]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_phys.c
Fix a bug in the device pager code that can trigger an assertion
[FreeBSD/FreeBSD.git] / sys / vm / vm_phys.c
1 /*-
2  * Copyright (c) 2002-2006 Rice University
3  * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
4  * All rights reserved.
5  *
6  * This software was developed for the FreeBSD Project by Alan L. Cox,
7  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
22  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
28  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31
32 /*
33  *      Physical memory system implementation
34  *
35  * Any external functions defined by this module are only to be used by the
36  * virtual memory system.
37  */
38
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41
42 #include "opt_ddb.h"
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/lock.h>
47 #include <sys/kernel.h>
48 #include <sys/malloc.h>
49 #include <sys/mutex.h>
50 #include <sys/queue.h>
51 #include <sys/sbuf.h>
52 #include <sys/sysctl.h>
53 #include <sys/vmmeter.h>
54
55 #include <ddb/ddb.h>
56
57 #include <vm/vm.h>
58 #include <vm/vm_param.h>
59 #include <vm/vm_kern.h>
60 #include <vm/vm_object.h>
61 #include <vm/vm_page.h>
62 #include <vm/vm_phys.h>
63
64 /*
65  * VM_FREELIST_DEFAULT is split into VM_NDOMAIN lists, one for each
66  * domain.  These extra lists are stored at the end of the regular
67  * free lists starting with VM_NFREELIST.
68  */
69 #define VM_RAW_NFREELIST        (VM_NFREELIST + VM_NDOMAIN - 1)
70
71 struct vm_freelist {
72         struct pglist pl;
73         int lcnt;
74 };
75
76 struct vm_phys_seg {
77         vm_paddr_t      start;
78         vm_paddr_t      end;
79         vm_page_t       first_page;
80         int             domain;
81         struct vm_freelist (*free_queues)[VM_NFREEPOOL][VM_NFREEORDER];
82 };
83
84 struct mem_affinity *mem_affinity;
85
86 static struct vm_phys_seg vm_phys_segs[VM_PHYSSEG_MAX];
87
88 static int vm_phys_nsegs;
89
90 #define VM_PHYS_FICTITIOUS_NSEGS        8
91 static struct vm_phys_fictitious_seg {
92         vm_paddr_t      start;
93         vm_paddr_t      end;
94         vm_page_t       first_page;
95 } vm_phys_fictitious_segs[VM_PHYS_FICTITIOUS_NSEGS];
96 static struct mtx vm_phys_fictitious_reg_mtx;
97 MALLOC_DEFINE(M_FICT_PAGES, "", "");
98
99 static struct vm_freelist
100     vm_phys_free_queues[VM_RAW_NFREELIST][VM_NFREEPOOL][VM_NFREEORDER];
101 static struct vm_freelist
102 (*vm_phys_lookup_lists[VM_NDOMAIN][VM_RAW_NFREELIST])[VM_NFREEPOOL][VM_NFREEORDER];
103
104 static int vm_nfreelists = VM_FREELIST_DEFAULT + 1;
105
106 static int cnt_prezero;
107 SYSCTL_INT(_vm_stats_misc, OID_AUTO, cnt_prezero, CTLFLAG_RD,
108     &cnt_prezero, 0, "The number of physical pages prezeroed at idle time");
109
110 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
111 SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD,
112     NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info");
113
114 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
115 SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD,
116     NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info");
117
118 #if VM_NDOMAIN > 1
119 static int sysctl_vm_phys_lookup_lists(SYSCTL_HANDLER_ARGS);
120 SYSCTL_OID(_vm, OID_AUTO, phys_lookup_lists, CTLTYPE_STRING | CTLFLAG_RD,
121     NULL, 0, sysctl_vm_phys_lookup_lists, "A", "Phys Lookup Lists");
122 #endif
123
124 static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind,
125     int domain);
126 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind);
127 static int vm_phys_paddr_to_segind(vm_paddr_t pa);
128 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
129     int order);
130
131 /*
132  * Outputs the state of the physical memory allocator, specifically,
133  * the amount of physical memory in each free list.
