]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_phys.c
Revert r228986 until it can be reworked to avoid panicing the kernel when the
[FreeBSD/FreeBSD.git] / sys / vm / vm_phys.c
1 /*-
2  * Copyright (c) 2002-2006 Rice University
3  * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
4  * All rights reserved.
5  *
6  * This software was developed for the FreeBSD Project by Alan L. Cox,
7  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
22  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
28  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31
32 /*
33  *      Physical memory system implementation
34  *
35  * Any external functions defined by this module are only to be used by the
36  * virtual memory system.
37  */
38
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41
42 #include "opt_ddb.h"
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/lock.h>
47 #include <sys/kernel.h>
48 #include <sys/malloc.h>
49 #include <sys/mutex.h>
50 #include <sys/queue.h>
51 #include <sys/sbuf.h>
52 #include <sys/sysctl.h>
53 #include <sys/vmmeter.h>
54
55 #include <ddb/ddb.h>
56
57 #include <vm/vm.h>
58 #include <vm/vm_param.h>
59 #include <vm/vm_kern.h>
60 #include <vm/vm_object.h>
61 #include <vm/vm_page.h>
62 #include <vm/vm_phys.h>
63
64 /*
65  * VM_FREELIST_DEFAULT is split into VM_NDOMAIN lists, one for each
66  * domain.  These extra lists are stored at the end of the regular
67  * free lists starting with VM_NFREELIST.
68  */
69 #define VM_RAW_NFREELIST        (VM_NFREELIST + VM_NDOMAIN - 1)
70
71 struct vm_freelist {
72         struct pglist pl;
73         int lcnt;
74 };
75
76 struct vm_phys_seg {
77         vm_paddr_t      start;
78         vm_paddr_t      end;
79         vm_page_t       first_page;
80         int             domain;
81         struct vm_freelist (*free_queues)[VM_NFREEPOOL][VM_NFREEORDER];
82 };
83
84 struct mem_affinity *mem_affinity;
85
86 static struct vm_phys_seg vm_phys_segs[VM_PHYSSEG_MAX];
87
88 static int vm_phys_nsegs;
89
90 static struct vm_freelist
91     vm_phys_free_queues[VM_RAW_NFREELIST][VM_NFREEPOOL][VM_NFREEORDER];
92 static struct vm_freelist
93 (*vm_phys_lookup_lists[VM_NDOMAIN][VM_RAW_NFREELIST])[VM_NFREEPOOL][VM_NFREEORDER];
94
95 static int vm_nfreelists = VM_FREELIST_DEFAULT + 1;
96
97 static int cnt_prezero;
98 SYSCTL_INT(_vm_stats_misc, OID_AUTO, cnt_prezero, CTLFLAG_RD,
99     &cnt_prezero, 0, "The number of physical pages prezeroed at idle time");
100
101 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
102 SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD,
103     NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info");
104
105 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
106 SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD,
107     NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info");
108
109 #if VM_NDOMAIN > 1
110 static int sysctl_vm_phys_lookup_lists(SYSCTL_HANDLER_ARGS);
111 SYSCTL_OID(_vm, OID_AUTO, phys_lookup_lists, CTLTYPE_STRING | CTLFLAG_RD,
112     NULL, 0, sysctl_vm_phys_lookup_lists, "A", "Phys Lookup Lists");
113 #endif
114
115 static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind,
116     int domain);
117 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind);
118 static int vm_phys_paddr_to_segind(vm_paddr_t pa);
119 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
120     int order);
121
122 /*
123  * Outputs the state of the physical memory allocator, specifically,
124  * the amount of physical memory in each free list.
