]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_phys.c
nfsv4(4): Fix a few issues reported by mandoc
[FreeBSD/FreeBSD.git] / sys / vm / vm_phys.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2002-2006 Rice University
5  * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
6  * All rights reserved.
7  *
8  * This software was developed for the FreeBSD Project by Alan L. Cox,
9  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
24  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
27  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
30  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 /*
35  *      Physical memory system implementation
36  *
37  * Any external functions defined by this module are only to be used by the
38  * virtual memory system.
39  */
40
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43
44 #include "opt_ddb.h"
45 #include "opt_vm.h"
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/domainset.h>
50 #include <sys/lock.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/mutex.h>
54 #include <sys/proc.h>
55 #include <sys/queue.h>
56 #include <sys/rwlock.h>
57 #include <sys/sbuf.h>
58 #include <sys/sysctl.h>
59 #include <sys/tree.h>
60 #include <sys/vmmeter.h>
61
62 #include <ddb/ddb.h>
63
64 #include <vm/vm.h>
65 #include <vm/vm_param.h>
66 #include <vm/vm_kern.h>
67 #include <vm/vm_object.h>
68 #include <vm/vm_page.h>
69 #include <vm/vm_phys.h>
70 #include <vm/vm_pagequeue.h>
71
72 _Static_assert(sizeof(long) * NBBY >= VM_PHYSSEG_MAX,
73     "Too many physsegs.");
74
75 #ifdef NUMA
76 struct mem_affinity __read_mostly *mem_affinity;
77 int __read_mostly *mem_locality;
78 #endif
79
80 int __read_mostly vm_ndomains = 1;
81 domainset_t __read_mostly all_domains = DOMAINSET_T_INITIALIZER(0x1);
82
83 struct vm_phys_seg __read_mostly vm_phys_segs[VM_PHYSSEG_MAX];
84 int __read_mostly vm_phys_nsegs;
85 static struct vm_phys_seg vm_phys_early_segs[8];
86 static int vm_phys_early_nsegs;
87
88 struct vm_phys_fictitious_seg;
89 static int vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *,
90     struct vm_phys_fictitious_seg *);
91
92 RB_HEAD(fict_tree, vm_phys_fictitious_seg) vm_phys_fictitious_tree =
93     RB_INITIALIZER(&vm_phys_fictitious_tree);
94
95 struct vm_phys_fictitious_seg {
96         RB_ENTRY(vm_phys_fictitious_seg) node;
97         /* Memory region data */
98         vm_paddr_t      start;
99         vm_paddr_t      end;
100         vm_page_t       first_page;
101 };
102
103 RB_GENERATE_STATIC(fict_tree, vm_phys_fictitious_seg, node,
104     vm_phys_fictitious_cmp);
105
106 static struct rwlock_padalign vm_phys_fictitious_reg_lock;
107 MALLOC_DEFINE(M_FICT_PAGES, "vm_fictitious", "Fictitious VM pages");
108
109 static struct vm_freelist __aligned(CACHE_LINE_SIZE)
110     vm_phys_free_queues[MAXMEMDOM][VM_NFREELIST][VM_NFREEPOOL]
111     [VM_NFREEORDER_MAX];
112
113 static int __read_mostly vm_nfreelists;
114
115 /*
116  * These "avail lists" are globals used to communicate boot-time physical
117  * memory layout to other parts of the kernel.  Each physically contiguous
118  * region of memory is defined by a start address at an even index and an
119  * end address at the following odd index.  Each list is terminated by a
120  * pair of zero entries.
121  *
122  * dump_avail tells the dump code what regions to include in a crash dump, and
123  * phys_avail is all of the remaining physical memory that is available for
124  * the vm system.
125  *
126  * Initially dump_avail and phys_avail are identical.  Boot time memory
127  * allocations remove extents from phys_avail that may still be included
128  * in dumps.
129  */
130 vm_paddr_t phys_avail[PHYS_AVAIL_COUNT];
131 vm_paddr_t dump_avail[PHYS_AVAIL_COUNT];
132
133 /*
134  * Provides the mapping from VM_FREELIST_* to free list indices (flind).
135  */
136 static int __read_mostly vm_freelist_to_flind[VM_NFREELIST];
137
138 CTASSERT(VM_FREELIST_DEFAULT == 0);
139
140 #ifdef VM_FREELIST_DMA32
141 #define VM_DMA32_BOUNDARY       ((vm_paddr_t)1 << 32)
142 #endif
143
144 /*
145  * Enforce the assumptions made by vm_phys_add_seg() and vm_phys_init() about
146  * the ordering of the free list boundaries.
147  */
148 #if defined(VM_LOWMEM_BOUNDARY) && defined(VM_DMA32_BOUNDARY)
149 CTASSERT(VM_LOWMEM_BOUNDARY < VM_DMA32_BOUNDARY);
150 #endif
151
152 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
153 SYSCTL_OID(_vm, OID_AUTO, phys_free,
154     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
155     sysctl_vm_phys_free, "A",
156     "Phys Free Info");
157
158 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
159 SYSCTL_OID(_vm, OID_AUTO, phys_segs,
160     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
161     sysctl_vm_phys_segs, "A",
162     "Phys Seg Info");
163
164 #ifdef NUMA
165 static int sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS);
166 SYSCTL_OID(_vm, OID_AUTO, phys_locality,
167     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
168     sysctl_vm_phys_locality, "A",
169     "Phys Locality Info");
170 #endif
171
172 SYSCTL_INT(_vm, OID_AUTO, ndomains, CTLFLAG_RD,
173     &vm_ndomains, 0, "Number of physical memory domains available.");
174
175 static vm_page_t vm_phys_alloc_seg_contig(struct vm_phys_seg *seg,
176     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
177     vm_paddr_t boundary);
178 static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain);
179 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end);
180 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
181     int order, int tail);
182
183 /*
184  * Red-black tree helpers for vm fictitious range management.
185  */
186 static inline int
187 vm_phys_fictitious_in_range(struct vm_phys_fictitious_seg *p,
188     struct vm_phys_fictitious_seg *range)
189 {
190
191         KASSERT(range->start != 0 && range->end != 0,
192             ("Invalid range passed on search for vm_fictitious page"));
193         if (p->start >= range->end)
194                 return (1);
195         if (p->start < range->start)
196                 return (-1);
197
198         return (0);
199 }
200
201 static int
202 vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *p1,
203     struct vm_phys_fictitious_seg *p2)
204 {
205
206         /* Check if this is a search for a page */
207         if (p1->end == 0)
208                 return (vm_phys_fictitious_in_range(p1, p2));
209
210         KASSERT(p2->end != 0,
211     ("Invalid range passed as second parameter to vm fictitious comparison"));
212
213         /* Searching to add a new range */
214         if (p1->end <= p2->start)
215                 return (-1);
216         if (p1->start >= p2->end)
217                 return (1);
218
219         panic("Trying to add overlapping vm fictitious ranges:\n"
220             "[%#jx:%#jx] and [%#jx:%#jx]", (uintmax_t)p1->start,
221             (uintmax_t)p1->end, (uintmax_t)p2->start, (uintmax_t)p2->end);
222 }
223
224 int
225 vm_phys_domain_match(int prefer, vm_paddr_t low, vm_paddr_t high)
226 {
227 #ifdef NUMA
228         domainset_t mask;
229         int i;
230
231         if (vm_ndomains == 1 || mem_affinity == NULL)
232                 return (0);
233
234         DOMAINSET_ZERO(&mask);
235         /*
236          * Check for any memory that overlaps low, high.
237          */
238         for (i = 0; mem_affinity[i].end != 0; i++)
239                 if (mem_affinity[i].start <= high &&
240                     mem_affinity[i].end >= low)
241                         DOMAINSET_SET(mem_affinity[i].domain, &mask);
242         if (prefer != -1 && DOMAINSET_ISSET(prefer, &mask))
243                 return (prefer);
244         if (DOMAINSET_EMPTY(&mask))
245                 panic("vm_phys_domain_match:  Impossible constraint");
246         return (DOMAINSET_FFS(&mask) - 1);
247 #else
248         return (0);
249 #endif
250 }
251
252 /*
253  * Outputs the state of the physical memory allocator, specifically,
254  * the amount of physical memory in each free list.