134  */
135 static int
136 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
137 {
138         struct sbuf sbuf;
139         struct vm_freelist *fl;
140         int error, flind, oind, pind;
141
142         error = sysctl_wire_old_buffer(req, 0);
143         if (error != 0)
144                 return (error);
145         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
146         for (flind = 0; flind < vm_nfreelists; flind++) {
147                 sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
148                     "\n  ORDER (SIZE)  |  NUMBER"
149                     "\n              ", flind);
150                 for (pind = 0; pind < VM_NFREEPOOL; pind++)
151                         sbuf_printf(&sbuf, "  |  POOL %d", pind);
152                 sbuf_printf(&sbuf, "\n--            ");
153                 for (pind = 0; pind < VM_NFREEPOOL; pind++)
154                         sbuf_printf(&sbuf, "-- --      ");
155                 sbuf_printf(&sbuf, "--\n");
156                 for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
157                         sbuf_printf(&sbuf, "  %2d (%6dK)", oind,
158                             1 << (PAGE_SHIFT - 10 + oind));
159                         for (pind = 0; pind < VM_NFREEPOOL; pind++) {
160                                 fl = vm_phys_free_queues[flind][pind];
161                                 sbuf_printf(&sbuf, "  |  %6d", fl[oind].lcnt);
162                         }
163                         sbuf_printf(&sbuf, "\n");
164                 }
165         }
166         error = sbuf_finish(&sbuf);
167         sbuf_delete(&sbuf);
168         return (error);
169 }
170
171 /*
172  * Outputs the set of physical memory segments.
173  */
174 static int
175 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
176 {
177         struct sbuf sbuf;
178         struct vm_phys_seg *seg;
179         int error, segind;
180
181         error = sysctl_wire_old_buffer(req, 0);
182         if (error != 0)
183                 return (error);
184         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
185         for (segind = 0; segind < vm_phys_nsegs; segind++) {
186                 sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
187                 seg = &vm_phys_segs[segind];
188                 sbuf_printf(&sbuf, "start:     %#jx\n",
189                     (uintmax_t)seg->start);
190                 sbuf_printf(&sbuf, "end:       %#jx\n",
191                     (uintmax_t)seg->end);
192                 sbuf_printf(&sbuf, "domain:    %d\n", seg->domain);
193                 sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
194         }
195         error = sbuf_finish(&sbuf);
196         sbuf_delete(&sbuf);
197         return (error);
198 }
199
200 #if VM_NDOMAIN > 1
201 /*
202  * Outputs the set of free list lookup lists.
203  */
204 static int
205 sysctl_vm_phys_lookup_lists(SYSCTL_HANDLER_ARGS)
206 {
207         struct sbuf sbuf;
208         int domain, error, flind, ndomains;
209
210         error = sysctl_wire_old_buffer(req, 0);
211         if (error != 0)
212                 return (error);
213         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
214         ndomains = vm_nfreelists - VM_NFREELIST + 1;
215         for (domain = 0; domain < ndomains; domain++) {
216                 sbuf_printf(&sbuf, "\nDOMAIN %d:\n\n", domain);
217                 for (flind = 0; flind < vm_nfreelists; flind++)
218                         sbuf_printf(&sbuf, "  [%d]:\t%p\n", flind,
219                             vm_phys_lookup_lists[domain][flind]);
220         }
221         error = sbuf_finish(&sbuf);
222         sbuf_delete(&sbuf);
223         return (error);
224 }
225 #endif
226         
227 /*
228  * Create a physical memory segment.
229  */
230 static void
231 _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind, int domain)
232 {
233         struct vm_phys_seg *seg;
234 #ifdef VM_PHYSSEG_SPARSE
235         long pages;
236         int segind;
237
238         pages = 0;
239         for (segind = 0; segind < vm_phys_nsegs; segind++) {
240                 seg = &vm_phys_segs[segind];
241                 pages += atop(seg->end - seg->start);
242         }
243 #endif
244         KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
245             ("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
246         seg = &vm_phys_segs[vm_phys_nsegs++];
247         seg->start = start;
248         seg->end = end;
249         seg->domain = domain;
250 #ifdef VM_PHYSSEG_SPARSE
251         seg->first_page = &vm_page_array[pages];
252 #else
253         seg->first_page = PHYS_TO_VM_PAGE(start);
254 #endif
255 #if VM_NDOMAIN > 1
256         if (flind == VM_FREELIST_DEFAULT && domain != 0) {
257                 flind = VM_NFREELIST + (domain - 1);
258                 if (flind >= vm_nfreelists)
259                         vm_nfreelists = flind + 1;
260         }
261 #endif
262         seg->free_queues = &vm_phys_free_queues[flind];
263 }
264
265 static void
266 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind)
267 {
268         int i;
269
270         if (mem_affinity == NULL) {
271                 _vm_phys_create_seg(start, end, flind, 0);
272                 return;
273         }
274
275         for (i = 0;; i++) {
276                 if (mem_affinity[i].end == 0)
277                         panic("Reached end of affinity info");
278                 if (mem_affinity[i].end <= start)
279                         continue;
280                 if (mem_affinity[i].start > start)
281                         panic("No affinity info for start %jx",
282                             (uintmax_t)start);
283                 if (mem_affinity[i].end >= end) {
284                         _vm_phys_create_seg(start, end, flind,
285                             mem_affinity[i].domain);
286                         break;
287                 }
288                 _vm_phys_create_seg(start, mem_affinity[i].end, flind,
289                     mem_affinity[i].domain);
290                 start = mem_affinity[i].end;
291         }
292 }
293
294 /*
295  * Initialize the physical memory allocator.
