]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_pageout.c
Merger of the quota64 project into head.
[FreeBSD/FreeBSD.git] / sys / vm / vm_pageout.c
1 /*-
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  * Copyright (c) 2005 Yahoo! Technologies Norway AS
9  * All rights reserved.
10  *
11  * This code is derived from software contributed to Berkeley by
12  * The Mach Operating System project at Carnegie-Mellon University.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *      This product includes software developed by the University of
25  *      California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
43  *
44  *
45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46  * All rights reserved.
47  *
48  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49  *
50  * Permission to use, copy, modify and distribute this software and
51  * its documentation is hereby granted, provided that both the copyright
52  * notice and this permission notice appear in all copies of the
53  * software, derivative works or modified versions, and any portions
54  * thereof, and that both notices appear in supporting documentation.
55  *
56  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59  *
60  * Carnegie Mellon requests users of this software to return to
61  *
62  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63  *  School of Computer Science
64  *  Carnegie Mellon University
65  *  Pittsburgh PA 15213-3890
66  *
67  * any improvements or extensions that they make and grant Carnegie the
68  * rights to redistribute these changes.
69  */
70
71 /*
72  *      The proverbial page-out daemon.
73  */
74
75 #include <sys/cdefs.h>
76 __FBSDID("$FreeBSD$");
77
78 #include "opt_vm.h"
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/eventhandler.h>
83 #include <sys/lock.h>
84 #include <sys/mutex.h>
85 #include <sys/proc.h>
86 #include <sys/kthread.h>
87 #include <sys/ktr.h>
88 #include <sys/mount.h>
89 #include <sys/resourcevar.h>
90 #include <sys/sched.h>
91 #include <sys/signalvar.h>
92 #include <sys/vnode.h>
93 #include <sys/vmmeter.h>
94 #include <sys/sx.h>
95 #include <sys/sysctl.h>
96
97 #include <vm/vm.h>
98 #include <vm/vm_param.h>
99 #include <vm/vm_object.h>
100 #include <vm/vm_page.h>
101 #include <vm/vm_map.h>
102 #include <vm/vm_pageout.h>
103 #include <vm/vm_pager.h>
104 #include <vm/swap_pager.h>
105 #include <vm/vm_extern.h>
106 #include <vm/uma.h>
107
108 /*
109  * System initialization
110  */
111
112 /* the kernel process "vm_pageout"*/
113 static void vm_pageout(void);
114 static int vm_pageout_clean(vm_page_t);
115 static void vm_pageout_scan(int pass);
116
117 struct proc *pageproc;
118
119 static struct kproc_desc page_kp = {
120         "pagedaemon",
121         vm_pageout,
122         &pageproc
123 };
124 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start,
125     &page_kp);
126
127 #if !defined(NO_SWAPPING)
128 /* the kernel process "vm_daemon"*/
129 static void vm_daemon(void);
130 static struct   proc *vmproc;
131
132 static struct kproc_desc vm_kp = {
133         "vmdaemon",
134         vm_daemon,
135         &vmproc
136 };
137 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
138 #endif
139
140
141 int vm_pages_needed;            /* Event on which pageout daemon sleeps */
142 int vm_pageout_deficit;         /* Estimated number of pages deficit */
143 int vm_pageout_pages_needed;    /* flag saying that the pageout daemon needs pages */
144
145 #if !defined(NO_SWAPPING)
146 static int vm_pageout_req_swapout;      /* XXX */
147 static int vm_daemon_needed;
148 static struct mtx vm_daemon_mtx;
149 /* Allow for use by vm_pageout before vm_daemon is initialized. */
150 MTX_SYSINIT(vm_daemon, &vm_daemon_mtx, "vm daemon", MTX_DEF);
151 #endif
152 static int vm_max_launder = 32;
153 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
154 static int vm_pageout_full_stats_interval = 0;
155 static int vm_pageout_algorithm=0;
156 static int defer_swap_pageouts=0;
157 static int disable_swap_pageouts=0;
158
159 #if defined(NO_SWAPPING)
160 static int vm_swap_enabled=0;
161 static int vm_swap_idle_enabled=0;
162 #else
163 static int vm_swap_enabled=1;
164 static int vm_swap_idle_enabled=0;
165 #endif
166
167 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
168         CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
169
170 SYSCTL_INT(_vm, OID_AUTO, max_launder,
171         CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
172
173 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
174         CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
175
176 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
177         CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
178
179 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
180         CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
181
182 #if defined(NO_SWAPPING)
183 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
184         CTLFLAG_RD, &vm_swap_enabled, 0, "Enable entire process swapout");
185 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
186         CTLFLAG_RD, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
187 #else
188 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
189         CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
190 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
191         CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
192 #endif
193
194 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
195         CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
196
197 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
198         CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
199
200 static int pageout_lock_miss;
201 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
202         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
203
204 #define VM_PAGEOUT_PAGE_COUNT 16
205 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
206
207 int vm_page_max_wired;          /* XXX max # of wired pages system-wide */
208 SYSCTL_INT(_vm, OID_AUTO, max_wired,
209         CTLFLAG_RW, &vm_page_max_wired, 0, "System-wide limit to wired page count");
210
211 #if !defined(NO_SWAPPING)
212 static void vm_pageout_map_deactivate_pages(vm_map_t, long);
213 static void vm_pageout_object_deactivate_pages(pmap_t, vm_object_t, long);
214 static void vm_req_vmdaemon(int req);
215 #endif
216 static void vm_pageout_page_stats(void);
217
218 static void
219 vm_pageout_init_marker(vm_page_t marker, u_short queue)
220 {
221
222         bzero(marker, sizeof(*marker));
223         marker->flags = PG_FICTITIOUS | PG_MARKER;
224         marker->oflags = VPO_BUSY;
225         marker->queue = queue;
226         marker->wire_count = 1;
227 }
228
229 /*
230  * vm_pageout_fallback_object_lock:
231  * 
232  * Lock vm object currently associated with `m'. VM_OBJECT_TRYLOCK is
233  * known to have failed and page queue must be either PQ_ACTIVE or
234  * PQ_INACTIVE.  To avoid lock order violation, unlock the page queues
235  * while locking the vm object.  Use marker page to detect page queue
236  * changes and maintain notion of next page on page queue.  Return
237  * TRUE if no changes were detected, FALSE otherwise.  vm object is
238  * locked on return.
239  * 
240  * This function depends on both the lock portion of struct vm_object
241  * and normal struct vm_page being type stable.
242  */
243 boolean_t
244 vm_pageout_fallback_object_lock(vm_page_t m, vm_page_t *next)
245 {
246         struct vm_page marker;
247         boolean_t unchanged;
248         u_short queue;
249         vm_object_t object;
250
251         queue = m->queue;
252         vm_pageout_init_marker(&marker, queue);
253         object = m->object;
254         
255         TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl,
256                            m, &marker, pageq);
257         vm_page_unlock_queues();
258         vm_page_unlock(m);
259         VM_OBJECT_LOCK(object);
260         vm_page_lock(m);
261         vm_page_lock_queues();
262
263         /* Page queue might have changed. */
264         *next = TAILQ_NEXT(&marker, pageq);
265         unchanged = (m->queue == queue &&
266                      m->object == object &&
267                      &marker == TAILQ_NEXT(m, pageq));
268         TAILQ_REMOVE(&vm_page_queues[queue].pl,
269                      &marker, pageq);
270         return (unchanged);
271 }
272
273 /*
274  * Lock the page while holding the page queue lock.  Use marker page
275  * to detect page queue changes and maintain notion of next page on
276  * page queue.  Return TRUE if no changes were detected, FALSE
277  * otherwise.  The page is locked on return. The page queue lock might
278  * be dropped and reacquired.