255  */
256 static int
257 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
258 {
259         struct sbuf sbuf;
260         struct vm_freelist *fl;
261         int dom, error, flind, oind, pind;
262
263         error = sysctl_wire_old_buffer(req, 0);
264         if (error != 0)
265                 return (error);
266         sbuf_new_for_sysctl(&sbuf, NULL, 128 * vm_ndomains, req);
267         for (dom = 0; dom < vm_ndomains; dom++) {
268                 sbuf_printf(&sbuf,"\nDOMAIN %d:\n", dom);
269                 for (flind = 0; flind < vm_nfreelists; flind++) {
270                         sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
271                             "\n  ORDER (SIZE)  |  NUMBER"
272                             "\n              ", flind);
273                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
274                                 sbuf_printf(&sbuf, "  |  POOL %d", pind);
275                         sbuf_printf(&sbuf, "\n--            ");
276                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
277                                 sbuf_printf(&sbuf, "-- --      ");
278                         sbuf_printf(&sbuf, "--\n");
279                         for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
280                                 sbuf_printf(&sbuf, "  %2d (%6dK)", oind,
281                                     1 << (PAGE_SHIFT - 10 + oind));
282                                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
283                                 fl = vm_phys_free_queues[dom][flind][pind];
284                                         sbuf_printf(&sbuf, "  |  %6d",
285                                             fl[oind].lcnt);
286                                 }
287                                 sbuf_printf(&sbuf, "\n");
288                         }
289                 }
290         }
291         error = sbuf_finish(&sbuf);
292         sbuf_delete(&sbuf);
293         return (error);
294 }
295
296 /*
297  * Outputs the set of physical memory segments.
298  */
299 static int
300 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
301 {
302         struct sbuf sbuf;
303         struct vm_phys_seg *seg;
304         int error, segind;
305
306         error = sysctl_wire_old_buffer(req, 0);
307         if (error != 0)
308                 return (error);
309         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
310         for (segind = 0; segind < vm_phys_nsegs; segind++) {
311                 sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
312                 seg = &vm_phys_segs[segind];
313                 sbuf_printf(&sbuf, "start:     %#jx\n",
314                     (uintmax_t)seg->start);
315                 sbuf_printf(&sbuf, "end:       %#jx\n",
316                     (uintmax_t)seg->end);
317                 sbuf_printf(&sbuf, "domain:    %d\n", seg->domain);
318                 sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
319         }
320         error = sbuf_finish(&sbuf);
321         sbuf_delete(&sbuf);
322         return (error);
323 }
324
325 /*
326  * Return affinity, or -1 if there's no affinity information.
327  */
328 int
329 vm_phys_mem_affinity(int f, int t)
330 {
331
332 #ifdef NUMA
333         if (mem_locality == NULL)
334                 return (-1);
335         if (f >= vm_ndomains || t >= vm_ndomains)
336                 return (-1);
337         return (mem_locality[f * vm_ndomains + t]);
338 #else
339         return (-1);
340 #endif
341 }
342
343 #ifdef NUMA
344 /*
345  * Outputs the VM locality table.
346  */
347 static int
348 sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS)
349 {
350         struct sbuf sbuf;
351         int error, i, j;
352
353         error = sysctl_wire_old_buffer(req, 0);
354         if (error != 0)
355                 return (error);
356         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
357
358         sbuf_printf(&sbuf, "\n");
359
360         for (i = 0; i < vm_ndomains; i++) {
361                 sbuf_printf(&sbuf, "%d: ", i);
362                 for (j = 0; j < vm_ndomains; j++) {
363                         sbuf_printf(&sbuf, "%d ", vm_phys_mem_affinity(i, j));
364                 }
365                 sbuf_printf(&sbuf, "\n");
366         }
367         error = sbuf_finish(&sbuf);
368         sbuf_delete(&sbuf);
369         return (error);
370 }
371 #endif
372
373 static void
374 vm_freelist_add(struct vm_freelist *fl, vm_page_t m, int order, int tail)
375 {
376
377         m->order = order;
378         if (tail)
379                 TAILQ_INSERT_TAIL(&fl[order].pl, m, listq);
380         else
381                 TAILQ_INSERT_HEAD(&fl[order].pl, m, listq);
382         fl[order].lcnt++;
383 }
384
385 static void
386 vm_freelist_rem(struct vm_freelist *fl, vm_page_t m, int order)
387 {
388
389         TAILQ_REMOVE(&fl[order].pl, m, listq);
390         fl[order].lcnt--;
391         m->order = VM_NFREEORDER;
392 }
393
394 /*
395  * Create a physical memory segment.
396  */
397 static void
398 _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain)
399 {
400         struct vm_phys_seg *seg;
401
402         KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
403             ("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
404         KASSERT(domain >= 0 && domain < vm_ndomains,
405             ("vm_phys_create_seg: invalid domain provided"));
406         seg = &vm_phys_segs[vm_phys_nsegs++];
407         while (seg > vm_phys_segs && (seg - 1)->start >= end) {
408                 *seg = *(seg - 1);
409                 seg--;
410         }
411         seg->start = start;
412         seg->end = end;
413         seg->domain = domain;
414 }
415
416 static void
417 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end)
418 {
419 #ifdef NUMA
420         int i;
421
422         if (mem_affinity == NULL) {
423                 _vm_phys_create_seg(start, end, 0);
424                 return;
425         }
426
427         for (i = 0;; i++) {
428                 if (mem_affinity[i].end == 0)
429                         panic("Reached end of affinity info");
430                 if (mem_affinity[i].end <= start)
431                         continue;
432                 if (mem_affinity[i].start > start)
433                         panic("No affinity info for start %jx",
434                             (uintmax_t)start);
435                 if (mem_affinity[i].end >= end) {
436                         _vm_phys_create_seg(start, end,
437                             mem_affinity[i].domain);
438                         break;
439                 }
440                 _vm_phys_create_seg(start, mem_affinity[i].end,
441                     mem_affinity[i].domain);
442                 start = mem_affinity[i].end;
443         }
444 #else
445         _vm_phys_create_seg(start, end, 0);
446 #endif
447 }
448
449 /*
450  * Add a physical memory segment.
451  */
452 void
453 vm_phys_add_seg(vm_paddr_t start, vm_paddr_t end)
454 {
455         vm_paddr_t paddr;
456
457         KASSERT((start & PAGE_MASK) == 0,
458             ("vm_phys_define_seg: start is not page aligned"));
459         KASSERT((end & PAGE_MASK) == 0,
460             ("vm_phys_define_seg: end is not page aligned"));
461
462         /*
463          * Split the physical memory segment if it spans two or more free
464          * list boundaries.
465          */
466         paddr = start;
467 #ifdef  VM_FREELIST_LOWMEM
468         if (paddr < VM_LOWMEM_BOUNDARY && end > VM_LOWMEM_BOUNDARY) {
469                 vm_phys_create_seg(paddr, VM_LOWMEM_BOUNDARY);
470                 paddr = VM_LOWMEM_BOUNDARY;
471         }
472 #endif
473 #ifdef  VM_FREELIST_DMA32
474         if (paddr < VM_DMA32_BOUNDARY && end > VM_DMA32_BOUNDARY) {
475                 vm_phys_create_seg(paddr, VM_DMA32_BOUNDARY);
476                 paddr = VM_DMA32_BOUNDARY;
477         }
478 #endif
479         vm_phys_create_seg(paddr, end);
480 }
481
482 /*
483  * Initialize the physical memory allocator.
484  *
485  * Requires that vm_page_array is initialized!
