]> CyberLeo.Net >> Repos - FreeBSD/releng/10.1.git/blob - sys/vm/vm_phys.c
Document r273098, options for displaying mkimg(1) internals
[FreeBSD/releng/10.1.git] / sys / vm / vm_phys.c
1 /*-
2  * Copyright (c) 2002-2006 Rice University
3  * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
4  * All rights reserved.
5  *
6  * This software was developed for the FreeBSD Project by Alan L. Cox,
7  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
22  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
28  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31
32 /*
33  *      Physical memory system implementation
34  *
35  * Any external functions defined by this module are only to be used by the
36  * virtual memory system.
37  */
38
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41
42 #include "opt_ddb.h"
43 #include "opt_vm.h"
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/lock.h>
48 #include <sys/kernel.h>
49 #include <sys/malloc.h>
50 #include <sys/mutex.h>
51 #if MAXMEMDOM > 1
52 #include <sys/proc.h>
53 #endif
54 #include <sys/queue.h>
55 #include <sys/sbuf.h>
56 #include <sys/sysctl.h>
57 #include <sys/vmmeter.h>
58
59 #include <ddb/ddb.h>
60
61 #include <vm/vm.h>
62 #include <vm/vm_param.h>
63 #include <vm/vm_kern.h>
64 #include <vm/vm_object.h>
65 #include <vm/vm_page.h>
66 #include <vm/vm_phys.h>
67
68 _Static_assert(sizeof(long) * NBBY >= VM_PHYSSEG_MAX,
69     "Too many physsegs.");
70
71 struct mem_affinity *mem_affinity;
72
73 int vm_ndomains = 1;
74
75 struct vm_phys_seg vm_phys_segs[VM_PHYSSEG_MAX];
76 int vm_phys_nsegs;
77
78 #define VM_PHYS_FICTITIOUS_NSEGS        8
79 static struct vm_phys_fictitious_seg {
80         vm_paddr_t      start;
81         vm_paddr_t      end;
82         vm_page_t       first_page;
83 } vm_phys_fictitious_segs[VM_PHYS_FICTITIOUS_NSEGS];
84 static struct mtx vm_phys_fictitious_reg_mtx;
85 MALLOC_DEFINE(M_FICT_PAGES, "vm_fictitious", "Fictitious VM pages");
86
87 static struct vm_freelist
88     vm_phys_free_queues[MAXMEMDOM][VM_NFREELIST][VM_NFREEPOOL][VM_NFREEORDER];
89
90 static int vm_nfreelists = VM_FREELIST_DEFAULT + 1;
91
92 static int cnt_prezero;
93 SYSCTL_INT(_vm_stats_misc, OID_AUTO, cnt_prezero, CTLFLAG_RD,
94     &cnt_prezero, 0, "The number of physical pages prezeroed at idle time");
95
96 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
97 SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD,
98     NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info");
99
100 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
101 SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD,
102     NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info");
103
104 SYSCTL_INT(_vm, OID_AUTO, ndomains, CTLFLAG_RD,
105     &vm_ndomains, 0, "Number of physical memory domains available.");
106
107 static vm_page_t vm_phys_alloc_domain_pages(int domain, int flind, int pool,
108     int order);
109 static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind,
110     int domain);
111 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind);
112 static int vm_phys_paddr_to_segind(vm_paddr_t pa);
113 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
114     int order);
115
116 static __inline int
117 vm_rr_selectdomain(void)
118 {
119 #if MAXMEMDOM > 1
120         struct thread *td;
121
122         td = curthread;
123
124         td->td_dom_rr_idx++;
125         td->td_dom_rr_idx %= vm_ndomains;
126         return (td->td_dom_rr_idx);
127 #else
128         return (0);
129 #endif
130 }
131
132 boolean_t
133 vm_phys_domain_intersects(long mask, vm_paddr_t low, vm_paddr_t high)
134 {
135         struct vm_phys_seg *s;
136         int idx;
137
138         while ((idx = ffsl(mask)) != 0) {
139                 idx--;  /* ffsl counts from 1 */
140                 mask &= ~(1UL << idx);
141                 s = &vm_phys_segs[idx];
142                 if (low < s->end && high > s->start)
143                         return (TRUE);
144         }
145         return (FALSE);
146 }
147
148 /*
149  * Outputs the state of the physical memory allocator, specifically,
150  * the amount of physical memory in each free list.