279  *
280  * This function depends on normal struct vm_page being type stable.
281  */
282 boolean_t
283 vm_pageout_page_lock(vm_page_t m, vm_page_t *next)
284 {
285         struct vm_page marker;
286         boolean_t unchanged;
287         u_short queue;
288
289         vm_page_lock_assert(m, MA_NOTOWNED);
290         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
291
292         if (vm_page_trylock(m))
293                 return (TRUE);
294
295         queue = m->queue;
296         vm_pageout_init_marker(&marker, queue);
297
298         TAILQ_INSERT_AFTER(&vm_page_queues[queue].pl, m, &marker, pageq);
299         vm_page_unlock_queues();
300         vm_page_lock(m);
301         vm_page_lock_queues();
302
303         /* Page queue might have changed. */
304         *next = TAILQ_NEXT(&marker, pageq);
305         unchanged = (m->queue == queue && &marker == TAILQ_NEXT(m, pageq));
306         TAILQ_REMOVE(&vm_page_queues[queue].pl, &marker, pageq);
307         return (unchanged);
308 }
309
310 /*
311  * vm_pageout_clean:
312  *
313  * Clean the page and remove it from the laundry.
314  * 
315  * We set the busy bit to cause potential page faults on this page to
316  * block.  Note the careful timing, however, the busy bit isn't set till
317  * late and we cannot do anything that will mess with the page.
318  */
319 static int
320 vm_pageout_clean(vm_page_t m)
321 {
322         vm_object_t object;
323         vm_page_t mc[2*vm_pageout_page_count];
324         int pageout_count;
325         int ib, is, page_base;
326         vm_pindex_t pindex = m->pindex;
327
328         vm_page_lock_assert(m, MA_NOTOWNED);
329         vm_page_lock(m);
330         VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
331
332         /*
333          * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
334          * with the new swapper, but we could have serious problems paging
335          * out other object types if there is insufficient memory.  
336          *
337          * Unfortunately, checking free memory here is far too late, so the
338          * check has been moved up a procedural level.
339          */
340
341         /*
342          * Can't clean the page if it's busy or held.
343          */
344         if ((m->hold_count != 0) ||
345             ((m->busy != 0) || (m->oflags & VPO_BUSY))) {
346                 vm_page_unlock(m);
347                 return 0;
348         }
349
350         mc[vm_pageout_page_count] = m;
351         pageout_count = 1;
352         page_base = vm_pageout_page_count;
353         ib = 1;
354         is = 1;
355
356         /*
357          * Scan object for clusterable pages.
358          *
359          * We can cluster ONLY if: ->> the page is NOT
360          * clean, wired, busy, held, or mapped into a
361          * buffer, and one of the following:
362          * 1) The page is inactive, or a seldom used
363          *    active page.
364          * -or-
365          * 2) we force the issue.
366          *
367          * During heavy mmap/modification loads the pageout
368          * daemon can really fragment the underlying file
369          * due to flushing pages out of order and not trying
370          * align the clusters (which leave sporatic out-of-order
371          * holes).  To solve this problem we do the reverse scan
372          * first and attempt to align our cluster, then do a 
373          * forward scan if room remains.
374          */
375         object = m->object;
376 more:
377         while (ib && pageout_count < vm_pageout_page_count) {
378                 vm_page_t p;
379
380                 if (ib > pindex) {
381                         ib = 0;
382                         break;
383                 }
384
385                 if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
386                         ib = 0;
387                         break;
388                 }
389                 if ((p->oflags & VPO_BUSY) || p->busy) {
390                         ib = 0;
391                         break;
392                 }
393                 vm_page_lock(p);
394                 vm_page_lock_queues();
395                 vm_page_test_dirty(p);
396                 if (p->dirty == 0 ||
397                     p->queue != PQ_INACTIVE ||
398                     p->hold_count != 0) {       /* may be undergoing I/O */
399                         vm_page_unlock(p);
400                         vm_page_unlock_queues();
401                         ib = 0;
402                         break;
403                 }
404                 vm_page_unlock_queues();
405                 vm_page_unlock(p);
406                 mc[--page_base] = p;
407                 ++pageout_count;
408                 ++ib;
409                 /*
410                  * alignment boundry, stop here and switch directions.  Do
411                  * not clear ib.
412                  */
413                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
414                         break;
415         }
416
417         while (pageout_count < vm_pageout_page_count && 
418             pindex + is < object->size) {
419                 vm_page_t p;
420
421                 if ((p = vm_page_lookup(object, pindex + is)) == NULL)
422                         break;
423                 if ((p->oflags & VPO_BUSY) || p->busy) {
424                         break;
425                 }
426                 vm_page_lock(p);
427                 vm_page_lock_queues();
428                 vm_page_test_dirty(p);
429                 if (p->dirty == 0 ||
430                     p->queue != PQ_INACTIVE ||
431                     p->hold_count != 0) {       /* may be undergoing I/O */
432                         vm_page_unlock_queues();
433                         vm_page_unlock(p);
434                         break;
435                 }
436                 vm_page_unlock_queues();
437                 vm_page_unlock(p);
438                 mc[page_base + pageout_count] = p;
439                 ++pageout_count;
440                 ++is;
441         }
442
443         /*
444          * If we exhausted our forward scan, continue with the reverse scan
445          * when possible, even past a page boundry.  This catches boundry
446          * conditions.
447          */
448         if (ib && pageout_count < vm_pageout_page_count)
449                 goto more;
450
451         vm_page_unlock(m);
452         /*
453          * we allow reads during pageouts...
454          */
455         return (vm_pageout_flush(&mc[page_base], pageout_count, 0));
456 }
457
458 /*
459  * vm_pageout_flush() - launder the given pages
460  *
461  *      The given pages are laundered.  Note that we setup for the start of
462  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
463  *      reference count all in here rather then in the parent.  If we want
464  *      the parent to do more sophisticated things we may have to change
465  *      the ordering.
466  */
467 int
468 vm_pageout_flush(vm_page_t *mc, int count, int flags)
469 {
470         vm_object_t object = mc[0]->object;
471         int pageout_status[count];
472         int numpagedout = 0;
473         int i;
474
475         VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
476         mtx_assert(&vm_page_queue_mtx, MA_NOTOWNED);
477
478         /*
479          * Initiate I/O.  Bump the vm_page_t->busy counter and
480          * mark the pages read-only.
481          *
482          * We do not have to fixup the clean/dirty bits here... we can
483          * allow the pager to do it after the I/O completes.
484          *
485          * NOTE! mc[i]->dirty may be partial or fragmented due to an
486          * edge case with file fragments.