486  */
487 void
488 vm_phys_init(void)
489 {
490         struct vm_freelist *fl;
491         struct vm_phys_seg *end_seg, *prev_seg, *seg, *tmp_seg;
492         u_long npages;
493         int dom, flind, freelist, oind, pind, segind;
494
495         /*
496          * Compute the number of free lists, and generate the mapping from the
497          * manifest constants VM_FREELIST_* to the free list indices.
498          *
499          * Initially, the entries of vm_freelist_to_flind[] are set to either
500          * 0 or 1 to indicate which free lists should be created.
501          */
502         npages = 0;
503         for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
504                 seg = &vm_phys_segs[segind];
505 #ifdef  VM_FREELIST_LOWMEM
506                 if (seg->end <= VM_LOWMEM_BOUNDARY)
507                         vm_freelist_to_flind[VM_FREELIST_LOWMEM] = 1;
508                 else
509 #endif
510 #ifdef  VM_FREELIST_DMA32
511                 if (
512 #ifdef  VM_DMA32_NPAGES_THRESHOLD
513                     /*
514                      * Create the DMA32 free list only if the amount of
515                      * physical memory above physical address 4G exceeds the
516                      * given threshold.
517                      */
518                     npages > VM_DMA32_NPAGES_THRESHOLD &&
519 #endif
520                     seg->end <= VM_DMA32_BOUNDARY)
521                         vm_freelist_to_flind[VM_FREELIST_DMA32] = 1;
522                 else
523 #endif
524                 {
525                         npages += atop(seg->end - seg->start);
526                         vm_freelist_to_flind[VM_FREELIST_DEFAULT] = 1;
527                 }
528         }
529         /* Change each entry into a running total of the free lists. */
530         for (freelist = 1; freelist < VM_NFREELIST; freelist++) {
531                 vm_freelist_to_flind[freelist] +=
532                     vm_freelist_to_flind[freelist - 1];
533         }
534         vm_nfreelists = vm_freelist_to_flind[VM_NFREELIST - 1];
535         KASSERT(vm_nfreelists > 0, ("vm_phys_init: no free lists"));
536         /* Change each entry into a free list index. */
537         for (freelist = 0; freelist < VM_NFREELIST; freelist++)
538                 vm_freelist_to_flind[freelist]--;
539
540         /*
541          * Initialize the first_page and free_queues fields of each physical
542          * memory segment.
543          */
544 #ifdef VM_PHYSSEG_SPARSE
545         npages = 0;
546 #endif
547         for (segind = 0; segind < vm_phys_nsegs; segind++) {
548                 seg = &vm_phys_segs[segind];
549 #ifdef VM_PHYSSEG_SPARSE
550                 seg->first_page = &vm_page_array[npages];
551                 npages += atop(seg->end - seg->start);
552 #else
553                 seg->first_page = PHYS_TO_VM_PAGE(seg->start);
554 #endif
555 #ifdef  VM_FREELIST_LOWMEM
556                 if (seg->end <= VM_LOWMEM_BOUNDARY) {
557                         flind = vm_freelist_to_flind[VM_FREELIST_LOWMEM];
558                         KASSERT(flind >= 0,
559                             ("vm_phys_init: LOWMEM flind < 0"));
560                 } else
561 #endif
562 #ifdef  VM_FREELIST_DMA32
563                 if (seg->end <= VM_DMA32_BOUNDARY) {
564                         flind = vm_freelist_to_flind[VM_FREELIST_DMA32];
565                         KASSERT(flind >= 0,
566                             ("vm_phys_init: DMA32 flind < 0"));
567                 } else
568 #endif
569                 {
570                         flind = vm_freelist_to_flind[VM_FREELIST_DEFAULT];
571                         KASSERT(flind >= 0,
572                             ("vm_phys_init: DEFAULT flind < 0"));
573                 }
574                 seg->free_queues = &vm_phys_free_queues[seg->domain][flind];
575         }
576
577         /*
578          * Coalesce physical memory segments that are contiguous and share the
579          * same per-domain free queues.
580          */
581         prev_seg = vm_phys_segs;
582         seg = &vm_phys_segs[1];
583         end_seg = &vm_phys_segs[vm_phys_nsegs];
584         while (seg < end_seg) {
585                 if (prev_seg->end == seg->start &&
586                     prev_seg->free_queues == seg->free_queues) {
587                         prev_seg->end = seg->end;
588                         KASSERT(prev_seg->domain == seg->domain,
589                             ("vm_phys_init: free queues cannot span domains"));
590                         vm_phys_nsegs--;
591                         end_seg--;
592                         for (tmp_seg = seg; tmp_seg < end_seg; tmp_seg++)
593                                 *tmp_seg = *(tmp_seg + 1);
594                 } else {
595                         prev_seg = seg;
596                         seg++;
597                 }
598         }
599
600         /*
601          * Initialize the free queues.
602          */
603         for (dom = 0; dom < vm_ndomains; dom++) {
604                 for (flind = 0; flind < vm_nfreelists; flind++) {
605                         for (pind = 0; pind < VM_NFREEPOOL; pind++) {
606                                 fl = vm_phys_free_queues[dom][flind][pind];
607                                 for (oind = 0; oind < VM_NFREEORDER; oind++)
608                                         TAILQ_INIT(&fl[oind].pl);
609                         }
610                 }
611         }
612
613         rw_init(&vm_phys_fictitious_reg_lock, "vmfctr");
614 }
615
616 /*
617  * Register info about the NUMA topology of the system.
618  *
619  * Invoked by platform-dependent code prior to vm_phys_init().
620  */
621 void
622 vm_phys_register_domains(int ndomains, struct mem_affinity *affinity,
623     int *locality)
624 {
625 #ifdef NUMA
626         int d, i;
627
628         /*
629          * For now the only override value that we support is 1, which
630          * effectively disables NUMA-awareness in the allocators.
631          */
632         d = 0;
633         TUNABLE_INT_FETCH("vm.numa.disabled", &d);
634         if (d)
635                 ndomains = 1;
636
637         if (ndomains > 1) {
638                 vm_ndomains = ndomains;
639                 mem_affinity = affinity;
640                 mem_locality = locality;
641         }
642
643         for (i = 0; i < vm_ndomains; i++)
644                 DOMAINSET_SET(i, &all_domains);
645 #else
646         (void)ndomains;
647         (void)affinity;
648         (void)locality;
649 #endif
650 }
651
652 /*
653  * Split a contiguous, power of two-sized set of physical pages.
654  *
655  * When this function is called by a page allocation function, the caller
656  * should request insertion at the head unless the order [order, oind) queues
657  * are known to be empty.  The objective being to reduce the likelihood of
658  * long-term fragmentation by promoting contemporaneous allocation and
659  * (hopefully) deallocation.
660  */
661 static __inline void
662 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order,
663     int tail)
664 {
665         vm_page_t m_buddy;
666
667         while (oind > order) {
668                 oind--;
669                 m_buddy = &m[1 << oind];
670                 KASSERT(m_buddy->order == VM_NFREEORDER,
671                     ("vm_phys_split_pages: page %p has unexpected order %d",
672                     m_buddy, m_buddy->order));
673                 vm_freelist_add(fl, m_buddy, oind, tail);
674         }
675 }
676
677 /*
678  * Add the physical pages [m, m + npages) at the end of a power-of-two aligned
679  * and sized set to the specified free list.
680  *
681  * When this function is called by a page allocation function, the caller
682  * should request insertion at the head unless the lower-order queues are
683  * known to be empty.  The objective being to reduce the likelihood of long-
684  * term fragmentation by promoting contemporaneous allocation and (hopefully)
685  * deallocation.
686  *
687  * The physical page m's buddy must not be free.