125  */
126 static int
127 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
128 {
129         struct sbuf sbuf;
130         struct vm_freelist *fl;
131         int error, flind, oind, pind;
132
133         error = sysctl_wire_old_buffer(req, 0);
134         if (error != 0)
135                 return (error);
136         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
137         for (flind = 0; flind < vm_nfreelists; flind++) {
138                 sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
139                     "\n  ORDER (SIZE)  |  NUMBER"
140                     "\n              ", flind);
141                 for (pind = 0; pind < VM_NFREEPOOL; pind++)
142                         sbuf_printf(&sbuf, "  |  POOL %d", pind);
143                 sbuf_printf(&sbuf, "\n--            ");
144                 for (pind = 0; pind < VM_NFREEPOOL; pind++)
145                         sbuf_printf(&sbuf, "-- --      ");
146                 sbuf_printf(&sbuf, "--\n");
147                 for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
148                         sbuf_printf(&sbuf, "  %2d (%6dK)", oind,
149                             1 << (PAGE_SHIFT - 10 + oind));
150                         for (pind = 0; pind < VM_NFREEPOOL; pind++) {
151                                 fl = vm_phys_free_queues[flind][pind];
152                                 sbuf_printf(&sbuf, "  |  %6d", fl[oind].lcnt);
153                         }
154                         sbuf_printf(&sbuf, "\n");
155                 }
156         }
157         error = sbuf_finish(&sbuf);
158         sbuf_delete(&sbuf);
159         return (error);
160 }
161
162 /*
163  * Outputs the set of physical memory segments.
164  */
165 static int
166 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
167 {
168         struct sbuf sbuf;
169         struct vm_phys_seg *seg;
170         int error, segind;
171
172         error = sysctl_wire_old_buffer(req, 0);
173         if (error != 0)
174                 return (error);
175         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
176         for (segind = 0; segind < vm_phys_nsegs; segind++) {
177                 sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
178                 seg = &vm_phys_segs[segind];
179                 sbuf_printf(&sbuf, "start:     %#jx\n",
180                     (uintmax_t)seg->start);
181                 sbuf_printf(&sbuf, "end:       %#jx\n",
182                     (uintmax_t)seg->end);
183                 sbuf_printf(&sbuf, "domain:    %d\n", seg->domain);
184                 sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
185         }
186         error = sbuf_finish(&sbuf);
187         sbuf_delete(&sbuf);
188         return (error);
189 }
190
191 #if VM_NDOMAIN > 1
192 /*
193  * Outputs the set of free list lookup lists.
194  */
195 static int
196 sysctl_vm_phys_lookup_lists(SYSCTL_HANDLER_ARGS)
197 {
198         struct sbuf sbuf;
199         int domain, error, flind, ndomains;
200
201         error = sysctl_wire_old_buffer(req, 0);
202         if (error != 0)
203                 return (error);
204         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
205         ndomains = vm_nfreelists - VM_NFREELIST + 1;
206         for (domain = 0; domain < ndomains; domain++) {
207                 sbuf_printf(&sbuf, "\nDOMAIN %d:\n\n", domain);
208                 for (flind = 0; flind < vm_nfreelists; flind++)
209                         sbuf_printf(&sbuf, "  [%d]:\t%p\n", flind,
210                             vm_phys_lookup_lists[domain][flind]);
211         }
212         error = sbuf_finish(&sbuf);
213         sbuf_delete(&sbuf);
214         return (error);
215 }
216 #endif
217         
218 /*
219  * Create a physical memory segment.