296  */
297 void
298 vm_phys_init(void)
299 {
300         struct vm_freelist *fl;
301         int flind, i, oind, pind;
302 #if VM_NDOMAIN > 1
303         int ndomains, j;
304 #endif
305
306         for (i = 0; phys_avail[i + 1] != 0; i += 2) {
307 #ifdef  VM_FREELIST_ISADMA
308                 if (phys_avail[i] < 16777216) {
309                         if (phys_avail[i + 1] > 16777216) {
310                                 vm_phys_create_seg(phys_avail[i], 16777216,
311                                     VM_FREELIST_ISADMA);
312                                 vm_phys_create_seg(16777216, phys_avail[i + 1],
313                                     VM_FREELIST_DEFAULT);
314                         } else {
315                                 vm_phys_create_seg(phys_avail[i],
316                                     phys_avail[i + 1], VM_FREELIST_ISADMA);
317                         }
318                         if (VM_FREELIST_ISADMA >= vm_nfreelists)
319                                 vm_nfreelists = VM_FREELIST_ISADMA + 1;
320                 } else
321 #endif
322 #ifdef  VM_FREELIST_HIGHMEM
323                 if (phys_avail[i + 1] > VM_HIGHMEM_ADDRESS) {
324                         if (phys_avail[i] < VM_HIGHMEM_ADDRESS) {
325                                 vm_phys_create_seg(phys_avail[i],
326                                     VM_HIGHMEM_ADDRESS, VM_FREELIST_DEFAULT);
327                                 vm_phys_create_seg(VM_HIGHMEM_ADDRESS,
328                                     phys_avail[i + 1], VM_FREELIST_HIGHMEM);
329                         } else {
330                                 vm_phys_create_seg(phys_avail[i],
331                                     phys_avail[i + 1], VM_FREELIST_HIGHMEM);
332                         }
333                         if (VM_FREELIST_HIGHMEM >= vm_nfreelists)
334                                 vm_nfreelists = VM_FREELIST_HIGHMEM + 1;
335                 } else
336 #endif
337                 vm_phys_create_seg(phys_avail[i], phys_avail[i + 1],
338                     VM_FREELIST_DEFAULT);
339         }
340         for (flind = 0; flind < vm_nfreelists; flind++) {
341                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
342                         fl = vm_phys_free_queues[flind][pind];
343                         for (oind = 0; oind < VM_NFREEORDER; oind++)
344                                 TAILQ_INIT(&fl[oind].pl);
345                 }
346         }
347 #if VM_NDOMAIN > 1
348         /*
349          * Build a free list lookup list for each domain.  All of the
350          * memory domain lists are inserted at the VM_FREELIST_DEFAULT
351          * index in a round-robin order starting with the current
352          * domain.
353          */
354         ndomains = vm_nfreelists - VM_NFREELIST + 1;
355         for (flind = 0; flind < VM_FREELIST_DEFAULT; flind++)
356                 for (i = 0; i < ndomains; i++)
357                         vm_phys_lookup_lists[i][flind] =
358                             &vm_phys_free_queues[flind];
359         for (i = 0; i < ndomains; i++)
360                 for (j = 0; j < ndomains; j++) {
361                         flind = (i + j) % ndomains;
362                         if (flind == 0)
363                                 flind = VM_FREELIST_DEFAULT;
364                         else
365                                 flind += VM_NFREELIST - 1;
366                         vm_phys_lookup_lists[i][VM_FREELIST_DEFAULT + j] =
367                             &vm_phys_free_queues[flind];
368                 }
369         for (flind = VM_FREELIST_DEFAULT + 1; flind < VM_NFREELIST;
370              flind++)
371                 for (i = 0; i < ndomains; i++)
372                         vm_phys_lookup_lists[i][flind + ndomains - 1] =
373                             &vm_phys_free_queues[flind];
374 #else
375         for (flind = 0; flind < vm_nfreelists; flind++)
376                 vm_phys_lookup_lists[0][flind] = &vm_phys_free_queues[flind];
377 #endif
378
379         mtx_init(&vm_phys_fictitious_reg_mtx, "vmfctr", NULL, MTX_DEF);
380 }
381
382 /*
383  * Split a contiguous, power of two-sized set of physical pages.
