(m);
295         VM_OBJECT_WLOCK(object);
296         vm_page_lock(m);
297         vm_pagequeue_lock(pq);
298
299         /*
300          * The page's object might have changed, and/or the page might
301          * have moved from its original position in the queue.  If the
302          * page's object has changed, then the caller should abandon
303          * processing the page because the wrong object lock was
304          * acquired.  Use the marker's plinks.q, not the page's, to
305          * determine if the page has been moved.  The state of the
306          * page's plinks.q can be indeterminate; whereas, the marker's
307          * plinks.q must be valid.
308          */
309         *next = TAILQ_NEXT(&marker, plinks.q);
310         unchanged = m->object == object &&
311             m == TAILQ_PREV(&marker, pglist, plinks.q);
312         KASSERT(!unchanged || m->queue == queue,
313             ("page %p queue %d %d", m, queue, m->queue));
314         TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q);
315         return (unchanged);
316 }
317
318 /*
319  * Lock the page while holding the page queue lock.  Use marker page
320  * to detect page queue changes and maintain notion of next page on
321  * page queue.  Return TRUE if no changes were detected, FALSE
322  * otherwise.  The page is locked on return. The page queue lock might
323  * be dropped and reacquired.
324  *
325  * This function depends on normal struct vm_page being type stable.
326  */
327 static boolean_t
328 vm_pageout_page_lock(vm_page_t m, vm_page_t *next)
329 {
330         struct vm_page marker;
331         struct vm_pagequeue *pq;
332         boolean_t unchanged;
333         u_short queue;
334
335         vm_page_lock_assert(m, MA_NOTOWNED);
336         if (vm_page_trylock(m))
337                 return (TRUE);
338
339         queue = m->queue;
340         vm_pageout_init_marker(&marker, queue);
341         pq = vm_page_pagequeue(m);
342
343         TAILQ_INSERT_AFTER(&pq->pq_pl, m, &marker, plinks.q);
344         vm_pagequeue_unlock(pq);
345         vm_page_lock(m);
346         vm_pagequeue_lock(pq);
347
348         /* Page queue might have changed. */
349         *next = TAILQ_NEXT(&marker, plinks.q);
350         unchanged = m == TAILQ_PREV(&marker, pglist, plinks.q);
351         KASSERT(!unchanged || m->queue == queue,
352             ("page %p queue %d %d", m, queue, m->queue));
353         TAILQ_REMOVE(&pq->pq_pl, &marker, plinks.q);
354         return (unchanged);
355 }
356
357 /*
358  * vm_pageout_clean:
359  *
360  * Clean the page and remove it from the laundry.
361  * 
362  * We set the busy bit to cause potential page faults on this page to
363  * block.  Note the careful timing, however, the busy bit isn't set till
364  * late and we cannot do anything that will mess with the page.
365  */
366 static int
367 vm_pageout_cluster(vm_page_t m)
368 {
369         vm_object_t object;
370         vm_page_t mc[2*vm_pageout_page_count], pb, ps;
371         int pageout_count;
372         int ib, is, page_base;
373         vm_pindex_t pindex = m->pindex;
374
375         vm_page_lock_assert(m, MA_OWNED);
376         object = m->object;
377         VM_OBJECT_ASSERT_WLOCKED(object);
378
379         /*
380          * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
381          * with the new swapper, but we could have serious problems paging
382          * out other object types if there is insufficient memory.  
383          *
384          * Unfortunately, checking free memory here is far too late, so the
385          * check has been moved up a procedural level.
386          */
387
388         /*
389          * Can't clean the page if it's busy or held.
390          */
391         vm_page_assert_unbusied(m);
392         KASSERT(m->hold_count == 0, ("vm_pageout_clean: page %p is held", m));
393         vm_page_unlock(m);
394
395         mc[vm_pageout_page_count] = pb = ps = m;
396         pageout_count = 1;
397         page_base = vm_pageout_page_count;
398         ib = 1;
399         is = 1;
400
401         /*
402          * Scan object for clusterable pages.
403          *
404          * We can cluster ONLY if: ->> the page is NOT
405          * clean, wired, busy, held, or mapped into a
406          * buffer, and one of the following:
407          * 1) The page is inactive, or a seldom used
408          *    active page.
409          * -or-
410          * 2) we force the issue.
411          *
412          * During heavy mmap/modification loads the pageout
413          * daemon can really fragment the underlying file
414          * due to flushing pages out of order and not trying
415          * align the clusters (which leave sporatic out-of-order
416          * holes).  To solve this problem we do the reverse scan
417          * first and attempt to align our cluster, then do a 
418          * forward scan if room remains.
419          */
420 more:
421         while (ib && pageout_count < vm_pageout_page_count) {
422                 vm_page_t p;
423
424                 if (ib > pindex) {
425                         ib = 0;
426                         break;
427                 }
428
429                 if ((p = vm_page_prev(pb)) == NULL || vm_page_busied(p)) {
430                         ib = 0;
431                         break;
432                 }
433                 vm_page_test_dirty(p);
434                 if (p->dirty == 0) {
435                         ib = 0;
436                         break;
437                 }
438                 vm_page_lock(p);
439                 if (p->queue != PQ_INACTIVE ||
440                     p->hold_count != 0) {       /* may be undergoing I/O */
441                         vm_page_unlock(p);
442                         ib = 0;
443                         break;
444                 }
445                 vm_page_unlock(p);
446                 mc[--page_base] = pb = p;
447                 ++pageout_count;
448                 ++ib;
449                 /*
450                  * alignment boundry, stop here and switch directions.  Do
451                  * not clear ib.
452                  */
453                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
454                         break;
455         }
456
457         while (pageout_count < vm_pageout_page_count && 
458             pindex + is < object->size) {
459                 vm_page_t p;
460
461                 if ((p = vm_page_next(ps)) == NULL || vm_page_busied(p))
462                         break;
463                 vm_page_test_dirty(p);
464                 if (p->dirty == 0)
465                         break;
466                 vm_page_lock(p);
467                 if (p->queue != PQ_INACTIVE ||
468                     p->hold_count != 0) {       /* may be undergoing I/O */
469                         vm_page_unlock(p);
470                         break;
471                 }
472                 vm_page_unlock(p);
473                 mc[page_base + pageout_count] = ps = p;
474                 ++pageout_count;
475                 ++is;
476         }
477
478         /*
479          * If we exhausted our forward scan, continue with the reverse scan
480          * when possible, even past a page boundry.  This catches boundry
481          * conditions.
482          */
483         if (ib && pageout_count < vm_pageout_page_count)
484                 goto more;
485
486         /*
487          * we allow reads during pageouts...
488          */
489         return (vm_pageout_flush(&mc[page_base], pageout_count, 0, 0, NULL,
490             NULL));
491 }
492
493 /*
494  * vm_pageout_flush() - launder the given pages
495  *
496  *      The given pages are laundered.  Note that we setup for the start of
497  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
498  *      reference count all in here rather then in the parent.  If we want
499  *      the parent to do more sophisticated things we may have to change
500  *      the ordering.
501  *
502  *      Returned runlen is the count of pages between mreq and first
503  *      page after mreq with status VM_PAGER_AGAIN.