220  */
221 static void
222 _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind, int domain)
223 {
224         struct vm_phys_seg *seg;
225 #ifdef VM_PHYSSEG_SPARSE
226         long pages;
227         int segind;
228
229         pages = 0;
230         for (segind = 0; segind < vm_phys_nsegs; segind++) {
231                 seg = &vm_phys_segs[segind];
232                 pages += atop(seg->end - seg->start);
233         }
234 #endif
235         KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
236             ("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
237         seg = &vm_phys_segs[vm_phys_nsegs++];
238         seg->start = start;
239         seg->end = end;
240         seg->domain = domain;
241 #ifdef VM_PHYSSEG_SPARSE
242         seg->first_page = &vm_page_array[pages];
243 #else
244         seg->first_page = PHYS_TO_VM_PAGE(start);
245 #endif
246 #if VM_NDOMAIN > 1
247         if (flind == VM_FREELIST_DEFAULT && domain != 0) {
248                 flind = VM_NFREELIST + (domain - 1);
249                 if (flind >= vm_nfreelists)
250                         vm_nfreelists = flind + 1;
251         }
252 #endif
253         seg->free_queues = &vm_phys_free_queues[flind];
254 }
255
256 static void
257 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind)
258 {
259         int i;
260
261         if (mem_affinity == NULL) {
262                 _vm_phys_create_seg(start, end, flind, 0);
263                 return;
264         }
265
266         for (i = 0;; i++) {
267                 if (mem_affinity[i].end == 0)
268                         panic("Reached end of affinity info");
269                 if (mem_affinity[i].end <= start)
270                         continue;
271                 if (mem_affinity[i].start > start)
272                         panic("No affinity info for start %jx",
273                             (uintmax_t)start);
274                 if (mem_affinity[i].end >= end) {
275                         _vm_phys_create_seg(start, end, flind,
276                             mem_affinity[i].domain);
277                         break;
278                 }
279                 _vm_phys_create_seg(start, mem_affinity[i].end, flind,
280                     mem_affinity[i].domain);
281                 start = mem_affinity[i].end;
282         }
283 }
284
285 /*
286  * Initialize the physical memory allocator.
287  */
288 void
289 vm_phys_init(void)
290 {
291         struct vm_freelist *fl;
292         int flind, i, oind, pind;
293 #if VM_NDOMAIN > 1
294         int ndomains, j;
295 #endif
296
297         for (i = 0; phys_avail[i + 1] != 0; i += 2) {
298 #ifdef  VM_FREELIST_ISADMA
299                 if (phys_avail[i] < 16777216) {
300                         if (phys_avail[i + 1] > 16777216) {
301                                 vm_phys_create_seg(phys_avail[i], 16777216,
302                                     VM_FREELIST_ISADMA);
303                                 vm_phys_create_seg(16777216, phys_avail[i + 1],
304                                     VM_FREELIST_DEFAULT);
305                         } else {
306                                 vm_phys_create_seg(phys_avail[i],
307                                     phys_avail[i + 1], VM_FREELIST_ISADMA);
308                         }
309                         if (VM_FREELIST_ISADMA >= vm_nfreelists)
310                                 vm_nfreelists = VM_FREELIST_ISADMA + 1;
311                 } else
312 #endif
313 #ifdef  VM_FREELIST_HIGHMEM
314                 if (phys_avail[i + 1] > VM_HIGHMEM_ADDRESS) {
315                         if (phys_avail[i] < VM_HIGHMEM_ADDRESS) {
316                                 vm_phys_create_seg(phys_avail[i],
317                                     VM_HIGHMEM_ADDRESS, VM_FREELIST_DEFAULT);
318                                 vm_phys_create_seg(VM_HIGHMEM_ADDRESS,
319                                     phys_avail[i + 1], VM_FREELIST_HIGHMEM);
320                         } else {
321                                 vm_phys_create_seg(phys_avail[i],
322                                     phys_avail[i + 1], VM_FREELIST_HIGHMEM);
323                         }
324                         if (VM_FREELIST_HIGHMEM >= vm_nfreelists)
325                                 vm_nfreelists = VM_FREELIST_HIGHMEM + 1;
326                 } else
327 #endif
328                 vm_phys_create_seg(phys_avail[i], phys_avail[i + 1],
329                     VM_FREELIST_DEFAULT);
330         }
331         for (flind = 0; flind < vm_nfreelists; flind++) {
332                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
333                         fl = vm_phys_free_queues[flind][pind];
334                         for (oind = 0; oind < VM_NFREEORDER; oind++)
335                                 TAILQ_INIT(&fl[oind].pl);
336                 }
337         }
338 #if VM_NDOMAIN > 1
339         /*
340          * Build a free list lookup list for each domain.  All of the
341          * memory domain lists are inserted at the VM_FREELIST_DEFAULT
342          * index in a round-robin order starting with the current
343          * domain.