151  */
152 static int
153 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
154 {
155         struct sbuf sbuf;
156         struct vm_freelist *fl;
157         int dom, error, flind, oind, pind;
158
159         error = sysctl_wire_old_buffer(req, 0);
160         if (error != 0)
161                 return (error);
162         sbuf_new_for_sysctl(&sbuf, NULL, 128 * vm_ndomains, req);
163         for (dom = 0; dom < vm_ndomains; dom++) {
164                 sbuf_printf(&sbuf,"\nDOMAIN %d:\n", dom);
165                 for (flind = 0; flind < vm_nfreelists; flind++) {
166                         sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
167                             "\n  ORDER (SIZE)  |  NUMBER"
168                             "\n              ", flind);
169                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
170                                 sbuf_printf(&sbuf, "  |  POOL %d", pind);
171                         sbuf_printf(&sbuf, "\n--            ");
172                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
173                                 sbuf_printf(&sbuf, "-- --      ");
174                         sbuf_printf(&sbuf, "--\n");
175                         for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
176                                 sbuf_printf(&sbuf, "  %2d (%6dK)", oind,
177                                     1 << (PAGE_SHIFT - 10 + oind));
178                                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
179                                 fl = vm_phys_free_queues[dom][flind][pind];
180                                         sbuf_printf(&sbuf, "  |  %6d",
181                                             fl[oind].lcnt);
182                                 }
183                                 sbuf_printf(&sbuf, "\n");
184                         }
185                 }
186         }
187         error = sbuf_finish(&sbuf);
188         sbuf_delete(&sbuf);
189         return (error);
190 }
191
192 /*
193  * Outputs the set of physical memory segments.
194  */
195 static int
196 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
197 {
198         struct sbuf sbuf;
199         struct vm_phys_seg *seg;
200         int error, segind;
201
202         error = sysctl_wire_old_buffer(req, 0);
203         if (error != 0)
204                 return (error);
205         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
206         for (segind = 0; segind < vm_phys_nsegs; segind++) {
207                 sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
208                 seg = &vm_phys_segs[segind];
209                 sbuf_printf(&sbuf, "start:     %#jx\n",
210                     (uintmax_t)seg->start);
211                 sbuf_printf(&sbuf, "end:       %#jx\n",
212                     (uintmax_t)seg->end);
213                 sbuf_printf(&sbuf, "domain:    %d\n", seg->domain);
214                 sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
215         }
216         error = sbuf_finish(&sbuf);
217         sbuf_delete(&sbuf);
218         return (error);
219 }
220
221 static void
222 vm_freelist_add(struct vm_freelist *fl, vm_page_t m, int order, int tail)
223 {
224
225         m->order = order;
226         if (tail)
227                 TAILQ_INSERT_TAIL(&fl[order].pl, m, plinks.q);
228         else
229                 TAILQ_INSERT_HEAD(&fl[order].pl, m, plinks.q);
230         fl[order].lcnt++;
231 }
232
233 static void
234 vm_freelist_rem(struct vm_freelist *fl, vm_page_t m, int order)
235 {
236
237         TAILQ_REMOVE(&fl[order].pl, m, plinks.q);
238         fl[order].lcnt--;
239         m->order = VM_NFREEORDER;
240 }
241
242 /*
243  * Create a physical memory segment.
244  */
245 static void
246 _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind, int domain)
247 {
248         struct vm_phys_seg *seg;
249 #ifdef VM_PHYSSEG_SPARSE
250         long pages;
251         int segind;
252
253         pages = 0;
254         for (segind = 0; segind < vm_phys_nsegs; segind++) {
255                 seg = &vm_phys_segs[segind];
256                 pages += atop(seg->end - seg->start);
257         }
258 #endif
259         KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
260             ("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
261         KASSERT(domain < vm_ndomains,
262             ("vm_phys_create_seg: invalid domain provided"));
263         seg = &vm_phys_segs[vm_phys_nsegs++];
264         seg->start = start;
265         seg->end = end;
266         seg->domain = domain;
267 #ifdef VM_PHYSSEG_SPARSE
268         seg->first_page = &vm_page_array[pages];
269 #else
270         seg->first_page = PHYS_TO_VM_PAGE(start);
271 #endif
272         seg->free_queues = &vm_phys_free_queues[domain][flind];
273 }
274
275 static void
276 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind)
277 {
278         int i;
279
280         if (mem_affinity == NULL) {
281                 _vm_phys_create_seg(start, end, flind, 0);
282                 return;
283         }
284
285         for (i = 0;; i++) {
286                 if (mem_affinity[i].end == 0)
287                         panic("Reached end of affinity info");
288                 if (mem_affinity[i].end <= start)
289                         continue;
290                 if (mem_affinity[i].start > start)
291                         panic("No affinity info for start %jx",
292                             (uintmax_t)start);
293                 if (mem_affinity[i].end >= end) {
294                         _vm_phys_create_seg(start, end, flind,
295                             mem_affinity[i].domain);
296                         break;
297                 }
298                 _vm_phys_create_seg(start, mem_affinity[i].end, flind,
299                     mem_affinity[i].domain);
300                 start = mem_affinity[i].end;
301         }
302 }
303
304 /*
305  * Initialize the physical memory allocator.
