]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_phys.c
Merge branch 'releng/11.3' into releng-CDN/11.3
[FreeBSD/FreeBSD.git] / sys / vm / vm_phys.c
1 /*-
2  * Copyright (c) 2002-2006 Rice University
3  * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
4  * All rights reserved.
5  *
6  * This software was developed for the FreeBSD Project by Alan L. Cox,
7  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
22  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
28  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31
32 /*
33  *      Physical memory system implementation
34  *
35  * Any external functions defined by this module are only to be used by the
36  * virtual memory system.
37  */
38
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41
42 #include "opt_ddb.h"
43 #include "opt_vm.h"
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/lock.h>
48 #include <sys/kernel.h>
49 #include <sys/malloc.h>
50 #include <sys/mutex.h>
51 #include <sys/proc.h>
52 #include <sys/queue.h>
53 #include <sys/rwlock.h>
54 #include <sys/sbuf.h>
55 #include <sys/sysctl.h>
56 #include <sys/tree.h>
57 #include <sys/vmmeter.h>
58 #include <sys/seq.h>
59
60 #include <ddb/ddb.h>
61
62 #include <vm/vm.h>
63 #include <vm/vm_param.h>
64 #include <vm/vm_kern.h>
65 #include <vm/vm_object.h>
66 #include <vm/vm_page.h>
67 #include <vm/vm_phys.h>
68
69 #include <vm/vm_domain.h>
70
71 _Static_assert(sizeof(long) * NBBY >= VM_PHYSSEG_MAX,
72     "Too many physsegs.");
73
74 #ifdef VM_NUMA_ALLOC
75 struct mem_affinity *mem_affinity;
76 int *mem_locality;
77 #endif
78
79 int vm_ndomains = 1;
80
81 struct vm_phys_seg vm_phys_segs[VM_PHYSSEG_MAX];
82 int vm_phys_nsegs;
83
84 struct vm_phys_fictitious_seg;
85 static int vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *,
86     struct vm_phys_fictitious_seg *);
87
88 RB_HEAD(fict_tree, vm_phys_fictitious_seg) vm_phys_fictitious_tree =
89     RB_INITIALIZER(_vm_phys_fictitious_tree);
90
91 struct vm_phys_fictitious_seg {
92         RB_ENTRY(vm_phys_fictitious_seg) node;
93         /* Memory region data */
94         vm_paddr_t      start;
95         vm_paddr_t      end;
96         vm_page_t       first_page;
97 };
98
99 RB_GENERATE_STATIC(fict_tree, vm_phys_fictitious_seg, node,
100     vm_phys_fictitious_cmp);
101
102 static struct rwlock vm_phys_fictitious_reg_lock;
103 MALLOC_DEFINE(M_FICT_PAGES, "vm_fictitious", "Fictitious VM pages");
104
105 static struct vm_freelist
106     vm_phys_free_queues[MAXMEMDOM][VM_NFREELIST][VM_NFREEPOOL][VM_NFREEORDER];
107
108 static int vm_nfreelists;
109
110 /*
111  * Provides the mapping from VM_FREELIST_* to free list indices (flind).
112  */
113 static int vm_freelist_to_flind[VM_NFREELIST];
114
115 CTASSERT(VM_FREELIST_DEFAULT == 0);
116
117 #ifdef VM_FREELIST_ISADMA
118 #define VM_ISADMA_BOUNDARY      16777216
119 #endif
120 #ifdef VM_FREELIST_DMA32
121 #define VM_DMA32_BOUNDARY       ((vm_paddr_t)1 << 32)
122 #endif
123
124 /*
125  * Enforce the assumptions made by vm_phys_add_seg() and vm_phys_init() about
126  * the ordering of the free list boundaries.
127  */
128 #if defined(VM_ISADMA_BOUNDARY) && defined(VM_LOWMEM_BOUNDARY)
129 CTASSERT(VM_ISADMA_BOUNDARY < VM_LOWMEM_BOUNDARY);
130 #endif
131 #if defined(VM_LOWMEM_BOUNDARY) && defined(VM_DMA32_BOUNDARY)
132 CTASSERT(VM_LOWMEM_BOUNDARY < VM_DMA32_BOUNDARY);
133 #endif
134
135 static int cnt_prezero;
136 SYSCTL_INT(_vm_stats_misc, OID_AUTO, cnt_prezero, CTLFLAG_RD,
137     &cnt_prezero, 0, "The number of physical pages prezeroed at idle time");
138
139 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
140 SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD,
141     NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info");
142
143 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
144 SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD,
145     NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info");
146
147 #ifdef VM_NUMA_ALLOC
148 static int sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS);
149 SYSCTL_OID(_vm, OID_AUTO, phys_locality, CTLTYPE_STRING | CTLFLAG_RD,
150     NULL, 0, sysctl_vm_phys_locality, "A", "Phys Locality Info");
151 #endif
152
153 SYSCTL_INT(_vm, OID_AUTO, ndomains, CTLFLAG_RD,
154     &vm_ndomains, 0, "Number of physical memory domains available.");
155
156 /*
157  * Default to first-touch + round-robin.