688  */
689 static void
690 vm_phys_enq_range(vm_page_t m, u_int npages, struct vm_freelist *fl, int tail)
691 {
692         u_int n;
693         int order;
694
695         KASSERT(npages > 0, ("vm_phys_enq_range: npages is 0"));
696         KASSERT(((VM_PAGE_TO_PHYS(m) + npages * PAGE_SIZE) &
697             ((PAGE_SIZE << (fls(npages) - 1)) - 1)) == 0,
698             ("vm_phys_enq_range: page %p and npages %u are misaligned",
699             m, npages));
700         do {
701                 KASSERT(m->order == VM_NFREEORDER,
702                     ("vm_phys_enq_range: page %p has unexpected order %d",
703                     m, m->order));
704                 order = ffs(npages) - 1;
705                 KASSERT(order < VM_NFREEORDER,
706                     ("vm_phys_enq_range: order %d is out of range", order));
707                 vm_freelist_add(fl, m, order, tail);
708                 n = 1 << order;
709                 m += n;
710                 npages -= n;
711         } while (npages > 0);
712 }
713
714 /*
715  * Tries to allocate the specified number of pages from the specified pool
716  * within the specified domain.  Returns the actual number of allocated pages
717  * and a pointer to each page through the array ma[].
718  *
719  * The returned pages may not be physically contiguous.  However, in contrast
720  * to performing multiple, back-to-back calls to vm_phys_alloc_pages(..., 0),
721  * calling this function once to allocate the desired number of pages will
722  * avoid wasted time in vm_phys_split_pages().
723  *
724  * The free page queues for the specified domain must be locked.
725  */
726 int
727 vm_phys_alloc_npages(int domain, int pool, int npages, vm_page_t ma[])
728 {
729         struct vm_freelist *alt, *fl;
730         vm_page_t m;
731         int avail, end, flind, freelist, i, need, oind, pind;
732
733         KASSERT(domain >= 0 && domain < vm_ndomains,
734             ("vm_phys_alloc_npages: domain %d is out of range", domain));
735         KASSERT(pool < VM_NFREEPOOL,
736             ("vm_phys_alloc_npages: pool %d is out of range", pool));
737         KASSERT(npages <= 1 << (VM_NFREEORDER - 1),
738             ("vm_phys_alloc_npages: npages %d is out of range", npages));
739         vm_domain_free_assert_locked(VM_DOMAIN(domain));
740         i = 0;
741         for (freelist = 0; freelist < VM_NFREELIST; freelist++) {
742                 flind = vm_freelist_to_flind[freelist];
743                 if (flind < 0)
744                         continue;
745                 fl = vm_phys_free_queues[domain][flind][pool];
746                 for (oind = 0; oind < VM_NFREEORDER; oind++) {
747                         while ((m = TAILQ_FIRST(&fl[oind].pl)) != NULL) {
748                                 vm_freelist_rem(fl, m, oind);
749                                 avail = 1 << oind;
750                                 need = imin(npages - i, avail);
751                                 for (end = i + need; i < end;)
752                                         ma[i++] = m++;
753                                 if (need < avail) {
754                                         /*
755                                          * Return excess pages to fl.  Its
756                                          * order [0, oind) queues are empty.
757                                          */
758                                         vm_phys_enq_range(m, avail - need, fl,
759                                             1);
760                                         return (npages);
761                                 } else if (i == npages)
762                                         return (npages);
763                         }
764                 }
765                 for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
766                         for (pind = 0; pind < VM_NFREEPOOL; pind++) {
767                                 alt = vm_phys_free_queues[domain][flind][pind];
768                                 while ((m = TAILQ_FIRST(&alt[oind].pl)) !=
769                                     NULL) {
770                                         vm_freelist_rem(alt, m, oind);
771                                         vm_phys_set_pool(pool, m, oind);
772                                         avail = 1 << oind;
773                                         need = imin(npages - i, avail);
774                                         for (end = i + need; i < end;)
775                                                 ma[i++] = m++;
776                                         if (need < avail) {
777                                                 /*
778                                                  * Return excess pages to fl.
779                                                  * Its order [0, oind) queues
780                                                  * are empty.
781                                                  */
782                                                 vm_phys_enq_range(m, avail -
783                                                     need, fl, 1);
784                                                 return (npages);
785                                         } else if (i == npages)
786                                                 return (npages);
787                                 }
788                         }
789                 }
790         }
791         return (i);
792 }
793
794 /*
795  * Allocate a contiguous, power of two-sized set of physical pages
796  * from the free lists.
797  *
798  * The free page queues must be locked.
799  */
800 vm_page_t
801 vm_phys_alloc_pages(int domain, int pool, int order)
802 {
803         vm_page_t m;
804         int freelist;
805
806         for (freelist = 0; freelist < VM_NFREELIST; freelist++) {
807                 m = vm_phys_alloc_freelist_pages(domain, freelist, pool, order);
808                 if (m != NULL)
809                         return (m);
810         }
811         return (NULL);
812 }
813
814 /*
815  * Allocate a contiguous, power of two-sized set of physical pages from the
816  * specified free list.  The free list must be specified using one of the
817  * manifest constants VM_FREELIST_*.
818  *
819  * The free page queues must be locked.
820  */
821 vm_page_t
822 vm_phys_alloc_freelist_pages(int domain, int freelist, int pool, int order)
823 {
824         struct vm_freelist *alt, *fl;
825         vm_page_t m;
826         int oind, pind, flind;
827
828         KASSERT(domain >= 0 && domain < vm_ndomains,
829             ("vm_phys_alloc_freelist_pages: domain %d is out of range",
830             domain));
831         KASSERT(freelist < VM_NFREELIST,
832             ("vm_phys_alloc_freelist_pages: freelist %d is out of range",
833             freelist));
834         KASSERT(pool < VM_NFREEPOOL,
835             ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool));
836         KASSERT(order < VM_NFREEORDER,
837             ("vm_phys_alloc_freelist_pages: order %d is out of range", order));
838
839         flind = vm_freelist_to_flind[freelist];
840         /* Check if freelist is present */
841         if (flind < 0)
842                 return (NULL);
843
844         vm_domain_free_assert_locked(VM_DOMAIN(domain));
845         fl = &vm_phys_free_queues[domain][flind][pool][0];
846         for (oind = order; oind < VM_NFREEORDER; oind++) {
847                 m = TAILQ_FIRST(&fl[oind].pl);
848                 if (m != NULL) {
849                         vm_freelist_rem(fl, m, oind);
850                         /* The order [order, oind) queues are empty. */
851                         vm_phys_split_pages(m, oind, fl, order, 1);
852                         return (m);
853                 }
854         }
855
856         /*
857          * The given pool was empty.  Find the largest
858          * contiguous, power-of-two-sized set of pages in any
859          * pool.  Transfer these pages to the given pool, and
860          * use them to satisfy the allocation.
861          */
862         for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
863                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
864                         alt = &vm_phys_free_queues[domain][flind][pind][0];
865                         m = TAILQ_FIRST(&alt[oind].pl);
866                         if (m != NULL) {
867                                 vm_freelist_rem(alt, m, oind);
868                                 vm_phys_set_pool(pool, m, oind);
869                                 /* The order [order, oind) queues are empty. */
870                                 vm_phys_split_pages(m, oind, fl, order, 1);
871                                 return (m);
872                         }
873                 }
874         }
875         return (NULL);
876 }
877
878 /*
879  * Find the vm_page corresponding to the given physical address.
