]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_phys.c
Update llvm to release_39 branch r276489, and resolve conflicts.
[FreeBSD/FreeBSD.git] / sys / vm / vm_phys.c
1 /*-
2  * Copyright (c) 2002-2006 Rice University
3  * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
4  * All rights reserved.
5  *
6  * This software was developed for the FreeBSD Project by Alan L. Cox,
7  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
22  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
28  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31
32 /*
33  *      Physical memory system implementation
34  *
35  * Any external functions defined by this module are only to be used by the
36  * virtual memory system.
37  */
38
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41
42 #include "opt_ddb.h"
43 #include "opt_vm.h"
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/lock.h>
48 #include <sys/kernel.h>
49 #include <sys/malloc.h>
50 #include <sys/mutex.h>
51 #include <sys/proc.h>
52 #include <sys/queue.h>
53 #include <sys/rwlock.h>
54 #include <sys/sbuf.h>
55 #include <sys/sysctl.h>
56 #include <sys/tree.h>
57 #include <sys/vmmeter.h>
58 #include <sys/seq.h>
59
60 #include <ddb/ddb.h>
61
62 #include <vm/vm.h>
63 #include <vm/vm_param.h>
64 #include <vm/vm_kern.h>
65 #include <vm/vm_object.h>
66 #include <vm/vm_page.h>
67 #include <vm/vm_phys.h>
68
69 #include <vm/vm_domain.h>
70
71 _Static_assert(sizeof(long) * NBBY >= VM_PHYSSEG_MAX,
72     "Too many physsegs.");
73
74 #ifdef VM_NUMA_ALLOC
75 struct mem_affinity *mem_affinity;
76 int *mem_locality;
77 #endif
78
79 int vm_ndomains = 1;
80
81 struct vm_phys_seg vm_phys_segs[VM_PHYSSEG_MAX];
82 int vm_phys_nsegs;
83
84 struct vm_phys_fictitious_seg;
85 static int vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *,
86     struct vm_phys_fictitious_seg *);
87
88 RB_HEAD(fict_tree, vm_phys_fictitious_seg) vm_phys_fictitious_tree =
89     RB_INITIALIZER(_vm_phys_fictitious_tree);
90
91 struct vm_phys_fictitious_seg {
92         RB_ENTRY(vm_phys_fictitious_seg) node;
93         /* Memory region data */
94         vm_paddr_t      start;
95         vm_paddr_t      end;
96         vm_page_t       first_page;
97 };
98
99 RB_GENERATE_STATIC(fict_tree, vm_phys_fictitious_seg, node,
100     vm_phys_fictitious_cmp);
101
102 static struct rwlock vm_phys_fictitious_reg_lock;
103 MALLOC_DEFINE(M_FICT_PAGES, "vm_fictitious", "Fictitious VM pages");
104
105 static struct vm_freelist
106     vm_phys_free_queues[MAXMEMDOM][VM_NFREELIST][VM_NFREEPOOL][VM_NFREEORDER];
107
108 static int vm_nfreelists;
109
110 /*
111  * Provides the mapping from VM_FREELIST_* to free list indices (flind).
112  */
113 static int vm_freelist_to_flind[VM_NFREELIST];
114
115 CTASSERT(VM_FREELIST_DEFAULT == 0);
116
117 #ifdef VM_FREELIST_ISADMA
118 #define VM_ISADMA_BOUNDARY      16777216
119 #endif
120 #ifdef VM_FREELIST_DMA32
121 #define VM_DMA32_BOUNDARY       ((vm_paddr_t)1 << 32)
122 #endif
123
124 /*
125  * Enforce the assumptions made by vm_phys_add_seg() and vm_phys_init() about
126  * the ordering of the free list boundaries.
127  */
128 #if defined(VM_ISADMA_BOUNDARY) && defined(VM_LOWMEM_BOUNDARY)
129 CTASSERT(VM_ISADMA_BOUNDARY < VM_LOWMEM_BOUNDARY);
130 #endif
131 #if defined(VM_LOWMEM_BOUNDARY) && defined(VM_DMA32_BOUNDARY)
132 CTASSERT(VM_LOWMEM_BOUNDARY < VM_DMA32_BOUNDARY);
133 #endif
134
135 static int cnt_prezero;
136 SYSCTL_INT(_vm_stats_misc, OID_AUTO, cnt_prezero, CTLFLAG_RD,
137     &cnt_prezero, 0, "The number of physical pages prezeroed at idle time");
138
139 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
140 SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD,
141     NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info");
142
143 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
144 SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD,
145     NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info");
146
147 #ifdef VM_NUMA_ALLOC
148 static int sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS);
149 SYSCTL_OID(_vm, OID_AUTO, phys_locality, CTLTYPE_STRING | CTLFLAG_RD,
150     NULL, 0, sysctl_vm_phys_locality, "A", "Phys Locality Info");
151 #endif
152
153 SYSCTL_INT(_vm, OID_AUTO, ndomains, CTLFLAG_RD,
154     &vm_ndomains, 0, "Number of physical memory domains available.");
155
156 /*
157  * Default to first-touch + round-robin.
158  */
159 static struct mtx vm_default_policy_mtx;
160 MTX_SYSINIT(vm_default_policy, &vm_default_policy_mtx, "default policy mutex",
161     MTX_DEF);
162 #ifdef VM_NUMA_ALLOC
163 static struct vm_domain_policy vm_default_policy =
164     VM_DOMAIN_POLICY_STATIC_INITIALISER(VM_POLICY_FIRST_TOUCH_ROUND_ROBIN, 0);
165 #else
166 /* Use round-robin so the domain policy code will only try once per allocation */
167 static struct vm_domain_policy vm_default_policy =
168     VM_DOMAIN_POLICY_STATIC_INITIALISER(VM_POLICY_ROUND_ROBIN, 0);
169 #endif
170
171 static vm_page_t vm_phys_alloc_domain_pages(int domain, int flind, int pool,
172     int order);
173 static vm_page_t vm_phys_alloc_seg_contig(struct vm_phys_seg *seg,
174     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
175     vm_paddr_t boundary);
176 static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain);
177 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end);
178 static int vm_phys_paddr_to_segind(vm_paddr_t pa);
179 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
180     int order);
181
182 static int
183 sysctl_vm_default_policy(SYSCTL_HANDLER_ARGS)
184 {
185         char policy_name[32];
186         int error;
187
188         mtx_lock(&vm_default_policy_mtx);
189
190         /* Map policy to output string */
191         switch (vm_default_policy.p.policy) {
192         case VM_POLICY_FIRST_TOUCH:
193                 strcpy(policy_name, "first-touch");
194                 break;
195         case VM_POLICY_FIRST_TOUCH_ROUND_ROBIN:
196                 strcpy(policy_name, "first-touch-rr");
197                 break;
198         case VM_POLICY_ROUND_ROBIN:
199         default:
200                 strcpy(policy_name, "rr");
201                 break;
202         }
203         mtx_unlock(&vm_default_policy_mtx);
204
205         error = sysctl_handle_string(oidp, &policy_name[0],
206             sizeof(policy_name), req);
207         if (error != 0 || req->newptr == NULL)
208                 return (error);
209
210         mtx_lock(&vm_default_policy_mtx);
211         /* Set: match on the subset of policies that make sense as a default */
212         if (strcmp("first-touch-rr", policy_name) == 0) {
213                 vm_domain_policy_set(&vm_default_policy,
214                     VM_POLICY_FIRST_TOUCH_ROUND_ROBIN, 0);
215         } else if (strcmp("first-touch", policy_name) == 0) {
216                 vm_domain_policy_set(&vm_default_policy,
217                     VM_POLICY_FIRST_TOUCH, 0);
218         } else if (strcmp("rr", policy_name) == 0) {
219                 vm_domain_policy_set(&vm_default_policy,
220                     VM_POLICY_ROUND_ROBIN, 0);
221         } else {
222                 error = EINVAL;
223                 goto finish;
224         }
225
226         error = 0;
227 finish:
228         mtx_unlock(&vm_default_policy_mtx);
229         return (error);
230 }
231
232 SYSCTL_PROC(_vm, OID_AUTO, default_policy, CTLTYPE_STRING | CTLFLAG_RW,
233     0, 0, sysctl_vm_default_policy, "A",
234     "Default policy (rr, first-touch, first-touch-rr");
235
236 /*
237  * Red-black tree helpers for vm fictitious range management.