306  */
307 void
308 vm_phys_init(void)
309 {
310         struct vm_freelist *fl;
311         int dom, flind, i, oind, pind;
312
313         for (i = 0; phys_avail[i + 1] != 0; i += 2) {
314 #ifdef  VM_FREELIST_ISADMA
315                 if (phys_avail[i] < 16777216) {
316                         if (phys_avail[i + 1] > 16777216) {
317                                 vm_phys_create_seg(phys_avail[i], 16777216,
318                                     VM_FREELIST_ISADMA);
319                                 vm_phys_create_seg(16777216, phys_avail[i + 1],
320                                     VM_FREELIST_DEFAULT);
321                         } else {
322                                 vm_phys_create_seg(phys_avail[i],
323                                     phys_avail[i + 1], VM_FREELIST_ISADMA);
324                         }
325                         if (VM_FREELIST_ISADMA >= vm_nfreelists)
326                                 vm_nfreelists = VM_FREELIST_ISADMA + 1;
327                 } else
328 #endif
329 #ifdef  VM_FREELIST_HIGHMEM
330                 if (phys_avail[i + 1] > VM_HIGHMEM_ADDRESS) {
331                         if (phys_avail[i] < VM_HIGHMEM_ADDRESS) {
332                                 vm_phys_create_seg(phys_avail[i],
333                                     VM_HIGHMEM_ADDRESS, VM_FREELIST_DEFAULT);
334                                 vm_phys_create_seg(VM_HIGHMEM_ADDRESS,
335                                     phys_avail[i + 1], VM_FREELIST_HIGHMEM);
336                         } else {
337                                 vm_phys_create_seg(phys_avail[i],
338                                     phys_avail[i + 1], VM_FREELIST_HIGHMEM);
339                         }
340                         if (VM_FREELIST_HIGHMEM >= vm_nfreelists)
341                                 vm_nfreelists = VM_FREELIST_HIGHMEM + 1;
342                 } else
343 #endif
344                 vm_phys_create_seg(phys_avail[i], phys_avail[i + 1],
345                     VM_FREELIST_DEFAULT);
346         }
347         for (dom = 0; dom < vm_ndomains; dom++) {
348                 for (flind = 0; flind < vm_nfreelists; flind++) {
349                         for (pind = 0; pind < VM_NFREEPOOL; pind++) {
350                                 fl = vm_phys_free_queues[dom][flind][pind];
351                                 for (oind = 0; oind < VM_NFREEORDER; oind++)
352                                         TAILQ_INIT(&fl[oind].pl);
353                         }
354                 }
355         }
356         mtx_init(&vm_phys_fictitious_reg_mtx, "vmfctr", NULL, MTX_DEF);
357 }
358
359 /*
360  * Split a contiguous, power of two-sized set of physical pages.
361  */
362 static __inline void
363 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order)
364 {
365         vm_page_t m_buddy;
366
367         while (oind > order) {
368                 oind--;
369                 m_buddy = &m[1 << oind];
370                 KASSERT(m_buddy->order == VM_NFREEORDER,
371                     ("vm_phys_split_pages: page %p has unexpected order %d",
372                     m_buddy, m_buddy->order));
373                 vm_freelist_add(fl, m_buddy, oind, 0);
374         }
375 }
376
377 /*
378  * Initialize a physical page and add it to the free lists.