880  */
881 vm_page_t
882 vm_phys_paddr_to_vm_page(vm_paddr_t pa)
883 {
884         struct vm_phys_seg *seg;
885         int segind;
886
887         for (segind = 0; segind < vm_phys_nsegs; segind++) {
888                 seg = &vm_phys_segs[segind];
889                 if (pa >= seg->start && pa < seg->end)
890                         return (&seg->first_page[atop(pa - seg->start)]);
891         }
892         return (NULL);
893 }
894
895 vm_page_t
896 vm_phys_fictitious_to_vm_page(vm_paddr_t pa)
897 {
898         struct vm_phys_fictitious_seg tmp, *seg;
899         vm_page_t m;
900
901         m = NULL;
902         tmp.start = pa;
903         tmp.end = 0;
904
905         rw_rlock(&vm_phys_fictitious_reg_lock);
906         seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
907         rw_runlock(&vm_phys_fictitious_reg_lock);
908         if (seg == NULL)
909                 return (NULL);
910
911         m = &seg->first_page[atop(pa - seg->start)];
912         KASSERT((m->flags & PG_FICTITIOUS) != 0, ("%p not fictitious", m));
913
914         return (m);
915 }
916
917 static inline void
918 vm_phys_fictitious_init_range(vm_page_t range, vm_paddr_t start,
919     long page_count, vm_memattr_t memattr)
920 {
921         long i;
922
923         bzero(range, page_count * sizeof(*range));
924         for (i = 0; i < page_count; i++) {
925                 vm_page_initfake(&range[i], start + PAGE_SIZE * i, memattr);
926                 range[i].oflags &= ~VPO_UNMANAGED;
927                 range[i].busy_lock = VPB_UNBUSIED;
928         }
929 }
930
931 int
932 vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end,
933     vm_memattr_t memattr)
934 {
935         struct vm_phys_fictitious_seg *seg;
936         vm_page_t fp;
937         long page_count;
938 #ifdef VM_PHYSSEG_DENSE
939         long pi, pe;
940         long dpage_count;
941 #endif
942
943         KASSERT(start < end,
944             ("Start of segment isn't less than end (start: %jx end: %jx)",
945             (uintmax_t)start, (uintmax_t)end));
946
947         page_count = (end - start) / PAGE_SIZE;
948
949 #ifdef VM_PHYSSEG_DENSE
950         pi = atop(start);
951         pe = atop(end);
952         if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
953                 fp = &vm_page_array[pi - first_page];
954                 if ((pe - first_page) > vm_page_array_size) {
955                         /*
956                          * We have a segment that starts inside
957                          * of vm_page_array, but ends outside of it.
958                          *
959                          * Use vm_page_array pages for those that are
960                          * inside of the vm_page_array range, and
961                          * allocate the remaining ones.
962                          */
963                         dpage_count = vm_page_array_size - (pi - first_page);
964                         vm_phys_fictitious_init_range(fp, start, dpage_count,
965                             memattr);
966                         page_count -= dpage_count;
967                         start += ptoa(dpage_count);
968                         goto alloc;
969                 }
970                 /*
971                  * We can allocate the full range from vm_page_array,
972                  * so there's no need to register the range in the tree.
973                  */
974                 vm_phys_fictitious_init_range(fp, start, page_count, memattr);
975                 return (0);
976         } else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
977                 /*
978                  * We have a segment that ends inside of vm_page_array,
979                  * but starts outside of it.
980                  */
981                 fp = &vm_page_array[0];
982                 dpage_count = pe - first_page;
983                 vm_phys_fictitious_init_range(fp, ptoa(first_page), dpage_count,
984                     memattr);
985                 end -= ptoa(dpage_count);
986                 page_count -= dpage_count;
987                 goto alloc;
988         } else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
989                 /*
990                  * Trying to register a fictitious range that expands before
991                  * and after vm_page_array.
992                  */
993                 return (EINVAL);
994         } else {
995 alloc:
996 #endif
997                 fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES,
998                     M_WAITOK);
999 #ifdef VM_PHYSSEG_DENSE
1000         }
1001 #endif
1002         vm_phys_fictitious_init_range(fp, start, page_count, memattr);
1003
1004         seg = malloc(sizeof(*seg), M_FICT_PAGES, M_WAITOK | M_ZERO);
1005         seg->start = start;
1006         seg->end = end;
1007         seg->first_page = fp;
1008
1009         rw_wlock(&vm_phys_fictitious_reg_lock);
1010         RB_INSERT(fict_tree, &vm_phys_fictitious_tree, seg);
1011         rw_wunlock(&vm_phys_fictitious_reg_lock);
1012
1013         return (0);
1014 }
1015
1016 void
1017 vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end)
1018 {
1019         struct vm_phys_fictitious_seg *seg, tmp;
1020 #ifdef VM_PHYSSEG_DENSE
1021         long pi, pe;
1022 #endif
1023
1024         KASSERT(start < end,
1025             ("Start of segment isn't less than end (start: %jx end: %jx)",
1026             (uintmax_t)start, (uintmax_t)end));
1027
1028 #ifdef VM_PHYSSEG_DENSE
1029         pi = atop(start);
1030         pe = atop(end);
1031         if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1032                 if ((pe - first_page) <= vm_page_array_size) {
1033                         /*
1034                          * This segment was allocated using vm_page_array
1035                          * only, there's nothing to do since those pages
1036                          * were never added to the tree.
1037                          */
1038                         return;
1039                 }
1040                 /*
1041                  * We have a segment that starts inside
1042                  * of vm_page_array, but ends outside of it.
1043                  *
1044                  * Calculate how many pages were added to the
1045                  * tree and free them.
1046                  */
1047                 start = ptoa(first_page + vm_page_array_size);
1048         } else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
1049                 /*
1050                  * We have a segment that ends inside of vm_page_array,
1051                  * but starts outside of it.
1052                  */
1053                 end = ptoa(first_page);
1054         } else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
1055                 /* Since it's not possible to register such a range, panic. */
1056                 panic(
1057                     "Unregistering not registered fictitious range [%#jx:%#jx]",
1058                     (uintmax_t)start, (uintmax_t)end);
1059         }
1060 #endif
1061         tmp.start = start;
1062         tmp.end = 0;
1063
1064         rw_wlock(&vm_phys_fictitious_reg_lock);
1065         seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
1066         if (seg->start != start || seg->end != end) {
1067                 rw_wunlock(&vm_phys_fictitious_reg_lock);
1068                 panic(
1069                     "Unregistering not registered fictitious range [%#jx:%#jx]",
1070                     (uintmax_t)start, (uintmax_t)end);
1071         }
1072         RB_REMOVE(fict_tree, &vm_phys_fictitious_tree, seg);
1073         rw_wunlock(&vm_phys_fictitious_reg_lock);
1074         free(seg->first_page, M_FICT_PAGES);
1075         free(seg, M_FICT_PAGES);
1076 }
1077
1078 /*
1079  * Free a contiguous, power of two-sized set of physical pages.
1080  *
1081  * The free page queues must be locked.
1082  */
1083 void
1084 vm_phys_free_pages(vm_page_t m, int order)
1085 {
1086         struct vm_freelist *fl;
1087         struct vm_phys_seg *seg;
1088         vm_paddr_t pa;
1089         vm_page_t m_buddy;
1090
1091         KASSERT(m->order == VM_NFREEORDER,
1092             ("vm_phys_free_pages: page %p has unexpected order %d",
1093             m, m->order));
1094         KASSERT(m->pool < VM_NFREEPOOL,
1095             ("vm_phys_free_pages: page %p has unexpected pool %d",
1096             m, m->pool));
1097         KASSERT(order < VM_NFREEORDER,
1098             ("vm_phys_free_pages: order %d is out of range", order));
1099         seg = &vm_phys_segs[m->segind];
1100         vm_domain_free_assert_locked(VM_DOMAIN(seg->domain));
1101         if (order < VM_NFREEORDER - 1) {
1102                 pa = VM_PAGE_TO_PHYS(m);
1103                 do {
1104                         pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order));
1105                         if (pa < seg->start || pa >= seg->end)
1106                                 break;
1107                         m_buddy = &seg->first_page[atop(pa - seg->start)];
1108                         if (m_buddy->order != order)
1109                                 break;
1110                         fl = (*seg->free_queues)[m_buddy->pool];
1111                         vm_freelist_rem(fl, m_buddy, order);
1112                         if (m_buddy->pool != m->pool)
1113                                 vm_phys_set_pool(m->pool, m_buddy, order);
1114                         order++;
1115                         pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1);
1116                         m = &seg->first_page[atop(pa - seg->start)];
1117                 } while (order < VM_NFREEORDER - 1);
1118         }
1119         fl = (*seg->free_queues)[m->pool];
1120         vm_freelist_add(fl, m, order, 1);
1121 }
1122
1123 /*
1124  * Return the largest possible order of a set of pages starting at m.