238  */
239 static inline int
240 vm_phys_fictitious_in_range(struct vm_phys_fictitious_seg *p,
241     struct vm_phys_fictitious_seg *range)
242 {
243
244         KASSERT(range->start != 0 && range->end != 0,
245             ("Invalid range passed on search for vm_fictitious page"));
246         if (p->start >= range->end)
247                 return (1);
248         if (p->start < range->start)
249                 return (-1);
250
251         return (0);
252 }
253
254 static int
255 vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *p1,
256     struct vm_phys_fictitious_seg *p2)
257 {
258
259         /* Check if this is a search for a page */
260         if (p1->end == 0)
261                 return (vm_phys_fictitious_in_range(p1, p2));
262
263         KASSERT(p2->end != 0,
264     ("Invalid range passed as second parameter to vm fictitious comparison"));
265
266         /* Searching to add a new range */
267         if (p1->end <= p2->start)
268                 return (-1);
269         if (p1->start >= p2->end)
270                 return (1);
271
272         panic("Trying to add overlapping vm fictitious ranges:\n"
273             "[%#jx:%#jx] and [%#jx:%#jx]", (uintmax_t)p1->start,
274             (uintmax_t)p1->end, (uintmax_t)p2->start, (uintmax_t)p2->end);
275 }
276
277 static __inline int
278 vm_rr_selectdomain(void)
279 {
280 #ifdef VM_NUMA_ALLOC
281         struct thread *td;
282
283         td = curthread;
284
285         td->td_dom_rr_idx++;
286         td->td_dom_rr_idx %= vm_ndomains;
287         return (td->td_dom_rr_idx);
288 #else
289         return (0);
290 #endif
291 }
292
293 /*
294  * Initialise a VM domain iterator.
295  *
296  * Check the thread policy, then the proc policy,
297  * then default to the system policy.
298  *
299  * Later on the various layers will have this logic
300  * plumbed into them and the phys code will be explicitly
301  * handed a VM domain policy to use.
302  */
303 static void
304 vm_policy_iterator_init(struct vm_domain_iterator *vi)
305 {
306 #ifdef VM_NUMA_ALLOC
307         struct vm_domain_policy lcl;
308 #endif
309
310         vm_domain_iterator_init(vi);
311
312 #ifdef VM_NUMA_ALLOC
313         /* Copy out the thread policy */
314         vm_domain_policy_localcopy(&lcl, &curthread->td_vm_dom_policy);
315         if (lcl.p.policy != VM_POLICY_NONE) {
316                 /* Thread policy is present; use it */
317                 vm_domain_iterator_set_policy(vi, &lcl);
318                 return;
319         }
320
321         vm_domain_policy_localcopy(&lcl,
322             &curthread->td_proc->p_vm_dom_policy);
323         if (lcl.p.policy != VM_POLICY_NONE) {
324                 /* Process policy is present; use it */
325                 vm_domain_iterator_set_policy(vi, &lcl);
326                 return;
327         }
328 #endif
329         /* Use system default policy */
330         vm_domain_iterator_set_policy(vi, &vm_default_policy);
331 }
332
333 static void
334 vm_policy_iterator_finish(struct vm_domain_iterator *vi)
335 {
336
337         vm_domain_iterator_cleanup(vi);
338 }
339
340 boolean_t
341 vm_phys_domain_intersects(long mask, vm_paddr_t low, vm_paddr_t high)
342 {
343         struct vm_phys_seg *s;
344         int idx;
345
346         while ((idx = ffsl(mask)) != 0) {
347                 idx--;  /* ffsl counts from 1 */
348                 mask &= ~(1UL << idx);
349                 s = &vm_phys_segs[idx];
350                 if (low < s->end && high > s->start)
351                         return (TRUE);
352         }
353         return (FALSE);
354 }
355
356 /*
357  * Outputs the state of the physical memory allocator, specifically,
358  * the amount of physical memory in each free list.
359  */
360 static int
361 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
362 {
363         struct sbuf sbuf;
364         struct vm_freelist *fl;
365         int dom, error, flind, oind, pind;
366
367         error = sysctl_wire_old_buffer(req, 0);
368         if (error != 0)
369                 return (error);
370         sbuf_new_for_sysctl(&sbuf, NULL, 128 * vm_ndomains, req);
371         for (dom = 0; dom < vm_ndomains; dom++) {
372                 sbuf_printf(&sbuf,"\nDOMAIN %d:\n", dom);
373                 for (flind = 0; flind < vm_nfreelists; flind++) {
374                         sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
375                             "\n  ORDER (SIZE)  |  NUMBER"
376                             "\n              ", flind);
377                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
378                                 sbuf_printf(&sbuf, "  |  POOL %d", pind);
379                         sbuf_printf(&sbuf, "\n--            ");
380                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
381                                 sbuf_printf(&sbuf, "-- --      ");
382                         sbuf_printf(&sbuf, "--\n");
383                         for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
384                                 sbuf_printf(&sbuf, "  %2d (%6dK)", oind,
385                                     1 << (PAGE_SHIFT - 10 + oind));
386                                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
387                                 fl = vm_phys_free_queues[dom][flind][pind];
388                                         sbuf_printf(&sbuf, "  |  %6d",
389                                             fl[oind].lcnt);
390                                 }
391                                 sbuf_printf(&sbuf, "\n");
392                         }
393                 }
394         }
395         error = sbuf_finish(&sbuf);
396         sbuf_delete(&sbuf);
397         return (error);
398 }
399
400 /*
401  * Outputs the set of physical memory segments.