504  *      *eio is set to TRUE if pager returned VM_PAGER_ERROR or VM_PAGER_FAIL
505  *      for any page in runlen set.
506  */
507 int
508 vm_pageout_flush(vm_page_t *mc, int count, int flags, int mreq, int *prunlen,
509     boolean_t *eio)
510 {
511         vm_object_t object = mc[0]->object;
512         int pageout_status[count];
513         int numpagedout = 0;
514         int i, runlen;
515
516         VM_OBJECT_ASSERT_WLOCKED(object);
517
518         /*
519          * Initiate I/O.  Bump the vm_page_t->busy counter and
520          * mark the pages read-only.
521          *
522          * We do not have to fixup the clean/dirty bits here... we can
523          * allow the pager to do it after the I/O completes.
524          *
525          * NOTE! mc[i]->dirty may be partial or fragmented due to an
526          * edge case with file fragments.
527          */
528         for (i = 0; i < count; i++) {
529                 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
530                     ("vm_pageout_flush: partially invalid page %p index %d/%d",
531                         mc[i], i, count));
532                 vm_page_sbusy(mc[i]);
533                 pmap_remove_write(mc[i]);
534         }
535         vm_object_pip_add(object, count);
536
537         vm_pager_put_pages(object, mc, count, flags, pageout_status);
538
539         runlen = count - mreq;
540         if (eio != NULL)
541                 *eio = FALSE;
542         for (i = 0; i < count; i++) {
543                 vm_page_t mt = mc[i];
544
545                 KASSERT(pageout_status[i] == VM_PAGER_PEND ||
546                     !pmap_page_is_write_mapped(mt),
547                     ("vm_pageout_flush: page %p is not write protected", mt));
548                 switch (pageout_status[i]) {
549                 case VM_PAGER_OK:
550                 case VM_PAGER_PEND:
551                         numpagedout++;
552                         break;
553                 case VM_PAGER_BAD:
554                         /*
555                          * Page outside of range of object. Right now we
556                          * essentially lose the changes by pretending it
557                          * worked.
558                          */
559                         vm_page_undirty(mt);
560                         break;
561                 case VM_PAGER_ERROR:
562                 case VM_PAGER_FAIL:
563                         /*
564                          * If page couldn't be paged out, then reactivate the
565                          * page so it doesn't clog the inactive list.  (We
566                          * will try paging out it again later).
567                          */
568                         vm_page_lock(mt);
569                         vm_page_activate(mt);
570                         vm_page_unlock(mt);
571                         if (eio != NULL && i >= mreq && i - mreq < runlen)
572                                 *eio = TRUE;
573                         break;
574                 case VM_PAGER_AGAIN:
575                         if (i >= mreq && i - mreq < runlen)
576                                 runlen = i - mreq;
577                         break;
578                 }
579
580                 /*
581                  * If the operation is still going, leave the page busy to
582                  * block all other accesses. Also, leave the paging in
583                  * progress indicator set so that we don't attempt an object
584                  * collapse.
585                  */
586                 if (pageout_status[i] != VM_PAGER_PEND) {
587                         vm_object_pip_wakeup(object);
588                         vm_page_sunbusy(mt);
589                 }
590         }
591         if (prunlen != NULL)
592                 *prunlen = runlen;
593         return (numpagedout);
594 }
595
596 #if !defined(NO_SWAPPING)
597 /*
598  *      vm_pageout_object_deactivate_pages
599  *
600  *      Deactivate enough pages to satisfy the inactive target
601  *      requirements.
602  *
603  *      The object and map must be locked.
604  */
605 static void
606 vm_pageout_object_deactivate_pages(pmap_t pmap, vm_object_t first_object,
607     long desired)
608 {
609         vm_object_t backing_object, object;
610         vm_page_t p;
611         int act_delta, remove_mode;
612
613         VM_OBJECT_ASSERT_LOCKED(first_object);
614         if ((first_object->flags & OBJ_FICTITIOUS) != 0)
615                 return;
616         for (object = first_object;; object = backing_object) {
617                 if (pmap_resident_count(pmap) <= desired)
618                         goto unlock_return;
619                 VM_OBJECT_ASSERT_LOCKED(object);
620                 if ((object->flags & OBJ_UNMANAGED) != 0 ||
621                     object->paging_in_progress != 0)
622                         goto unlock_return;
623
624                 remove_mode = 0;
625                 if (object->shadow_count > 1)
626                         remove_mode = 1;
627                 /*
628                  * Scan the object's entire memory queue.
629                  */
630                 TAILQ_FOREACH(p, &object->memq, listq) {
631                         if (pmap_resident_count(pmap) <= desired)
632                                 goto unlock_return;
633                         if (vm_page_busied(p))
634                                 continue;
635                         PCPU_INC(cnt.v_pdpages);
636                         vm_page_lock(p);
637                         if (p->wire_count != 0 || p->hold_count != 0 ||
638                             !pmap_page_exists_quick(pmap, p)) {
639                                 vm_page_unlock(p);
640                                 continue;
641                         }
642                         act_delta = pmap_ts_referenced(p);
643                         if ((p->aflags & PGA_REFERENCED) != 0) {
644                                 if (act_delta == 0)
645                                         act_delta = 1;
646                                 vm_page_aflag_clear(p, PGA_REFERENCED);
647                         }
648                         if (p->queue != PQ_ACTIVE && act_delta != 0) {
649                                 vm_page_activate(p);
650                                 p->act_count += act_delta;
651                         } else if (p->queue == PQ_ACTIVE) {
652                                 if (act_delta == 0) {
653                                         p->act_count -= min(p->act_count,
654                                             ACT_DECLINE);
655                                         if (!remove_mode && p->act_count == 0) {
656                                                 pmap_remove_all(p);
657                                                 vm_page_deactivate(p);
658                                         } else
659                                                 vm_page_requeue(p);
660                                 } else {
661                                         vm_page_activate(p);
662                                         if (p->act_count < ACT_MAX -
663                                             ACT_ADVANCE)
664                                                 p->act_count += ACT_ADVANCE;
665                                         vm_page_requeue(p);
666                                 }
667                         } else if (p->queue == PQ_INACTIVE)
668                                 pmap_remove_all(p);
669                         vm_page_unlock(p);
670                 }
671                 if ((backing_object = object->backing_object) == NULL)
672                         goto unlock_return;
673                 VM_OBJECT_RLOCK(backing_object);
674                 if (object != first_object)
675                         VM_OBJECT_RUNLOCK(object);
676         }
677 unlock_return:
678         if (object != first_object)
679                 VM_OBJECT_RUNLOCK(object);
680 }
681
682 /*
683  * deactivate some number of pages in a map, try to do it fairly, but
684  * that is really hard to do.
685  */
686 static void
687 vm_pageout_map_deactivate_pages(map, desired)
688         vm_map_t map;
689         long desired;
690 {
691         vm_map_entry_t tmpe;
692         vm_object_t obj, bigobj;
693         int nothingwired;
694
695         if (!vm_map_trylock(map))
696                 return;
697
698         bigobj = NULL;
699         nothingwired = TRUE;
700
701         /*
702          * first, search out the biggest object, and try to free pages from
703          * that.