344          */
345         ndomains = vm_nfreelists - VM_NFREELIST + 1;
346         for (flind = 0; flind < VM_FREELIST_DEFAULT; flind++)
347                 for (i = 0; i < ndomains; i++)
348                         vm_phys_lookup_lists[i][flind] =
349                             &vm_phys_free_queues[flind];
350         for (i = 0; i < ndomains; i++)
351                 for (j = 0; j < ndomains; j++) {
352                         flind = (i + j) % ndomains;
353                         if (flind == 0)
354                                 flind = VM_FREELIST_DEFAULT;
355                         else
356                                 flind += VM_NFREELIST - 1;
357                         vm_phys_lookup_lists[i][VM_FREELIST_DEFAULT + j] =
358                             &vm_phys_free_queues[flind];
359                 }
360         for (flind = VM_FREELIST_DEFAULT + 1; flind < VM_NFREELIST;
361              flind++)
362                 for (i = 0; i < ndomains; i++)
363                         vm_phys_lookup_lists[i][flind + ndomains - 1] =
364                             &vm_phys_free_queues[flind];
365 #else
366         for (flind = 0; flind < vm_nfreelists; flind++)
367                 vm_phys_lookup_lists[0][flind] = &vm_phys_free_queues[flind];
368 #endif
369 }
370
371 /*
372  * Split a contiguous, power of two-sized set of physical pages.
373  */
374 static __inline void
375 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order)
376 {
377         vm_page_t m_buddy;
378
379         while (oind > order) {
380                 oind--;
381                 m_buddy = &m[1 << oind];
382                 KASSERT(m_buddy->order == VM_NFREEORDER,
383                     ("vm_phys_split_pages: page %p has unexpected order %d",
384                     m_buddy, m_buddy->order));
385                 m_buddy->order = oind;
386                 TAILQ_INSERT_HEAD(&fl[oind].pl, m_buddy, pageq);
387                 fl[oind].lcnt++;
388         }
389 }
390
391 /*
392  * Initialize a physical page and add it to the free lists.
393  */
394 void
395 vm_phys_add_page(vm_paddr_t pa)
396 {
397         vm_page_t m;
398
399         cnt.v_page_count++;
400         m = vm_phys_paddr_to_vm_page(pa);
401         m->phys_addr = pa;
402         m->queue = PQ_NONE;
403         m->segind = vm_phys_paddr_to_segind(pa);
404         m->flags = PG_FREE;
405         KASSERT(m->order == VM_NFREEORDER,
406             ("vm_phys_add_page: page %p has unexpected order %d",
407             m, m->order));
408         m->pool = VM_FREEPOOL_DEFAULT;
409         pmap_page_init(m);
410         mtx_lock(&vm_page_queue_free_mtx);
411         cnt.v_free_count++;
412         vm_phys_free_pages(m, 0);
413         mtx_unlock(&vm_page_queue_free_mtx);
414 }
415
416 /*
417  * Allocate a contiguous, power of two-sized set of physical pages
418  * from the free lists.
419  *
420  * The free page queues must be locked.
421  */
422 vm_page_t
423 vm_phys_alloc_pages(int pool, int order)
424 {
425         vm_page_t m;
426         int flind;
427
428         for (flind = 0; flind < vm_nfreelists; flind++) {
429                 m = vm_phys_alloc_freelist_pages(flind, pool, order);
430                 if (m != NULL)
431                         return (m);
432         }
433         return (NULL);
434 }
435
436 /*
437  * Find and dequeue a free page on the given free list, with the 
438  * specified pool and order
439  */
440 vm_page_t
441 vm_phys_alloc_freelist_pages(int flind, int pool, int order)
442 {       
443         struct vm_freelist *fl;
444         struct vm_freelist *alt;
445         int domain, oind, pind;
446         vm_page_t m;
447
448         KASSERT(flind < VM_NFREELIST,
449             ("vm_phys_alloc_freelist_pages: freelist %d is out of range", flind));
450         KASSERT(pool < VM_NFREEPOOL,
451             ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool));
452         KASSERT(order < VM_NFREEORDER,
453             ("vm_phys_alloc_freelist_pages: order %d is out of range", order));
454
455 #if VM_NDOMAIN > 1
456         domain = PCPU_GET(domain);
457 #else
458         domain = 0;
459 #endif
460         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
461         fl = (*vm_phys_lookup_lists[domain][flind])[pool];
462         for (oind = order; oind < VM_NFREEORDER; oind++) {
463                 m = TAILQ_FIRST(&fl[oind].pl);
464                 if (m != NULL) {
465                         TAILQ_REMOVE(&fl[oind].pl, m, pageq);
466                         fl[oind].lcnt--;
467                         m->order = VM_NFREEORDER;
468                         vm_phys_split_pages(m, oind, fl, order);
469                         return (m);
470                 }
471         }
472
473         /*
474          * The given pool was empty.  Find the largest
475          * contiguous, power-of-two-sized set of pages in any
476          * pool.  Transfer these pages to the given pool, and
477          * use them to satisfy the allocation.