384  */
385 static __inline void
386 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order)
387 {
388         vm_page_t m_buddy;
389
390         while (oind > order) {
391                 oind--;
392                 m_buddy = &m[1 << oind];
393                 KASSERT(m_buddy->order == VM_NFREEORDER,
394                     ("vm_phys_split_pages: page %p has unexpected order %d",
395                     m_buddy, m_buddy->order));
396                 m_buddy->order = oind;
397                 TAILQ_INSERT_HEAD(&fl[oind].pl, m_buddy, pageq);
398                 fl[oind].lcnt++;
399         }
400 }
401
402 /*
403  * Initialize a physical page and add it to the free lists.
404  */
405 void
406 vm_phys_add_page(vm_paddr_t pa)
407 {
408         vm_page_t m;
409
410         cnt.v_page_count++;
411         m = vm_phys_paddr_to_vm_page(pa);
412         m->phys_addr = pa;
413         m->queue = PQ_NONE;
414         m->segind = vm_phys_paddr_to_segind(pa);
415         m->flags = PG_FREE;
416         KASSERT(m->order == VM_NFREEORDER,
417             ("vm_phys_add_page: page %p has unexpected order %d",
418             m, m->order));
419         m->pool = VM_FREEPOOL_DEFAULT;
420         pmap_page_init(m);
421         mtx_lock(&vm_page_queue_free_mtx);
422         cnt.v_free_count++;
423         vm_phys_free_pages(m, 0);
424         mtx_unlock(&vm_page_queue_free_mtx);
425 }
426
427 /*
428  * Allocate a contiguous, power of two-sized set of physical pages
429  * from the free lists.
430  *
431  * The free page queues must be locked.
432  */
433 vm_page_t
434 vm_phys_alloc_pages(int pool, int order)
435 {
436         vm_page_t m;
437         int flind;
438
439         for (flind = 0; flind < vm_nfreelists; flind++) {
440                 m = vm_phys_alloc_freelist_pages(flind, pool, order);
441                 if (m != NULL)
442                         return (m);
443         }
444         return (NULL);
445 }
446
447 /*
448  * Find and dequeue a free page on the given free list, with the 
449  * specified pool and order
450  */
451 vm_page_t
452 vm_phys_alloc_freelist_pages(int flind, int pool, int order)
453 {       
454         struct vm_freelist *fl;
455         struct vm_freelist *alt;
456         int domain, oind, pind;
457         vm_page_t m;
458
459         KASSERT(flind < VM_NFREELIST,
460             ("vm_phys_alloc_freelist_pages: freelist %d is out of range", flind));
461         KASSERT(pool < VM_NFREEPOOL,
462             ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool));
463         KASSERT(order < VM_NFREEORDER,
464             ("vm_phys_alloc_freelist_pages: order %d is out of range", order));
465
466 #if VM_NDOMAIN > 1
467         domain = PCPU_GET(domain);
468 #else
469         domain = 0;
470 #endif
471         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
472         fl = (*vm_phys_lookup_lists[domain][flind])[pool];
473         for (oind = order; oind < VM_NFREEORDER; oind++) {
474                 m = TAILQ_FIRST(&fl[oind].pl);
475                 if (m != NULL) {
476                         TAILQ_REMOVE(&fl[oind].pl, m, pageq);
477                         fl[oind].lcnt--;
478                         m->order = VM_NFREEORDER;
479                         vm_phys_split_pages(m, oind, fl, order);
480                         return (m);
481                 }
482         }
483
484         /*
485          * The given pool was empty.  Find the largest
486          * contiguous, power-of-two-sized set of pages in any
487          * pool.  Transfer these pages to the given pool, and
488          * use them to satisfy the allocation.
489          */
490         for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
491                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
492                         alt = (*vm_phys_lookup_lists[domain][flind])[pind];
493                         m = TAILQ_FIRST(&alt[oind].pl);
494                         if (m != NULL) {
495                                 TAILQ_REMOVE(&alt[oind].pl, m, pageq);
496                                 alt[oind].lcnt--;
497                                 m->order = VM_NFREEORDER;
498                                 vm_phys_set_pool(pool, m, oind);
499                                 vm_phys_split_pages(m, oind, fl, order);
500                                 return (m);
501                         }
502                 }
503         }
504         return (NULL);
505 }
506
507 /*
508  * Find the vm_page corresponding to the given physical address.