158  */
159 static struct mtx vm_default_policy_mtx;
160 MTX_SYSINIT(vm_default_policy, &vm_default_policy_mtx, "default policy mutex",
161     MTX_DEF);
162 #ifdef VM_NUMA_ALLOC
163 static struct vm_domain_policy vm_default_policy =
164     VM_DOMAIN_POLICY_STATIC_INITIALISER(VM_POLICY_FIRST_TOUCH_ROUND_ROBIN, 0);
165 #else
166 /* Use round-robin so the domain policy code will only try once per allocation */
167 static struct vm_domain_policy vm_default_policy =
168     VM_DOMAIN_POLICY_STATIC_INITIALISER(VM_POLICY_ROUND_ROBIN, 0);
169 #endif
170
171 static vm_page_t vm_phys_alloc_domain_pages(int domain, int flind, int pool,
172     int order);
173 static vm_page_t vm_phys_alloc_seg_contig(struct vm_phys_seg *seg,
174     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
175     vm_paddr_t boundary);
176 static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain);
177 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end);
178 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
179     int order);
180
181 static int
182 sysctl_vm_default_policy(SYSCTL_HANDLER_ARGS)
183 {
184         char policy_name[32];
185         int error;
186
187         mtx_lock(&vm_default_policy_mtx);
188
189         /* Map policy to output string */
190         switch (vm_default_policy.p.policy) {
191         case VM_POLICY_FIRST_TOUCH:
192                 strcpy(policy_name, "first-touch");
193                 break;
194         case VM_POLICY_FIRST_TOUCH_ROUND_ROBIN:
195                 strcpy(policy_name, "first-touch-rr");
196                 break;
197         case VM_POLICY_ROUND_ROBIN:
198         default:
199                 strcpy(policy_name, "rr");
200                 break;
201         }
202         mtx_unlock(&vm_default_policy_mtx);
203
204         error = sysctl_handle_string(oidp, &policy_name[0],
205             sizeof(policy_name), req);
206         if (error != 0 || req->newptr == NULL)
207                 return (error);
208
209         mtx_lock(&vm_default_policy_mtx);
210         /* Set: match on the subset of policies that make sense as a default */
211         if (strcmp("first-touch-rr", policy_name) == 0) {
212                 vm_domain_policy_set(&vm_default_policy,
213                     VM_POLICY_FIRST_TOUCH_ROUND_ROBIN, 0);
214         } else if (strcmp("first-touch", policy_name) == 0) {
215                 vm_domain_policy_set(&vm_default_policy,
216                     VM_POLICY_FIRST_TOUCH, 0);
217         } else if (strcmp("rr", policy_name) == 0) {
218                 vm_domain_policy_set(&vm_default_policy,
219                     VM_POLICY_ROUND_ROBIN, 0);
220         } else {
221                 error = EINVAL;
222                 goto finish;
223         }
224
225         error = 0;
226 finish:
227         mtx_unlock(&vm_default_policy_mtx);
228         return (error);
229 }
230
231 SYSCTL_PROC(_vm, OID_AUTO, default_policy, CTLTYPE_STRING | CTLFLAG_RW,
232     0, 0, sysctl_vm_default_policy, "A",
233     "Default policy (rr, first-touch, first-touch-rr");
234
235 /*
236  * Red-black tree helpers for vm fictitious range management.
237  */
238 static inline int
239 vm_phys_fictitious_in_range(struct vm_phys_fictitious_seg *p,
240     struct vm_phys_fictitious_seg *range)
241 {
242
243         KASSERT(range->start != 0 && range->end != 0,
244             ("Invalid range passed on search for vm_fictitious page"));
245         if (p->start >= range->end)
246                 return (1);
247         if (p->start < range->start)
248                 return (-1);
249
250         return (0);
251 }
252
253 static int
254 vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *p1,
255     struct vm_phys_fictitious_seg *p2)
256 {
257
258         /* Check if this is a search for a page */
259         if (p1->end == 0)
260                 return (vm_phys_fictitious_in_range(p1, p2));
261
262         KASSERT(p2->end != 0,
263     ("Invalid range passed as second parameter to vm fictitious comparison"));
264
265         /* Searching to add a new range */
266         if (p1->end <= p2->start)
267                 return (-1);
268         if (p1->start >= p2->end)
269                 return (1);
270
271         panic("Trying to add overlapping vm fictitious ranges:\n"
272             "[%#jx:%#jx] and [%#jx:%#jx]", (uintmax_t)p1->start,
273             (uintmax_t)p1->end, (uintmax_t)p2->start, (uintmax_t)p2->end);
274 }
275
276 static __inline int
277 vm_rr_selectdomain(void)
278 {
279 #ifdef VM_NUMA_ALLOC
280         struct thread *td;
281
282         td = curthread;
283
284         td->td_dom_rr_idx++;
285         td->td_dom_rr_idx %= vm_ndomains;
286         return (td->td_dom_rr_idx);
287 #else
288         return (0);
289 #endif
290 }
291
292 /*
293  * Initialise a VM domain iterator.
294  *
295  * Check the thread policy, then the proc policy,
296  * then default to the system policy.
297  *
298  * Later on the various layers will have this logic
299  * plumbed into them and the phys code will be explicitly
300  * handed a VM domain policy to use.
301  */
302 static void
303 vm_policy_iterator_init(struct vm_domain_iterator *vi)
304 {
305 #ifdef VM_NUMA_ALLOC
306         struct vm_domain_policy lcl;
307 #endif
308
309         vm_domain_iterator_init(vi);
310
311 #ifdef VM_NUMA_ALLOC
312         /* Copy out the thread policy */
313         vm_domain_policy_localcopy(&lcl, &curthread->td_vm_dom_policy);
314         if (lcl.p.policy != VM_POLICY_NONE) {
315                 /* Thread policy is present; use it */
316                 vm_domain_iterator_set_policy(vi, &lcl);
317                 return;
318         }
319
320         vm_domain_policy_localcopy(&lcl,
321             &curthread->td_proc->p_vm_dom_policy);
322         if (lcl.p.policy != VM_POLICY_NONE) {
323                 /* Process policy is present; use it */
324                 vm_domain_iterator_set_policy(vi, &lcl);
325                 return;
326         }
327 #endif
328         /* Use system default policy */
329         vm_domain_iterator_set_policy(vi, &vm_default_policy);
330 }
331
332 static void
333 vm_policy_iterator_finish(struct vm_domain_iterator *vi)
334 {
335
336         vm_domain_iterator_cleanup(vi);
337 }
338
339 boolean_t
340 vm_phys_domain_intersects(long mask, vm_paddr_t low, vm_paddr_t high)
341 {
342         struct vm_phys_seg *s;
343         int idx;
344
345         while ((idx = ffsl(mask)) != 0) {
346                 idx--;  /* ffsl counts from 1 */
347                 mask &= ~(1UL << idx);
348                 s = &vm_phys_segs[idx];
349                 if (low < s->end && high > s->start)
350                         return (TRUE);
351         }
352         return (FALSE);
353 }
354
355 /*
356  * Outputs the state of the physical memory allocator, specifically,
357  * the amount of physical memory in each free list.