379  */
380 void
381 vm_phys_add_page(vm_paddr_t pa)
382 {
383         vm_page_t m;
384         struct vm_domain *vmd;
385
386         cnt.v_page_count++;
387         m = vm_phys_paddr_to_vm_page(pa);
388         m->phys_addr = pa;
389         m->queue = PQ_NONE;
390         m->segind = vm_phys_paddr_to_segind(pa);
391         vmd = vm_phys_domain(m);
392         vmd->vmd_page_count++;
393         vmd->vmd_segs |= 1UL << m->segind;
394         m->flags = PG_FREE;
395         KASSERT(m->order == VM_NFREEORDER,
396             ("vm_phys_add_page: page %p has unexpected order %d",
397             m, m->order));
398         m->pool = VM_FREEPOOL_DEFAULT;
399         pmap_page_init(m);
400         mtx_lock(&vm_page_queue_free_mtx);
401         vm_phys_freecnt_adj(m, 1);
402         vm_phys_free_pages(m, 0);
403         mtx_unlock(&vm_page_queue_free_mtx);
404 }
405
406 /*
407  * Allocate a contiguous, power of two-sized set of physical pages
408  * from the free lists.
409  *
410  * The free page queues must be locked.
411  */
412 vm_page_t
413 vm_phys_alloc_pages(int pool, int order)
414 {
415         vm_page_t m;
416         int dom, domain, flind;
417
418         KASSERT(pool < VM_NFREEPOOL,
419             ("vm_phys_alloc_pages: pool %d is out of range", pool));
420         KASSERT(order < VM_NFREEORDER,
421             ("vm_phys_alloc_pages: order %d is out of range", order));
422
423         for (dom = 0; dom < vm_ndomains; dom++) {
424                 domain = vm_rr_selectdomain();
425                 for (flind = 0; flind < vm_nfreelists; flind++) {
426                         m = vm_phys_alloc_domain_pages(domain, flind, pool,
427                             order);
428                         if (m != NULL)
429                                 return (m);
430                 }
431         }
432         return (NULL);
433 }
434
435 /*
436  * Find and dequeue a free page on the given free list, with the 
437  * specified pool and order
438  */
439 vm_page_t
440 vm_phys_alloc_freelist_pages(int flind, int pool, int order)
441 {
442         vm_page_t m;
443         int dom, domain;
444
445         KASSERT(flind < VM_NFREELIST,
446             ("vm_phys_alloc_freelist_pages: freelist %d is out of range", flind));
447         KASSERT(pool < VM_NFREEPOOL,
448             ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool));
449         KASSERT(order < VM_NFREEORDER,
450             ("vm_phys_alloc_freelist_pages: order %d is out of range", order));
451
452         for (dom = 0; dom < vm_ndomains; dom++) {
453                 domain = vm_rr_selectdomain();
454                 m = vm_phys_alloc_domain_pages(domain, flind, pool, order);
455                 if (m != NULL)
456                         return (m);
457         }
458         return (NULL);
459 }
460
461 static vm_page_t
462 vm_phys_alloc_domain_pages(int domain, int flind, int pool, int order)
463 {       
464         struct vm_freelist *fl;
465         struct vm_freelist *alt;
466         int oind, pind;
467         vm_page_t m;
468
469         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
470         fl = &vm_phys_free_queues[domain][flind][pool][0];
471         for (oind = order; oind < VM_NFREEORDER; oind++) {
472                 m = TAILQ_FIRST(&fl[oind].pl);
473                 if (m != NULL) {
474                         vm_freelist_rem(fl, m, oind);
475                         vm_phys_split_pages(m, oind, fl, order);
476                         return (m);
477                 }
478         }
479
480         /*
481          * The given pool was empty.  Find the largest
482          * contiguous, power-of-two-sized set of pages in any
483          * pool.  Transfer these pages to the given pool, and
484          * use them to satisfy the allocation.
485          */
486         for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
487                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
488                         alt = &vm_phys_free_queues[domain][flind][pind][0];
489                         m = TAILQ_FIRST(&alt[oind].pl);
490                         if (m != NULL) {
491                                 vm_freelist_rem(alt, m, oind);
492                                 vm_phys_set_pool(pool, m, oind);
493                                 vm_phys_split_pages(m, oind, fl, order);
494                                 return (m);
495                         }
496                 }
497         }
498         return (NULL);
499 }
500
501 /*
502  * Find the vm_page corresponding to the given physical address.