402  */
403 static int
404 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
405 {
406         struct sbuf sbuf;
407         struct vm_phys_seg *seg;
408         int error, segind;
409
410         error = sysctl_wire_old_buffer(req, 0);
411         if (error != 0)
412                 return (error);
413         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
414         for (segind = 0; segind < vm_phys_nsegs; segind++) {
415                 sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
416                 seg = &vm_phys_segs[segind];
417                 sbuf_printf(&sbuf, "start:     %#jx\n",
418                     (uintmax_t)seg->start);
419                 sbuf_printf(&sbuf, "end:       %#jx\n",
420                     (uintmax_t)seg->end);
421                 sbuf_printf(&sbuf, "domain:    %d\n", seg->domain);
422                 sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
423         }
424         error = sbuf_finish(&sbuf);
425         sbuf_delete(&sbuf);
426         return (error);
427 }
428
429 /*
430  * Return affinity, or -1 if there's no affinity information.
431  */
432 int
433 vm_phys_mem_affinity(int f, int t)
434 {
435
436 #ifdef VM_NUMA_ALLOC
437         if (mem_locality == NULL)
438                 return (-1);
439         if (f >= vm_ndomains || t >= vm_ndomains)
440                 return (-1);
441         return (mem_locality[f * vm_ndomains + t]);
442 #else
443         return (-1);
444 #endif
445 }
446
447 #ifdef VM_NUMA_ALLOC
448 /*
449  * Outputs the VM locality table.
450  */
451 static int
452 sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS)
453 {
454         struct sbuf sbuf;
455         int error, i, j;
456
457         error = sysctl_wire_old_buffer(req, 0);
458         if (error != 0)
459                 return (error);
460         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
461
462         sbuf_printf(&sbuf, "\n");
463
464         for (i = 0; i < vm_ndomains; i++) {
465                 sbuf_printf(&sbuf, "%d: ", i);
466                 for (j = 0; j < vm_ndomains; j++) {
467                         sbuf_printf(&sbuf, "%d ", vm_phys_mem_affinity(i, j));
468                 }
469                 sbuf_printf(&sbuf, "\n");
470         }
471         error = sbuf_finish(&sbuf);
472         sbuf_delete(&sbuf);
473         return (error);
474 }
475 #endif
476
477 static void
478 vm_freelist_add(struct vm_freelist *fl, vm_page_t m, int order, int tail)
479 {
480
481         m->order = order;
482         if (tail)
483                 TAILQ_INSERT_TAIL(&fl[order].pl, m, plinks.q);
484         else
485                 TAILQ_INSERT_HEAD(&fl[order].pl, m, plinks.q);
486         fl[order].lcnt++;
487 }
488
489 static void
490 vm_freelist_rem(struct vm_freelist *fl, vm_page_t m, int order)
491 {
492
493         TAILQ_REMOVE(&fl[order].pl, m, plinks.q);
494         fl[order].lcnt--;
495         m->order = VM_NFREEORDER;
496 }
497
498 /*
499  * Create a physical memory segment.
500  */
501 static void
502 _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain)
503 {
504         struct vm_phys_seg *seg;
505
506         KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
507             ("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
508         KASSERT(domain < vm_ndomains,
509             ("vm_phys_create_seg: invalid domain provided"));
510         seg = &vm_phys_segs[vm_phys_nsegs++];
511         while (seg > vm_phys_segs && (seg - 1)->start >= end) {
512                 *seg = *(seg - 1);
513                 seg--;
514         }
515         seg->start = start;
516         seg->end = end;
517         seg->domain = domain;
518 }
519
520 static void
521 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end)
522 {
523 #ifdef VM_NUMA_ALLOC
524         int i;
525
526         if (mem_affinity == NULL) {
527                 _vm_phys_create_seg(start, end, 0);
528                 return;
529         }
530
531         for (i = 0;; i++) {
532                 if (mem_affinity[i].end == 0)
533                         panic("Reached end of affinity info");
534                 if (mem_affinity[i].end <= start)
535                         continue;
536                 if (mem_affinity[i].start > start)
537                         panic("No affinity info for start %jx",
538                             (uintmax_t)start);
539                 if (mem_affinity[i].end >= end) {
540                         _vm_phys_create_seg(start, end,
541                             mem_affinity[i].domain);
542                         break;
543                 }
544                 _vm_phys_create_seg(start, mem_affinity[i].end,
545                     mem_affinity[i].domain);
546                 start = mem_affinity[i].end;
547         }
548 #else
549         _vm_phys_create_seg(start, end, 0);
550 #endif
551 }
552
553 /*
554  * Add a physical memory segment.
555  */
556 void
557 vm_phys_add_seg(vm_paddr_t start, vm_paddr_t end)
558 {
559         vm_paddr_t paddr;
560
561         KASSERT((start & PAGE_MASK) == 0,
562             ("vm_phys_define_seg: start is not page aligned"));
563         KASSERT((end & PAGE_MASK) == 0,
564             ("vm_phys_define_seg: end is not page aligned"));
565
566         /*
567          * Split the physical memory segment if it spans two or more free
568          * list boundaries.
569          */
570         paddr = start;
571 #ifdef  VM_FREELIST_ISADMA
572         if (paddr < VM_ISADMA_BOUNDARY && end > VM_ISADMA_BOUNDARY) {
573                 vm_phys_create_seg(paddr, VM_ISADMA_BOUNDARY);
574                 paddr = VM_ISADMA_BOUNDARY;
575         }
576 #endif
577 #ifdef  VM_FREELIST_LOWMEM
578         if (paddr < VM_LOWMEM_BOUNDARY && end > VM_LOWMEM_BOUNDARY) {
579                 vm_phys_create_seg(paddr, VM_LOWMEM_BOUNDARY);
580                 paddr = VM_LOWMEM_BOUNDARY;
581         }
582 #endif
583 #ifdef  VM_FREELIST_DMA32
584         if (paddr < VM_DMA32_BOUNDARY && end > VM_DMA32_BOUNDARY) {
585                 vm_phys_create_seg(paddr, VM_DMA32_BOUNDARY);
586                 paddr = VM_DMA32_BOUNDARY;
587         }
588 #endif
589         vm_phys_create_seg(paddr, end);
590 }
591
592 /*
593  * Initialize the physical memory allocator.
594  *
595  * Requires that vm_page_array is initialized!
596  */
597 void
598 vm_phys_init(void)
599 {
600         struct vm_freelist *fl;
601         struct vm_phys_seg *seg;
602         u_long npages;
603         int dom, flind, freelist, oind, pind, segind;
604
605         /*
606          * Compute the number of free lists, and generate the mapping from the
607          * manifest constants VM_FREELIST_* to the free list indices.