487          */
488         for (i = 0; i < count; i++) {
489                 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
490                     ("vm_pageout_flush: partially invalid page %p index %d/%d",
491                         mc[i], i, count));
492                 vm_page_io_start(mc[i]);
493                 vm_page_lock(mc[i]);
494                 vm_page_lock_queues();
495                 pmap_remove_write(mc[i]);
496                 vm_page_unlock(mc[i]);
497                 vm_page_unlock_queues();
498         }
499         vm_object_pip_add(object, count);
500
501         vm_pager_put_pages(object, mc, count, flags, pageout_status);
502
503         for (i = 0; i < count; i++) {
504                 vm_page_t mt = mc[i];
505
506                 vm_page_lock(mt);
507                 vm_page_lock_queues();
508                 KASSERT(pageout_status[i] == VM_PAGER_PEND ||
509                     (mt->flags & PG_WRITEABLE) == 0,
510                     ("vm_pageout_flush: page %p is not write protected", mt));
511                 switch (pageout_status[i]) {
512                 case VM_PAGER_OK:
513                 case VM_PAGER_PEND:
514                         numpagedout++;
515                         break;
516                 case VM_PAGER_BAD:
517                         /*
518                          * Page outside of range of object. Right now we
519                          * essentially lose the changes by pretending it
520                          * worked.
521                          */
522                         vm_page_undirty(mt);
523                         break;
524                 case VM_PAGER_ERROR:
525                 case VM_PAGER_FAIL:
526                         /*
527                          * If page couldn't be paged out, then reactivate the
528                          * page so it doesn't clog the inactive list.  (We
529                          * will try paging out it again later).
530                          */
531                         vm_page_activate(mt);
532                         break;
533                 case VM_PAGER_AGAIN:
534                         break;
535                 }
536
537                 /*
538                  * If the operation is still going, leave the page busy to
539                  * block all other accesses. Also, leave the paging in
540                  * progress indicator set so that we don't attempt an object
541                  * collapse.
542                  */
543                 if (pageout_status[i] != VM_PAGER_PEND) {
544                         vm_object_pip_wakeup(object);
545                         vm_page_io_finish(mt);
546                         if (vm_page_count_severe())
547                                 vm_page_try_to_cache(mt);
548                 }
549                 vm_page_unlock_queues();
550                 vm_page_unlock(mt);
551         }
552         return numpagedout;
553 }
554
555 #if !defined(NO_SWAPPING)
556 /*
557  *      vm_pageout_object_deactivate_pages
558  *
559  *      deactivate enough pages to satisfy the inactive target
560  *      requirements or if vm_page_proc_limit is set, then
561  *      deactivate all of the pages in the object and its
562  *      backing_objects.
563  *
564  *      The object and map must be locked.
565  */
566 static void
567 vm_pageout_object_deactivate_pages(pmap, first_object, desired)
568         pmap_t pmap;
569         vm_object_t first_object;
570         long desired;
571 {
572         vm_object_t backing_object, object;
573         vm_page_t p, next;
574         int actcount, remove_mode;
575
576         VM_OBJECT_LOCK_ASSERT(first_object, MA_OWNED);
577         if (first_object->type == OBJT_DEVICE ||
578             first_object->type == OBJT_SG)
579                 return;
580         for (object = first_object;; object = backing_object) {
581                 if (pmap_resident_count(pmap) <= desired)
582                         goto unlock_return;
583                 VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
584                 if (object->type == OBJT_PHYS || object->paging_in_progress)
585                         goto unlock_return;
586
587                 remove_mode = 0;
588                 if (object->shadow_count > 1)
589                         remove_mode = 1;
590                 /*
591                  * scan the objects entire memory queue
592                  */
593                 p = TAILQ_FIRST(&object->memq);
594                 while (p != NULL) {
595                         if (pmap_resident_count(pmap) <= desired)
596                                 goto unlock_return;
597                         next = TAILQ_NEXT(p, listq);
598                         if ((p->oflags & VPO_BUSY) != 0 || p->busy != 0) {
599                                 p = next;
600                                 continue;
601                         }
602                         vm_page_lock(p);
603                         vm_page_lock_queues();
604                         cnt.v_pdpages++;
605                         if (p->wire_count != 0 ||
606                             p->hold_count != 0 ||
607                             !pmap_page_exists_quick(pmap, p)) {
608                                 vm_page_unlock_queues();
609                                 vm_page_unlock(p);
610                                 p = next;
611                                 continue;
612                         }
613                         actcount = pmap_ts_referenced(p);
614                         if (actcount) {
615                                 vm_page_flag_set(p, PG_REFERENCED);
616                         } else if (p->flags & PG_REFERENCED) {
617                                 actcount = 1;
618                         }
619                         if ((p->queue != PQ_ACTIVE) &&
620                                 (p->flags & PG_REFERENCED)) {
621                                 vm_page_activate(p);
622                                 p->act_count += actcount;
623                                 vm_page_flag_clear(p, PG_REFERENCED);
624                         } else if (p->queue == PQ_ACTIVE) {
625                                 if ((p->flags & PG_REFERENCED) == 0) {
626                                         p->act_count -= min(p->act_count, ACT_DECLINE);
627                                         if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
628                                                 pmap_remove_all(p);
629                                                 vm_page_deactivate(p);
630                                         } else {
631                                                 vm_page_requeue(p);
632                                         }
633                                 } else {
634                                         vm_page_activate(p);
635                                         vm_page_flag_clear(p, PG_REFERENCED);
636                                         if (p->act_count < (ACT_MAX - ACT_ADVANCE))
637                                                 p->act_count += ACT_ADVANCE;
638                                         vm_page_requeue(p);
639                                 }
640                         } else if (p->queue == PQ_INACTIVE) {
641                                 pmap_remove_all(p);
642                         }
643                         vm_page_unlock_queues();
644                         vm_page_unlock(p);
645                         p = next;
646                 }
647                 if ((backing_object = object->backing_object) == NULL)
648                         goto unlock_return;
649                 VM_OBJECT_LOCK(backing_object);
650                 if (object != first_object)
651                         VM_OBJECT_UNLOCK(object);
652         }
653 unlock_return:
654         if (object != first_object)
655                 VM_OBJECT_UNLOCK(object);
656 }
657
658 /*
659  * deactivate some number of pages in a map, try to do it fairly, but
660  * that is really hard to do.
661  */
662 static void
663 vm_pageout_map_deactivate_pages(map, desired)
664         vm_map_t map;
665         long desired;
666 {
667         vm_map_entry_t tmpe;
668         vm_object_t obj, bigobj;
669         int nothingwired;
670
671         if (!vm_map_trylock(map))
672                 return;
673
674         bigobj = NULL;
675         nothingwired = TRUE;
676
677         /*
678          * first, search out the biggest object, and try to free pages from
679          * that.
680          */
681         tmpe = map->header.next;
682         while (tmpe != &map->header) {
683                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
684                         obj = tmpe->object.vm_object;
685                         if (obj != NULL && VM_OBJECT_TRYLOCK(obj)) {
686                                 if (obj->shadow_count <= 1 &&
687                                     (bigobj == NULL ||
688                                      bigobj->resident_page_count < obj->resident_page_count)) {
689                                         if (bigobj != NULL)
690                                                 VM_OBJECT_UNLOCK(bigobj);
691                                         bigobj = obj;
692                                 } else
693                                         VM_OBJECT_UNLOCK(obj);
694                         }
695                 }
696                 if (tmpe->wired_count > 0)
697                         nothingwired = FALSE;
698                 tmpe = tmpe->next;
699         }
700
701         if (bigobj != NULL) {
702                 vm_pageout_object_deactivate_pages(map->pmap, bigobj, desired);
703                 VM_OBJECT_UNLOCK(bigobj);
704         }
705         /*
706          * Next, hunt around for other pages to deactivate.  We actually
707          * do this search sort of wrong -- .text first is not the best idea.