1125  */
1126 static int
1127 max_order(vm_page_t m)
1128 {
1129
1130         /*
1131          * Unsigned "min" is used here so that "order" is assigned
1132          * "VM_NFREEORDER - 1" when "m"'s physical address is zero
1133          * or the low-order bits of its physical address are zero
1134          * because the size of a physical address exceeds the size of
1135          * a long.
1136          */
1137         return (min(ffsl(VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) - 1,
1138             VM_NFREEORDER - 1));
1139 }
1140
1141 /*
1142  * Free a contiguous, arbitrarily sized set of physical pages, without
1143  * merging across set boundaries.
1144  *
1145  * The free page queues must be locked.
1146  */
1147 void
1148 vm_phys_enqueue_contig(vm_page_t m, u_long npages)
1149 {
1150         struct vm_freelist *fl;
1151         struct vm_phys_seg *seg;
1152         vm_page_t m_end;
1153         int order;
1154
1155         /*
1156          * Avoid unnecessary coalescing by freeing the pages in the largest
1157          * possible power-of-two-sized subsets.
1158          */
1159         vm_domain_free_assert_locked(vm_pagequeue_domain(m));
1160         seg = &vm_phys_segs[m->segind];
1161         fl = (*seg->free_queues)[m->pool];
1162         m_end = m + npages;
1163         /* Free blocks of increasing size. */
1164         while ((order = max_order(m)) < VM_NFREEORDER - 1 &&
1165             m + (1 << order) <= m_end) {
1166                 KASSERT(seg == &vm_phys_segs[m->segind],
1167                     ("%s: page range [%p,%p) spans multiple segments",
1168                     __func__, m_end - npages, m));
1169                 vm_freelist_add(fl, m, order, 1);
1170                 m += 1 << order;
1171         }
1172         /* Free blocks of maximum size. */
1173         while (m + (1 << order) <= m_end) {
1174                 KASSERT(seg == &vm_phys_segs[m->segind],
1175                     ("%s: page range [%p,%p) spans multiple segments",
1176                     __func__, m_end - npages, m));
1177                 vm_freelist_add(fl, m, order, 1);
1178                 m += 1 << order;
1179         }
1180         /* Free blocks of diminishing size. */
1181         while (m < m_end) {
1182                 KASSERT(seg == &vm_phys_segs[m->segind],
1183                     ("%s: page range [%p,%p) spans multiple segments",
1184                     __func__, m_end - npages, m));
1185                 order = flsl(m_end - m) - 1;
1186                 vm_freelist_add(fl, m, order, 1);
1187                 m += 1 << order;
1188         }
1189 }
1190
1191 /*
1192  * Free a contiguous, arbitrarily sized set of physical pages.
1193  *
1194  * The free page queues must be locked.
1195  */
1196 void
1197 vm_phys_free_contig(vm_page_t m, u_long npages)
1198 {
1199         int order_start, order_end;
1200         vm_page_t m_start, m_end;
1201
1202         vm_domain_free_assert_locked(vm_pagequeue_domain(m));
1203
1204         m_start = m;
1205         order_start = max_order(m_start);
1206         if (order_start < VM_NFREEORDER - 1)
1207                 m_start += 1 << order_start;
1208         m_end = m + npages;
1209         order_end = max_order(m_end);
1210         if (order_end < VM_NFREEORDER - 1)
1211                 m_end -= 1 << order_end;
1212         /*
1213          * Avoid unnecessary coalescing by freeing the pages at the start and
1214          * end of the range last.
1215          */
1216         if (m_start < m_end)
1217                 vm_phys_enqueue_contig(m_start, m_end - m_start);
1218         if (order_start < VM_NFREEORDER - 1)
1219                 vm_phys_free_pages(m, order_start);
1220         if (order_end < VM_NFREEORDER - 1)
1221                 vm_phys_free_pages(m_end, order_end);
1222 }
1223
1224 /*
1225  * Scan physical memory between the specified addresses "low" and "high" for a
1226  * run of contiguous physical pages that satisfy the specified conditions, and
1227  * return the lowest page in the run.  The specified "alignment" determines
1228  * the alignment of the lowest physical page in the run.  If the specified
1229  * "boundary" is non-zero, then the run of physical pages cannot span a
1230  * physical address that is a multiple of "boundary".
1231  *
1232  * "npages" must be greater than zero.  Both "alignment" and "boundary" must
1233  * be a power of two.
1234  */
1235 vm_page_t
1236 vm_phys_scan_contig(int domain, u_long npages, vm_paddr_t low, vm_paddr_t high,
1237     u_long alignment, vm_paddr_t boundary, int options)
1238 {
1239         vm_paddr_t pa_end;
1240         vm_page_t m_end, m_run, m_start;
1241         struct vm_phys_seg *seg;
1242         int segind;
1243
1244         KASSERT(npages > 0, ("npages is 0"));
1245         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1246         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1247         if (low >= high)
1248                 return (NULL);
1249         for (segind = 0; segind < vm_phys_nsegs; segind++) {
1250                 seg = &vm_phys_segs[segind];
1251                 if (seg->domain != domain)
1252                         continue;
1253                 if (seg->start >= high)
1254                         break;
1255                 if (low >= seg->end)
1256                         continue;
1257                 if (low <= seg->start)
1258                         m_start = seg->first_page;
1259                 else
1260                         m_start = &seg->first_page[atop(low - seg->start)];
1261                 if (high < seg->end)
1262                         pa_end = high;
1263                 else
1264                         pa_end = seg->end;
1265                 if (pa_end - VM_PAGE_TO_PHYS(m_start) < ptoa(npages))
1266                         continue;
1267                 m_end = &seg->first_page[atop(pa_end - seg->start)];
1268                 m_run = vm_page_scan_contig(npages, m_start, m_end,
1269                     alignment, boundary, options);
1270                 if (m_run != NULL)
1271                         return (m_run);
1272         }
1273         return (NULL);
1274 }
1275
1276 /*
1277  * Set the pool for a contiguous, power of two-sized set of physical pages. 
1278  */
1279 void
1280 vm_phys_set_pool(int pool, vm_page_t m, int order)
1281 {
1282         vm_page_t m_tmp;
1283
1284         for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
1285                 m_tmp->pool = pool;
1286 }
1287
1288 /*
1289  * Search for the given physical page "m" in the free lists.  If the search
1290  * succeeds, remove "m" from the free lists and return TRUE.  Otherwise, return
1291  * FALSE, indicating that "m" is not in the free lists.
1292  *
1293  * The free page queues must be locked.
1294  */
1295 boolean_t
1296 vm_phys_unfree_page(vm_page_t m)
1297 {
1298         struct vm_freelist *fl;
1299         struct vm_phys_seg *seg;
1300         vm_paddr_t pa, pa_half;
1301         vm_page_t m_set, m_tmp;
1302         int order;
1303
1304         /*
1305          * First, find the contiguous, power of two-sized set of free
1306          * physical pages containing the given physical page "m" and
1307          * assign it to "m_set".
1308          */
1309         seg = &vm_phys_segs[m->segind];
1310         vm_domain_free_assert_locked(VM_DOMAIN(seg->domain));
1311         for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
1312             order < VM_NFREEORDER - 1; ) {
1313                 order++;
1314                 pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
1315                 if (pa >= seg->start)
1316                         m_set = &seg->first_page[atop(pa - seg->start)];
1317                 else
1318                         return (FALSE);
1319         }
1320         if (m_set->order < order)
1321                 return (FALSE);
1322         if (m_set->order == VM_NFREEORDER)
1323                 return (FALSE);
1324         KASSERT(m_set->order < VM_NFREEORDER,
1325             ("vm_phys_unfree_page: page %p has unexpected order %d",
1326             m_set, m_set->order));
1327
1328         /*
1329          * Next, remove "m_set" from the free lists.  Finally, extract
1330          * "m" from "m_set" using an iterative algorithm: While "m_set"
1331          * is larger than a page, shrink "m_set" by returning the half
1332          * of "m_set" that does not contain "m" to the free lists.