358  */
359 static int
360 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
361 {
362         struct sbuf sbuf;
363         struct vm_freelist *fl;
364         int dom, error, flind, oind, pind;
365
366         error = sysctl_wire_old_buffer(req, 0);
367         if (error != 0)
368                 return (error);
369         sbuf_new_for_sysctl(&sbuf, NULL, 128 * vm_ndomains, req);
370         for (dom = 0; dom < vm_ndomains; dom++) {
371                 sbuf_printf(&sbuf,"\nDOMAIN %d:\n", dom);
372                 for (flind = 0; flind < vm_nfreelists; flind++) {
373                         sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
374                             "\n  ORDER (SIZE)  |  NUMBER"
375                             "\n              ", flind);
376                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
377                                 sbuf_printf(&sbuf, "  |  POOL %d", pind);
378                         sbuf_printf(&sbuf, "\n--            ");
379                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
380                                 sbuf_printf(&sbuf, "-- --      ");
381                         sbuf_printf(&sbuf, "--\n");
382                         for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
383                                 sbuf_printf(&sbuf, "  %2d (%6dK)", oind,
384                                     1 << (PAGE_SHIFT - 10 + oind));
385                                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
386                                 fl = vm_phys_free_queues[dom][flind][pind];
387                                         sbuf_printf(&sbuf, "  |  %6d",
388                                             fl[oind].lcnt);
389                                 }
390                                 sbuf_printf(&sbuf, "\n");
391                         }
392                 }
393         }
394         error = sbuf_finish(&sbuf);
395         sbuf_delete(&sbuf);
396         return (error);
397 }
398
399 /*
400  * Outputs the set of physical memory segments.
401  */
402 static int
403 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
404 {
405         struct sbuf sbuf;
406         struct vm_phys_seg *seg;
407         int error, segind;
408
409         error = sysctl_wire_old_buffer(req, 0);
410         if (error != 0)
411                 return (error);
412         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
413         for (segind = 0; segind < vm_phys_nsegs; segind++) {
414                 sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
415                 seg = &vm_phys_segs[segind];
416                 sbuf_printf(&sbuf, "start:     %#jx\n",
417                     (uintmax_t)seg->start);
418                 sbuf_printf(&sbuf, "end:       %#jx\n",
419                     (uintmax_t)seg->end);
420                 sbuf_printf(&sbuf, "domain:    %d\n", seg->domain);
421                 sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
422         }
423         error = sbuf_finish(&sbuf);
424         sbuf_delete(&sbuf);
425         return (error);
426 }
427
428 /*
429  * Return affinity, or -1 if there's no affinity information.
430  */
431 int
432 vm_phys_mem_affinity(int f, int t)
433 {
434
435 #ifdef VM_NUMA_ALLOC
436         if (mem_locality == NULL)
437                 return (-1);
438         if (f >= vm_ndomains || t >= vm_ndomains)
439                 return (-1);
440         return (mem_locality[f * vm_ndomains + t]);
441 #else
442         return (-1);
443 #endif
444 }
445
446 #ifdef VM_NUMA_ALLOC
447 /*
448  * Outputs the VM locality table.
449  */
450 static int
451 sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS)
452 {
453         struct sbuf sbuf;
454         int error, i, j;
455
456         error = sysctl_wire_old_buffer(req, 0);
457         if (error != 0)
458                 return (error);
459         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
460
461         sbuf_printf(&sbuf, "\n");
462
463         for (i = 0; i < vm_ndomains; i++) {
464                 sbuf_printf(&sbuf, "%d: ", i);
465                 for (j = 0; j < vm_ndomains; j++) {
466                         sbuf_printf(&sbuf, "%d ", vm_phys_mem_affinity(i, j));
467                 }
468                 sbuf_printf(&sbuf, "\n");
469         }
470         error = sbuf_finish(&sbuf);
471         sbuf_delete(&sbuf);
472         return (error);
473 }
474 #endif
475
476 static void
477 vm_freelist_add(struct vm_freelist *fl, vm_page_t m, int order, int tail)
478 {
479
480         m->order = order;
481         if (tail)
482                 TAILQ_INSERT_TAIL(&fl[order].pl, m, plinks.q);
483         else
484                 TAILQ_INSERT_HEAD(&fl[order].pl, m, plinks.q);
485         fl[order].lcnt++;
486 }
487
488 static void
489 vm_freelist_rem(struct vm_freelist *fl, vm_page_t m, int order)
490 {
491
492         TAILQ_REMOVE(&fl[order].pl, m, plinks.q);
493         fl[order].lcnt--;
494         m->order = VM_NFREEORDER;
495 }
496
497 /*
498  * Create a physical memory segment.
499  */
500 static void
501 _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain)
502 {
503         struct vm_phys_seg *seg;
504
505         KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
506             ("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
507         KASSERT(domain < vm_ndomains,
508             ("vm_phys_create_seg: invalid domain provided"));
509         seg = &vm_phys_segs[vm_phys_nsegs++];
510         while (seg > vm_phys_segs && (seg - 1)->start >= end) {
511                 *seg = *(seg - 1);
512                 seg--;
513         }
514         seg->start = start;
515         seg->end = end;
516         seg->domain = domain;
517 }
518
519 static void
520 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end)
521 {
522 #ifdef VM_NUMA_ALLOC
523         int i;
524
525         if (mem_affinity == NULL) {
526                 _vm_phys_create_seg(start, end, 0);
527                 return;
528         }
529
530         for (i = 0;; i++) {
531                 if (mem_affinity[i].end == 0)
532                         panic("Reached end of affinity info");
533                 if (mem_affinity[i].end <= start)
534                         continue;
535                 if (mem_affinity[i].start > start)
536                         panic("No affinity info for start %jx",
537                             (uintmax_t)start);
538                 if (mem_affinity[i].end >= end) {
539                         _vm_phys_create_seg(start, end,
540                             mem_affinity[i].domain);
541                         break;
542                 }
543                 _vm_phys_create_seg(start, mem_affinity[i].end,
544                     mem_affinity[i].domain);
545                 start = mem_affinity[i].end;
546         }
547 #else
548         _vm_phys_create_seg(start, end, 0);
549 #endif
550 }
551
552 /*
553  * Add a physical memory segment.