704          */
705         tmpe = map->header.next;
706         while (tmpe != &map->header) {
707                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
708                         obj = tmpe->object.vm_object;
709                         if (obj != NULL && VM_OBJECT_TRYRLOCK(obj)) {
710                                 if (obj->shadow_count <= 1 &&
711                                     (bigobj == NULL ||
712                                      bigobj->resident_page_count < obj->resident_page_count)) {
713                                         if (bigobj != NULL)
714                                                 VM_OBJECT_RUNLOCK(bigobj);
715                                         bigobj = obj;
716                                 } else
717                                         VM_OBJECT_RUNLOCK(obj);
718                         }
719                 }
720                 if (tmpe->wired_count > 0)
721                         nothingwired = FALSE;
722                 tmpe = tmpe->next;
723         }
724
725         if (bigobj != NULL) {
726                 vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
727                 VM_OBJECT_RUNLOCK(bigobj);
728         }
729         /*
730          * Next, hunt around for other pages to deactivate.  We actually
731          * do this search sort of wrong -- .text first is not the best idea.
732          */
733         tmpe = map->header.next;
734         while (tmpe != &map->header) {
735                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
736                         break;
737                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
738                         obj = tmpe->object.vm_object;
739                         if (obj != NULL) {
740                                 VM_OBJECT_RLOCK(obj);
741                                 vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
742                                 VM_OBJECT_RUNLOCK(obj);
743                         }
744                 }
745                 tmpe = tmpe->next;
746         }
747
748         /*
749          * Remove all mappings if a process is swapped out, this will free page
750          * table pages.
751          */
752         if (desired == 0 && nothingwired) {
753                 pmap_remove(vm_map_pmap(map), vm_map_min(map),
754                     vm_map_max(map));
755         }
756
757         vm_map_unlock(map);
758 }
759 #endif          /* !defined(NO_SWAPPING) */
760
761 /*
762  * Attempt to acquire all of the necessary locks to launder a page and
763  * then call through the clustering layer to PUTPAGES.  Wait a short
764  * time for a vnode lock.
765  *
766  * Requires the page and object lock on entry, releases both before return.
767  * Returns 0 on success and an errno otherwise.
768  */
769 static int
770 vm_pageout_clean(vm_page_t m)
771 {
772         struct vnode *vp;
773         struct mount *mp;
774         vm_object_t object;
775         vm_pindex_t pindex;
776         int error, lockmode;
777
778         vm_page_assert_locked(m);
779         object = m->object;
780         VM_OBJECT_ASSERT_WLOCKED(object);
781         error = 0;
782         vp = NULL;
783         mp = NULL;
784
785         /*
786          * The object is already known NOT to be dead.   It
787          * is possible for the vget() to block the whole
788          * pageout daemon, but the new low-memory handling
789          * code should prevent it.
790          *
791          * We can't wait forever for the vnode lock, we might
792          * deadlock due to a vn_read() getting stuck in
793          * vm_wait while holding this vnode.  We skip the 
794          * vnode if we can't get it in a reasonable amount
795          * of time.
796          */
797         if (object->type == OBJT_VNODE) {
798                 vm_page_unlock(m);
799                 vp = object->handle;
800                 if (vp->v_type == VREG &&
801                     vn_start_write(vp, &mp, V_NOWAIT) != 0) {
802                         mp = NULL;
803                         error = EDEADLK;
804                         goto unlock_all;
805                 }
806                 KASSERT(mp != NULL,
807                     ("vp %p with NULL v_mount", vp));
808                 vm_object_reference_locked(object);
809                 pindex = m->pindex;
810                 VM_OBJECT_WUNLOCK(object);
811                 lockmode = MNT_SHARED_WRITES(vp->v_mount) ?
812                     LK_SHARED : LK_EXCLUSIVE;
813                 if (vget(vp, lockmode | LK_TIMELOCK, curthread)) {
814                         vp = NULL;
815                         error = EDEADLK;
816                         goto unlock_mp;
817                 }
818                 VM_OBJECT_WLOCK(object);
819                 vm_page_lock(m);
820                 /*
821                  * While the object and page were unlocked, the page
822                  * may have been:
823                  * (1) moved to a different queue,
824                  * (2) reallocated to a different object,
825                  * (3) reallocated to a different offset, or
826                  * (4) cleaned.
827                  */
828                 if (m->queue != PQ_INACTIVE || m->object != object ||
829                     m->pindex != pindex || m->dirty == 0) {
830                         vm_page_unlock(m);
831                         error = ENXIO;
832                         goto unlock_all;
833                 }
834
835                 /*
836                  * The page may have been busied or held while the object
837                  * and page locks were released.
838                  */
839                 if (vm_page_busied(m) || m->hold_count != 0) {
840                         vm_page_unlock(m);
841                         error = EBUSY;
842                         goto unlock_all;
843                 }
844         }
845
846         /*
847          * If a page is dirty, then it is either being washed
848          * (but not yet cleaned) or it is still in the
849          * laundry.  If it is still in the laundry, then we
850          * start the cleaning operation. 
851          */
852         if (vm_pageout_cluster(m) == 0)
853                 error = EIO;
854
855 unlock_all:
856         VM_OBJECT_WUNLOCK(object);
857
858 unlock_mp:
859         vm_page_lock_assert(m, MA_NOTOWNED);
860         if (mp != NULL) {
861                 if (vp != NULL)
862                         vput(vp);
863                 vm_object_deallocate(object);
864                 vn_finished_write(mp);
865         }
866
867         return (error);
868 }
869
870 /*
871  *      vm_pageout_scan does the dirty work for the pageout daemon.
872  *
873  *      pass 0 - Update active LRU/deactivate pages
874  *      pass 1 - Move inactive to cache or free
875  *      pass 2 - Launder dirty pages
876  */
877 static void
878 vm_pageout_scan(struct vm_domain *vmd, int pass)
879 {
880         vm_page_t m, next;
881         struct vm_pagequeue *pq;
882         vm_object_t object;
883         long min_scan;
884         int act_delta, addl_page_shortage, deficit, error, maxlaunder, maxscan;
885         int page_shortage, scan_tick, scanned, starting_page_shortage;
886         int vnodes_skipped;
887         boolean_t pageout_ok, queues_locked;
888
889         /*
890          * If we need to reclaim memory ask kernel caches to return
891          * some.  We rate limit to avoid thrashing.
892          */
893         if (vmd == &vm_dom[0] && pass > 0 &&
894             (time_uptime - lowmem_uptime) >= lowmem_period) {
895                 /*
896                  * Decrease registered cache sizes.
897                  */
898                 SDT_PROBE0(vm, , , vm__lowmem_scan);
899                 EVENTHANDLER_INVOKE(vm_lowmem, 0);
900                 /*
901                  * We do this explicitly after the caches have been
902                  * drained above.
903                  */
904                 uma_reclaim();
905                 lowmem_uptime = time_uptime;
906         }
907
908         /*
909          * The addl_page_shortage is the number of temporarily
910          * stuck pages in the inactive queue.  In other words, the
911          * number of pages from the inactive count that should be
912          * discounted in setting the target for the active queue scan.
913          */
914         addl_page_shortage = 0;
915
916         /*
917          * Calculate the number of pages we want to either free or move
918          * to the cache.