708          */
709         tmpe = map->header.next;
710         while (tmpe != &map->header) {
711                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
712                         break;
713                 if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
714                         obj = tmpe->object.vm_object;
715                         if (obj != NULL) {
716                                 VM_OBJECT_LOCK(obj);
717                                 vm_pageout_object_deactivate_pages(map->pmap, obj, desired);
718                                 VM_OBJECT_UNLOCK(obj);
719                         }
720                 }
721                 tmpe = tmpe->next;
722         }
723
724         /*
725          * Remove all mappings if a process is swapped out, this will free page
726          * table pages.
727          */
728         if (desired == 0 && nothingwired) {
729                 pmap_remove(vm_map_pmap(map), vm_map_min(map),
730                     vm_map_max(map));
731         }
732         vm_map_unlock(map);
733 }
734 #endif          /* !defined(NO_SWAPPING) */
735
736 /*
737  *      vm_pageout_scan does the dirty work for the pageout daemon.
738  */
739 static void
740 vm_pageout_scan(int pass)
741 {
742         vm_page_t m, next;
743         struct vm_page marker;
744         int page_shortage, maxscan, pcount;
745         int addl_page_shortage, addl_page_shortage_init;
746         vm_object_t object;
747         int actcount;
748         int vnodes_skipped = 0;
749         int maxlaunder;
750
751         /*
752          * Decrease registered cache sizes.
753          */
754         EVENTHANDLER_INVOKE(vm_lowmem, 0);
755         /*
756          * We do this explicitly after the caches have been drained above.
757          */
758         uma_reclaim();
759
760         addl_page_shortage_init = atomic_readandclear_int(&vm_pageout_deficit);
761
762         /*
763          * Calculate the number of pages we want to either free or move
764          * to the cache.
765          */
766         page_shortage = vm_paging_target() + addl_page_shortage_init;
767
768         /*
769          * Initialize our marker
770          */
771         bzero(&marker, sizeof(marker));
772         marker.flags = PG_FICTITIOUS | PG_MARKER;
773         marker.oflags = VPO_BUSY;
774         marker.queue = PQ_INACTIVE;
775         marker.wire_count = 1;
776
777         /*
778          * Start scanning the inactive queue for pages we can move to the
779          * cache or free.  The scan will stop when the target is reached or
780          * we have scanned the entire inactive queue.  Note that m->act_count
781          * is not used to form decisions for the inactive queue, only for the
782          * active queue.
783          *
784          * maxlaunder limits the number of dirty pages we flush per scan.
785          * For most systems a smaller value (16 or 32) is more robust under
786          * extreme memory and disk pressure because any unnecessary writes
787          * to disk can result in extreme performance degredation.  However,
788          * systems with excessive dirty pages (especially when MAP_NOSYNC is
789          * used) will die horribly with limited laundering.  If the pageout
790          * daemon cannot clean enough pages in the first pass, we let it go
791          * all out in succeeding passes.
792          */
793         if ((maxlaunder = vm_max_launder) <= 1)
794                 maxlaunder = 1;
795         if (pass)
796                 maxlaunder = 10000;
797         vm_page_lock_queues();
798 rescan0:
799         addl_page_shortage = addl_page_shortage_init;
800         maxscan = cnt.v_inactive_count;
801
802         for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
803              m != NULL && maxscan-- > 0 && page_shortage > 0;
804              m = next) {
805
806                 cnt.v_pdpages++;
807
808                 if (VM_PAGE_GETQUEUE(m) != PQ_INACTIVE) {
809                         goto rescan0;
810                 }
811
812                 next = TAILQ_NEXT(m, pageq);
813
814                 /*
815                  * skip marker pages
816                  */
817                 if (m->flags & PG_MARKER)
818                         continue;
819
820                 /*
821                  * Lock the page.
822                  */
823                 if (!vm_pageout_page_lock(m, &next)) {
824                         vm_page_unlock(m);
825                         addl_page_shortage++;
826                         continue;
827                 }
828
829                 /*
830                  * A held page may be undergoing I/O, so skip it.
831                  */
832                 if (m->hold_count || (object = m->object) == NULL) {
833                         vm_page_unlock(m);
834                         vm_page_requeue(m);
835                         addl_page_shortage++;
836                         continue;
837                 }
838
839                 /*
840                  * Don't mess with busy pages, keep in the front of the
841                  * queue, most likely are being paged out.
842                  */
843                 if (!VM_OBJECT_TRYLOCK(object) &&
844                     (!vm_pageout_fallback_object_lock(m, &next) ||
845                         m->hold_count != 0)) {
846                         VM_OBJECT_UNLOCK(object);
847                         vm_page_unlock(m);
848                         addl_page_shortage++;
849                         continue;
850                 }
851                 if (m->busy || (m->oflags & VPO_BUSY)) {
852                         vm_page_unlock(m);
853                         VM_OBJECT_UNLOCK(object);
854                         addl_page_shortage++;
855                         continue;
856                 }
857
858                 /*
859                  * If the object is not being used, we ignore previous 
860                  * references.
861                  */
862                 if (object->ref_count == 0) {
863                         vm_page_flag_clear(m, PG_REFERENCED);
864                         KASSERT(!pmap_page_is_mapped(m),
865                             ("vm_pageout_scan: page %p is mapped", m));
866
867                 /*
868                  * Otherwise, if the page has been referenced while in the 
869                  * inactive queue, we bump the "activation count" upwards, 
870                  * making it less likely that the page will be added back to 
871                  * the inactive queue prematurely again.  Here we check the 
872                  * page tables (or emulated bits, if any), given the upper 
873                  * level VM system not knowing anything about existing 
874                  * references.
875                  */
876                 } else if (((m->flags & PG_REFERENCED) == 0) &&
877                         (actcount = pmap_ts_referenced(m))) {
878                         vm_page_activate(m);
879                         VM_OBJECT_UNLOCK(object);
880                         m->act_count += (actcount + ACT_ADVANCE);
881                         vm_page_unlock(m);
882                         continue;
883                 }
884
885                 /*
886                  * If the upper level VM system knows about any page 
887                  * references, we activate the page.  We also set the 
888                  * "activation count" higher than normal so that we will less 
889                  * likely place pages back onto the inactive queue again.
890                  */
891                 if ((m->flags & PG_REFERENCED) != 0) {
892                         vm_page_flag_clear(m, PG_REFERENCED);
893                         actcount = pmap_ts_referenced(m);
894                         vm_page_activate(m);
895                         VM_OBJECT_UNLOCK(object);
896                         m->act_count += (actcount + ACT_ADVANCE + 1);
897                         vm_page_unlock(m);
898                         continue;
899                 }
900
901                 /*
902                  * If the upper level VM system does not believe that the page
903                  * is fully dirty, but it is mapped for write access, then we
904                  * consult the pmap to see if the page's dirty status should
905                  * be updated.
906                  */
907                 if (m->dirty != VM_PAGE_BITS_ALL &&
908                     (m->flags & PG_WRITEABLE) != 0) {
909                         /*
910                          * Avoid a race condition: Unless write access is
911                          * removed from the page, another processor could
912                          * modify it before all access is removed by the call
913                          * to vm_page_cache() below.  If vm_page_cache() finds
914                          * that the page has been modified when it removes all
915                          * access, it panics because it cannot cache dirty
916                          * pages.  In principle, we could eliminate just write
917                          * access here rather than all access.  In the expected
918                          * case, when there are no last instant modifications
919                          * to the page, removing all access will be cheaper
920                          * overall.