554  */
555 void
556 vm_phys_add_seg(vm_paddr_t start, vm_paddr_t end)
557 {
558         vm_paddr_t paddr;
559
560         KASSERT((start & PAGE_MASK) == 0,
561             ("vm_phys_define_seg: start is not page aligned"));
562         KASSERT((end & PAGE_MASK) == 0,
563             ("vm_phys_define_seg: end is not page aligned"));
564
565         /*
566          * Split the physical memory segment if it spans two or more free
567          * list boundaries.
568          */
569         paddr = start;
570 #ifdef  VM_FREELIST_ISADMA
571         if (paddr < VM_ISADMA_BOUNDARY && end > VM_ISADMA_BOUNDARY) {
572                 vm_phys_create_seg(paddr, VM_ISADMA_BOUNDARY);
573                 paddr = VM_ISADMA_BOUNDARY;
574         }
575 #endif
576 #ifdef  VM_FREELIST_LOWMEM
577         if (paddr < VM_LOWMEM_BOUNDARY && end > VM_LOWMEM_BOUNDARY) {
578                 vm_phys_create_seg(paddr, VM_LOWMEM_BOUNDARY);
579                 paddr = VM_LOWMEM_BOUNDARY;
580         }
581 #endif
582 #ifdef  VM_FREELIST_DMA32
583         if (paddr < VM_DMA32_BOUNDARY && end > VM_DMA32_BOUNDARY) {
584                 vm_phys_create_seg(paddr, VM_DMA32_BOUNDARY);
585                 paddr = VM_DMA32_BOUNDARY;
586         }
587 #endif
588         vm_phys_create_seg(paddr, end);
589 }
590
591 /*
592  * Initialize the physical memory allocator.
593  *
594  * Requires that vm_page_array is initialized!
595  */
596 void
597 vm_phys_init(void)
598 {
599         struct vm_freelist *fl;
600         struct vm_phys_seg *seg;
601         u_long npages;
602         int dom, flind, freelist, oind, pind, segind;
603
604         /*
605          * Compute the number of free lists, and generate the mapping from the
606          * manifest constants VM_FREELIST_* to the free list indices.
607          *
608          * Initially, the entries of vm_freelist_to_flind[] are set to either
609          * 0 or 1 to indicate which free lists should be created.
610          */
611         npages = 0;
612         for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
613                 seg = &vm_phys_segs[segind];
614 #ifdef  VM_FREELIST_ISADMA
615                 if (seg->end <= VM_ISADMA_BOUNDARY)
616                         vm_freelist_to_flind[VM_FREELIST_ISADMA] = 1;
617                 else
618 #endif
619 #ifdef  VM_FREELIST_LOWMEM
620                 if (seg->end <= VM_LOWMEM_BOUNDARY)
621                         vm_freelist_to_flind[VM_FREELIST_LOWMEM] = 1;
622                 else
623 #endif
624 #ifdef  VM_FREELIST_DMA32
625                 if (
626 #ifdef  VM_DMA32_NPAGES_THRESHOLD
627                     /*
628                      * Create the DMA32 free list only if the amount of
629                      * physical memory above physical address 4G exceeds the
630                      * given threshold.
631                      */
632                     npages > VM_DMA32_NPAGES_THRESHOLD &&
633 #endif
634                     seg->end <= VM_DMA32_BOUNDARY)
635                         vm_freelist_to_flind[VM_FREELIST_DMA32] = 1;
636                 else
637 #endif
638                 {
639                         npages += atop(seg->end - seg->start);
640                         vm_freelist_to_flind[VM_FREELIST_DEFAULT] = 1;
641                 }
642         }
643         /* Change each entry into a running total of the free lists. */
644         for (freelist = 1; freelist < VM_NFREELIST; freelist++) {
645                 vm_freelist_to_flind[freelist] +=
646                     vm_freelist_to_flind[freelist - 1];
647         }
648         vm_nfreelists = vm_freelist_to_flind[VM_NFREELIST - 1];
649         KASSERT(vm_nfreelists > 0, ("vm_phys_init: no free lists"));
650         /* Change each entry into a free list index. */
651         for (freelist = 0; freelist < VM_NFREELIST; freelist++)
652                 vm_freelist_to_flind[freelist]--;
653
654         /*
655          * Initialize the first_page and free_queues fields of each physical
656          * memory segment.
657          */
658 #ifdef VM_PHYSSEG_SPARSE
659         npages = 0;
660 #endif
661         for (segind = 0; segind < vm_phys_nsegs; segind++) {
662                 seg = &vm_phys_segs[segind];
663 #ifdef VM_PHYSSEG_SPARSE
664                 seg->first_page = &vm_page_array[npages];
665                 npages += atop(seg->end - seg->start);
666 #else
667                 seg->first_page = PHYS_TO_VM_PAGE(seg->start);
668 #endif
669 #ifdef  VM_FREELIST_ISADMA
670                 if (seg->end <= VM_ISADMA_BOUNDARY) {
671                         flind = vm_freelist_to_flind[VM_FREELIST_ISADMA];
672                         KASSERT(flind >= 0,
673                             ("vm_phys_init: ISADMA flind < 0"));
674                 } else
675 #endif
676 #ifdef  VM_FREELIST_LOWMEM
677                 if (seg->end <= VM_LOWMEM_BOUNDARY) {
678                         flind = vm_freelist_to_flind[VM_FREELIST_LOWMEM];
679                         KASSERT(flind >= 0,
680                             ("vm_phys_init: LOWMEM flind < 0"));
681                 } else
682 #endif
683 #ifdef  VM_FREELIST_DMA32
684                 if (seg->end <= VM_DMA32_BOUNDARY) {
685                         flind = vm_freelist_to_flind[VM_FREELIST_DMA32];
686                         KASSERT(flind >= 0,
687                             ("vm_phys_init: DMA32 flind < 0"));
688                 } else
689 #endif
690                 {
691                         flind = vm_freelist_to_flind[VM_FREELIST_DEFAULT];
692                         KASSERT(flind >= 0,
693                             ("vm_phys_init: DEFAULT flind < 0"));
694                 }
695                 seg->free_queues = &vm_phys_free_queues[seg->domain][flind];
696         }
697
698         /*
699          * Initialize the free queues.