919          */
920         if (pass > 0) {
921                 deficit = atomic_readandclear_int(&vm_pageout_deficit);
922                 page_shortage = vm_paging_target() + deficit;
923         } else
924                 page_shortage = deficit = 0;
925         starting_page_shortage = page_shortage;
926
927         /*
928          * maxlaunder limits the number of dirty pages we flush per scan.
929          * For most systems a smaller value (16 or 32) is more robust under
930          * extreme memory and disk pressure because any unnecessary writes
931          * to disk can result in extreme performance degredation.  However,
932          * systems with excessive dirty pages (especially when MAP_NOSYNC is
933          * used) will die horribly with limited laundering.  If the pageout
934          * daemon cannot clean enough pages in the first pass, we let it go
935          * all out in succeeding passes.
936          */
937         if ((maxlaunder = vm_max_launder) <= 1)
938                 maxlaunder = 1;
939         if (pass > 1)
940                 maxlaunder = 10000;
941
942         vnodes_skipped = 0;
943
944         /*
945          * Start scanning the inactive queue for pages we can move to the
946          * cache or free.  The scan will stop when the target is reached or
947          * we have scanned the entire inactive queue.  Note that m->act_count
948          * is not used to form decisions for the inactive queue, only for the
949          * active queue.
950          */
951         pq = &vmd->vmd_pagequeues[PQ_INACTIVE];
952         maxscan = pq->pq_cnt;
953         vm_pagequeue_lock(pq);
954         queues_locked = TRUE;
955         for (m = TAILQ_FIRST(&pq->pq_pl);
956              m != NULL && maxscan-- > 0 && page_shortage > 0;
957              m = next) {
958                 vm_pagequeue_assert_locked(pq);
959                 KASSERT(queues_locked, ("unlocked queues"));
960                 KASSERT(m->queue == PQ_INACTIVE, ("Inactive queue %p", m));
961
962                 PCPU_INC(cnt.v_pdpages);
963                 next = TAILQ_NEXT(m, plinks.q);
964
965                 /*
966                  * skip marker pages
967                  */
968                 if (m->flags & PG_MARKER)
969                         continue;
970
971                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
972                     ("Fictitious page %p cannot be in inactive queue", m));
973                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
974                     ("Unmanaged page %p cannot be in inactive queue", m));
975
976                 /*
977                  * The page or object lock acquisitions fail if the
978                  * page was removed from the queue or moved to a
979                  * different position within the queue.  In either
980                  * case, addl_page_shortage should not be incremented.
981                  */
982                 if (!vm_pageout_page_lock(m, &next))
983                         goto unlock_page;
984                 else if (m->hold_count != 0) {
985                         /*
986                          * Held pages are essentially stuck in the
987                          * queue.  So, they ought to be discounted
988                          * from the inactive count.  See the
989                          * calculation of the page_shortage for the
990                          * loop over the active queue below.
991                          */
992                         addl_page_shortage++;
993                         goto unlock_page;
994                 }
995                 object = m->object;
996                 if (!VM_OBJECT_TRYWLOCK(object)) {
997                         if (!vm_pageout_fallback_object_lock(m, &next))
998                                 goto unlock_object;
999                         else if (m->hold_count != 0) {
1000                                 addl_page_shortage++;
1001                                 goto unlock_object;
1002                         }
1003                 }
1004                 if (vm_page_busied(m)) {
1005                         /*
1006                          * Don't mess with busy pages.  Leave them at
1007                          * the front of the queue.  Most likely, they
1008                          * are being paged out and will leave the
1009                          * queue shortly after the scan finishes.  So,
1010                          * they ought to be discounted from the
1011                          * inactive count.
1012                          */
1013                         addl_page_shortage++;
1014 unlock_object:
1015                         VM_OBJECT_WUNLOCK(object);
1016 unlock_page:
1017                         vm_page_unlock(m);
1018                         continue;
1019                 }
1020                 KASSERT(m->hold_count == 0, ("Held page %p", m));
1021
1022                 /*
1023                  * We unlock the inactive page queue, invalidating the
1024                  * 'next' pointer.  Use our marker to remember our
1025                  * place.
1026                  */
1027                 TAILQ_INSERT_AFTER(&pq->pq_pl, m, &vmd->vmd_marker, plinks.q);
1028                 vm_pagequeue_unlock(pq);
1029                 queues_locked = FALSE;
1030
1031                 /*
1032                  * Invalid pages can be easily freed. They cannot be
1033                  * mapped, vm_page_free() asserts this.
1034                  */
1035                 if (m->valid == 0)
1036                         goto free_page;
1037
1038                 /*
1039                  * If the page has been referenced and the object is not dead,
1040                  * reactivate or requeue the page depending on whether the
1041                  * object is mapped.
1042                  */
1043                 if ((m->aflags & PGA_REFERENCED) != 0) {
1044                         vm_page_aflag_clear(m, PGA_REFERENCED);
1045                         act_delta = 1;
1046                 } else
1047                         act_delta = 0;
1048                 if (object->ref_count != 0) {
1049                         act_delta += pmap_ts_referenced(m);
1050                 } else {
1051                         KASSERT(!pmap_page_is_mapped(m),
1052                             ("vm_pageout_scan: page %p is mapped", m));
1053                 }
1054                 if (act_delta != 0) {
1055                         if (object->ref_count != 0) {
1056                                 vm_page_activate(m);
1057
1058                                 /*
1059                                  * Increase the activation count if the page
1060                                  * was referenced while in the inactive queue.
1061                                  * This makes it less likely that the page will
1062                                  * be returned prematurely to the inactive
1063                                  * queue.
1064                                  */
1065                                 m->act_count += act_delta + ACT_ADVANCE;
1066                                 goto drop_page;
1067                         } else if ((object->flags & OBJ_DEAD) == 0)
1068                                 goto requeue_page;
1069                 }
1070
1071                 /*
1072                  * If the page appears to be clean at the machine-independent
1073                  * layer, then remove all of its mappings from the pmap in
1074                  * anticipation of placing it onto the cache queue.  If,
1075                  * however, any of the page's mappings allow write access,
1076                  * then the page may still be modified until the last of those
1077                  * mappings are removed.
1078                  */
1079                 if (object->ref_count != 0) {
1080                         vm_page_test_dirty(m);
1081                         if (m->dirty == 0)
1082                                 pmap_remove_all(m);
1083                 }
1084
1085                 if (m->dirty == 0) {
1086                         /*
1087                          * Clean pages can be freed.
1088                          */
1089 free_page:
1090                         vm_page_free(m);
1091                         PCPU_INC(cnt.v_dfree);
1092                         --page_shortage;
1093                 } else if ((object->flags & OBJ_DEAD) != 0) {
1094                         /*
1095                          * Leave dirty pages from dead objects at the front of
1096                          * the queue.  They are being paged out and freed by
1097                          * the thread that destroyed the object.  They will
1098                          * leave the queue shortly after the scan finishes, so 
1099                          * they should be discounted from the inactive count.