921                          */
922                         if (pmap_is_modified(m))
923                                 vm_page_dirty(m);
924                         else if (m->dirty == 0)
925                                 pmap_remove_all(m);
926                 }
927
928                 if (m->valid == 0) {
929                         /*
930                          * Invalid pages can be easily freed
931                          */
932                         vm_page_free(m);
933                         cnt.v_dfree++;
934                         --page_shortage;
935                 } else if (m->dirty == 0) {
936                         /*
937                          * Clean pages can be placed onto the cache queue.
938                          * This effectively frees them.
939                          */
940                         vm_page_cache(m);
941                         --page_shortage;
942                 } else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
943                         /*
944                          * Dirty pages need to be paged out, but flushing
945                          * a page is extremely expensive verses freeing
946                          * a clean page.  Rather then artificially limiting
947                          * the number of pages we can flush, we instead give
948                          * dirty pages extra priority on the inactive queue
949                          * by forcing them to be cycled through the queue
950                          * twice before being flushed, after which the
951                          * (now clean) page will cycle through once more
952                          * before being freed.  This significantly extends
953                          * the thrash point for a heavily loaded machine.
954                          */
955                         vm_page_flag_set(m, PG_WINATCFLS);
956                         vm_page_requeue(m);
957                 } else if (maxlaunder > 0) {
958                         /*
959                          * We always want to try to flush some dirty pages if
960                          * we encounter them, to keep the system stable.
961                          * Normally this number is small, but under extreme
962                          * pressure where there are insufficient clean pages
963                          * on the inactive queue, we may have to go all out.
964                          */
965                         int swap_pageouts_ok, vfslocked = 0;
966                         struct vnode *vp = NULL;
967                         struct mount *mp = NULL;
968
969                         if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
970                                 swap_pageouts_ok = 1;
971                         } else {
972                                 swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
973                                 swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
974                                 vm_page_count_min());
975                                                                                 
976                         }
977
978                         /*
979                          * We don't bother paging objects that are "dead".  
980                          * Those objects are in a "rundown" state.
981                          */
982                         if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
983                                 vm_page_unlock(m);
984                                 VM_OBJECT_UNLOCK(object);
985                                 vm_page_requeue(m);
986                                 continue;
987                         }
988
989                         /*
990                          * Following operations may unlock
991                          * vm_page_queue_mtx, invalidating the 'next'
992                          * pointer.  To prevent an inordinate number
993                          * of restarts we use our marker to remember
994                          * our place.
995                          *
996                          */
997                         TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl,
998                                            m, &marker, pageq);
999                         /*
1000                          * The object is already known NOT to be dead.   It
1001                          * is possible for the vget() to block the whole
1002                          * pageout daemon, but the new low-memory handling
1003                          * code should prevent it.
1004                          *
1005                          * The previous code skipped locked vnodes and, worse,
1006                          * reordered pages in the queue.  This results in
1007                          * completely non-deterministic operation and, on a
1008                          * busy system, can lead to extremely non-optimal
1009                          * pageouts.  For example, it can cause clean pages
1010                          * to be freed and dirty pages to be moved to the end
1011                          * of the queue.  Since dirty pages are also moved to
1012                          * the end of the queue once-cleaned, this gives
1013                          * way too large a weighting to defering the freeing
1014                          * of dirty pages.
1015                          *
1016                          * We can't wait forever for the vnode lock, we might
1017                          * deadlock due to a vn_read() getting stuck in
1018                          * vm_wait while holding this vnode.  We skip the 
1019                          * vnode if we can't get it in a reasonable amount
1020                          * of time.
1021                          */
1022                         if (object->type == OBJT_VNODE) {
1023                                 vm_page_unlock_queues();
1024                                 vm_page_unlock(m);
1025                                 vp = object->handle;
1026                                 if (vp->v_type == VREG &&
1027                                     vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1028                                         mp = NULL;
1029                                         ++pageout_lock_miss;
1030                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1031                                                 vnodes_skipped++;
1032                                         vm_page_lock_queues();
1033                                         goto unlock_and_continue;
1034                                 }
1035                                 KASSERT(mp != NULL,
1036                                     ("vp %p with NULL v_mount", vp));
1037                                 vm_object_reference_locked(object);
1038                                 VM_OBJECT_UNLOCK(object);
1039                                 vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1040                                 if (vget(vp, LK_EXCLUSIVE | LK_TIMELOCK,
1041                                     curthread)) {
1042                                         VM_OBJECT_LOCK(object);
1043                                         vm_page_lock_queues();
1044                                         ++pageout_lock_miss;
1045                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1046                                                 vnodes_skipped++;
1047                                         vp = NULL;
1048                                         goto unlock_and_continue;
1049                                 }
1050                                 VM_OBJECT_LOCK(object);
1051                                 vm_page_lock(m);
1052                                 vm_page_lock_queues();
1053                                 /*
1054                                  * The page might have been moved to another
1055                                  * queue during potential blocking in vget()
1056                                  * above.  The page might have been freed and
1057                                  * reused for another vnode.
1058                                  */
1059                                 if (VM_PAGE_GETQUEUE(m) != PQ_INACTIVE ||
1060                                     m->object != object ||
1061                                     TAILQ_NEXT(m, pageq) != &marker) {
1062                                         vm_page_unlock(m);
1063                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1064                                                 vnodes_skipped++;
1065                                         goto unlock_and_continue;
1066                                 }
1067         
1068                                 /*
1069                                  * The page may have been busied during the
1070                                  * blocking in vget().  We don't move the
1071                                  * page back onto the end of the queue so that
1072                                  * statistics are more correct if we don't.
1073                                  */
1074                                 if (m->busy || (m->oflags & VPO_BUSY)) {
1075                                         vm_page_unlock(m);
1076                                         goto unlock_and_continue;
1077                                 }
1078
1079                                 /*
1080                                  * If the page has become held it might
1081                                  * be undergoing I/O, so skip it
1082                                  */
1083                                 if (m->hold_count) {
1084                                         vm_page_unlock(m);
1085                                         vm_page_requeue(m);
1086                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1087                                                 vnodes_skipped++;
1088                                         goto unlock_and_continue;
1089                                 }
1090                         }
1091                         vm_page_unlock(m);
1092
1093                         /*
1094                          * If a page is dirty, then it is either being washed
1095                          * (but not yet cleaned) or it is still in the
1096                          * laundry.  If it is still in the laundry, then we
1097                          * start the cleaning operation. 
1098                          *
1099                          * decrement page_shortage on success to account for
1100                          * the (future) cleaned page.  Otherwise we could wind
1101                          * up laundering or cleaning too many pages.
1102                          */
1103                         vm_page_unlock_queues();
1104                         if (vm_pageout_clean(m) != 0) {
1105                                 --page_shortage;
1106                                 --maxlaunder;
1107                         }
1108                         vm_page_lock_queues();
1109 unlock_and_continue:
1110                         vm_page_lock_assert(m, MA_NOTOWNED);
1111                         VM_OBJECT_UNLOCK(object);
1112                         if (mp != NULL) {
1113                                 vm_page_unlock_queues();
1114                                 if (vp != NULL)
1115                                         vput(vp);
1116                                 VFS_UNLOCK_GIANT(vfslocked);
1117                                 vm_object_deallocate(object);
1118                                 vn_finished_write(mp);
1119                                 vm_page_lock_queues();
1120                         }
1121                         next = TAILQ_NEXT(&marker, pageq);
1122                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl,
1123                                      &marker, pageq);
1124                         vm_page_lock_assert(m, MA_NOTOWNED);
1125                         continue;
1126                 }
1127                 vm_page_unlock(m);
1128                 VM_OBJECT_UNLOCK(object);
1129         }
1130
1131         /*
1132          * Compute the number of pages we want to try to move from the
1133          * active queue to the inactive queue.