700          */
701         for (dom = 0; dom < vm_ndomains; dom++) {
702                 for (flind = 0; flind < vm_nfreelists; flind++) {
703                         for (pind = 0; pind < VM_NFREEPOOL; pind++) {
704                                 fl = vm_phys_free_queues[dom][flind][pind];
705                                 for (oind = 0; oind < VM_NFREEORDER; oind++)
706                                         TAILQ_INIT(&fl[oind].pl);
707                         }
708                 }
709         }
710
711         rw_init(&vm_phys_fictitious_reg_lock, "vmfctr");
712 }
713
714 /*
715  * Split a contiguous, power of two-sized set of physical pages.
716  */
717 static __inline void
718 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order)
719 {
720         vm_page_t m_buddy;
721
722         while (oind > order) {
723                 oind--;
724                 m_buddy = &m[1 << oind];
725                 KASSERT(m_buddy->order == VM_NFREEORDER,
726                     ("vm_phys_split_pages: page %p has unexpected order %d",
727                     m_buddy, m_buddy->order));
728                 vm_freelist_add(fl, m_buddy, oind, 0);
729         }
730 }
731
732 /*
733  * Allocate a contiguous, power of two-sized set of physical pages
734  * from the free lists.
735  *
736  * The free page queues must be locked.
737  */
738 vm_page_t
739 vm_phys_alloc_pages(int pool, int order)
740 {
741         vm_page_t m;
742         int domain, flind;
743         struct vm_domain_iterator vi;
744
745         KASSERT(pool < VM_NFREEPOOL,
746             ("vm_phys_alloc_pages: pool %d is out of range", pool));
747         KASSERT(order < VM_NFREEORDER,
748             ("vm_phys_alloc_pages: order %d is out of range", order));
749
750         vm_policy_iterator_init(&vi);
751
752         while ((vm_domain_iterator_run(&vi, &domain)) == 0) {
753                 for (flind = 0; flind < vm_nfreelists; flind++) {
754                         m = vm_phys_alloc_domain_pages(domain, flind, pool,
755                             order);
756                         if (m != NULL)
757                                 return (m);
758                 }
759         }
760
761         vm_policy_iterator_finish(&vi);
762         return (NULL);
763 }
764
765 /*
766  * Allocate a contiguous, power of two-sized set of physical pages from the
767  * specified free list.  The free list must be specified using one of the
768  * manifest constants VM_FREELIST_*.
769  *
770  * The free page queues must be locked.
771  */
772 vm_page_t
773 vm_phys_alloc_freelist_pages(int freelist, int pool, int order)
774 {
775         vm_page_t m;
776         struct vm_domain_iterator vi;
777         int domain;
778
779         KASSERT(freelist < VM_NFREELIST,
780             ("vm_phys_alloc_freelist_pages: freelist %d is out of range",
781             freelist));
782         KASSERT(pool < VM_NFREEPOOL,
783             ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool));
784         KASSERT(order < VM_NFREEORDER,
785             ("vm_phys_alloc_freelist_pages: order %d is out of range", order));
786
787         vm_policy_iterator_init(&vi);
788
789         while ((vm_domain_iterator_run(&vi, &domain)) == 0) {
790                 m = vm_phys_alloc_domain_pages(domain,
791                     vm_freelist_to_flind[freelist], pool, order);
792                 if (m != NULL)
793                         return (m);
794         }
795
796         vm_policy_iterator_finish(&vi);
797         return (NULL);
798 }
799
800 static vm_page_t
801 vm_phys_alloc_domain_pages(int domain, int flind, int pool, int order)
802 {       
803         struct vm_freelist *fl;
804         struct vm_freelist *alt;
805         int oind, pind;
806         vm_page_t m;
807
808         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
809         fl = &vm_phys_free_queues[domain][flind][pool][0];
810         for (oind = order; oind < VM_NFREEORDER; oind++) {
811                 m = TAILQ_FIRST(&fl[oind].pl);
812                 if (m != NULL) {
813                         vm_freelist_rem(fl, m, oind);
814                         vm_phys_split_pages(m, oind, fl, order);
815                         return (m);
816                 }
817         }
818
819         /*
820          * The given pool was empty.  Find the largest
821          * contiguous, power-of-two-sized set of pages in any
822          * pool.  Transfer these pages to the given pool, and
823          * use them to satisfy the allocation.
824          */
825         for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
826                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
827                         alt = &vm_phys_free_queues[domain][flind][pind][0];
828                         m = TAILQ_FIRST(&alt[oind].pl);
829                         if (m != NULL) {
830                                 vm_freelist_rem(alt, m, oind);
831                                 vm_phys_set_pool(pool, m, oind);
832                                 vm_phys_split_pages(m, oind, fl, order);
833                                 return (m);
834                         }
835                 }
836         }
837         return (NULL);
838 }
839
840 /*
841  * Find the vm_page corresponding to the given physical address.