509  */
510 vm_page_t
511 vm_phys_paddr_to_vm_page(vm_paddr_t pa)
512 {
513         struct vm_phys_seg *seg;
514         int segind;
515
516         for (segind = 0; segind < vm_phys_nsegs; segind++) {
517                 seg = &vm_phys_segs[segind];
518                 if (pa >= seg->start && pa < seg->end)
519                         return (&seg->first_page[atop(pa - seg->start)]);
520         }
521         return (NULL);
522 }
523
524 vm_page_t
525 vm_phys_fictitious_to_vm_page(vm_paddr_t pa)
526 {
527         struct vm_phys_fictitious_seg *seg;
528         vm_page_t m;
529         int segind;
530
531         m = NULL;
532         for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) {
533                 seg = &vm_phys_fictitious_segs[segind];
534                 if (pa >= seg->start && pa < seg->end) {
535                         m = &seg->first_page[atop(pa - seg->start)];
536                         KASSERT((m->flags & PG_FICTITIOUS) != 0,
537                             ("%p not fictitious", m));
538                         break;
539                 }
540         }
541         return (m);
542 }
543
544 int
545 vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end,
546     vm_memattr_t memattr)
547 {
548         struct vm_phys_fictitious_seg *seg;
549         vm_page_t fp;
550         long i, page_count;
551         int segind;
552 #ifdef VM_PHYSSEG_DENSE
553         long pi;
554         boolean_t malloced;
555 #endif
556
557         page_count = (end - start) / PAGE_SIZE;
558
559 #ifdef VM_PHYSSEG_DENSE
560         pi = atop(start);
561         if (pi >= first_page && atop(end) < vm_page_array_size) {
562                 fp = &vm_page_array[pi - first_page];
563                 malloced = FALSE;
564         } else
565 #endif
566         {
567                 fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES,
568                     M_WAITOK | M_ZERO);
569 #ifdef VM_PHYSSEG_DENSE
570                 malloced = TRUE;
571 #endif
572         }
573         for (i = 0; i < page_count; i++) {
574                 vm_page_initfake(&fp[i], start + PAGE_SIZE * i, memattr);
575                 pmap_page_init(&fp[i]);
576                 fp[i].oflags &= ~(VPO_BUSY | VPO_UNMANAGED);
577         }
578         mtx_lock(&vm_phys_fictitious_reg_mtx);
579         for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) {
580                 seg = &vm_phys_fictitious_segs[segind];
581                 if (seg->start == 0 && seg->end == 0) {
582                         seg->start = start;
583                         seg->end = end;
584                         seg->first_page = fp;
585                         mtx_unlock(&vm_phys_fictitious_reg_mtx);
586                         return (0);
587                 }
588         }
589         mtx_unlock(&vm_phys_fictitious_reg_mtx);
590 #ifdef VM_PHYSSEG_DENSE
591         if (malloced)
592 #endif
593                 free(fp, M_FICT_PAGES);
594         return (EBUSY);
595 }
596
597 void
598 vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end)
599 {
600         struct vm_phys_fictitious_seg *seg;
601         vm_page_t fp;
602         int segind;
603 #ifdef VM_PHYSSEG_DENSE
604         long pi;
605 #endif
606
607 #ifdef VM_PHYSSEG_DENSE
608         pi = atop(start);
609 #endif
610
611         mtx_lock(&vm_phys_fictitious_reg_mtx);
612         for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) {
613                 seg = &vm_phys_fictitious_segs[segind];
614                 if (seg->start == start && seg->end == end) {
615                         seg->start = seg->end = 0;
616                         fp = seg->first_page;
617                         seg->first_page = NULL;
618                         mtx_unlock(&vm_phys_fictitious_reg_mtx);
619 #ifdef VM_PHYSSEG_DENSE
620                         if (pi < first_page || atop(end) >= vm_page_array_size)
621 #endif
622                                 free(fp, M_FICT_PAGES);
623                         return;
624                 }
625         }
626         mtx_unlock(&vm_phys_fictitious_reg_mtx);
627         KASSERT(0, ("Unregistering not registered fictitious range"));
628 }
629
630 /*
631  * Find the segment containing the given physical address.
632  */
633 static int
634 vm_phys_paddr_to_segind(vm_paddr_t pa)
635 {
636         struct vm_phys_seg *seg;
637         int segind;
638
639         for (segind = 0; segind < vm_phys_nsegs; segind++) {
640                 seg = &vm_phys_segs[segind];
641                 if (pa >= seg->start && pa < seg->end)
642                         return (segind);
643         }
644         panic("vm_phys_paddr_to_segind: paddr %#jx is not in any segment" ,
645             (uintmax_t)pa);
646 }
647
648 /*
649  * Free a contiguous, power of two-sized set of physical pages.