478          */
479         for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
480                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
481                         alt = (*vm_phys_lookup_lists[domain][flind])[pind];
482                         m = TAILQ_FIRST(&alt[oind].pl);
483                         if (m != NULL) {
484                                 TAILQ_REMOVE(&alt[oind].pl, m, pageq);
485                                 alt[oind].lcnt--;
486                                 m->order = VM_NFREEORDER;
487                                 vm_phys_set_pool(pool, m, oind);
488                                 vm_phys_split_pages(m, oind, fl, order);
489                                 return (m);
490                         }
491                 }
492         }
493         return (NULL);
494 }
495
496 /*
497  * Find the vm_page corresponding to the given physical address.
498  */
499 vm_page_t
500 vm_phys_paddr_to_vm_page(vm_paddr_t pa)
501 {
502         struct vm_phys_seg *seg;
503         int segind;
504
505         for (segind = 0; segind < vm_phys_nsegs; segind++) {
506                 seg = &vm_phys_segs[segind];
507                 if (pa >= seg->start && pa < seg->end)
508                         return (&seg->first_page[atop(pa - seg->start)]);
509         }
510         return (NULL);
511 }
512
513 /*
514  * Find the segment containing the given physical address.
515  */
516 static int
517 vm_phys_paddr_to_segind(vm_paddr_t pa)
518 {
519         struct vm_phys_seg *seg;
520         int segind;
521
522         for (segind = 0; segind < vm_phys_nsegs; segind++) {
523                 seg = &vm_phys_segs[segind];
524                 if (pa >= seg->start && pa < seg->end)
525                         return (segind);
526         }
527         panic("vm_phys_paddr_to_segind: paddr %#jx is not in any segment" ,
528             (uintmax_t)pa);
529 }
530
531 /*
532  * Free a contiguous, power of two-sized set of physical pages.
533  *
534  * The free page queues must be locked.
535  */
536 void
537 vm_phys_free_pages(vm_page_t m, int order)
538 {
539         struct vm_freelist *fl;
540         struct vm_phys_seg *seg;
541         vm_paddr_t pa;
542         vm_page_t m_buddy;
543
544         KASSERT(m->order == VM_NFREEORDER,
545             ("vm_phys_free_pages: page %p has unexpected order %d",
546             m, m->order));
547         KASSERT(m->pool < VM_NFREEPOOL,
548             ("vm_phys_free_pages: page %p has unexpected pool %d",
549             m, m->pool));
550         KASSERT(order < VM_NFREEORDER,
551             ("vm_phys_free_pages: order %d is out of range", order));
552         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
553         seg = &vm_phys_segs[m->segind];
554         if (order < VM_NFREEORDER - 1) {
555                 pa = VM_PAGE_TO_PHYS(m);
556                 do {
557                         pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order));
558                         if (pa < seg->start || pa >= seg->end)
559                                 break;
560                         m_buddy = &seg->first_page[atop(pa - seg->start)];
561                         if (m_buddy->order != order)
562                                 break;
563                         fl = (*seg->free_queues)[m_buddy->pool];
564                         TAILQ_REMOVE(&fl[order].pl, m_buddy, pageq);
565                         fl[order].lcnt--;
566                         m_buddy->order = VM_NFREEORDER;
567                         if (m_buddy->pool != m->pool)
568                                 vm_phys_set_pool(m->pool, m_buddy, order);
569                         order++;
570                         pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1);
571                         m = &seg->first_page[atop(pa - seg->start)];
572                 } while (order < VM_NFREEORDER - 1);
573         }
574         m->order = order;
575         fl = (*seg->free_queues)[m->pool];
576         TAILQ_INSERT_TAIL(&fl[order].pl, m, pageq);
577         fl[order].lcnt++;
578 }
579
580 /*
581  * Free a contiguous, arbitrarily sized set of physical pages.