1134          */
1135         page_shortage = vm_paging_target() +
1136                 cnt.v_inactive_target - cnt.v_inactive_count;
1137         page_shortage += addl_page_shortage;
1138
1139         /*
1140          * Scan the active queue for things we can deactivate. We nominally
1141          * track the per-page activity counter and use it to locate
1142          * deactivation candidates.
1143          */
1144         pcount = cnt.v_active_count;
1145         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1146         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1147
1148         while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1149
1150                 KASSERT(VM_PAGE_INQUEUE2(m, PQ_ACTIVE),
1151                     ("vm_pageout_scan: page %p isn't active", m));
1152
1153                 next = TAILQ_NEXT(m, pageq);
1154                 object = m->object;
1155                 if ((m->flags & PG_MARKER) != 0) {
1156                         m = next;
1157                         continue;
1158                 }
1159                 if (!vm_pageout_page_lock(m, &next) ||
1160                     (object = m->object) == NULL) {
1161                         vm_page_unlock(m);
1162                         m = next;
1163                         continue;
1164                 }
1165                 if (!VM_OBJECT_TRYLOCK(object) &&
1166                     !vm_pageout_fallback_object_lock(m, &next)) {
1167                         VM_OBJECT_UNLOCK(object);
1168                         vm_page_unlock(m);
1169                         m = next;
1170                         continue;
1171                 }
1172
1173                 /*
1174                  * Don't deactivate pages that are busy.
1175                  */
1176                 if ((m->busy != 0) ||
1177                     (m->oflags & VPO_BUSY) ||
1178                     (m->hold_count != 0)) {
1179                         vm_page_unlock(m);
1180                         VM_OBJECT_UNLOCK(object);
1181                         vm_page_requeue(m);
1182                         m = next;
1183                         continue;
1184                 }
1185
1186                 /*
1187                  * The count for pagedaemon pages is done after checking the
1188                  * page for eligibility...
1189                  */
1190                 cnt.v_pdpages++;
1191
1192                 /*
1193                  * Check to see "how much" the page has been used.
1194                  */
1195                 actcount = 0;
1196                 if (object->ref_count != 0) {
1197                         if (m->flags & PG_REFERENCED) {
1198                                 actcount += 1;
1199                         }
1200                         actcount += pmap_ts_referenced(m);
1201                         if (actcount) {
1202                                 m->act_count += ACT_ADVANCE + actcount;
1203                                 if (m->act_count > ACT_MAX)
1204                                         m->act_count = ACT_MAX;
1205                         }
1206                 }
1207
1208                 /*
1209                  * Since we have "tested" this bit, we need to clear it now.
1210                  */
1211                 vm_page_flag_clear(m, PG_REFERENCED);
1212
1213                 /*
1214                  * Only if an object is currently being used, do we use the
1215                  * page activation count stats.
1216                  */
1217                 if (actcount && (object->ref_count != 0)) {
1218                         vm_page_requeue(m);
1219                 } else {
1220                         m->act_count -= min(m->act_count, ACT_DECLINE);
1221                         if (vm_pageout_algorithm ||
1222                             object->ref_count == 0 ||
1223                             m->act_count == 0) {
1224                                 page_shortage--;
1225                                 if (object->ref_count == 0) {
1226                                         KASSERT(!pmap_page_is_mapped(m),
1227                                     ("vm_pageout_scan: page %p is mapped", m));
1228                                         if (m->dirty == 0)
1229                                                 vm_page_cache(m);
1230                                         else
1231                                                 vm_page_deactivate(m);
1232                                 } else {
1233                                         vm_page_deactivate(m);
1234                                 }
1235                         } else {
1236                                 vm_page_requeue(m);
1237                         }
1238                 }
1239                 vm_page_unlock(m);
1240                 VM_OBJECT_UNLOCK(object);
1241                 m = next;
1242         }
1243         vm_page_unlock_queues();
1244 #if !defined(NO_SWAPPING)
1245         /*
1246          * Idle process swapout -- run once per second.
1247          */
1248         if (vm_swap_idle_enabled) {
1249                 static long lsec;
1250                 if (time_second != lsec) {
1251                         vm_req_vmdaemon(VM_SWAP_IDLE);
1252                         lsec = time_second;
1253                 }
1254         }
1255 #endif
1256                 
1257         /*
1258          * If we didn't get enough free pages, and we have skipped a vnode
1259          * in a writeable object, wakeup the sync daemon.  And kick swapout
1260          * if we did not get enough free pages.
1261          */
1262         if (vm_paging_target() > 0) {
1263                 if (vnodes_skipped && vm_page_count_min())
1264                         (void) speedup_syncer();
1265 #if !defined(NO_SWAPPING)
1266                 if (vm_swap_enabled && vm_page_count_target())
1267                         vm_req_vmdaemon(VM_SWAP_NORMAL);
1268 #endif
1269         }
1270
1271         /*
1272          * If we are critically low on one of RAM or swap and low on
1273          * the other, kill the largest process.  However, we avoid
1274          * doing this on the first pass in order to give ourselves a
1275          * chance to flush out dirty vnode-backed pages and to allow
1276          * active pages to be moved to the inactive queue and reclaimed.
1277          */
1278         if (pass != 0 &&
1279             ((swap_pager_avail < 64 && vm_page_count_min()) ||
1280              (swap_pager_full && vm_paging_target() > 0)))
1281                 vm_pageout_oom(VM_OOM_MEM);
1282 }
1283
1284
1285 void
1286 vm_pageout_oom(int shortage)
1287 {
1288         struct proc *p, *bigproc;
1289         vm_offset_t size, bigsize;
1290         struct thread *td;
1291         struct vmspace *vm;
1292
1293         /*
1294          * We keep the process bigproc locked once we find it to keep anyone
1295          * from messing with it; however, there is a possibility of
1296          * deadlock if process B is bigproc and one of it's child processes
1297          * attempts to propagate a signal to B while we are waiting for A's
1298          * lock while walking this list.  To avoid this, we don't block on
1299          * the process lock but just skip a process if it is already locked.
1300          */
1301         bigproc = NULL;
1302         bigsize = 0;
1303         sx_slock(&allproc_lock);
1304         FOREACH_PROC_IN_SYSTEM(p) {
1305                 int breakout;
1306
1307                 if (PROC_TRYLOCK(p) == 0)
1308                         continue;
1309                 /*
1310                  * If this is a system, protected or killed process, skip it.
1311                  */
1312                 if ((p->p_flag & (P_INEXEC | P_PROTECTED | P_SYSTEM)) ||
1313                     (p->p_pid == 1) || P_KILLED(p) ||
1314                     ((p->p_pid < 48) && (swap_pager_avail != 0))) {
1315                         PROC_UNLOCK(p);
1316                         continue;
1317                 }
1318                 /*
1319                  * If the process is in a non-running type state,
1320                  * don't touch it.  Check all the threads individually.