503  */
504 vm_page_t
505 vm_phys_paddr_to_vm_page(vm_paddr_t pa)
506 {
507         struct vm_phys_seg *seg;
508         int segind;
509
510         for (segind = 0; segind < vm_phys_nsegs; segind++) {
511                 seg = &vm_phys_segs[segind];
512                 if (pa >= seg->start && pa < seg->end)
513                         return (&seg->first_page[atop(pa - seg->start)]);
514         }
515         return (NULL);
516 }
517
518 vm_page_t
519 vm_phys_fictitious_to_vm_page(vm_paddr_t pa)
520 {
521         struct vm_phys_fictitious_seg *seg;
522         vm_page_t m;
523         int segind;
524
525         m = NULL;
526         for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) {
527                 seg = &vm_phys_fictitious_segs[segind];
528                 if (pa >= seg->start && pa < seg->end) {
529                         m = &seg->first_page[atop(pa - seg->start)];
530                         KASSERT((m->flags & PG_FICTITIOUS) != 0,
531                             ("%p not fictitious", m));
532                         break;
533                 }
534         }
535         return (m);
536 }
537
538 int
539 vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end,
540     vm_memattr_t memattr)
541 {
542         struct vm_phys_fictitious_seg *seg;
543         vm_page_t fp;
544         long i, page_count;
545         int segind;
546 #ifdef VM_PHYSSEG_DENSE
547         long pi;
548         boolean_t malloced;
549 #endif
550
551         page_count = (end - start) / PAGE_SIZE;
552
553 #ifdef VM_PHYSSEG_DENSE
554         pi = atop(start);
555         if (pi >= first_page && pi < vm_page_array_size + first_page) {
556                 if (atop(end) >= vm_page_array_size + first_page)
557                         return (EINVAL);
558                 fp = &vm_page_array[pi - first_page];
559                 malloced = FALSE;
560         } else
561 #endif
562         {
563                 fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES,
564                     M_WAITOK | M_ZERO);
565 #ifdef VM_PHYSSEG_DENSE
566                 malloced = TRUE;
567 #endif
568         }
569         for (i = 0; i < page_count; i++) {
570                 vm_page_initfake(&fp[i], start + PAGE_SIZE * i, memattr);
571                 fp[i].oflags &= ~VPO_UNMANAGED;
572                 fp[i].busy_lock = VPB_UNBUSIED;
573         }
574         mtx_lock(&vm_phys_fictitious_reg_mtx);
575         for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) {
576                 seg = &vm_phys_fictitious_segs[segind];
577                 if (seg->start == 0 && seg->end == 0) {
578                         seg->start = start;
579                         seg->end = end;
580                         seg->first_page = fp;
581                         mtx_unlock(&vm_phys_fictitious_reg_mtx);
582                         return (0);
583                 }
584         }
585         mtx_unlock(&vm_phys_fictitious_reg_mtx);
586 #ifdef VM_PHYSSEG_DENSE
587         if (malloced)
588 #endif
589                 free(fp, M_FICT_PAGES);
590         return (EBUSY);
591 }
592
593 void
594 vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end)
595 {
596         struct vm_phys_fictitious_seg *seg;
597         vm_page_t fp;
598         int segind;
599 #ifdef VM_PHYSSEG_DENSE
600         long pi;
601 #endif
602
603 #ifdef VM_PHYSSEG_DENSE
604         pi = atop(start);
605 #endif
606
607         mtx_lock(&vm_phys_fictitious_reg_mtx);
608         for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) {
609                 seg = &vm_phys_fictitious_segs[segind];
610                 if (seg->start == start && seg->end == end) {
611                         seg->start = seg->end = 0;
612                         fp = seg->first_page;
613                         seg->first_page = NULL;
614                         mtx_unlock(&vm_phys_fictitious_reg_mtx);
615 #ifdef VM_PHYSSEG_DENSE
616                         if (pi < first_page || atop(end) >= vm_page_array_size)
617 #endif
618                                 free(fp, M_FICT_PAGES);
619                         return;
620                 }
621         }
622         mtx_unlock(&vm_phys_fictitious_reg_mtx);
623         KASSERT(0, ("Unregistering not registered fictitious range"));
624 }
625
626 /*
627  * Find the segment containing the given physical address.
628  */
629 static int
630 vm_phys_paddr_to_segind(vm_paddr_t pa)
631 {
632         struct vm_phys_seg *seg;
633         int segind;
634
635         for (segind = 0; segind < vm_phys_nsegs; segind++) {
636                 seg = &vm_phys_segs[segind];
637                 if (pa >= seg->start && pa < seg->end)
638                         return (segind);
639         }
640         panic("vm_phys_paddr_to_segind: paddr %#jx is not in any segment" ,
641             (uintmax_t)pa);
642 }
643
644 /*
645  * Free a contiguous, power of two-sized set of physical pages.