608          *
609          * Initially, the entries of vm_freelist_to_flind[] are set to either
610          * 0 or 1 to indicate which free lists should be created.
611          */
612         npages = 0;
613         for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
614                 seg = &vm_phys_segs[segind];
615 #ifdef  VM_FREELIST_ISADMA
616                 if (seg->end <= VM_ISADMA_BOUNDARY)
617                         vm_freelist_to_flind[VM_FREELIST_ISADMA] = 1;
618                 else
619 #endif
620 #ifdef  VM_FREELIST_LOWMEM
621                 if (seg->end <= VM_LOWMEM_BOUNDARY)
622                         vm_freelist_to_flind[VM_FREELIST_LOWMEM] = 1;
623                 else
624 #endif
625 #ifdef  VM_FREELIST_DMA32
626                 if (
627 #ifdef  VM_DMA32_NPAGES_THRESHOLD
628                     /*
629                      * Create the DMA32 free list only if the amount of
630                      * physical memory above physical address 4G exceeds the
631                      * given threshold.
632                      */
633                     npages > VM_DMA32_NPAGES_THRESHOLD &&
634 #endif
635                     seg->end <= VM_DMA32_BOUNDARY)
636                         vm_freelist_to_flind[VM_FREELIST_DMA32] = 1;
637                 else
638 #endif
639                 {
640                         npages += atop(seg->end - seg->start);
641                         vm_freelist_to_flind[VM_FREELIST_DEFAULT] = 1;
642                 }
643         }
644         /* Change each entry into a running total of the free lists. */
645         for (freelist = 1; freelist < VM_NFREELIST; freelist++) {
646                 vm_freelist_to_flind[freelist] +=
647                     vm_freelist_to_flind[freelist - 1];
648         }
649         vm_nfreelists = vm_freelist_to_flind[VM_NFREELIST - 1];
650         KASSERT(vm_nfreelists > 0, ("vm_phys_init: no free lists"));
651         /* Change each entry into a free list index. */
652         for (freelist = 0; freelist < VM_NFREELIST; freelist++)
653                 vm_freelist_to_flind[freelist]--;
654
655         /*
656          * Initialize the first_page and free_queues fields of each physical
657          * memory segment.
658          */
659 #ifdef VM_PHYSSEG_SPARSE
660         npages = 0;
661 #endif
662         for (segind = 0; segind < vm_phys_nsegs; segind++) {
663                 seg = &vm_phys_segs[segind];
664 #ifdef VM_PHYSSEG_SPARSE
665                 seg->first_page = &vm_page_array[npages];
666                 npages += atop(seg->end - seg->start);
667 #else
668                 seg->first_page = PHYS_TO_VM_PAGE(seg->start);
669 #endif
670 #ifdef  VM_FREELIST_ISADMA
671                 if (seg->end <= VM_ISADMA_BOUNDARY) {
672                         flind = vm_freelist_to_flind[VM_FREELIST_ISADMA];
673                         KASSERT(flind >= 0,
674                             ("vm_phys_init: ISADMA flind < 0"));
675                 } else
676 #endif
677 #ifdef  VM_FREELIST_LOWMEM
678                 if (seg->end <= VM_LOWMEM_BOUNDARY) {
679                         flind = vm_freelist_to_flind[VM_FREELIST_LOWMEM];
680                         KASSERT(flind >= 0,
681                             ("vm_phys_init: LOWMEM flind < 0"));
682                 } else
683 #endif
684 #ifdef  VM_FREELIST_DMA32
685                 if (seg->end <= VM_DMA32_BOUNDARY) {
686                         flind = vm_freelist_to_flind[VM_FREELIST_DMA32];
687                         KASSERT(flind >= 0,
688                             ("vm_phys_init: DMA32 flind < 0"));
689                 } else
690 #endif
691                 {
692                         flind = vm_freelist_to_flind[VM_FREELIST_DEFAULT];
693                         KASSERT(flind >= 0,
694                             ("vm_phys_init: DEFAULT flind < 0"));
695                 }
696                 seg->free_queues = &vm_phys_free_queues[seg->domain][flind];
697         }
698
699         /*
700          * Initialize the free queues.
701          */
702         for (dom = 0; dom < vm_ndomains; dom++) {
703                 for (flind = 0; flind < vm_nfreelists; flind++) {
704                         for (pind = 0; pind < VM_NFREEPOOL; pind++) {
705                                 fl = vm_phys_free_queues[dom][flind][pind];
706                                 for (oind = 0; oind < VM_NFREEORDER; oind++)
707                                         TAILQ_INIT(&fl[oind].pl);
708                         }
709                 }
710         }
711
712         rw_init(&vm_phys_fictitious_reg_lock, "vmfctr");
713 }
714
715 /*
716  * Split a contiguous, power of two-sized set of physical pages.
717  */
718 static __inline void
719 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order)
720 {
721         vm_page_t m_buddy;
722
723         while (oind > order) {
724                 oind--;
725                 m_buddy = &m[1 << oind];
726                 KASSERT(m_buddy->order == VM_NFREEORDER,
727                     ("vm_phys_split_pages: page %p has unexpected order %d",
728                     m_buddy, m_buddy->order));
729                 vm_freelist_add(fl, m_buddy, oind, 0);
730         }
731 }
732
733 /*
734  * Initialize a physical page and add it to the free lists.
735  */
736 void
737 vm_phys_add_page(vm_paddr_t pa)
738 {
739         vm_page_t m;
740         struct vm_domain *vmd;
741
742         vm_cnt.v_page_count++;
743         m = vm_phys_paddr_to_vm_page(pa);
744         m->busy_lock = VPB_UNBUSIED;
745         m->phys_addr = pa;
746         m->queue = PQ_NONE;
747         m->segind = vm_phys_paddr_to_segind(pa);
748         vmd = vm_phys_domain(m);
749         vmd->vmd_page_count++;
750         vmd->vmd_segs |= 1UL << m->segind;
751         KASSERT(m->order == VM_NFREEORDER,
752             ("vm_phys_add_page: page %p has unexpected order %d",
753             m, m->order));
754         m->pool = VM_FREEPOOL_DEFAULT;
755         pmap_page_init(m);
756         mtx_lock(&vm_page_queue_free_mtx);
757         vm_phys_freecnt_adj(m, 1);
758         vm_phys_free_pages(m, 0);
759         mtx_unlock(&vm_page_queue_free_mtx);
760 }
761
762 /*
763  * Allocate a contiguous, power of two-sized set of physical pages
764  * from the free lists.
765  *
766  * The free page queues must be locked.