1100                          */
1101                         addl_page_shortage++;
1102                 } else if ((m->flags & PG_WINATCFLS) == 0 && pass < 2) {
1103                         /*
1104                          * Dirty pages need to be paged out, but flushing
1105                          * a page is extremely expensive versus freeing
1106                          * a clean page.  Rather then artificially limiting
1107                          * the number of pages we can flush, we instead give
1108                          * dirty pages extra priority on the inactive queue
1109                          * by forcing them to be cycled through the queue
1110                          * twice before being flushed, after which the
1111                          * (now clean) page will cycle through once more
1112                          * before being freed.  This significantly extends
1113                          * the thrash point for a heavily loaded machine.
1114                          */
1115                         m->flags |= PG_WINATCFLS;
1116 requeue_page:
1117                         vm_pagequeue_lock(pq);
1118                         queues_locked = TRUE;
1119                         vm_page_requeue_locked(m);
1120                 } else if (maxlaunder > 0) {
1121                         /*
1122                          * We always want to try to flush some dirty pages if
1123                          * we encounter them, to keep the system stable.
1124                          * Normally this number is small, but under extreme
1125                          * pressure where there are insufficient clean pages
1126                          * on the inactive queue, we may have to go all out.
1127                          */
1128
1129                         if (object->type != OBJT_SWAP &&
1130                             object->type != OBJT_DEFAULT)
1131                                 pageout_ok = TRUE;
1132                         else if (disable_swap_pageouts)
1133                                 pageout_ok = FALSE;
1134                         else if (defer_swap_pageouts)
1135                                 pageout_ok = vm_page_count_min();
1136                         else
1137                                 pageout_ok = TRUE;
1138                         if (!pageout_ok)
1139                                 goto requeue_page;
1140                         error = vm_pageout_clean(m);
1141                         /*
1142                          * Decrement page_shortage on success to account for
1143                          * the (future) cleaned page.  Otherwise we could wind
1144                          * up laundering or cleaning too many pages.
1145                          */
1146                         if (error == 0) {
1147                                 page_shortage--;
1148                                 maxlaunder--;
1149                         } else if (error == EDEADLK) {
1150                                 pageout_lock_miss++;
1151                                 vnodes_skipped++;
1152                         } else if (error == EBUSY) {
1153                                 addl_page_shortage++;
1154                         }
1155                         vm_page_lock_assert(m, MA_NOTOWNED);
1156                         goto relock_queues;
1157                 }
1158 drop_page:
1159                 vm_page_unlock(m);
1160                 VM_OBJECT_WUNLOCK(object);
1161 relock_queues:
1162                 if (!queues_locked) {
1163                         vm_pagequeue_lock(pq);
1164                         queues_locked = TRUE;
1165                 }
1166                 next = TAILQ_NEXT(&vmd->vmd_marker, plinks.q);
1167                 TAILQ_REMOVE(&pq->pq_pl, &vmd->vmd_marker, plinks.q);
1168         }
1169         vm_pagequeue_unlock(pq);
1170
1171 #if !defined(NO_SWAPPING)
1172         /*
1173          * Wakeup the swapout daemon if we didn't cache or free the targeted
1174          * number of pages. 
1175          */
1176         if (vm_swap_enabled && page_shortage > 0)
1177                 vm_req_vmdaemon(VM_SWAP_NORMAL);
1178 #endif
1179
1180         /*
1181          * Wakeup the sync daemon if we skipped a vnode in a writeable object
1182          * and we didn't cache or free enough pages.
1183          */
1184         if (vnodes_skipped > 0 && page_shortage > vm_cnt.v_free_target -
1185             vm_cnt.v_free_min)
1186                 (void)speedup_syncer();
1187
1188         /*
1189          * If the inactive queue scan fails repeatedly to meet its
1190          * target, kill the largest process.
1191          */
1192         vm_pageout_mightbe_oom(vmd, page_shortage, starting_page_shortage);
1193
1194         /*
1195          * Compute the number of pages we want to try to move from the
1196          * active queue to the inactive queue.
1197          */
1198         page_shortage = vm_cnt.v_inactive_target - vm_cnt.v_inactive_count +
1199             vm_paging_target() + deficit + addl_page_shortage;
1200
1201         pq = &vmd->vmd_pagequeues[PQ_ACTIVE];
1202         vm_pagequeue_lock(pq);
1203         maxscan = pq->pq_cnt;
1204
1205         /*
1206          * If we're just idle polling attempt to visit every
1207          * active page within 'update_period' seconds.
1208          */
1209         scan_tick = ticks;
1210         if (vm_pageout_update_period != 0) {
1211                 min_scan = pq->pq_cnt;
1212                 min_scan *= scan_tick - vmd->vmd_last_active_scan;
1213                 min_scan /= hz * vm_pageout_update_period;
1214         } else
1215                 min_scan = 0;
1216         if (min_scan > 0 || (page_shortage > 0 && maxscan > 0))
1217                 vmd->vmd_last_active_scan = scan_tick;
1218
1219         /*
1220          * Scan the active queue for pages that can be deactivated.  Update
1221          * the per-page activity counter and use it to identify deactivation
1222          * candidates.
1223          */
1224         for (m = TAILQ_FIRST(&pq->pq_pl), scanned = 0; m != NULL && (scanned <
1225             min_scan || (page_shortage > 0 && scanned < maxscan)); m = next,
1226             scanned++) {
1227
1228                 KASSERT(m->queue == PQ_ACTIVE,
1229                     ("vm_pageout_scan: page %p isn't active", m));
1230
1231                 next = TAILQ_NEXT(m, plinks.q);
1232                 if ((m->flags & PG_MARKER) != 0)
1233                         continue;
1234                 KASSERT((m->flags & PG_FICTITIOUS) == 0,
1235                     ("Fictitious page %p cannot be in active queue", m));
1236                 KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1237                     ("Unmanaged page %p cannot be in active queue", m));
1238                 if (!vm_pageout_page_lock(m, &next)) {
1239                         vm_page_unlock(m);
1240                         continue;
1241                 }
1242
1243                 /*
1244                  * The count for pagedaemon pages is done after checking the
1245                  * page for eligibility...
1246                  */
1247                 PCPU_INC(cnt.v_pdpages);
1248
1249                 /*
1250                  * Check to see "how much" the page has been used.
1251                  */
1252                 if ((m->aflags & PGA_REFERENCED) != 0) {
1253                         vm_page_aflag_clear(m, PGA_REFERENCED);
1254                         act_delta = 1;
1255                 } else
1256                         act_delta = 0;
1257
1258                 /*
1259                  * Unlocked object ref count check.  Two races are possible.
1260                  * 1) The ref was transitioning to zero and we saw non-zero,
1261                  *    the pmap bits will be checked unnecessarily.
1262                  * 2) The ref was transitioning to one and we saw zero. 
1263                  *    The page lock prevents a new reference to this page so
1264                  *    we need not check the reference bits.
1265                  */
1266                 if (m->object->ref_count != 0)
1267                         act_delta += pmap_ts_referenced(m);
1268
1269                 /*
1270                  * Advance or decay the act_count based on recent usage.
1271                  */
1272                 if (act_delta != 0) {
1273                         m->act_count += ACT_ADVANCE + act_delta;
1274                         if (m->act_count > ACT_MAX)
1275                                 m->act_count = ACT_MAX;
1276                 } else
1277                         m->act_count -= min(m->act_count, ACT_DECLINE);
1278
1279                 /*
1280                  * Move this page to the tail of the active or inactive
1281                  * queue depending on usage.