646  *
647  * The free page queues must be locked.
648  */
649 void
650 vm_phys_free_pages(vm_page_t m, int order)
651 {
652         struct vm_freelist *fl;
653         struct vm_phys_seg *seg;
654         vm_paddr_t pa;
655         vm_page_t m_buddy;
656
657         KASSERT(m->order == VM_NFREEORDER,
658             ("vm_phys_free_pages: page %p has unexpected order %d",
659             m, m->order));
660         KASSERT(m->pool < VM_NFREEPOOL,
661             ("vm_phys_free_pages: page %p has unexpected pool %d",
662             m, m->pool));
663         KASSERT(order < VM_NFREEORDER,
664             ("vm_phys_free_pages: order %d is out of range", order));
665         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
666         seg = &vm_phys_segs[m->segind];
667         if (order < VM_NFREEORDER - 1) {
668                 pa = VM_PAGE_TO_PHYS(m);
669                 do {
670                         pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order));
671                         if (pa < seg->start || pa >= seg->end)
672                                 break;
673                         m_buddy = &seg->first_page[atop(pa - seg->start)];
674                         if (m_buddy->order != order)
675                                 break;
676                         fl = (*seg->free_queues)[m_buddy->pool];
677                         vm_freelist_rem(fl, m_buddy, order);
678                         if (m_buddy->pool != m->pool)
679                                 vm_phys_set_pool(m->pool, m_buddy, order);
680                         order++;
681                         pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1);
682                         m = &seg->first_page[atop(pa - seg->start)];
683                 } while (order < VM_NFREEORDER - 1);
684         }
685         fl = (*seg->free_queues)[m->pool];
686         vm_freelist_add(fl, m, order, 1);
687 }
688
689 /*
690  * Free a contiguous, arbitrarily sized set of physical pages.
691  *
692  * The free page queues must be locked.
693  */
694 void
695 vm_phys_free_contig(vm_page_t m, u_long npages)
696 {
697         u_int n;
698         int order;
699
700         /*
701          * Avoid unnecessary coalescing by freeing the pages in the largest
702          * possible power-of-two-sized subsets.
703          */
704         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
705         for (;; npages -= n) {
706                 /*
707                  * Unsigned "min" is used here so that "order" is assigned
708                  * "VM_NFREEORDER - 1" when "m"'s physical address is zero
709                  * or the low-order bits of its physical address are zero
710                  * because the size of a physical address exceeds the size of
711                  * a long.
712                  */
713                 order = min(ffsl(VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) - 1,
714                     VM_NFREEORDER - 1);
715                 n = 1 << order;
716                 if (npages < n)
717                         break;
718                 vm_phys_free_pages(m, order);
719                 m += n;
720         }
721         /* The residual "npages" is less than "1 << (VM_NFREEORDER - 1)". */
722         for (; npages > 0; npages -= n) {
723                 order = flsl(npages) - 1;
724                 n = 1 << order;
725                 vm_phys_free_pages(m, order);
726                 m += n;
727         }
728 }
729
730 /*
731  * Set the pool for a contiguous, power of two-sized set of physical pages. 
732  */
733 void
734 vm_phys_set_pool(int pool, vm_page_t m, int order)
735 {
736         vm_page_t m_tmp;
737
738         for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
739                 m_tmp->pool = pool;
740 }
741
742 /*
743  * Search for the given physical page "m" in the free lists.  If the search
744  * succeeds, remove "m" from the free lists and return TRUE.  Otherwise, return
745  * FALSE, indicating that "m" is not in the free lists.
746  *
747  * The free page queues must be locked.
748  */
749 boolean_t
750 vm_phys_unfree_page(vm_page_t m)
751 {
752         struct vm_freelist *fl;
753         struct vm_phys_seg *seg;
754         vm_paddr_t pa, pa_half;
755         vm_page_t m_set, m_tmp;
756         int order;
757
758         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
759
760         /*
761          * First, find the contiguous, power of two-sized set of free
762          * physical pages containing the given physical page "m" and
763          * assign it to "m_set".