767  */
768 vm_page_t
769 vm_phys_alloc_pages(int pool, int order)
770 {
771         vm_page_t m;
772         int domain, flind;
773         struct vm_domain_iterator vi;
774
775         KASSERT(pool < VM_NFREEPOOL,
776             ("vm_phys_alloc_pages: pool %d is out of range", pool));
777         KASSERT(order < VM_NFREEORDER,
778             ("vm_phys_alloc_pages: order %d is out of range", order));
779
780         vm_policy_iterator_init(&vi);
781
782         while ((vm_domain_iterator_run(&vi, &domain)) == 0) {
783                 for (flind = 0; flind < vm_nfreelists; flind++) {
784                         m = vm_phys_alloc_domain_pages(domain, flind, pool,
785                             order);
786                         if (m != NULL)
787                                 return (m);
788                 }
789         }
790
791         vm_policy_iterator_finish(&vi);
792         return (NULL);
793 }
794
795 /*
796  * Allocate a contiguous, power of two-sized set of physical pages from the
797  * specified free list.  The free list must be specified using one of the
798  * manifest constants VM_FREELIST_*.
799  *
800  * The free page queues must be locked.
801  */
802 vm_page_t
803 vm_phys_alloc_freelist_pages(int freelist, int pool, int order)
804 {
805         vm_page_t m;
806         struct vm_domain_iterator vi;
807         int domain;
808
809         KASSERT(freelist < VM_NFREELIST,
810             ("vm_phys_alloc_freelist_pages: freelist %d is out of range",
811             freelist));
812         KASSERT(pool < VM_NFREEPOOL,
813             ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool));
814         KASSERT(order < VM_NFREEORDER,
815             ("vm_phys_alloc_freelist_pages: order %d is out of range", order));
816
817         vm_policy_iterator_init(&vi);
818
819         while ((vm_domain_iterator_run(&vi, &domain)) == 0) {
820                 m = vm_phys_alloc_domain_pages(domain,
821                     vm_freelist_to_flind[freelist], pool, order);
822                 if (m != NULL)
823                         return (m);
824         }
825
826         vm_policy_iterator_finish(&vi);
827         return (NULL);
828 }
829
830 static vm_page_t
831 vm_phys_alloc_domain_pages(int domain, int flind, int pool, int order)
832 {       
833         struct vm_freelist *fl;
834         struct vm_freelist *alt;
835         int oind, pind;
836         vm_page_t m;
837
838         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
839         fl = &vm_phys_free_queues[domain][flind][pool][0];
840         for (oind = order; oind < VM_NFREEORDER; oind++) {
841                 m = TAILQ_FIRST(&fl[oind].pl);
842                 if (m != NULL) {
843                         vm_freelist_rem(fl, m, oind);
844                         vm_phys_split_pages(m, oind, fl, order);
845                         return (m);
846                 }
847         }
848
849         /*
850          * The given pool was empty.  Find the largest
851          * contiguous, power-of-two-sized set of pages in any
852          * pool.  Transfer these pages to the given pool, and
853          * use them to satisfy the allocation.
854          */
855         for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
856                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
857                         alt = &vm_phys_free_queues[domain][flind][pind][0];
858                         m = TAILQ_FIRST(&alt[oind].pl);
859                         if (m != NULL) {
860                                 vm_freelist_rem(alt, m, oind);
861                                 vm_phys_set_pool(pool, m, oind);
862                                 vm_phys_split_pages(m, oind, fl, order);
863                                 return (m);
864                         }
865                 }
866         }
867         return (NULL);
868 }
869
870 /*
871  * Find the vm_page corresponding to the given physical address.
872  */
873 vm_page_t
874 vm_phys_paddr_to_vm_page(vm_paddr_t pa)
875 {
876         struct vm_phys_seg *seg;
877         int segind;
878
879         for (segind = 0; segind < vm_phys_nsegs; segind++) {
880                 seg = &vm_phys_segs[segind];
881                 if (pa >= seg->start && pa < seg->end)
882                         return (&seg->first_page[atop(pa - seg->start)]);
883         }
884         return (NULL);
885 }
886
887 vm_page_t
888 vm_phys_fictitious_to_vm_page(vm_paddr_t pa)
889 {
890         struct vm_phys_fictitious_seg tmp, *seg;
891         vm_page_t m;
892
893         m = NULL;
894         tmp.start = pa;
895         tmp.end = 0;
896
897         rw_rlock(&vm_phys_fictitious_reg_lock);
898         seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
899         rw_runlock(&vm_phys_fictitious_reg_lock);
900         if (seg == NULL)
901                 return (NULL);
902
903         m = &seg->first_page[atop(pa - seg->start)];
904         KASSERT((m->flags & PG_FICTITIOUS) != 0, ("%p not fictitious", m));
905
906         return (m);
907 }
908
909 static inline void
910 vm_phys_fictitious_init_range(vm_page_t range, vm_paddr_t start,
911     long page_count, vm_memattr_t memattr)
912 {
913         long i;
914
915         for (i = 0; i < page_count; i++) {
916                 vm_page_initfake(&range[i], start + PAGE_SIZE * i, memattr);
917                 range[i].oflags &= ~VPO_UNMANAGED;
918                 range[i].busy_lock = VPB_UNBUSIED;
919         }
920 }
921
922 int
923 vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end,
924     vm_memattr_t memattr)
925 {
926         struct vm_phys_fictitious_seg *seg;
927         vm_page_t fp;
928         long page_count;
929 #ifdef VM_PHYSSEG_DENSE
930         long pi, pe;
931         long dpage_count;
932 #endif
933
934         KASSERT(start < end,
935             ("Start of segment isn't less than end (start: %jx end: %jx)",
936             (uintmax_t)start, (uintmax_t)end));
937
938         page_count = (end - start) / PAGE_SIZE;
939
940 #ifdef VM_PHYSSEG_DENSE
941         pi = atop(start);
942         pe = atop(end);
943         if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
944                 fp = &vm_page_array[pi - first_page];
945                 if ((pe - first_page) > vm_page_array_size) {
946                         /*
947                          * We have a segment that starts inside
948                          * of vm_page_array, but ends outside of it.
949                          *
950                          * Use vm_page_array pages for those that are
951                          * inside of the vm_page_array range, and
952                          * allocate the remaining ones.
953                          */
954                         dpage_count = vm_page_array_size - (pi - first_page);
955                         vm_phys_fictitious_init_range(fp, start, dpage_count,
956                             memattr);
957                         page_count -= dpage_count;
958                         start += ptoa(dpage_count);
959                         goto alloc;
960                 }
961                 /*
962                  * We can allocate the full range from vm_page_array,
963                  * so there's no need to register the range in the tree.
964                  */
965                 vm_phys_fictitious_init_range(fp, start, page_count, memattr);
966                 return (0);
967         } else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
968                 /*
969                  * We have a segment that ends inside of vm_page_array,
970                  * but starts outside of it.
971                  */
972                 fp = &vm_page_array[0];
973                 dpage_count = pe - first_page;
974                 vm_phys_fictitious_init_range(fp, ptoa(first_page), dpage_count,
975                     memattr);
976                 end -= ptoa(dpage_count);
977                 page_count -= dpage_count;
978                 goto alloc;
979         } else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
980                 /*
981                  * Trying to register a fictitious range that expands before
982                  * and after vm_page_array.