1321                  */
1322                 breakout = 0;
1323                 FOREACH_THREAD_IN_PROC(p, td) {
1324                         thread_lock(td);
1325                         if (!TD_ON_RUNQ(td) &&
1326                             !TD_IS_RUNNING(td) &&
1327                             !TD_IS_SLEEPING(td)) {
1328                                 thread_unlock(td);
1329                                 breakout = 1;
1330                                 break;
1331                         }
1332                         thread_unlock(td);
1333                 }
1334                 if (breakout) {
1335                         PROC_UNLOCK(p);
1336                         continue;
1337                 }
1338                 /*
1339                  * get the process size
1340                  */
1341                 vm = vmspace_acquire_ref(p);
1342                 if (vm == NULL) {
1343                         PROC_UNLOCK(p);
1344                         continue;
1345                 }
1346                 if (!vm_map_trylock_read(&vm->vm_map)) {
1347                         vmspace_free(vm);
1348                         PROC_UNLOCK(p);
1349                         continue;
1350                 }
1351                 size = vmspace_swap_count(vm);
1352                 vm_map_unlock_read(&vm->vm_map);
1353                 if (shortage == VM_OOM_MEM)
1354                         size += vmspace_resident_count(vm);
1355                 vmspace_free(vm);
1356                 /*
1357                  * if the this process is bigger than the biggest one
1358                  * remember it.
1359                  */
1360                 if (size > bigsize) {
1361                         if (bigproc != NULL)
1362                                 PROC_UNLOCK(bigproc);
1363                         bigproc = p;
1364                         bigsize = size;
1365                 } else
1366                         PROC_UNLOCK(p);
1367         }
1368         sx_sunlock(&allproc_lock);
1369         if (bigproc != NULL) {
1370                 killproc(bigproc, "out of swap space");
1371                 sched_nice(bigproc, PRIO_MIN);
1372                 PROC_UNLOCK(bigproc);
1373                 wakeup(&cnt.v_free_count);
1374         }
1375 }
1376
1377 /*
1378  * This routine tries to maintain the pseudo LRU active queue,
1379  * so that during long periods of time where there is no paging,
1380  * that some statistic accumulation still occurs.  This code
1381  * helps the situation where paging just starts to occur.
1382  */
1383 static void
1384 vm_pageout_page_stats()
1385 {
1386         vm_object_t object;
1387         vm_page_t m,next;
1388         int pcount,tpcount;             /* Number of pages to check */
1389         static int fullintervalcount = 0;
1390         int page_shortage;
1391
1392         mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1393         page_shortage = 
1394             (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1395             (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1396
1397         if (page_shortage <= 0)
1398                 return;
1399
1400         pcount = cnt.v_active_count;
1401         fullintervalcount += vm_pageout_stats_interval;
1402         if (fullintervalcount < vm_pageout_full_stats_interval) {
1403                 tpcount = (int64_t)vm_pageout_stats_max * cnt.v_active_count /
1404                     cnt.v_page_count;
1405                 if (pcount > tpcount)
1406                         pcount = tpcount;
1407         } else {
1408                 fullintervalcount = 0;
1409         }
1410
1411         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1412         while ((m != NULL) && (pcount-- > 0)) {
1413                 int actcount;
1414
1415                 KASSERT(VM_PAGE_INQUEUE2(m, PQ_ACTIVE),
1416                     ("vm_pageout_page_stats: page %p isn't active", m));
1417
1418                 next = TAILQ_NEXT(m, pageq);
1419                 if ((m->flags & PG_MARKER) != 0) {
1420                         m = next;
1421                         continue;
1422                 }
1423                 vm_page_lock_assert(m, MA_NOTOWNED);
1424                 if (!vm_pageout_page_lock(m, &next) ||
1425                     (object = m->object) == NULL) {
1426                         vm_page_unlock(m);
1427                         m = next;
1428                         continue;
1429                 }
1430                 if (!VM_OBJECT_TRYLOCK(object) &&
1431                     !vm_pageout_fallback_object_lock(m, &next)) {
1432                         VM_OBJECT_UNLOCK(object);
1433                         vm_page_unlock(m);
1434                         m = next;
1435                         continue;
1436                 }
1437
1438                 /*
1439                  * Don't deactivate pages that are busy.
1440                  */
1441                 if ((m->busy != 0) ||
1442                     (m->oflags & VPO_BUSY) ||
1443                     (m->hold_count != 0)) {
1444                         vm_page_unlock(m);
1445                         VM_OBJECT_UNLOCK(object);
1446                         vm_page_requeue(m);
1447                         m = next;
1448                         continue;
1449                 }
1450
1451                 actcount = 0;
1452                 if (m->flags & PG_REFERENCED) {
1453                         vm_page_flag_clear(m, PG_REFERENCED);
1454                         actcount += 1;
1455                 }
1456
1457                 actcount += pmap_ts_referenced(m);
1458                 if (actcount) {
1459                         m->act_count += ACT_ADVANCE + actcount;
1460                         if (m->act_count > ACT_MAX)
1461                                 m->act_count = ACT_MAX;
1462                         vm_page_requeue(m);
1463                 } else {
1464                         if (m->act_count == 0) {
1465                                 /*
1466                                  * We turn off page access, so that we have
1467                                  * more accurate RSS stats.  We don't do this
1468                                  * in the normal page deactivation when the
1469                                  * system is loaded VM wise, because the
1470                                  * cost of the large number of page protect
1471                                  * operations would be higher than the value
1472                                  * of doing the operation.
1473                                  */
1474                                 pmap_remove_all(m);
1475                                 vm_page_deactivate(m);
1476                         } else {
1477                                 m->act_count -= min(m->act_count, ACT_DECLINE);
1478                                 vm_page_requeue(m);
1479                         }
1480                 }
1481                 vm_page_unlock(m);
1482                 VM_OBJECT_UNLOCK(object);
1483                 m = next;
1484         }
1485 }
1486
1487 /*
1488  *      vm_pageout is the high level pageout daemon.
1489  */
1490 static void
1491 vm_pageout()
1492 {
1493         int error, pass;
1494
1495         /*
1496          * Initialize some paging parameters.
1497          */
1498         cnt.v_interrupt_free_min = 2;
1499         if (cnt.v_page_count < 2000)
1500                 vm_pageout_page_count = 8;
1501
1502         /*
1503          * v_free_reserved needs to include enough for the largest
1504          * swap pager structures plus enough for any pv_entry structs
1505          * when paging. 
1506          */
1507         if (cnt.v_page_count > 1024)
1508                 cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1509         else
1510                 cnt.v_free_min = 4;
1511         cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1512             cnt.v_interrupt_free_min;
1513         cnt.v_free_reserved = vm_pageout_page_count +
1514             cnt.v_pageout_free_min + (cnt.v_page_count / 768);
1515         cnt.v_free_severe = cnt.v_free_min / 2;
1516         cnt.v_free_min += cnt.v_free_reserved;
1517         cnt.v_free_severe += cnt.v_free_reserved;
1518
1519         /*
1520          * v_free_target and v_cache_min control pageout hysteresis.  Note
1521          * that these are more a measure of the VM cache queue hysteresis
1522          * then the VM free queue.  Specifically, v_free_target is the
1523          * high water mark (free+cache pages).
1524          *
1525          * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1526          * low water mark, while v_free_min is the stop.  v_cache_min must
1527          * be big enough to handle memory needs while the pageout daemon
1528          * is signalled and run to free more pages.