842  */
843 vm_page_t
844 vm_phys_paddr_to_vm_page(vm_paddr_t pa)
845 {
846         struct vm_phys_seg *seg;
847         int segind;
848
849         for (segind = 0; segind < vm_phys_nsegs; segind++) {
850                 seg = &vm_phys_segs[segind];
851                 if (pa >= seg->start && pa < seg->end)
852                         return (&seg->first_page[atop(pa - seg->start)]);
853         }
854         return (NULL);
855 }
856
857 vm_page_t
858 vm_phys_fictitious_to_vm_page(vm_paddr_t pa)
859 {
860         struct vm_phys_fictitious_seg tmp, *seg;
861         vm_page_t m;
862
863         m = NULL;
864         tmp.start = pa;
865         tmp.end = 0;
866
867         rw_rlock(&vm_phys_fictitious_reg_lock);
868         seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
869         rw_runlock(&vm_phys_fictitious_reg_lock);
870         if (seg == NULL)
871                 return (NULL);
872
873         m = &seg->first_page[atop(pa - seg->start)];
874         KASSERT((m->flags & PG_FICTITIOUS) != 0, ("%p not fictitious", m));
875
876         return (m);
877 }
878
879 static inline void
880 vm_phys_fictitious_init_range(vm_page_t range, vm_paddr_t start,
881     long page_count, vm_memattr_t memattr)
882 {
883         long i;
884
885         bzero(range, page_count * sizeof(*range));
886         for (i = 0; i < page_count; i++) {
887                 vm_page_initfake(&range[i], start + PAGE_SIZE * i, memattr);
888                 range[i].oflags &= ~VPO_UNMANAGED;
889                 range[i].busy_lock = VPB_UNBUSIED;
890         }
891 }
892
893 int
894 vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end,
895     vm_memattr_t memattr)
896 {
897         struct vm_phys_fictitious_seg *seg;
898         vm_page_t fp;
899         long page_count;
900 #ifdef VM_PHYSSEG_DENSE
901         long pi, pe;
902         long dpage_count;
903 #endif
904
905         KASSERT(start < end,
906             ("Start of segment isn't less than end (start: %jx end: %jx)",
907             (uintmax_t)start, (uintmax_t)end));
908
909         page_count = (end - start) / PAGE_SIZE;
910
911 #ifdef VM_PHYSSEG_DENSE
912         pi = atop(start);
913         pe = atop(end);
914         if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
915                 fp = &vm_page_array[pi - first_page];
916                 if ((pe - first_page) > vm_page_array_size) {
917                         /*
918                          * We have a segment that starts inside
919                          * of vm_page_array, but ends outside of it.
920                          *
921                          * Use vm_page_array pages for those that are
922                          * inside of the vm_page_array range, and
923                          * allocate the remaining ones.
924                          */
925                         dpage_count = vm_page_array_size - (pi - first_page);
926                         vm_phys_fictitious_init_range(fp, start, dpage_count,
927                             memattr);
928                         page_count -= dpage_count;
929                         start += ptoa(dpage_count);
930                         goto alloc;
931                 }
932                 /*
933                  * We can allocate the full range from vm_page_array,
934                  * so there's no need to register the range in the tree.
935                  */
936                 vm_phys_fictitious_init_range(fp, start, page_count, memattr);
937                 return (0);
938         } else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
939                 /*
940                  * We have a segment that ends inside of vm_page_array,
941                  * but starts outside of it.
942                  */
943                 fp = &vm_page_array[0];
944                 dpage_count = pe - first_page;
945                 vm_phys_fictitious_init_range(fp, ptoa(first_page), dpage_count,
946                     memattr);
947                 end -= ptoa(dpage_count);
948                 page_count -= dpage_count;
949                 goto alloc;
950         } else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
951                 /*
952                  * Trying to register a fictitious range that expands before
953                  * and after vm_page_array.
954                  */
955                 return (EINVAL);
956         } else {
957 alloc:
958 #endif
959                 fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES,
960                     M_WAITOK);
961 #ifdef VM_PHYSSEG_DENSE
962         }
963 #endif
964         vm_phys_fictitious_init_range(fp, start, page_count, memattr);
965
966         seg = malloc(sizeof(*seg), M_FICT_PAGES, M_WAITOK | M_ZERO);
967         seg->start = start;
968         seg->end = end;
969         seg->first_page = fp;
970
971         rw_wlock(&vm_phys_fictitious_reg_lock);
972         RB_INSERT(fict_tree, &vm_phys_fictitious_tree, seg);
973         rw_wunlock(&vm_phys_fictitious_reg_lock);
974
975         return (0);
976 }
977
978 void
979 vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end)
980 {
981         struct vm_phys_fictitious_seg *seg, tmp;
982 #ifdef VM_PHYSSEG_DENSE
983         long pi, pe;
984 #endif
985
986         KASSERT(start < end,
987             ("Start of segment isn't less than end (start: %jx end: %jx)",
988             (uintmax_t)start, (uintmax_t)end));
989
990 #ifdef VM_PHYSSEG_DENSE
991         pi = atop(start);
992         pe = atop(end);
993         if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
994                 if ((pe - first_page) <= vm_page_array_size) {
995                         /*
996                          * This segment was allocated using vm_page_array
997                          * only, there's nothing to do since those pages
998                          * were never added to the tree.
999                          */
1000                         return;
1001                 }
1002                 /*
1003                  * We have a segment that starts inside
1004                  * of vm_page_array, but ends outside of it.
1005                  *
1006                  * Calculate how many pages were added to the
1007                  * tree and free them.
1008                  */
1009                 start = ptoa(first_page + vm_page_array_size);
1010         } else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
1011                 /*
1012                  * We have a segment that ends inside of vm_page_array,
1013                  * but starts outside of it.
1014                  */
1015                 end = ptoa(first_page);
1016         } else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
1017                 /* Since it's not possible to register such a range, panic. */
1018                 panic(
1019                     "Unregistering not registered fictitious range [%#jx:%#jx]",
1020                     (uintmax_t)start, (uintmax_t)end);
1021         }
1022 #endif
1023         tmp.start = start;
1024         tmp.end = 0;
1025
1026         rw_wlock(&vm_phys_fictitious_reg_lock);
1027         seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
1028         if (seg->start != start || seg->end != end) {
1029                 rw_wunlock(&vm_phys_fictitious_reg_lock);
1030                 panic(
1031                     "Unregistering not registered fictitious range [%#jx:%#jx]",
1032                     (uintmax_t)start, (uintmax_t)end);
1033         }
1034         RB_REMOVE(fict_tree, &vm_phys_fictitious_tree, seg);
1035         rw_wunlock(&vm_phys_fictitious_reg_lock);
1036         free(seg->first_page, M_FICT_PAGES);
1037         free(seg, M_FICT_PAGES);
1038 }
1039
1040 /*
1041  * Free a contiguous, power of two-sized set of physical pages.