764          */
765         seg = &vm_phys_segs[m->segind];
766         for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
767             order < VM_NFREEORDER - 1; ) {
768                 order++;
769                 pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
770                 if (pa >= seg->start)
771                         m_set = &seg->first_page[atop(pa - seg->start)];
772                 else
773                         return (FALSE);
774         }
775         if (m_set->order < order)
776                 return (FALSE);
777         if (m_set->order == VM_NFREEORDER)
778                 return (FALSE);
779         KASSERT(m_set->order < VM_NFREEORDER,
780             ("vm_phys_unfree_page: page %p has unexpected order %d",
781             m_set, m_set->order));
782
783         /*
784          * Next, remove "m_set" from the free lists.  Finally, extract
785          * "m" from "m_set" using an iterative algorithm: While "m_set"
786          * is larger than a page, shrink "m_set" by returning the half
787          * of "m_set" that does not contain "m" to the free lists.
788          */
789         fl = (*seg->free_queues)[m_set->pool];
790         order = m_set->order;
791         vm_freelist_rem(fl, m_set, order);
792         while (order > 0) {
793                 order--;
794                 pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
795                 if (m->phys_addr < pa_half)
796                         m_tmp = &seg->first_page[atop(pa_half - seg->start)];
797                 else {
798                         m_tmp = m_set;
799                         m_set = &seg->first_page[atop(pa_half - seg->start)];
800                 }
801                 vm_freelist_add(fl, m_tmp, order, 0);
802         }
803         KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
804         return (TRUE);
805 }
806
807 /*
808  * Try to zero one physical page.  Used by an idle priority thread.
809  */
810 boolean_t
811 vm_phys_zero_pages_idle(void)
812 {
813         static struct vm_freelist *fl;
814         static int flind, oind, pind;
815         vm_page_t m, m_tmp;
816         int domain;
817
818         domain = vm_rr_selectdomain();
819         fl = vm_phys_free_queues[domain][0][0];
820         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
821         for (;;) {
822                 TAILQ_FOREACH_REVERSE(m, &fl[oind].pl, pglist, plinks.q) {
823                         for (m_tmp = m; m_tmp < &m[1 << oind]; m_tmp++) {
824                                 if ((m_tmp->flags & (PG_CACHED | PG_ZERO)) == 0) {
825                                         vm_phys_unfree_page(m_tmp);
826                                         vm_phys_freecnt_adj(m, -1);
827                                         mtx_unlock(&vm_page_queue_free_mtx);
828                                         pmap_zero_page_idle(m_tmp);
829                                         m_tmp->flags |= PG_ZERO;
830                                         mtx_lock(&vm_page_queue_free_mtx);
831                                         vm_phys_freecnt_adj(m, 1);
832                                         vm_phys_free_pages(m_tmp, 0);
833                                         vm_page_zero_count++;
834                                         cnt_prezero++;
835                                         return (TRUE);
836                                 }
837                         }
838                 }
839                 oind++;
840                 if (oind == VM_NFREEORDER) {
841                         oind = 0;
842                         pind++;
843                         if (pind == VM_NFREEPOOL) {
844                                 pind = 0;
845                                 flind++;
846                                 if (flind == vm_nfreelists)
847                                         flind = 0;
848                         }
849                         fl = vm_phys_free_queues[domain][flind][pind];
850                 }
851         }
852 }
853
854 /*
855  * Allocate a contiguous set of physical pages of the given size
856  * "npages" from the free lists.  All of the physical pages must be at
857  * or above the given physical address "low" and below the given
858  * physical address "high".  The given value "alignment" determines the
859  * alignment of the first physical page in the set.  If the given value
860  * "boundary" is non-zero, then the set of physical pages cannot cross
861  * any physical address boundary that is a multiple of that value.  Both
862  * "alignment" and "boundary" must be a power of two.
863  */
864 vm_page_t
865 vm_phys_alloc_contig(u_long npages, vm_paddr_t low, vm_paddr_t high,
866     u_long alignment, vm_paddr_t boundary)
867 {
868         struct vm_freelist *fl;
869         struct vm_phys_seg *seg;
870         vm_paddr_t pa, pa_last, size;
871         vm_page_t m, m_ret;
872         u_long npages_end;
873         int dom, domain, flind, oind, order, pind;
874
875         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
876         size = npages << PAGE_SHIFT;
877         KASSERT(size != 0,
878             ("vm_phys_alloc_contig: size must not be 0"));
879         KASSERT((alignment & (alignment - 1)) == 0,
880             ("vm_phys_alloc_contig: alignment must be a power of 2"));
881         KASSERT((boundary & (boundary - 1)) == 0,
882             ("vm_phys_alloc_contig: boundary must be a power of 2"));
883         /* Compute the queue that is the best fit for npages. */
884         for (order = 0; (1 << order) < npages; order++);
885         dom = 0;
886 restartdom:
887         domain = vm_rr_selectdomain();
888         for (flind = 0; flind < vm_nfreelists; flind++) {
889                 for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER; oind++) {
890                         for (pind = 0; pind < VM_NFREEPOOL; pind++) {
891                                 fl = &vm_phys_free_queues[domain][flind][pind][0];
892                                 TAILQ_FOREACH(m_ret, &fl[oind].pl, plinks.q) {
893                                         /*
894                                          * A free list may contain physical pages
895                                          * from one or more segments.