983                  */
984                 return (EINVAL);
985         } else {
986 alloc:
987 #endif
988                 fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES,
989                     M_WAITOK | M_ZERO);
990 #ifdef VM_PHYSSEG_DENSE
991         }
992 #endif
993         vm_phys_fictitious_init_range(fp, start, page_count, memattr);
994
995         seg = malloc(sizeof(*seg), M_FICT_PAGES, M_WAITOK | M_ZERO);
996         seg->start = start;
997         seg->end = end;
998         seg->first_page = fp;
999
1000         rw_wlock(&vm_phys_fictitious_reg_lock);
1001         RB_INSERT(fict_tree, &vm_phys_fictitious_tree, seg);
1002         rw_wunlock(&vm_phys_fictitious_reg_lock);
1003
1004         return (0);
1005 }
1006
1007 void
1008 vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end)
1009 {
1010         struct vm_phys_fictitious_seg *seg, tmp;
1011 #ifdef VM_PHYSSEG_DENSE
1012         long pi, pe;
1013 #endif
1014
1015         KASSERT(start < end,
1016             ("Start of segment isn't less than end (start: %jx end: %jx)",
1017             (uintmax_t)start, (uintmax_t)end));
1018
1019 #ifdef VM_PHYSSEG_DENSE
1020         pi = atop(start);
1021         pe = atop(end);
1022         if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1023                 if ((pe - first_page) <= vm_page_array_size) {
1024                         /*
1025                          * This segment was allocated using vm_page_array
1026                          * only, there's nothing to do since those pages
1027                          * were never added to the tree.
1028                          */
1029                         return;
1030                 }
1031                 /*
1032                  * We have a segment that starts inside
1033                  * of vm_page_array, but ends outside of it.
1034                  *
1035                  * Calculate how many pages were added to the
1036                  * tree and free them.
1037                  */
1038                 start = ptoa(first_page + vm_page_array_size);
1039         } else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
1040                 /*
1041                  * We have a segment that ends inside of vm_page_array,
1042                  * but starts outside of it.
1043                  */
1044                 end = ptoa(first_page);
1045         } else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
1046                 /* Since it's not possible to register such a range, panic. */
1047                 panic(
1048                     "Unregistering not registered fictitious range [%#jx:%#jx]",
1049                     (uintmax_t)start, (uintmax_t)end);
1050         }
1051 #endif
1052         tmp.start = start;
1053         tmp.end = 0;
1054
1055         rw_wlock(&vm_phys_fictitious_reg_lock);
1056         seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
1057         if (seg->start != start || seg->end != end) {
1058                 rw_wunlock(&vm_phys_fictitious_reg_lock);
1059                 panic(
1060                     "Unregistering not registered fictitious range [%#jx:%#jx]",
1061                     (uintmax_t)start, (uintmax_t)end);
1062         }
1063         RB_REMOVE(fict_tree, &vm_phys_fictitious_tree, seg);
1064         rw_wunlock(&vm_phys_fictitious_reg_lock);
1065         free(seg->first_page, M_FICT_PAGES);
1066         free(seg, M_FICT_PAGES);
1067 }
1068
1069 /*
1070  * Find the segment containing the given physical address.
1071  */
1072 static int
1073 vm_phys_paddr_to_segind(vm_paddr_t pa)
1074 {
1075         struct vm_phys_seg *seg;
1076         int segind;
1077
1078         for (segind = 0; segind < vm_phys_nsegs; segind++) {
1079                 seg = &vm_phys_segs[segind];
1080                 if (pa >= seg->start && pa < seg->end)
1081                         return (segind);
1082         }
1083         panic("vm_phys_paddr_to_segind: paddr %#jx is not in any segment" ,
1084             (uintmax_t)pa);
1085 }
1086
1087 /*
1088  * Free a contiguous, power of two-sized set of physical pages.
1089  *
1090  * The free page queues must be locked.
1091  */
1092 void
1093 vm_phys_free_pages(vm_page_t m, int order)
1094 {
1095         struct vm_freelist *fl;
1096         struct vm_phys_seg *seg;
1097         vm_paddr_t pa;
1098         vm_page_t m_buddy;
1099
1100         KASSERT(m->order == VM_NFREEORDER,
1101             ("vm_phys_free_pages: page %p has unexpected order %d",
1102             m, m->order));
1103         KASSERT(m->pool < VM_NFREEPOOL,
1104             ("vm_phys_free_pages: page %p has unexpected pool %d",
1105             m, m->pool));
1106         KASSERT(order < VM_NFREEORDER,
1107             ("vm_phys_free_pages: order %d is out of range", order));
1108         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1109         seg = &vm_phys_segs[m->segind];
1110         if (order < VM_NFREEORDER - 1) {
1111                 pa = VM_PAGE_TO_PHYS(m);
1112                 do {
1113                         pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order));
1114                         if (pa < seg->start || pa >= seg->end)
1115                                 break;
1116                         m_buddy = &seg->first_page[atop(pa - seg->start)];
1117                         if (m_buddy->order != order)
1118                                 break;
1119                         fl = (*seg->free_queues)[m_buddy->pool];
1120                         vm_freelist_rem(fl, m_buddy, order);
1121                         if (m_buddy->pool != m->pool)
1122                                 vm_phys_set_pool(m->pool, m_buddy, order);
1123                         order++;
1124                         pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1);
1125                         m = &seg->first_page[atop(pa - seg->start)];
1126                 } while (order < VM_NFREEORDER - 1);
1127         }
1128         fl = (*seg->free_queues)[m->pool];
1129         vm_freelist_add(fl, m, order, 1);
1130 }
1131
1132 /*
1133  * Free a contiguous, arbitrarily sized set of physical pages.
1134  *
1135  * The free page queues must be locked.
1136  */
1137 void
1138 vm_phys_free_contig(vm_page_t m, u_long npages)
1139 {
1140         u_int n;
1141         int order;
1142
1143         /*
1144          * Avoid unnecessary coalescing by freeing the pages in the largest
1145          * possible power-of-two-sized subsets.
1146          */
1147         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1148         for (;; npages -= n) {
1149                 /*
1150                  * Unsigned "min" is used here so that "order" is assigned
1151                  * "VM_NFREEORDER - 1" when "m"'s physical address is zero
1152                  * or the low-order bits of its physical address are zero
1153                  * because the size of a physical address exceeds the size of
1154                  * a long.