1282                  */
1283                 if (m->act_count == 0) {
1284                         /* Dequeue to avoid later lock recursion. */
1285                         vm_page_dequeue_locked(m);
1286                         vm_page_deactivate(m);
1287                         page_shortage--;
1288                 } else
1289                         vm_page_requeue_locked(m);
1290                 vm_page_unlock(m);
1291         }
1292         vm_pagequeue_unlock(pq);
1293 #if !defined(NO_SWAPPING)
1294         /*
1295          * Idle process swapout -- run once per second.
1296          */
1297         if (vm_swap_idle_enabled) {
1298                 static long lsec;
1299                 if (time_second != lsec) {
1300                         vm_req_vmdaemon(VM_SWAP_IDLE);
1301                         lsec = time_second;
1302                 }
1303         }
1304 #endif
1305 }
1306
1307 static int vm_pageout_oom_vote;
1308
1309 /*
1310  * The pagedaemon threads randlomly select one to perform the
1311  * OOM.  Trying to kill processes before all pagedaemons
1312  * failed to reach free target is premature.
1313  */
1314 static void
1315 vm_pageout_mightbe_oom(struct vm_domain *vmd, int page_shortage,
1316     int starting_page_shortage)
1317 {
1318         int old_vote;
1319
1320         if (starting_page_shortage <= 0 || starting_page_shortage !=
1321             page_shortage)
1322                 vmd->vmd_oom_seq = 0;
1323         else
1324                 vmd->vmd_oom_seq++;
1325         if (vmd->vmd_oom_seq < vm_pageout_oom_seq) {
1326                 if (vmd->vmd_oom) {
1327                         vmd->vmd_oom = FALSE;
1328                         atomic_subtract_int(&vm_pageout_oom_vote, 1);
1329                 }
1330                 return;
1331         }
1332
1333         /*
1334          * Do not follow the call sequence until OOM condition is
1335          * cleared.
1336          */
1337         vmd->vmd_oom_seq = 0;
1338
1339         if (vmd->vmd_oom)
1340                 return;
1341
1342         vmd->vmd_oom = TRUE;
1343         old_vote = atomic_fetchadd_int(&vm_pageout_oom_vote, 1);
1344         if (old_vote != vm_ndomains - 1)
1345                 return;
1346
1347         /*
1348          * The current pagedaemon thread is the last in the quorum to
1349          * start OOM.  Initiate the selection and signaling of the
1350          * victim.
1351          */
1352         vm_pageout_oom(VM_OOM_MEM);
1353
1354         /*
1355          * After one round of OOM terror, recall our vote.  On the
1356          * next pass, current pagedaemon would vote again if the low
1357          * memory condition is still there, due to vmd_oom being
1358          * false.
1359          */
1360         vmd->vmd_oom = FALSE;
1361         atomic_subtract_int(&vm_pageout_oom_vote, 1);
1362 }
1363
1364 /*
1365  * The OOM killer is the page daemon's action of last resort when
1366  * memory allocation requests have been stalled for a prolonged period
1367  * of time because it cannot reclaim memory.  This function computes
1368  * the approximate number of physical pages that could be reclaimed if
1369  * the specified address space is destroyed.
1370  *
1371  * Private, anonymous memory owned by the address space is the
1372  * principal resource that we expect to recover after an OOM kill.
1373  * Since the physical pages mapped by the address space's COW entries
1374  * are typically shared pages, they are unlikely to be released and so
1375  * they are not counted.
1376  *
1377  * To get to the point where the page daemon runs the OOM killer, its
1378  * efforts to write-back vnode-backed pages may have stalled.  This
1379  * could be caused by a memory allocation deadlock in the write path
1380  * that might be resolved by an OOM kill.  Therefore, physical pages
1381  * belonging to vnode-backed objects are counted, because they might
1382  * be freed without being written out first if the address space holds
1383  * the last reference to an unlinked vnode.
1384  *
1385  * Similarly, physical pages belonging to OBJT_PHYS objects are
1386  * counted because the address space might hold the last reference to
1387  * the object.
1388  */
1389 static long
1390 vm_pageout_oom_pagecount(struct vmspace *vmspace)
1391 {
1392         vm_map_t map;
1393         vm_map_entry_t entry;
1394         vm_object_t obj;
1395         long res;
1396
1397         map = &vmspace->vm_map;
1398         KASSERT(!map->system_map, ("system map"));
1399         sx_assert(&map->lock, SA_LOCKED);
1400         res = 0;
1401         for (entry = map->header.next; entry != &map->header;
1402             entry = entry->next) {
1403                 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
1404                         continue;
1405                 obj = entry->object.vm_object;
1406                 if (obj == NULL)
1407                         continue;
1408                 if ((entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0 &&
1409                     obj->ref_count != 1)
1410                         continue;
1411                 switch (obj->type) {
1412                 case OBJT_DEFAULT:
1413                 case OBJT_SWAP:
1414                 case OBJT_PHYS:
1415                 case OBJT_VNODE:
1416                         res += obj->resident_page_count;
1417                         break;
1418                 }
1419         }
1420         return (res);
1421 }
1422
1423 void
1424 vm_pageout_oom(int shortage)
1425 {
1426         struct proc *p, *bigproc;
1427         vm_offset_t size, bigsize;
1428         struct thread *td;
1429         struct vmspace *vm;
1430
1431         /*
1432          * We keep the process bigproc locked once we find it to keep anyone
1433          * from messing with it; however, there is a possibility of
1434          * deadlock if process B is bigproc and one of it's child processes
1435          * attempts to propagate a signal to B while we are waiting for A's
1436          * lock while walking this list.  To avoid this, we don't block on
1437          * the process lock but just skip a process if it is already locked.
1438          */
1439         bigproc = NULL;
1440         bigsize = 0;
1441         sx_slock(&allproc_lock);
1442         FOREACH_PROC_IN_SYSTEM(p) {
1443                 int breakout;
1444
1445                 PROC_LOCK(p);
1446
1447                 /*
1448                  * If this is a system, protected or killed process, skip it.
1449                  */
1450                 if (p->p_state != PRS_NORMAL || (p->p_flag & (P_INEXEC |
1451                     P_PROTECTED | P_SYSTEM | P_WEXIT)) != 0 ||
1452                     p->p_pid == 1 || P_KILLED(p) ||
1453                     (p->p_pid < 48 && swap_pager_avail != 0)) {
1454                         PROC_UNLOCK(p);
1455                         continue;
1456                 }
1457                 /*
1458                  * If the process is in a non-running type state,
1459                  * don't touch it.  Check all the threads individually.