1529          */
1530         if (cnt.v_free_count > 6144)
1531                 cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1532         else
1533                 cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1534
1535         if (cnt.v_free_count > 2048) {
1536                 cnt.v_cache_min = cnt.v_free_target;
1537                 cnt.v_cache_max = 2 * cnt.v_cache_min;
1538                 cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1539         } else {
1540                 cnt.v_cache_min = 0;
1541                 cnt.v_cache_max = 0;
1542                 cnt.v_inactive_target = cnt.v_free_count / 4;
1543         }
1544         if (cnt.v_inactive_target > cnt.v_free_count / 3)
1545                 cnt.v_inactive_target = cnt.v_free_count / 3;
1546
1547         /* XXX does not really belong here */
1548         if (vm_page_max_wired == 0)
1549                 vm_page_max_wired = cnt.v_free_count / 3;
1550
1551         if (vm_pageout_stats_max == 0)
1552                 vm_pageout_stats_max = cnt.v_free_target;
1553
1554         /*
1555          * Set interval in seconds for stats scan.
1556          */
1557         if (vm_pageout_stats_interval == 0)
1558                 vm_pageout_stats_interval = 5;
1559         if (vm_pageout_full_stats_interval == 0)
1560                 vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1561
1562         swap_pager_swap_init();
1563         pass = 0;
1564         /*
1565          * The pageout daemon is never done, so loop forever.
1566          */
1567         while (TRUE) {
1568                 /*
1569                  * If we have enough free memory, wakeup waiters.  Do
1570                  * not clear vm_pages_needed until we reach our target,
1571                  * otherwise we may be woken up over and over again and
1572                  * waste a lot of cpu.
1573                  */
1574                 mtx_lock(&vm_page_queue_free_mtx);
1575                 if (vm_pages_needed && !vm_page_count_min()) {
1576                         if (!vm_paging_needed())
1577                                 vm_pages_needed = 0;
1578                         wakeup(&cnt.v_free_count);
1579                 }
1580                 if (vm_pages_needed) {
1581                         /*
1582                          * Still not done, take a second pass without waiting
1583                          * (unlimited dirty cleaning), otherwise sleep a bit
1584                          * and try again.
1585                          */
1586                         ++pass;
1587                         if (pass > 1)
1588                                 msleep(&vm_pages_needed,
1589                                     &vm_page_queue_free_mtx, PVM, "psleep",
1590                                     hz / 2);
1591                 } else {
1592                         /*
1593                          * Good enough, sleep & handle stats.  Prime the pass
1594                          * for the next run.
1595                          */
1596                         if (pass > 1)
1597                                 pass = 1;
1598                         else
1599                                 pass = 0;
1600                         error = msleep(&vm_pages_needed,
1601                             &vm_page_queue_free_mtx, PVM, "psleep",
1602                             vm_pageout_stats_interval * hz);
1603                         if (error && !vm_pages_needed) {
1604                                 mtx_unlock(&vm_page_queue_free_mtx);
1605                                 pass = 0;
1606                                 vm_page_lock_queues();
1607                                 vm_pageout_page_stats();
1608                                 vm_page_unlock_queues();
1609                                 continue;
1610                         }
1611                 }
1612                 if (vm_pages_needed)
1613                         cnt.v_pdwakeups++;
1614                 mtx_unlock(&vm_page_queue_free_mtx);
1615                 vm_pageout_scan(pass);
1616         }
1617 }
1618
1619 /*
1620  * Unless the free page queue lock is held by the caller, this function
1621  * should be regarded as advisory.  Specifically, the caller should
1622  * not msleep() on &cnt.v_free_count following this function unless
1623  * the free page queue lock is held until the msleep() is performed.
1624  */
1625 void
1626 pagedaemon_wakeup()
1627 {
1628
1629         if (!vm_pages_needed && curthread->td_proc != pageproc) {
1630                 vm_pages_needed = 1;
1631                 wakeup(&vm_pages_needed);
1632         }
1633 }
1634
1635 #if !defined(NO_SWAPPING)
1636 static void
1637 vm_req_vmdaemon(int req)
1638 {
1639         static int lastrun = 0;
1640
1641         mtx_lock(&vm_daemon_mtx);
1642         vm_pageout_req_swapout |= req;
1643         if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1644                 wakeup(&vm_daemon_needed);
1645                 lastrun = ticks;
1646         }
1647         mtx_unlock(&vm_daemon_mtx);
1648 }
1649
1650 static void
1651 vm_daemon()
1652 {
1653         struct rlimit rsslim;
1654         struct proc *p;
1655         struct thread *td;
1656         struct vmspace *vm;
1657         int breakout, swapout_flags;
1658
1659         while (TRUE) {
1660                 mtx_lock(&vm_daemon_mtx);
1661                 msleep(&vm_daemon_needed, &vm_daemon_mtx, PPAUSE, "psleep", 0);
1662                 swapout_flags = vm_pageout_req_swapout;
1663                 vm_pageout_req_swapout = 0;
1664                 mtx_unlock(&vm_daemon_mtx);
1665                 if (swapout_flags)
1666                         swapout_procs(swapout_flags);
1667
1668                 /*
1669                  * scan the processes for exceeding their rlimits or if
1670                  * process is swapped out -- deactivate pages
1671                  */
1672                 sx_slock(&allproc_lock);
1673                 FOREACH_PROC_IN_SYSTEM(p) {
1674                         vm_pindex_t limit, size;
1675
1676                         /*
1677                          * if this is a system process or if we have already
1678                          * looked at this process, skip it.
1679                          */
1680                         PROC_LOCK(p);
1681                         if (p->p_flag & (P_INEXEC | P_SYSTEM | P_WEXIT)) {
1682                                 PROC_UNLOCK(p);
1683                                 continue;
1684                         }
1685                         /*
1686                          * if the process is in a non-running type state,
1687                          * don't touch it.
1688                          */
1689                         breakout = 0;
1690                         FOREACH_THREAD_IN_PROC(p, td) {
1691                                 thread_lock(td);
1692                                 if (!TD_ON_RUNQ(td) &&
1693                                     !TD_IS_RUNNING(td) &&
1694                                     !TD_IS_SLEEPING(td)) {
1695                                         thread_unlock(td);
1696                                         breakout = 1;
1697                                         break;
1698                                 }
1699                                 thread_unlock(td);
1700                         }
1701                         if (breakout) {
1702                                 PROC_UNLOCK(p);
1703                                 continue;
1704                         }
1705                         /*
1706                          * get a limit
1707                          */
1708                         lim_rlimit(p, RLIMIT_RSS, &rsslim);
1709                         limit = OFF_TO_IDX(
1710                             qmin(rsslim.rlim_cur, rsslim.rlim_max));
1711
1712                         /*
1713                          * let processes that are swapped out really be
1714                          * swapped out set the limit to nothing (will force a
1715                          * swap-out.)
1716                          */
1717                         if ((p->p_flag & P_INMEM) == 0)
1718                                 limit = 0;      /* XXX */
1719                         vm = vmspace_acquire_ref(p);
1720                         PROC_UNLOCK(p);
1721                         if (vm == NULL)
1722                                 continue;
1723
1724                         size = vmspace_resident_count(vm);
1725                         if (limit >= 0 && size >= limit) {
1726                                 vm_pageout_map_deactivate_pages(
1727                                     &vm->vm_map, limit);
1728                         }
1729                         vmspace_free(vm);
1730                 }
1731                 sx_sunlock(&allproc_lock);
1732         }
1733 }
1734 #endif                  /* !defined(NO_SWAPPING) */