650  *
651  * The free page queues must be locked.
652  */
653 void
654 vm_phys_free_pages(vm_page_t m, int order)
655 {
656         struct vm_freelist *fl;
657         struct vm_phys_seg *seg;
658         vm_paddr_t pa;
659         vm_page_t m_buddy;
660
661         KASSERT(m->order == VM_NFREEORDER,
662             ("vm_phys_free_pages: page %p has unexpected order %d",
663             m, m->order));
664         KASSERT(m->pool < VM_NFREEPOOL,
665             ("vm_phys_free_pages: page %p has unexpected pool %d",
666             m, m->pool));
667         KASSERT(order < VM_NFREEORDER,
668             ("vm_phys_free_pages: order %d is out of range", order));
669         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
670         seg = &vm_phys_segs[m->segind];
671         if (order < VM_NFREEORDER - 1) {
672                 pa = VM_PAGE_TO_PHYS(m);
673                 do {
674                         pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order));
675                         if (pa < seg->start || pa >= seg->end)
676                                 break;
677                         m_buddy = &seg->first_page[atop(pa - seg->start)];
678                         if (m_buddy->order != order)
679                                 break;
680                         fl = (*seg->free_queues)[m_buddy->pool];
681                         TAILQ_REMOVE(&fl[order].pl, m_buddy, pageq);
682                         fl[order].lcnt--;
683                         m_buddy->order = VM_NFREEORDER;
684                         if (m_buddy->pool != m->pool)
685                                 vm_phys_set_pool(m->pool, m_buddy, order);
686                         order++;
687                         pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1);
688                         m = &seg->first_page[atop(pa - seg->start)];
689                 } while (order < VM_NFREEORDER - 1);
690         }
691         m->order = order;
692         fl = (*seg->free_queues)[m->pool];
693         TAILQ_INSERT_TAIL(&fl[order].pl, m, pageq);
694         fl[order].lcnt++;
695 }
696
697 /*
698  * Free a contiguous, arbitrarily sized set of physical pages.
699  *
700  * The free page queues must be locked.
701  */
702 void
703 vm_phys_free_contig(vm_page_t m, u_long npages)
704 {
705         u_int n;
706         int order;
707
708         /*
709          * Avoid unnecessary coalescing by freeing the pages in the largest
710          * possible power-of-two-sized subsets.
711          */
712         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
713         for (;; npages -= n) {
714                 /*
715                  * Unsigned "min" is used here so that "order" is assigned
716                  * "VM_NFREEORDER - 1" when "m"'s physical address is zero
717                  * or the low-order bits of its physical address are zero
718                  * because the size of a physical address exceeds the size of
719                  * a long.
720                  */
721                 order = min(ffsl(VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) - 1,
722                     VM_NFREEORDER - 1);
723                 n = 1 << order;
724                 if (npages < n)
725                         break;
726                 vm_phys_free_pages(m, order);
727                 m += n;
728         }
729         /* The residual "npages" is less than "1 << (VM_NFREEORDER - 1)". */
730         for (; npages > 0; npages -= n) {
731                 order = flsl(npages) - 1;
732                 n = 1 << order;
733                 vm_phys_free_pages(m, order);
734                 m += n;
735         }
736 }
737
738 /*
739  * Set the pool for a contiguous, power of two-sized set of physical pages. 
740  */
741 void
742 vm_phys_set_pool(int pool, vm_page_t m, int order)
743 {
744         vm_page_t m_tmp;
745
746         for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
747                 m_tmp->pool = pool;
748 }
749
750 /*
751  * Search for the given physical page "m" in the free lists.  If the search
752  * succeeds, remove "m" from the free lists and return TRUE.  Otherwise, return
753  * FALSE, indicating that "m" is not in the free lists.
754  *
755  * The free page queues must be locked.
756  */
757 boolean_t
758 vm_phys_unfree_page(vm_page_t m)
759 {
760         struct vm_freelist *fl;
761         struct vm_phys_seg *seg;
762         vm_paddr_t pa, pa_half;
763         vm_page_t m_set, m_tmp;
764         int order;
765
766         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
767
768         /*
769          * First, find the contiguous, power of two-sized set of free
770          * physical pages containing the given physical page "m" and
771          * assign it to "m_set".