582  *
583  * The free page queues must be locked.
584  */
585 void
586 vm_phys_free_contig(vm_page_t m, u_long npages)
587 {
588         u_int n;
589         int order;
590
591         /*
592          * Avoid unnecessary coalescing by freeing the pages in the largest
593          * possible power-of-two-sized subsets.
594          */
595         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
596         for (;; npages -= n) {
597                 /*
598                  * Unsigned "min" is used here so that "order" is assigned
599                  * "VM_NFREEORDER - 1" when "m"'s physical address is zero
600                  * or the low-order bits of its physical address are zero
601                  * because the size of a physical address exceeds the size of
602                  * a long.
603                  */
604                 order = min(ffsl(VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) - 1,
605                     VM_NFREEORDER - 1);
606                 n = 1 << order;
607                 if (npages < n)
608                         break;
609                 vm_phys_free_pages(m, order);
610                 m += n;
611         }
612         /* The residual "npages" is less than "1 << (VM_NFREEORDER - 1)". */
613         for (; npages > 0; npages -= n) {
614                 order = flsl(npages) - 1;
615                 n = 1 << order;
616                 vm_phys_free_pages(m, order);
617                 m += n;
618         }
619 }
620
621 /*
622  * Set the pool for a contiguous, power of two-sized set of physical pages. 
623  */
624 void
625 vm_phys_set_pool(int pool, vm_page_t m, int order)
626 {
627         vm_page_t m_tmp;
628
629         for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
630                 m_tmp->pool = pool;
631 }
632
633 /*
634  * Search for the given physical page "m" in the free lists.  If the search
635  * succeeds, remove "m" from the free lists and return TRUE.  Otherwise, return
636  * FALSE, indicating that "m" is not in the free lists.
637  *
638  * The free page queues must be locked.
639  */
640 boolean_t
641 vm_phys_unfree_page(vm_page_t m)
642 {
643         struct vm_freelist *fl;
644         struct vm_phys_seg *seg;
645         vm_paddr_t pa, pa_half;
646         vm_page_t m_set, m_tmp;
647         int order;
648
649         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
650
651         /*
652          * First, find the contiguous, power of two-sized set of free
653          * physical pages containing the given physical page "m" and
654          * assign it to "m_set".
655          */
656         seg = &vm_phys_segs[m->segind];
657         for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
658             order < VM_NFREEORDER - 1; ) {
659                 order++;
660                 pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
661                 if (pa >= seg->start)
662                         m_set = &seg->first_page[atop(pa - seg->start)];
663                 else
664                         return (FALSE);
665         }
666         if (m_set->order < order)
667                 return (FALSE);
668         if (m_set->order == VM_NFREEORDER)
669                 return (FALSE);
670         KASSERT(m_set->order < VM_NFREEORDER,
671             ("vm_phys_unfree_page: page %p has unexpected order %d",
672             m_set, m_set->order));
673
674         /*
675          * Next, remove "m_set" from the free lists.  Finally, extract
676          * "m" from "m_set" using an iterative algorithm: While "m_set"
677          * is larger than a page, shrink "m_set" by returning the half
678          * of "m_set" that does not contain "m" to the free lists.