896                                          */
897                                         seg = &vm_phys_segs[m_ret->segind];
898                                         if (seg->start > high ||
899                                             low >= seg->end)
900                                                 continue;
901
902                                         /*
903                                          * Is the size of this allocation request
904                                          * larger than the largest block size?
905                                          */
906                                         if (order >= VM_NFREEORDER) {
907                                                 /*
908                                                  * Determine if a sufficient number
909                                                  * of subsequent blocks to satisfy
910                                                  * the allocation request are free.
911                                                  */
912                                                 pa = VM_PAGE_TO_PHYS(m_ret);
913                                                 pa_last = pa + size;
914                                                 for (;;) {
915                                                         pa += 1 << (PAGE_SHIFT + VM_NFREEORDER - 1);
916                                                         if (pa >= pa_last)
917                                                                 break;
918                                                         if (pa < seg->start ||
919                                                             pa >= seg->end)
920                                                                 break;
921                                                         m = &seg->first_page[atop(pa - seg->start)];
922                                                         if (m->order != VM_NFREEORDER - 1)
923                                                                 break;
924                                                 }
925                                                 /* If not, continue to the next block. */
926                                                 if (pa < pa_last)
927                                                         continue;
928                                         }
929
930                                         /*
931                                          * Determine if the blocks are within the given range,
932                                          * satisfy the given alignment, and do not cross the
933                                          * given boundary.
934                                          */
935                                         pa = VM_PAGE_TO_PHYS(m_ret);
936                                         if (pa >= low &&
937                                             pa + size <= high &&
938                                             (pa & (alignment - 1)) == 0 &&
939                                             ((pa ^ (pa + size - 1)) & ~(boundary - 1)) == 0)
940                                                 goto done;
941                                 }
942                         }
943                 }
944         }
945         if (++dom < vm_ndomains)
946                 goto restartdom;
947         return (NULL);
948 done:
949         for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) {
950                 fl = (*seg->free_queues)[m->pool];
951                 vm_freelist_rem(fl, m, m->order);
952         }
953         if (m_ret->pool != VM_FREEPOOL_DEFAULT)
954                 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m_ret, oind);
955         fl = (*seg->free_queues)[m_ret->pool];
956         vm_phys_split_pages(m_ret, oind, fl, order);
957         /* Return excess pages to the free lists. */
958         npages_end = roundup2(npages, 1 << imin(oind, order));
959         if (npages < npages_end)
960                 vm_phys_free_contig(&m_ret[npages], npages_end - npages);
961         return (m_ret);
962 }
963
964 #ifdef DDB
965 /*
966  * Show the number of physical pages in each of the free lists.
967  */
968 DB_SHOW_COMMAND(freepages, db_show_freepages)
969 {
970         struct vm_freelist *fl;
971         int flind, oind, pind, dom;
972
973         for (dom = 0; dom < vm_ndomains; dom++) {
974                 db_printf("DOMAIN: %d\n", dom);
975                 for (flind = 0; flind < vm_nfreelists; flind++) {
976                         db_printf("FREE LIST %d:\n"
977                             "\n  ORDER (SIZE)  |  NUMBER"
978                             "\n              ", flind);
979                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
980                                 db_printf("  |  POOL %d", pind);
981                         db_printf("\n--            ");
982                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
983                                 db_printf("-- --      ");
984                         db_printf("--\n");
985                         for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
986                                 db_printf("  %2.2d (%6.6dK)", oind,
987                                     1 << (PAGE_SHIFT - 10 + oind));
988                                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
989                                 fl = vm_phys_free_queues[dom][flind][pind];
990                                         db_printf("  |  %6.6d", fl[oind].lcnt);
991                                 }
992                                 db_printf("\n");
993                         }
994                         db_printf("\n");
995                 }
996                 db_printf("\n");
997         }
998 }
999 #endif