1333          */
1334         fl = (*seg->free_queues)[m_set->pool];
1335         order = m_set->order;
1336         vm_freelist_rem(fl, m_set, order);
1337         while (order > 0) {
1338                 order--;
1339                 pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
1340                 if (m->phys_addr < pa_half)
1341                         m_tmp = &seg->first_page[atop(pa_half - seg->start)];
1342                 else {
1343                         m_tmp = m_set;
1344                         m_set = &seg->first_page[atop(pa_half - seg->start)];
1345                 }
1346                 vm_freelist_add(fl, m_tmp, order, 0);
1347         }
1348         KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
1349         return (TRUE);
1350 }
1351
1352 /*
1353  * Allocate a contiguous set of physical pages of the given size
1354  * "npages" from the free lists.  All of the physical pages must be at
1355  * or above the given physical address "low" and below the given
1356  * physical address "high".  The given value "alignment" determines the
1357  * alignment of the first physical page in the set.  If the given value
1358  * "boundary" is non-zero, then the set of physical pages cannot cross
1359  * any physical address boundary that is a multiple of that value.  Both
1360  * "alignment" and "boundary" must be a power of two.
1361  */
1362 vm_page_t
1363 vm_phys_alloc_contig(int domain, u_long npages, vm_paddr_t low, vm_paddr_t high,
1364     u_long alignment, vm_paddr_t boundary)
1365 {
1366         vm_paddr_t pa_end, pa_start;
1367         vm_page_t m_run;
1368         struct vm_phys_seg *seg;
1369         int segind;
1370
1371         KASSERT(npages > 0, ("npages is 0"));
1372         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1373         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1374         vm_domain_free_assert_locked(VM_DOMAIN(domain));
1375         if (low >= high)
1376                 return (NULL);
1377         m_run = NULL;
1378         for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
1379                 seg = &vm_phys_segs[segind];
1380                 if (seg->start >= high || seg->domain != domain)
1381                         continue;
1382                 if (low >= seg->end)
1383                         break;
1384                 if (low <= seg->start)
1385                         pa_start = seg->start;
1386                 else
1387                         pa_start = low;
1388                 if (high < seg->end)
1389                         pa_end = high;
1390                 else
1391                         pa_end = seg->end;
1392                 if (pa_end - pa_start < ptoa(npages))
1393                         continue;
1394                 m_run = vm_phys_alloc_seg_contig(seg, npages, low, high,
1395                     alignment, boundary);
1396                 if (m_run != NULL)
1397                         break;
1398         }
1399         return (m_run);
1400 }
1401
1402 /*
1403  * Allocate a run of contiguous physical pages from the free list for the
1404  * specified segment.
1405  */
1406 static vm_page_t
1407 vm_phys_alloc_seg_contig(struct vm_phys_seg *seg, u_long npages,
1408     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
1409 {
1410         struct vm_freelist *fl;
1411         vm_paddr_t pa, pa_end, size;
1412         vm_page_t m, m_ret;
1413         u_long npages_end;
1414         int oind, order, pind;
1415
1416         KASSERT(npages > 0, ("npages is 0"));
1417         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1418         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1419         vm_domain_free_assert_locked(VM_DOMAIN(seg->domain));
1420         /* Compute the queue that is the best fit for npages. */
1421         order = flsl(npages - 1);
1422         /* Search for a run satisfying the specified conditions. */
1423         size = npages << PAGE_SHIFT;
1424         for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER;
1425             oind++) {
1426                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1427                         fl = (*seg->free_queues)[pind];
1428                         TAILQ_FOREACH(m_ret, &fl[oind].pl, listq) {
1429                                 /*
1430                                  * Is the size of this allocation request
1431                                  * larger than the largest block size?
1432                                  */
1433                                 if (order >= VM_NFREEORDER) {
1434                                         /*
1435                                          * Determine if a sufficient number of
1436                                          * subsequent blocks to satisfy the
1437                                          * allocation request are free.
1438                                          */
1439                                         pa = VM_PAGE_TO_PHYS(m_ret);
1440                                         pa_end = pa + size;
1441                                         if (pa_end < pa)
1442                                                 continue;
1443                                         for (;;) {
1444                                                 pa += 1 << (PAGE_SHIFT +
1445                                                     VM_NFREEORDER - 1);
1446                                                 if (pa >= pa_end ||
1447                                                     pa < seg->start ||
1448                                                     pa >= seg->end)
1449                                                         break;
1450                                                 m = &seg->first_page[atop(pa -
1451                                                     seg->start)];
1452                                                 if (m->order != VM_NFREEORDER -
1453                                                     1)
1454                                                         break;
1455                                         }
1456                                         /* If not, go to the next block. */
1457                                         if (pa < pa_end)
1458                                                 continue;
1459                                 }
1460
1461                                 /*
1462                                  * Determine if the blocks are within the
1463                                  * given range, satisfy the given alignment,
1464                                  * and do not cross the given boundary.
1465                                  */
1466                                 pa = VM_PAGE_TO_PHYS(m_ret);
1467                                 pa_end = pa + size;
1468                                 if (pa >= low && pa_end <= high &&
1469                                     (pa & (alignment - 1)) == 0 &&
1470                                     rounddown2(pa ^ (pa_end - 1), boundary) == 0)
1471                                         goto done;
1472                         }
1473                 }
1474         }
1475         return (NULL);
1476 done:
1477         for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) {
1478                 fl = (*seg->free_queues)[m->pool];
1479                 vm_freelist_rem(fl, m, oind);
1480                 if (m->pool != VM_FREEPOOL_DEFAULT)
1481                         vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, oind);
1482         }
1483         /* Return excess pages to the free lists. */
1484         npages_end = roundup2(npages, 1 << oind);
1485         if (npages < npages_end) {
1486                 fl = (*seg->free_queues)[VM_FREEPOOL_DEFAULT];
1487                 vm_phys_enq_range(&m_ret[npages], npages_end - npages, fl, 0);
1488         }
1489         return (m_ret);
1490 }
1491
1492 /*
1493  * Return the index of the first unused slot which may be the terminating
1494  * entry.
1495  */
1496 static int
1497 vm_phys_avail_count(void)
1498 {
1499         int i;
1500
1501         for (i = 0; phys_avail[i + 1]; i += 2)
1502                 continue;
1503         if (i > PHYS_AVAIL_ENTRIES)
1504                 panic("Improperly terminated phys_avail %d entries", i);
1505
1506         return (i);
1507 }
1508
1509 /*
1510  * Assert that a phys_avail entry is valid.
1511  */
1512 static void
1513 vm_phys_avail_check(int i)
1514 {
1515         if (phys_avail[i] & PAGE_MASK)
1516                 panic("Unaligned phys_avail[%d]: %#jx", i,
1517                     (intmax_t)phys_avail[i]);
1518         if (phys_avail[i+1] & PAGE_MASK)
1519                 panic("Unaligned phys_avail[%d + 1]: %#jx", i,
1520                     (intmax_t)phys_avail[i]);
1521         if (phys_avail[i + 1] < phys_avail[i])
1522                 panic("phys_avail[%d] start %#jx < end %#jx", i,
1523                     (intmax_t)phys_avail[i], (intmax_t)phys_avail[i+1]);
1524 }
1525
1526 /*
1527  * Return the index of an overlapping phys_avail entry or -1.
1528  */
1529 #ifdef NUMA
1530 static int
1531 vm_phys_avail_find(vm_paddr_t pa)
1532 {
1533         int i;
1534
1535         for (i = 0; phys_avail[i + 1]; i += 2)
1536                 if (phys_avail[i] <= pa && phys_avail[i + 1] > pa)
1537                         return (i);
1538         return (-1);
1539 }
1540 #endif
1541
1542 /*
1543  * Return the index of the largest entry.