679          */
680         fl = (*seg->free_queues)[m_set->pool];
681         order = m_set->order;
682         TAILQ_REMOVE(&fl[order].pl, m_set, pageq);
683         fl[order].lcnt--;
684         m_set->order = VM_NFREEORDER;
685         while (order > 0) {
686                 order--;
687                 pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
688                 if (m->phys_addr < pa_half)
689                         m_tmp = &seg->first_page[atop(pa_half - seg->start)];
690                 else {
691                         m_tmp = m_set;
692                         m_set = &seg->first_page[atop(pa_half - seg->start)];
693                 }
694                 m_tmp->order = order;
695                 TAILQ_INSERT_HEAD(&fl[order].pl, m_tmp, pageq);
696                 fl[order].lcnt++;
697         }
698         KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
699         return (TRUE);
700 }
701
702 /*
703  * Try to zero one physical page.  Used by an idle priority thread.
704  */
705 boolean_t
706 vm_phys_zero_pages_idle(void)
707 {
708         static struct vm_freelist *fl = vm_phys_free_queues[0][0];
709         static int flind, oind, pind;
710         vm_page_t m, m_tmp;
711
712         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
713         for (;;) {
714                 TAILQ_FOREACH_REVERSE(m, &fl[oind].pl, pglist, pageq) {
715                         for (m_tmp = m; m_tmp < &m[1 << oind]; m_tmp++) {
716                                 if ((m_tmp->flags & (PG_CACHED | PG_ZERO)) == 0) {
717                                         vm_phys_unfree_page(m_tmp);
718                                         cnt.v_free_count--;
719                                         mtx_unlock(&vm_page_queue_free_mtx);
720                                         pmap_zero_page_idle(m_tmp);
721                                         m_tmp->flags |= PG_ZERO;
722                                         mtx_lock(&vm_page_queue_free_mtx);
723                                         cnt.v_free_count++;
724                                         vm_phys_free_pages(m_tmp, 0);
725                                         vm_page_zero_count++;
726                                         cnt_prezero++;
727                                         return (TRUE);
728                                 }
729                         }
730                 }
731                 oind++;
732                 if (oind == VM_NFREEORDER) {
733                         oind = 0;
734                         pind++;
735                         if (pind == VM_NFREEPOOL) {
736                                 pind = 0;
737                                 flind++;
738                                 if (flind == vm_nfreelists)
739                                         flind = 0;
740                         }
741                         fl = vm_phys_free_queues[flind][pind];
742                 }
743         }
744 }
745
746 /*
747  * Allocate a contiguous set of physical pages of the given size
748  * "npages" from the free lists.  All of the physical pages must be at
749  * or above the given physical address "low" and below the given
750  * physical address "high".  The given value "alignment" determines the
751  * alignment of the first physical page in the set.  If the given value
752  * "boundary" is non-zero, then the set of physical pages cannot cross
753  * any physical address boundary that is a multiple of that value.  Both
754  * "alignment" and "boundary" must be a power of two.
755  */
756 vm_page_t
757 vm_phys_alloc_contig(u_long npages, vm_paddr_t low, vm_paddr_t high,
758     u_long alignment, vm_paddr_t boundary)
759 {
760         struct vm_freelist *fl;
761         struct vm_phys_seg *seg;
762         vm_paddr_t pa, pa_last, size;
763         vm_page_t m, m_ret;
764         u_long npages_end;
765         int domain, flind, oind, order, pind;
766
767         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
768 #if VM_NDOMAIN > 1
769         domain = PCPU_GET(domain);
770 #else
771         domain = 0;
772 #endif
773         size = npages << PAGE_SHIFT;
774         KASSERT(size != 0,
775             ("vm_phys_alloc_contig: size must not be 0"));
776         KASSERT((alignment & (alignment - 1)) == 0,
777             ("vm_phys_alloc_contig: alignment must be a power of 2"));
778         KASSERT((boundary & (boundary - 1)) == 0,
779             ("vm_phys_alloc_contig: boundary must be a power of 2"));
780         /* Compute the queue that is the best fit for npages. */
781         for (order = 0; (1 << order) < npages; order++);
782         for (flind = 0; flind < vm_nfreelists; flind++) {
783                 for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER; oind++) {
784                         for (pind = 0; pind < VM_NFREEPOOL; pind++) {
785                                 fl = (*vm_phys_lookup_lists[domain][flind])
786                                     [pind];
787                                 TAILQ_FOREACH(m_ret, &fl[oind].pl, pageq) {
788                                         /*
789                                          * A free list may contain physical pages
790                                          * from one or more segments.