1042  *
1043  * The free page queues must be locked.
1044  */
1045 void
1046 vm_phys_free_pages(vm_page_t m, int order)
1047 {
1048         struct vm_freelist *fl;
1049         struct vm_phys_seg *seg;
1050         vm_paddr_t pa;
1051         vm_page_t m_buddy;
1052
1053         KASSERT(m->order == VM_NFREEORDER,
1054             ("vm_phys_free_pages: page %p has unexpected order %d",
1055             m, m->order));
1056         KASSERT(m->pool < VM_NFREEPOOL,
1057             ("vm_phys_free_pages: page %p has unexpected pool %d",
1058             m, m->pool));
1059         KASSERT(order < VM_NFREEORDER,
1060             ("vm_phys_free_pages: order %d is out of range", order));
1061         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1062         seg = &vm_phys_segs[m->segind];
1063         if (order < VM_NFREEORDER - 1) {
1064                 pa = VM_PAGE_TO_PHYS(m);
1065                 do {
1066                         pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order));
1067                         if (pa < seg->start || pa >= seg->end)
1068                                 break;
1069                         m_buddy = &seg->first_page[atop(pa - seg->start)];
1070                         if (m_buddy->order != order)
1071                                 break;
1072                         fl = (*seg->free_queues)[m_buddy->pool];
1073                         vm_freelist_rem(fl, m_buddy, order);
1074                         if (m_buddy->pool != m->pool)
1075                                 vm_phys_set_pool(m->pool, m_buddy, order);
1076                         order++;
1077                         pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1);
1078                         m = &seg->first_page[atop(pa - seg->start)];
1079                 } while (order < VM_NFREEORDER - 1);
1080         }
1081         fl = (*seg->free_queues)[m->pool];
1082         vm_freelist_add(fl, m, order, 1);
1083 }
1084
1085 /*
1086  * Free a contiguous, arbitrarily sized set of physical pages.
1087  *
1088  * The free page queues must be locked.
1089  */
1090 void
1091 vm_phys_free_contig(vm_page_t m, u_long npages)
1092 {
1093         u_int n;
1094         int order;
1095
1096         /*
1097          * Avoid unnecessary coalescing by freeing the pages in the largest
1098          * possible power-of-two-sized subsets.
1099          */
1100         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1101         for (;; npages -= n) {
1102                 /*
1103                  * Unsigned "min" is used here so that "order" is assigned
1104                  * "VM_NFREEORDER - 1" when "m"'s physical address is zero
1105                  * or the low-order bits of its physical address are zero
1106                  * because the size of a physical address exceeds the size of
1107                  * a long.
1108                  */
1109                 order = min(ffsl(VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) - 1,
1110                     VM_NFREEORDER - 1);
1111                 n = 1 << order;
1112                 if (npages < n)
1113                         break;
1114                 vm_phys_free_pages(m, order);
1115                 m += n;
1116         }
1117         /* The residual "npages" is less than "1 << (VM_NFREEORDER - 1)". */
1118         for (; npages > 0; npages -= n) {
1119                 order = flsl(npages) - 1;
1120                 n = 1 << order;
1121                 vm_phys_free_pages(m, order);
1122                 m += n;
1123         }
1124 }
1125
1126 /*
1127  * Scan physical memory between the specified addresses "low" and "high" for a
1128  * run of contiguous physical pages that satisfy the specified conditions, and
1129  * return the lowest page in the run.  The specified "alignment" determines
1130  * the alignment of the lowest physical page in the run.  If the specified
1131  * "boundary" is non-zero, then the run of physical pages cannot span a
1132  * physical address that is a multiple of "boundary".
1133  *
1134  * "npages" must be greater than zero.  Both "alignment" and "boundary" must
1135  * be a power of two.
1136  */
1137 vm_page_t
1138 vm_phys_scan_contig(u_long npages, vm_paddr_t low, vm_paddr_t high,
1139     u_long alignment, vm_paddr_t boundary, int options)
1140 {
1141         vm_paddr_t pa_end;
1142         vm_page_t m_end, m_run, m_start;
1143         struct vm_phys_seg *seg;
1144         int segind;
1145
1146         KASSERT(npages > 0, ("npages is 0"));
1147         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1148         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1149         if (low >= high)
1150                 return (NULL);
1151         for (segind = 0; segind < vm_phys_nsegs; segind++) {
1152                 seg = &vm_phys_segs[segind];
1153                 if (seg->start >= high)
1154                         break;
1155                 if (low >= seg->end)
1156                         continue;
1157                 if (low <= seg->start)
1158                         m_start = seg->first_page;
1159                 else
1160                         m_start = &seg->first_page[atop(low - seg->start)];
1161                 if (high < seg->end)
1162                         pa_end = high;
1163                 else
1164                         pa_end = seg->end;
1165                 if (pa_end - VM_PAGE_TO_PHYS(m_start) < ptoa(npages))
1166                         continue;
1167                 m_end = &seg->first_page[atop(pa_end - seg->start)];
1168                 m_run = vm_page_scan_contig(npages, m_start, m_end,
1169                     alignment, boundary, options);
1170                 if (m_run != NULL)
1171                         return (m_run);
1172         }
1173         return (NULL);
1174 }
1175
1176 /*
1177  * Set the pool for a contiguous, power of two-sized set of physical pages. 
1178  */
1179 void
1180 vm_phys_set_pool(int pool, vm_page_t m, int order)
1181 {
1182         vm_page_t m_tmp;
1183
1184         for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
1185                 m_tmp->pool = pool;
1186 }
1187
1188 /*
1189  * Search for the given physical page "m" in the free lists.  If the search
1190  * succeeds, remove "m" from the free lists and return TRUE.  Otherwise, return
1191  * FALSE, indicating that "m" is not in the free lists.