772          */
773         seg = &vm_phys_segs[m->segind];
774         for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
775             order < VM_NFREEORDER - 1; ) {
776                 order++;
777                 pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
778                 if (pa >= seg->start)
779                         m_set = &seg->first_page[atop(pa - seg->start)];
780                 else
781                         return (FALSE);
782         }
783         if (m_set->order < order)
784                 return (FALSE);
785         if (m_set->order == VM_NFREEORDER)
786                 return (FALSE);
787         KASSERT(m_set->order < VM_NFREEORDER,
788             ("vm_phys_unfree_page: page %p has unexpected order %d",
789             m_set, m_set->order));
790
791         /*
792          * Next, remove "m_set" from the free lists.  Finally, extract
793          * "m" from "m_set" using an iterative algorithm: While "m_set"
794          * is larger than a page, shrink "m_set" by returning the half
795          * of "m_set" that does not contain "m" to the free lists.
796          */
797         fl = (*seg->free_queues)[m_set->pool];
798         order = m_set->order;
799         TAILQ_REMOVE(&fl[order].pl, m_set, pageq);
800         fl[order].lcnt--;
801         m_set->order = VM_NFREEORDER;
802         while (order > 0) {
803                 order--;
804                 pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
805                 if (m->phys_addr < pa_half)
806                         m_tmp = &seg->first_page[atop(pa_half - seg->start)];
807                 else {
808                         m_tmp = m_set;
809                         m_set = &seg->first_page[atop(pa_half - seg->start)];
810                 }
811                 m_tmp->order = order;
812                 TAILQ_INSERT_HEAD(&fl[order].pl, m_tmp, pageq);
813                 fl[order].lcnt++;
814         }
815         KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
816         return (TRUE);
817 }
818
819 /*
820  * Try to zero one physical page.  Used by an idle priority thread.
821  */
822 boolean_t
823 vm_phys_zero_pages_idle(void)
824 {
825         static struct vm_freelist *fl = vm_phys_free_queues[0][0];
826         static int flind, oind, pind;
827         vm_page_t m, m_tmp;
828
829         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
830         for (;;) {
831                 TAILQ_FOREACH_REVERSE(m, &fl[oind].pl, pglist, pageq) {
832                         for (m_tmp = m; m_tmp < &m[1 << oind]; m_tmp++) {
833                                 if ((m_tmp->flags & (PG_CACHED | PG_ZERO)) == 0) {
834                                         vm_phys_unfree_page(m_tmp);
835                                         cnt.v_free_count--;
836                                         mtx_unlock(&vm_page_queue_free_mtx);
837                                         pmap_zero_page_idle(m_tmp);
838                                         m_tmp->flags |= PG_ZERO;
839                                         mtx_lock(&vm_page_queue_free_mtx);
840                                         cnt.v_free_count++;
841                                         vm_phys_free_pages(m_tmp, 0);
842                                         vm_page_zero_count++;
843                                         cnt_prezero++;
844                                         return (TRUE);
845                                 }
846                         }
847                 }
848                 oind++;
849                 if (oind == VM_NFREEORDER) {
850                         oind = 0;
851                         pind++;
852                         if (pind == VM_NFREEPOOL) {
853                                 pind = 0;
854                                 flind++;
855                                 if (flind == vm_nfreelists)
856                                         flind = 0;
857                         }
858                         fl = vm_phys_free_queues[flind][pind];
859                 }
860         }
861 }
862
863 /*
864  * Allocate a contiguous set of physical pages of the given size
865  * "npages" from the free lists.  All of the physical pages must be at
866  * or above the given physical address "low" and below the given
867  * physical address "high".  The given value "alignment" determines the
868  * alignment of the first physical page in the set.  If the given value
869  * "boundary" is non-zero, then the set of physical pages cannot cross
870  * any physical address boundary that is a multiple of that value.  Both
871  * "alignment" and "boundary" must be a power of two.
872  */
873 vm_page_t
874 vm_phys_alloc_contig(u_long npages, vm_paddr_t low, vm_paddr_t high,
875     u_long alignment, vm_paddr_t boundary)
876 {
877         struct vm_freelist *fl;
878         struct vm_phys_seg *seg;
879         vm_paddr_t pa, pa_last, size;
880         vm_page_t m, m_ret;
881         u_long npages_end;
882         int domain, flind, oind, order, pind;
883
884         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
885 #if VM_NDOMAIN > 1
886         domain = PCPU_GET(domain);
887 #else
888         domain = 0;
889 #endif
890         size = npages << PAGE_SHIFT;
891         KASSERT(size != 0,
892             ("vm_phys_alloc_contig: size must not be 0"));
893         KASSERT((alignment & (alignment - 1)) == 0,
894             ("vm_phys_alloc_contig: alignment must be a power of 2"));
895         KASSERT((boundary & (boundary - 1)) == 0,
896             ("vm_phys_alloc_contig: boundary must be a power of 2"));
897         /* Compute the queue that is the best fit for npages. */
898         for (order = 0; (1 << order) < npages; order++);
899         for (flind = 0; flind < vm_nfreelists; flind++) {
900                 for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER; oind++) {
901                         for (pind = 0; pind < VM_NFREEPOOL; pind++) {
902                                 fl = (*vm_phys_lookup_lists[domain][flind])
903                                     [pind];
904                                 TAILQ_FOREACH(m_ret, &fl[oind].pl, pageq) {
905                                         /*
906                                          * A free list may contain physical pages
907                                          * from one or more segments.