1460                  */
1461                 breakout = 0;
1462                 FOREACH_THREAD_IN_PROC(p, td) {
1463                         thread_lock(td);
1464                         if (!TD_ON_RUNQ(td) &&
1465                             !TD_IS_RUNNING(td) &&
1466                             !TD_IS_SLEEPING(td) &&
1467                             !TD_IS_SUSPENDED(td) &&
1468                             !TD_IS_SWAPPED(td)) {
1469                                 thread_unlock(td);
1470                                 breakout = 1;
1471                                 break;
1472                         }
1473                         thread_unlock(td);
1474                 }
1475                 if (breakout) {
1476                         PROC_UNLOCK(p);
1477                         continue;
1478                 }
1479                 /*
1480                  * get the process size
1481                  */
1482                 vm = vmspace_acquire_ref(p);
1483                 if (vm == NULL) {
1484                         PROC_UNLOCK(p);
1485                         continue;
1486                 }
1487                 _PHOLD(p);
1488                 if (!vm_map_trylock_read(&vm->vm_map)) {
1489                         _PRELE(p);
1490                         PROC_UNLOCK(p);
1491                         vmspace_free(vm);
1492                         continue;
1493                 }
1494                 PROC_UNLOCK(p);
1495                 size = vmspace_swap_count(vm);
1496                 if (shortage == VM_OOM_MEM)
1497                         size += vm_pageout_oom_pagecount(vm);
1498                 vm_map_unlock_read(&vm->vm_map);
1499                 vmspace_free(vm);
1500
1501                 /*
1502                  * If this process is bigger than the biggest one,
1503                  * remember it.
1504                  */
1505                 if (size > bigsize) {
1506                         if (bigproc != NULL)
1507                                 PRELE(bigproc);
1508                         bigproc = p;
1509                         bigsize = size;
1510                 } else {
1511                         PRELE(p);
1512                 }
1513         }
1514         sx_sunlock(&allproc_lock);
1515         if (bigproc != NULL) {
1516                 if (vm_panic_on_oom != 0)
1517                         panic("out of swap space");
1518                 PROC_LOCK(bigproc);
1519                 killproc(bigproc, "out of swap space");
1520                 sched_nice(bigproc, PRIO_MIN);
1521                 _PRELE(bigproc);
1522                 PROC_UNLOCK(bigproc);
1523                 wakeup(&vm_cnt.v_free_count);
1524         }
1525 }
1526
1527 static void
1528 vm_pageout_worker(void *arg)
1529 {
1530         struct vm_domain *domain;
1531         int domidx;
1532
1533         domidx = (uintptr_t)arg;
1534         domain = &vm_dom[domidx];
1535
1536         /*
1537          * XXXKIB It could be useful to bind pageout daemon threads to
1538          * the cores belonging to the domain, from which vm_page_array
1539          * is allocated.
1540          */
1541
1542         KASSERT(domain->vmd_segs != 0, ("domain without segments"));
1543         domain->vmd_last_active_scan = ticks;
1544         vm_pageout_init_marker(&domain->vmd_marker, PQ_INACTIVE);
1545         vm_pageout_init_marker(&domain->vmd_inacthead, PQ_INACTIVE);
1546         TAILQ_INSERT_HEAD(&domain->vmd_pagequeues[PQ_INACTIVE].pq_pl,
1547             &domain->vmd_inacthead, plinks.q);
1548
1549         /*
1550          * The pageout daemon worker is never done, so loop forever.
1551          */
1552         while (TRUE) {
1553                 /*
1554                  * If we have enough free memory, wakeup waiters.  Do
1555                  * not clear vm_pages_needed until we reach our target,
1556                  * otherwise we may be woken up over and over again and
1557                  * waste a lot of cpu.
1558                  */
1559                 mtx_lock(&vm_page_queue_free_mtx);
1560                 if (vm_pages_needed && !vm_page_count_min()) {
1561                         if (!vm_paging_needed())
1562                                 vm_pages_needed = 0;
1563                         wakeup(&vm_cnt.v_free_count);
1564                 }
1565                 if (vm_pages_needed) {
1566                         /*
1567                          * We're still not done.  Either vm_pages_needed was
1568                          * set by another thread during the previous scan
1569                          * (typically, this happens during a level 0 scan) or
1570                          * vm_pages_needed was already set and the scan failed
1571                          * to free enough pages.  If we haven't yet performed
1572                          * a level >= 2 scan (unlimited dirty cleaning), then
1573                          * upgrade the level and scan again now.  Otherwise,
1574                          * sleep a bit and try again later.  While sleeping,
1575                          * vm_pages_needed can be cleared.
1576                          */
1577                         if (domain->vmd_pass > 1)
1578                                 msleep(&vm_pages_needed,
1579                                     &vm_page_queue_free_mtx, PVM, "psleep",
1580                                     hz / 2);
1581                 } else {
1582                         /*
1583                          * Good enough, sleep until required to refresh
1584                          * stats.
1585                          */
1586                         msleep(&vm_pages_needed, &vm_page_queue_free_mtx,
1587                             PVM, "psleep", hz);
1588                 }
1589                 if (vm_pages_needed) {
1590                         vm_cnt.v_pdwakeups++;
1591                         domain->vmd_pass++;
1592                 } else
1593                         domain->vmd_pass = 0;
1594                 mtx_unlock(&vm_page_queue_free_mtx);
1595                 vm_pageout_scan(domain, domain->vmd_pass);
1596         }
1597 }
1598
1599 /*
1600  *      vm_pageout_init initialises basic pageout daemon settings.
1601  */
1602 static void
1603 vm_pageout_init(void)
1604 {
1605         /*
1606          * Initialize some paging parameters.
1607          */
1608         vm_cnt.v_interrupt_free_min = 2;
1609         if (vm_cnt.v_page_count < 2000)
1610                 vm_pageout_page_count = 8;
1611
1612         /*
1613          * v_free_reserved needs to include enough for the largest
1614          * swap pager structures plus enough for any pv_entry structs
1615          * when paging. 
1616          */
1617         if (vm_cnt.v_page_count > 1024)
1618                 vm_cnt.v_free_min = 4 + (vm_cnt.v_page_count - 1024) / 200;
1619         else
1620                 vm_cnt.v_free_min = 4;
1621         vm_cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1622             vm_cnt.v_interrupt_free_min;
1623         vm_cnt.v_free_reserved = vm_pageout_page_count +
1624             vm_cnt.v_pageout_free_min + (vm_cnt.v_page_count / 768);
1625         vm_cnt.v_free_severe = vm_cnt.v_free_min / 2;
1626         vm_cnt.v_free_target = 4 * vm_cnt.v_free_min + vm_cnt.v_free_reserved;
1627         vm_cnt.v_free_min += vm_cnt.v_free_reserved;
1628         vm_cnt.v_free_severe += vm_cnt.v_free_reserved;
1629         vm_cnt.v_inactive_target = (3 * vm_cnt.v_free_target) / 2;
1630         if (vm_cnt.v_inactive_target > vm_cnt.v_free_count / 3)
1631                 vm_cnt.v_inactive_target = vm_cnt.v_free_count / 3;
1632
1633         /*
1634          * Set the default wakeup threshold to be 10% above the minimum
1635          * page limit.  This keeps the steady state out of shortfall.
1636          */
1637         vm_pageout_wakeup_thresh = (vm_cnt.v_free_min / 10) * 11;
1638
1639         /*
1640          * Set interval in seconds for active scan.  We want to visit each
1641          * page at least once every ten minutes.  This is to prevent worst
1642          * case paging behaviors with stale active LRU.
1643          */
1644         if (vm_pageout_update_period == 0)
1645                 vm_pageout_update_period = 600;
1646
1647         /* XXX does not really belong here */
1648         if (vm_page_max_wired == 0)
1649                 vm_page_max_wired = vm_cnt.v_free_count / 3;
1650 }
1651
1652 /*
1653  *     vm_pageout is the high level pageout daemon.