1155                  */
1156                 order = min(ffsl(VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) - 1,
1157                     VM_NFREEORDER - 1);
1158                 n = 1 << order;
1159                 if (npages < n)
1160                         break;
1161                 vm_phys_free_pages(m, order);
1162                 m += n;
1163         }
1164         /* The residual "npages" is less than "1 << (VM_NFREEORDER - 1)". */
1165         for (; npages > 0; npages -= n) {
1166                 order = flsl(npages) - 1;
1167                 n = 1 << order;
1168                 vm_phys_free_pages(m, order);
1169                 m += n;
1170         }
1171 }
1172
1173 /*
1174  * Scan physical memory between the specified addresses "low" and "high" for a
1175  * run of contiguous physical pages that satisfy the specified conditions, and
1176  * return the lowest page in the run.  The specified "alignment" determines
1177  * the alignment of the lowest physical page in the run.  If the specified
1178  * "boundary" is non-zero, then the run of physical pages cannot span a
1179  * physical address that is a multiple of "boundary".
1180  *
1181  * "npages" must be greater than zero.  Both "alignment" and "boundary" must
1182  * be a power of two.
1183  */
1184 vm_page_t
1185 vm_phys_scan_contig(u_long npages, vm_paddr_t low, vm_paddr_t high,
1186     u_long alignment, vm_paddr_t boundary, int options)
1187 {
1188         vm_paddr_t pa_end;
1189         vm_page_t m_end, m_run, m_start;
1190         struct vm_phys_seg *seg;
1191         int segind;
1192
1193         KASSERT(npages > 0, ("npages is 0"));
1194         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1195         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1196         if (low >= high)
1197                 return (NULL);
1198         for (segind = 0; segind < vm_phys_nsegs; segind++) {
1199                 seg = &vm_phys_segs[segind];
1200                 if (seg->start >= high)
1201                         break;
1202                 if (low >= seg->end)
1203                         continue;
1204                 if (low <= seg->start)
1205                         m_start = seg->first_page;
1206                 else
1207                         m_start = &seg->first_page[atop(low - seg->start)];
1208                 if (high < seg->end)
1209                         pa_end = high;
1210                 else
1211                         pa_end = seg->end;
1212                 if (pa_end - VM_PAGE_TO_PHYS(m_start) < ptoa(npages))
1213                         continue;
1214                 m_end = &seg->first_page[atop(pa_end - seg->start)];
1215                 m_run = vm_page_scan_contig(npages, m_start, m_end,
1216                     alignment, boundary, options);
1217                 if (m_run != NULL)
1218                         return (m_run);
1219         }
1220         return (NULL);
1221 }
1222
1223 /*
1224  * Set the pool for a contiguous, power of two-sized set of physical pages. 
1225  */
1226 void
1227 vm_phys_set_pool(int pool, vm_page_t m, int order)
1228 {
1229         vm_page_t m_tmp;
1230
1231         for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
1232                 m_tmp->pool = pool;
1233 }
1234
1235 /*
1236  * Search for the given physical page "m" in the free lists.  If the search
1237  * succeeds, remove "m" from the free lists and return TRUE.  Otherwise, return
1238  * FALSE, indicating that "m" is not in the free lists.
1239  *
1240  * The free page queues must be locked.
1241  */
1242 boolean_t
1243 vm_phys_unfree_page(vm_page_t m)
1244 {
1245         struct vm_freelist *fl;
1246         struct vm_phys_seg *seg;
1247         vm_paddr_t pa, pa_half;
1248         vm_page_t m_set, m_tmp;
1249         int order;
1250
1251         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1252
1253         /*
1254          * First, find the contiguous, power of two-sized set of free
1255          * physical pages containing the given physical page "m" and
1256          * assign it to "m_set".
1257          */
1258         seg = &vm_phys_segs[m->segind];
1259         for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
1260             order < VM_NFREEORDER - 1; ) {
1261                 order++;
1262                 pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
1263                 if (pa >= seg->start)
1264                         m_set = &seg->first_page[atop(pa - seg->start)];
1265                 else
1266                         return (FALSE);
1267         }
1268         if (m_set->order < order)
1269                 return (FALSE);
1270         if (m_set->order == VM_NFREEORDER)
1271                 return (FALSE);
1272         KASSERT(m_set->order < VM_NFREEORDER,
1273             ("vm_phys_unfree_page: page %p has unexpected order %d",
1274             m_set, m_set->order));
1275
1276         /*
1277          * Next, remove "m_set" from the free lists.  Finally, extract
1278          * "m" from "m_set" using an iterative algorithm: While "m_set"
1279          * is larger than a page, shrink "m_set" by returning the half
1280          * of "m_set" that does not contain "m" to the free lists.
1281          */
1282         fl = (*seg->free_queues)[m_set->pool];
1283         order = m_set->order;
1284         vm_freelist_rem(fl, m_set, order);
1285         while (order > 0) {
1286                 order--;
1287                 pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
1288                 if (m->phys_addr < pa_half)
1289                         m_tmp = &seg->first_page[atop(pa_half - seg->start)];
1290                 else {
1291                         m_tmp = m_set;
1292                         m_set = &seg->first_page[atop(pa_half - seg->start)];
1293                 }
1294                 vm_freelist_add(fl, m_tmp, order, 0);
1295         }
1296         KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
1297         return (TRUE);
1298 }
1299
1300 /*
1301  * Try to zero one physical page.  Used by an idle priority thread.
1302  */
1303 boolean_t
1304 vm_phys_zero_pages_idle(void)
1305 {
1306         static struct vm_freelist *fl;
1307         static int flind, oind, pind;
1308         vm_page_t m, m_tmp;
1309         int domain;
1310
1311         domain = vm_rr_selectdomain();
1312         fl = vm_phys_free_queues[domain][0][0];
1313         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1314         for (;;) {
1315                 TAILQ_FOREACH_REVERSE(m, &fl[oind].pl, pglist, plinks.q) {
1316                         for (m_tmp = m; m_tmp < &m[1 << oind]; m_tmp++) {
1317                                 if ((m_tmp->flags & (PG_CACHED | PG_ZERO)) == 0) {
1318                                         vm_phys_unfree_page(m_tmp);
1319                                         vm_phys_freecnt_adj(m, -1);
1320                                         mtx_unlock(&vm_page_queue_free_mtx);
1321                                         pmap_zero_page_idle(m_tmp);
1322                                         m_tmp->flags |= PG_ZERO;
1323                                         mtx_lock(&vm_page_queue_free_mtx);
1324                                         vm_phys_freecnt_adj(m, 1);
1325                                         vm_phys_free_pages(m_tmp, 0);
1326                                         vm_page_zero_count++;
1327                                         cnt_prezero++;
1328                                         return (TRUE);
1329                                 }
1330                         }
1331                 }
1332                 oind++;
1333                 if (oind == VM_NFREEORDER) {
1334                         oind = 0;
1335                         pind++;
1336                         if (pind == VM_NFREEPOOL) {
1337                                 pind = 0;
1338                                 flind++;
1339                                 if (flind == vm_nfreelists)
1340                                         flind = 0;
1341                         }
1342                         fl = vm_phys_free_queues[domain][flind][pind];
1343                 }
1344         }
1345 }
1346
1347 /*
1348  * Allocate a contiguous set of physical pages of the given size
1349  * "npages" from the free lists.  All of the physical pages must be at
1350  * or above the given physical address "low" and below the given
1351  * physical address "high".  The given value "alignment" determines the
1352  * alignment of the first physical page in the set.  If the given value
1353  * "boundary" is non-zero, then the set of physical pages cannot cross
1354  * any physical address boundary that is a multiple of that value.  Both
1355  * "alignment" and "boundary" must be a power of two.