1544  */
1545 int
1546 vm_phys_avail_largest(void)
1547 {
1548         vm_paddr_t sz, largesz;
1549         int largest;
1550         int i;
1551
1552         largest = 0;
1553         largesz = 0;
1554         for (i = 0; phys_avail[i + 1]; i += 2) {
1555                 sz = vm_phys_avail_size(i);
1556                 if (sz > largesz) {
1557                         largesz = sz;
1558                         largest = i;
1559                 }
1560         }
1561
1562         return (largest);
1563 }
1564
1565 vm_paddr_t
1566 vm_phys_avail_size(int i)
1567 {
1568
1569         return (phys_avail[i + 1] - phys_avail[i]);
1570 }
1571
1572 /*
1573  * Split an entry at the address 'pa'.  Return zero on success or errno.
1574  */
1575 static int
1576 vm_phys_avail_split(vm_paddr_t pa, int i)
1577 {
1578         int cnt;
1579
1580         vm_phys_avail_check(i);
1581         if (pa <= phys_avail[i] || pa >= phys_avail[i + 1])
1582                 panic("vm_phys_avail_split: invalid address");
1583         cnt = vm_phys_avail_count();
1584         if (cnt >= PHYS_AVAIL_ENTRIES)
1585                 return (ENOSPC);
1586         memmove(&phys_avail[i + 2], &phys_avail[i],
1587             (cnt - i) * sizeof(phys_avail[0]));
1588         phys_avail[i + 1] = pa;
1589         phys_avail[i + 2] = pa;
1590         vm_phys_avail_check(i);
1591         vm_phys_avail_check(i+2);
1592
1593         return (0);
1594 }
1595
1596 void
1597 vm_phys_early_add_seg(vm_paddr_t start, vm_paddr_t end)
1598 {
1599         struct vm_phys_seg *seg;
1600
1601         if (vm_phys_early_nsegs == -1)
1602                 panic("%s: called after initialization", __func__);
1603         if (vm_phys_early_nsegs == nitems(vm_phys_early_segs))
1604                 panic("%s: ran out of early segments", __func__);
1605
1606         seg = &vm_phys_early_segs[vm_phys_early_nsegs++];
1607         seg->start = start;
1608         seg->end = end;
1609 }
1610
1611 /*
1612  * This routine allocates NUMA node specific memory before the page
1613  * allocator is bootstrapped.
1614  */
1615 vm_paddr_t
1616 vm_phys_early_alloc(int domain, size_t alloc_size)
1617 {
1618         int i, mem_index, biggestone;
1619         vm_paddr_t pa, mem_start, mem_end, size, biggestsize, align;
1620
1621         KASSERT(domain == -1 || (domain >= 0 && domain < vm_ndomains),
1622             ("%s: invalid domain index %d", __func__, domain));
1623
1624         /*
1625          * Search the mem_affinity array for the biggest address
1626          * range in the desired domain.  This is used to constrain
1627          * the phys_avail selection below.
1628          */
1629         biggestsize = 0;
1630         mem_index = 0;
1631         mem_start = 0;
1632         mem_end = -1;
1633 #ifdef NUMA
1634         if (mem_affinity != NULL) {
1635                 for (i = 0;; i++) {
1636                         size = mem_affinity[i].end - mem_affinity[i].start;
1637                         if (size == 0)
1638                                 break;
1639                         if (domain != -1 && mem_affinity[i].domain != domain)
1640                                 continue;
1641                         if (size > biggestsize) {
1642                                 mem_index = i;
1643                                 biggestsize = size;
1644                         }
1645                 }
1646                 mem_start = mem_affinity[mem_index].start;
1647                 mem_end = mem_affinity[mem_index].end;
1648         }
1649 #endif
1650
1651         /*
1652          * Now find biggest physical segment in within the desired
1653          * numa domain.
1654          */
1655         biggestsize = 0;
1656         biggestone = 0;
1657         for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1658                 /* skip regions that are out of range */
1659                 if (phys_avail[i+1] - alloc_size < mem_start ||
1660                     phys_avail[i+1] > mem_end)
1661                         continue;
1662                 size = vm_phys_avail_size(i);
1663                 if (size > biggestsize) {
1664                         biggestone = i;
1665                         biggestsize = size;
1666                 }
1667         }
1668         alloc_size = round_page(alloc_size);
1669
1670         /*
1671          * Grab single pages from the front to reduce fragmentation.
1672          */
1673         if (alloc_size == PAGE_SIZE) {
1674                 pa = phys_avail[biggestone];
1675                 phys_avail[biggestone] += PAGE_SIZE;
1676                 vm_phys_avail_check(biggestone);
1677                 return (pa);
1678         }
1679
1680         /*
1681          * Naturally align large allocations.
1682          */
1683         align = phys_avail[biggestone + 1] & (alloc_size - 1);
1684         if (alloc_size + align > biggestsize)
1685                 panic("cannot find a large enough size\n");
1686         if (align != 0 &&
1687             vm_phys_avail_split(phys_avail[biggestone + 1] - align,
1688             biggestone) != 0)
1689                 /* Wasting memory. */
1690                 phys_avail[biggestone + 1] -= align;
1691
1692         phys_avail[biggestone + 1] -= alloc_size;
1693         vm_phys_avail_check(biggestone);
1694         pa = phys_avail[biggestone + 1];
1695         return (pa);
1696 }
1697
1698 void
1699 vm_phys_early_startup(void)
1700 {
1701         struct vm_phys_seg *seg;
1702         int i;
1703
1704         for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1705                 phys_avail[i] = round_page(phys_avail[i]);
1706                 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
1707         }
1708
1709         for (i = 0; i < vm_phys_early_nsegs; i++) {
1710                 seg = &vm_phys_early_segs[i];
1711                 vm_phys_add_seg(seg->start, seg->end);
1712         }
1713         vm_phys_early_nsegs = -1;
1714
1715 #ifdef NUMA
1716         /* Force phys_avail to be split by domain. */
1717         if (mem_affinity != NULL) {
1718                 int idx;
1719
1720                 for (i = 0; mem_affinity[i].end != 0; i++) {
1721                         idx = vm_phys_avail_find(mem_affinity[i].start);
1722                         if (idx != -1 &&
1723                             phys_avail[idx] != mem_affinity[i].start)
1724                                 vm_phys_avail_split(mem_affinity[i].start, idx);
1725                         idx = vm_phys_avail_find(mem_affinity[i].end);
1726                         if (idx != -1 &&
1727                             phys_avail[idx] != mem_affinity[i].end)
1728                                 vm_phys_avail_split(mem_affinity[i].end, idx);
1729                 }
1730         }
1731 #endif
1732 }
1733
1734 #ifdef DDB
1735 /*
1736  * Show the number of physical pages in each of the free lists.
1737  */
1738 DB_SHOW_COMMAND(freepages, db_show_freepages)
1739 {
1740         struct vm_freelist *fl;
1741         int flind, oind, pind, dom;
1742
1743         for (dom = 0; dom < vm_ndomains; dom++) {
1744                 db_printf("DOMAIN: %d\n", dom);
1745                 for (flind = 0; flind < vm_nfreelists; flind++) {
1746                         db_printf("FREE LIST %d:\n"
1747                             "\n  ORDER (SIZE)  |  NUMBER"
1748                             "\n              ", flind);
1749                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
1750                                 db_printf("  |  POOL %d", pind);
1751                         db_printf("\n--            ");
1752                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
1753                                 db_printf("-- --      ");
1754                         db_printf("--\n");
1755                         for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
1756                                 db_printf("  %2.2d (%6.6dK)", oind,
1757                                     1 << (PAGE_SHIFT - 10 + oind));
1758                                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1759                                 fl = vm_phys_free_queues[dom][flind][pind];
1760                                         db_printf("  |  %6.6d", fl[oind].lcnt);
1761                                 }
1762                                 db_printf("\n");
1763                         }
1764                         db_printf("\n");
1765                 }
1766                 db_printf("\n");
1767         }
1768 }
1769 #endif