1654  */
1655 static void
1656 vm_pageout(void)
1657 {
1658         int error;
1659 #if MAXMEMDOM > 1
1660         int i;
1661 #endif
1662
1663         swap_pager_swap_init();
1664 #if MAXMEMDOM > 1
1665         for (i = 1; i < vm_ndomains; i++) {
1666                 error = kthread_add(vm_pageout_worker, (void *)(uintptr_t)i,
1667                     curproc, NULL, 0, 0, "dom%d", i);
1668                 if (error != 0) {
1669                         panic("starting pageout for domain %d, error %d\n",
1670                             i, error);
1671                 }
1672         }
1673 #endif
1674         error = kthread_add(uma_reclaim_worker, NULL, curproc, NULL,
1675             0, 0, "uma");
1676         if (error != 0)
1677                 panic("starting uma_reclaim helper, error %d\n", error);
1678         vm_pageout_worker((void *)(uintptr_t)0);
1679 }
1680
1681 /*
1682  * Unless the free page queue lock is held by the caller, this function
1683  * should be regarded as advisory.  Specifically, the caller should
1684  * not msleep() on &vm_cnt.v_free_count following this function unless
1685  * the free page queue lock is held until the msleep() is performed.
1686  */
1687 void
1688 pagedaemon_wakeup(void)
1689 {
1690
1691         if (!vm_pages_needed && curthread->td_proc != pageproc) {
1692                 vm_pages_needed = 1;
1693                 wakeup(&vm_pages_needed);
1694         }
1695 }
1696
1697 #if !defined(NO_SWAPPING)
1698 static void
1699 vm_req_vmdaemon(int req)
1700 {
1701         static int lastrun = 0;
1702
1703         mtx_lock(&vm_daemon_mtx);
1704         vm_pageout_req_swapout |= req;
1705         if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1706                 wakeup(&vm_daemon_needed);
1707                 lastrun = ticks;
1708         }
1709         mtx_unlock(&vm_daemon_mtx);
1710 }
1711
1712 static void
1713 vm_daemon(void)
1714 {
1715         struct rlimit rsslim;
1716         struct proc *p;
1717         struct thread *td;
1718         struct vmspace *vm;
1719         int breakout, swapout_flags, tryagain, attempts;
1720 #ifdef RACCT
1721         uint64_t rsize, ravailable;
1722 #endif
1723
1724         while (TRUE) {
1725                 mtx_lock(&vm_daemon_mtx);
1726                 msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep",
1727 #ifdef RACCT
1728                     racct_enable ? hz : 0
1729 #else
1730                     0
1731 #endif
1732                 );
1733                 swapout_flags = vm_pageout_req_swapout;
1734                 vm_pageout_req_swapout = 0;
1735                 mtx_unlock(&vm_daemon_mtx);
1736                 if (swapout_flags)
1737                         swapout_procs(swapout_flags);
1738
1739                 /*
1740                  * scan the processes for exceeding their rlimits or if
1741                  * process is swapped out -- deactivate pages
1742                  */
1743                 tryagain = 0;
1744                 attempts = 0;
1745 again:
1746                 attempts++;
1747                 sx_slock(&allproc_lock);
1748                 FOREACH_PROC_IN_SYSTEM(p) {
1749                         vm_pindex_t limit, size;
1750
1751                         /*
1752                          * if this is a system process or if we have already
1753                          * looked at this process, skip it.
1754                          */
1755                         PROC_LOCK(p);
1756                         if (p->p_state != PRS_NORMAL ||
1757                             p->p_flag & (P_INEXEC | P_SYSTEM | P_WEXIT)) {
1758                                 PROC_UNLOCK(p);
1759                                 continue;
1760                         }
1761                         /*
1762                          * if the process is in a non-running type state,
1763                          * don't touch it.
1764                          */
1765                         breakout = 0;
1766                         FOREACH_THREAD_IN_PROC(p, td) {
1767                                 thread_lock(td);
1768                                 if (!TD_ON_RUNQ(td) &&
1769                                     !TD_IS_RUNNING(td) &&
1770                                     !TD_IS_SLEEPING(td) &&
1771                                     !TD_IS_SUSPENDED(td)) {
1772                                         thread_unlock(td);
1773                                         breakout = 1;
1774                                         break;
1775                                 }
1776                                 thread_unlock(td);
1777                         }
1778                         if (breakout) {
1779                                 PROC_UNLOCK(p);
1780                                 continue;
1781                         }
1782                         /*
1783                          * get a limit
1784                          */
1785                         lim_rlimit_proc(p, RLIMIT_RSS, &rsslim);
1786                         limit = OFF_TO_IDX(
1787                             qmin(rsslim.rlim_cur, rsslim.rlim_max));
1788
1789                         /*
1790                          * let processes that are swapped out really be
1791                          * swapped out set the limit to nothing (will force a
1792                          * swap-out.)
1793                          */
1794                         if ((p->p_flag & P_INMEM) == 0)
1795                                 limit = 0;      /* XXX */
1796                         vm = vmspace_acquire_ref(p);
1797                         PROC_UNLOCK(p);
1798                         if (vm == NULL)
1799                                 continue;
1800
1801                         size = vmspace_resident_count(vm);
1802                         if (size >= limit) {
1803                                 vm_pageout_map_deactivate_pages(
1804                                     &vm->vm_map, limit);
1805                         }
1806 #ifdef RACCT
1807                         if (racct_enable) {
1808                                 rsize = IDX_TO_OFF(size);
1809                                 PROC_LOCK(p);
1810                                 racct_set(p, RACCT_RSS, rsize);
1811                                 ravailable = racct_get_available(p, RACCT_RSS);
1812                                 PROC_UNLOCK(p);
1813                                 if (rsize > ravailable) {
1814                                         /*
1815                                          * Don't be overly aggressive; this
1816                                          * might be an innocent process,
1817                                          * and the limit could've been exceeded
1818                                          * by some memory hog.  Don't try
1819                                          * to deactivate more than 1/4th
1820                                          * of process' resident set size.
1821                                          */
1822                                         if (attempts <= 8) {
1823                                                 if (ravailable < rsize -
1824                                                     (rsize / 4)) {
1825                                                         ravailable = rsize -
1826                                                             (rsize / 4);
1827                                                 }
1828                                         }
1829                                         vm_pageout_map_deactivate_pages(
1830                                             &vm->vm_map,
1831                                             OFF_TO_IDX(ravailable));
1832                                         /* Update RSS usage after paging out. */
1833                                         size = vmspace_resident_count(vm);
1834                                         rsize = IDX_TO_OFF(size);
1835                                         PROC_LOCK(p);
1836                                         racct_set(p, RACCT_RSS, rsize);
1837                                         PROC_UNLOCK(p);
1838                                         if (rsize > ravailable)
1839                                                 tryagain = 1;
1840                                 }
1841                         }
1842 #endif
1843                         vmspace_free(vm);
1844                 }
1845                 sx_sunlock(&allproc_lock);
1846                 if (tryagain != 0 && attempts <= 10)
1847                         goto again;
1848         }
1849 }
1850 #endif                  /* !defined(NO_SWAPPING) */