908                                          */
909                                         seg = &vm_phys_segs[m_ret->segind];
910                                         if (seg->start > high ||
911                                             low >= seg->end)
912                                                 continue;
913
914                                         /*
915                                          * Is the size of this allocation request
916                                          * larger than the largest block size?
917                                          */
918                                         if (order >= VM_NFREEORDER) {
919                                                 /*
920                                                  * Determine if a sufficient number
921                                                  * of subsequent blocks to satisfy
922                                                  * the allocation request are free.
923                                                  */
924                                                 pa = VM_PAGE_TO_PHYS(m_ret);
925                                                 pa_last = pa + size;
926                                                 for (;;) {
927                                                         pa += 1 << (PAGE_SHIFT + VM_NFREEORDER - 1);
928                                                         if (pa >= pa_last)
929                                                                 break;
930                                                         if (pa < seg->start ||
931                                                             pa >= seg->end)
932                                                                 break;
933                                                         m = &seg->first_page[atop(pa - seg->start)];
934                                                         if (m->order != VM_NFREEORDER - 1)
935                                                                 break;
936                                                 }
937                                                 /* If not, continue to the next block. */
938                                                 if (pa < pa_last)
939                                                         continue;
940                                         }
941
942                                         /*
943                                          * Determine if the blocks are within the given range,
944                                          * satisfy the given alignment, and do not cross the
945                                          * given boundary.
946                                          */
947                                         pa = VM_PAGE_TO_PHYS(m_ret);
948                                         if (pa >= low &&
949                                             pa + size <= high &&
950                                             (pa & (alignment - 1)) == 0 &&
951                                             ((pa ^ (pa + size - 1)) & ~(boundary - 1)) == 0)
952                                                 goto done;
953                                 }
954                         }
955                 }
956         }
957         return (NULL);
958 done:
959         for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) {
960                 fl = (*seg->free_queues)[m->pool];
961                 TAILQ_REMOVE(&fl[m->order].pl, m, pageq);
962                 fl[m->order].lcnt--;
963                 m->order = VM_NFREEORDER;
964         }
965         if (m_ret->pool != VM_FREEPOOL_DEFAULT)
966                 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m_ret, oind);
967         fl = (*seg->free_queues)[m_ret->pool];
968         vm_phys_split_pages(m_ret, oind, fl, order);
969         /* Return excess pages to the free lists. */
970         npages_end = roundup2(npages, 1 << imin(oind, order));
971         if (npages < npages_end)
972                 vm_phys_free_contig(&m_ret[npages], npages_end - npages);
973         return (m_ret);
974 }
975
976 #ifdef DDB
977 /*
978  * Show the number of physical pages in each of the free lists.
979  */
980 DB_SHOW_COMMAND(freepages, db_show_freepages)
981 {
982         struct vm_freelist *fl;
983         int flind, oind, pind;
984
985         for (flind = 0; flind < vm_nfreelists; flind++) {
986                 db_printf("FREE LIST %d:\n"
987                     "\n  ORDER (SIZE)  |  NUMBER"
988                     "\n              ", flind);
989                 for (pind = 0; pind < VM_NFREEPOOL; pind++)
990                         db_printf("  |  POOL %d", pind);
991                 db_printf("\n--            ");
992                 for (pind = 0; pind < VM_NFREEPOOL; pind++)
993                         db_printf("-- --      ");
994                 db_printf("--\n");
995                 for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
996                         db_printf("  %2.2d (%6.6dK)", oind,
997                             1 << (PAGE_SHIFT - 10 + oind));
998                         for (pind = 0; pind < VM_NFREEPOOL; pind++) {
999                                 fl = vm_phys_free_queues[flind][pind];
1000                                 db_printf("  |  %6.6d", fl[oind].lcnt);
1001                         }
1002                         db_printf("\n");
1003                 }
1004                 db_printf("\n");
1005         }
1006 }
1007 #endif