1356  */
1357 vm_page_t
1358 vm_phys_alloc_contig(u_long npages, vm_paddr_t low, vm_paddr_t high,
1359     u_long alignment, vm_paddr_t boundary)
1360 {
1361         vm_paddr_t pa_end, pa_start;
1362         vm_page_t m_run;
1363         struct vm_domain_iterator vi;
1364         struct vm_phys_seg *seg;
1365         int domain, segind;
1366
1367         KASSERT(npages > 0, ("npages is 0"));
1368         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1369         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1370         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1371         if (low >= high)
1372                 return (NULL);
1373         vm_policy_iterator_init(&vi);
1374 restartdom:
1375         if (vm_domain_iterator_run(&vi, &domain) != 0) {
1376                 vm_policy_iterator_finish(&vi);
1377                 return (NULL);
1378         }
1379         m_run = NULL;
1380         for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
1381                 seg = &vm_phys_segs[segind];
1382                 if (seg->start >= high || seg->domain != domain)
1383                         continue;
1384                 if (low >= seg->end)
1385                         break;
1386                 if (low <= seg->start)
1387                         pa_start = seg->start;
1388                 else
1389                         pa_start = low;
1390                 if (high < seg->end)
1391                         pa_end = high;
1392                 else
1393                         pa_end = seg->end;
1394                 if (pa_end - pa_start < ptoa(npages))
1395                         continue;
1396                 m_run = vm_phys_alloc_seg_contig(seg, npages, low, high,
1397                     alignment, boundary);
1398                 if (m_run != NULL)
1399                         break;
1400         }
1401         if (m_run == NULL && !vm_domain_iterator_isdone(&vi))
1402                 goto restartdom;
1403         vm_policy_iterator_finish(&vi);
1404         return (m_run);
1405 }
1406
1407 /*
1408  * Allocate a run of contiguous physical pages from the free list for the
1409  * specified segment.
1410  */
1411 static vm_page_t
1412 vm_phys_alloc_seg_contig(struct vm_phys_seg *seg, u_long npages,
1413     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
1414 {
1415         struct vm_freelist *fl;
1416         vm_paddr_t pa, pa_end, size;
1417         vm_page_t m, m_ret;
1418         u_long npages_end;
1419         int oind, order, pind;
1420
1421         KASSERT(npages > 0, ("npages is 0"));
1422         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1423         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1424         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1425         /* Compute the queue that is the best fit for npages. */
1426         for (order = 0; (1 << order) < npages; order++);
1427         /* Search for a run satisfying the specified conditions. */
1428         size = npages << PAGE_SHIFT;
1429         for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER;
1430             oind++) {
1431                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1432                         fl = (*seg->free_queues)[pind];
1433                         TAILQ_FOREACH(m_ret, &fl[oind].pl, plinks.q) {
1434                                 /*
1435                                  * Is the size of this allocation request
1436                                  * larger than the largest block size?
1437                                  */
1438                                 if (order >= VM_NFREEORDER) {
1439                                         /*
1440                                          * Determine if a sufficient number of
1441                                          * subsequent blocks to satisfy the
1442                                          * allocation request are free.
1443                                          */
1444                                         pa = VM_PAGE_TO_PHYS(m_ret);
1445                                         pa_end = pa + size;
1446                                         for (;;) {
1447                                                 pa += 1 << (PAGE_SHIFT +
1448                                                     VM_NFREEORDER - 1);
1449                                                 if (pa >= pa_end ||
1450                                                     pa < seg->start ||
1451                                                     pa >= seg->end)
1452                                                         break;
1453                                                 m = &seg->first_page[atop(pa -
1454                                                     seg->start)];
1455                                                 if (m->order != VM_NFREEORDER -
1456                                                     1)
1457                                                         break;
1458                                         }
1459                                         /* If not, go to the next block. */
1460                                         if (pa < pa_end)
1461                                                 continue;
1462                                 }
1463
1464                                 /*
1465                                  * Determine if the blocks are within the
1466                                  * given range, satisfy the given alignment,
1467                                  * and do not cross the given boundary.
1468                                  */
1469                                 pa = VM_PAGE_TO_PHYS(m_ret);
1470                                 pa_end = pa + size;
1471                                 if (pa >= low && pa_end <= high &&
1472                                     (pa & (alignment - 1)) == 0 &&
1473                                     rounddown2(pa ^ (pa_end - 1), boundary) == 0)
1474                                         goto done;
1475                         }
1476                 }
1477         }
1478         return (NULL);
1479 done:
1480         for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) {
1481                 fl = (*seg->free_queues)[m->pool];
1482                 vm_freelist_rem(fl, m, m->order);
1483         }
1484         if (m_ret->pool != VM_FREEPOOL_DEFAULT)
1485                 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m_ret, oind);
1486         fl = (*seg->free_queues)[m_ret->pool];
1487         vm_phys_split_pages(m_ret, oind, fl, order);
1488         /* Return excess pages to the free lists. */
1489         npages_end = roundup2(npages, 1 << imin(oind, order));
1490         if (npages < npages_end)
1491                 vm_phys_free_contig(&m_ret[npages], npages_end - npages);
1492         return (m_ret);
1493 }
1494
1495 #ifdef DDB
1496 /*
1497  * Show the number of physical pages in each of the free lists.
1498  */
1499 DB_SHOW_COMMAND(freepages, db_show_freepages)
1500 {
1501         struct vm_freelist *fl;
1502         int flind, oind, pind, dom;
1503
1504         for (dom = 0; dom < vm_ndomains; dom++) {
1505                 db_printf("DOMAIN: %d\n", dom);
1506                 for (flind = 0; flind < vm_nfreelists; flind++) {
1507                         db_printf("FREE LIST %d:\n"
1508                             "\n  ORDER (SIZE)  |  NUMBER"
1509                             "\n              ", flind);
1510                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
1511                                 db_printf("  |  POOL %d", pind);
1512                         db_printf("\n--            ");
1513                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
1514                                 db_printf("-- --      ");
1515                         db_printf("--\n");
1516                         for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
1517                                 db_printf("  %2.2d (%6.6dK)", oind,
1518                                     1 << (PAGE_SHIFT - 10 + oind));
1519                                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1520                                 fl = vm_phys_free_queues[dom][flind][pind];
1521                                         db_printf("  |  %6.6d", fl[oind].lcnt);
1522                                 }
1523                                 db_printf("\n");
1524                         }
1525                         db_printf("\n");
1526                 }
1527                 db_printf("\n");
1528         }
1529 }
1530 #endif