791                                          */
792                                         seg = &vm_phys_segs[m_ret->segind];
793                                         if (seg->start > high ||
794                                             low >= seg->end)
795                                                 continue;
796
797                                         /*
798                                          * Is the size of this allocation request
799                                          * larger than the largest block size?
800                                          */
801                                         if (order >= VM_NFREEORDER) {
802                                                 /*
803                                                  * Determine if a sufficient number
804                                                  * of subsequent blocks to satisfy
805                                                  * the allocation request are free.
806                                                  */
807                                                 pa = VM_PAGE_TO_PHYS(m_ret);
808                                                 pa_last = pa + size;
809                                                 for (;;) {
810                                                         pa += 1 << (PAGE_SHIFT + VM_NFREEORDER - 1);
811                                                         if (pa >= pa_last)
812                                                                 break;
813                                                         if (pa < seg->start ||
814                                                             pa >= seg->end)
815                                                                 break;
816                                                         m = &seg->first_page[atop(pa - seg->start)];
817                                                         if (m->order != VM_NFREEORDER - 1)
818                                                                 break;
819                                                 }
820                                                 /* If not, continue to the next block. */
821                                                 if (pa < pa_last)
822                                                         continue;
823                                         }
824
825                                         /*
826                                          * Determine if the blocks are within the given range,
827                                          * satisfy the given alignment, and do not cross the
828                                          * given boundary.
829                                          */
830                                         pa = VM_PAGE_TO_PHYS(m_ret);
831                                         if (pa >= low &&
832                                             pa + size <= high &&
833                                             (pa & (alignment - 1)) == 0 &&
834                                             ((pa ^ (pa + size - 1)) & ~(boundary - 1)) == 0)
835                                                 goto done;
836                                 }
837                         }
838                 }
839         }
840         return (NULL);
841 done:
842         for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) {
843                 fl = (*seg->free_queues)[m->pool];
844                 TAILQ_REMOVE(&fl[m->order].pl, m, pageq);
845                 fl[m->order].lcnt--;
846                 m->order = VM_NFREEORDER;
847         }
848         if (m_ret->pool != VM_FREEPOOL_DEFAULT)
849                 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m_ret, oind);
850         fl = (*seg->free_queues)[m_ret->pool];
851         vm_phys_split_pages(m_ret, oind, fl, order);
852         /* Return excess pages to the free lists. */
853         npages_end = roundup2(npages, 1 << imin(oind, order));
854         if (npages < npages_end)
855                 vm_phys_free_contig(&m_ret[npages], npages_end - npages);
856         return (m_ret);
857 }
858
859 #ifdef DDB
860 /*
861  * Show the number of physical pages in each of the free lists.
862  */
863 DB_SHOW_COMMAND(freepages, db_show_freepages)
864 {
865         struct vm_freelist *fl;
866         int flind, oind, pind;
867
868         for (flind = 0; flind < vm_nfreelists; flind++) {
869                 db_printf("FREE LIST %d:\n"
870                     "\n  ORDER (SIZE)  |  NUMBER"
871                     "\n              ", flind);
872                 for (pind = 0; pind < VM_NFREEPOOL; pind++)
873                         db_printf("  |  POOL %d", pind);
874                 db_printf("\n--            ");
875                 for (pind = 0; pind < VM_NFREEPOOL; pind++)
876                         db_printf("-- --      ");
877                 db_printf("--\n");
878                 for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
879                         db_printf("  %2.2d (%6.6dK)", oind,
880                             1 << (PAGE_SHIFT - 10 + oind));
881                         for (pind = 0; pind < VM_NFREEPOOL; pind++) {
882                                 fl = vm_phys_free_queues[flind][pind];
883                                 db_printf("  |  %6.6d", fl[oind].lcnt);
884                         }
885                         db_printf("\n");
886                 }
887                 db_printf("\n");
888         }
889 }
890 #endif