1192  *
1193  * The free page queues must be locked.
1194  */
1195 boolean_t
1196 vm_phys_unfree_page(vm_page_t m)
1197 {
1198         struct vm_freelist *fl;
1199         struct vm_phys_seg *seg;
1200         vm_paddr_t pa, pa_half;
1201         vm_page_t m_set, m_tmp;
1202         int order;
1203
1204         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1205
1206         /*
1207          * First, find the contiguous, power of two-sized set of free
1208          * physical pages containing the given physical page "m" and
1209          * assign it to "m_set".
1210          */
1211         seg = &vm_phys_segs[m->segind];
1212         for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
1213             order < VM_NFREEORDER - 1; ) {
1214                 order++;
1215                 pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
1216                 if (pa >= seg->start)
1217                         m_set = &seg->first_page[atop(pa - seg->start)];
1218                 else
1219                         return (FALSE);
1220         }
1221         if (m_set->order < order)
1222                 return (FALSE);
1223         if (m_set->order == VM_NFREEORDER)
1224                 return (FALSE);
1225         KASSERT(m_set->order < VM_NFREEORDER,
1226             ("vm_phys_unfree_page: page %p has unexpected order %d",
1227             m_set, m_set->order));
1228
1229         /*
1230          * Next, remove "m_set" from the free lists.  Finally, extract
1231          * "m" from "m_set" using an iterative algorithm: While "m_set"
1232          * is larger than a page, shrink "m_set" by returning the half
1233          * of "m_set" that does not contain "m" to the free lists.
1234          */
1235         fl = (*seg->free_queues)[m_set->pool];
1236         order = m_set->order;
1237         vm_freelist_rem(fl, m_set, order);
1238         while (order > 0) {
1239                 order--;
1240                 pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
1241                 if (m->phys_addr < pa_half)
1242                         m_tmp = &seg->first_page[atop(pa_half - seg->start)];
1243                 else {
1244                         m_tmp = m_set;
1245                         m_set = &seg->first_page[atop(pa_half - seg->start)];
1246                 }
1247                 vm_freelist_add(fl, m_tmp, order, 0);
1248         }
1249         KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
1250         return (TRUE);
1251 }
1252
1253 /*
1254  * Try to zero one physical page.  Used by an idle priority thread.
1255  */
1256 boolean_t
1257 vm_phys_zero_pages_idle(void)
1258 {
1259         static struct vm_freelist *fl;
1260         static int flind, oind, pind;
1261         vm_page_t m, m_tmp;
1262         int domain;
1263
1264         domain = vm_rr_selectdomain();
1265         fl = vm_phys_free_queues[domain][0][0];
1266         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1267         for (;;) {
1268                 TAILQ_FOREACH_REVERSE(m, &fl[oind].pl, pglist, plinks.q) {
1269                         for (m_tmp = m; m_tmp < &m[1 << oind]; m_tmp++) {
1270                                 if ((m_tmp->flags & PG_ZERO) == 0) {
1271                                         vm_phys_unfree_page(m_tmp);
1272                                         vm_phys_freecnt_adj(m, -1);
1273                                         mtx_unlock(&vm_page_queue_free_mtx);
1274                                         pmap_zero_page_idle(m_tmp);
1275                                         m_tmp->flags |= PG_ZERO;
1276                                         mtx_lock(&vm_page_queue_free_mtx);
1277                                         vm_phys_freecnt_adj(m, 1);
1278                                         vm_phys_free_pages(m_tmp, 0);
1279                                         vm_page_zero_count++;
1280                                         cnt_prezero++;
1281                                         return (TRUE);
1282                                 }
1283                         }
1284                 }
1285                 oind++;
1286                 if (oind == VM_NFREEORDER) {
1287                         oind = 0;
1288                         pind++;
1289                         if (pind == VM_NFREEPOOL) {
1290                                 pind = 0;
1291                                 flind++;
1292                                 if (flind == vm_nfreelists)
1293                                         flind = 0;
1294                         }
1295                         fl = vm_phys_free_queues[domain][flind][pind];
1296                 }
1297         }
1298 }
1299
1300 /*
1301  * Allocate a contiguous set of physical pages of the given size
1302  * "npages" from the free lists.  All of the physical pages must be at
1303  * or above the given physical address "low" and below the given
1304  * physical address "high".  The given value "alignment" determines the
1305  * alignment of the first physical page in the set.  If the given value
1306  * "boundary" is non-zero, then the set of physical pages cannot cross
1307  * any physical address boundary that is a multiple of that value.  Both
1308  * "alignment" and "boundary" must be a power of two.
1309  */
1310 vm_page_t
1311 vm_phys_alloc_contig(u_long npages, vm_paddr_t low, vm_paddr_t high,
1312     u_long alignment, vm_paddr_t boundary)
1313 {
1314         vm_paddr_t pa_end, pa_start;
1315         vm_page_t m_run;
1316         struct vm_domain_iterator vi;
1317         struct vm_phys_seg *seg;
1318         int domain, segind;
1319
1320         KASSERT(npages > 0, ("npages is 0"));
1321         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1322         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1323         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1324         if (low >= high)
1325                 return (NULL);
1326         vm_policy_iterator_init(&vi);
1327 restartdom:
1328         if (vm_domain_iterator_run(&vi, &domain) != 0) {
1329                 vm_policy_iterator_finish(&vi);
1330                 return (NULL);
1331         }
1332         m_run = NULL;
1333         for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
1334                 seg = &vm_phys_segs[segind];
1335                 if (seg->start >= high || seg->domain != domain)
1336                         continue;
1337                 if (low >= seg->end)
1338                         break;
1339                 if (low <= seg->start)
1340                         pa_start = seg->start;
1341                 else
1342                         pa_start = low;
1343                 if (high < seg->end)
1344                         pa_end = high;
1345                 else
1346                         pa_end = seg->end;
1347                 if (pa_end - pa_start < ptoa(npages))
1348                         continue;
1349                 m_run = vm_phys_alloc_seg_contig(seg, npages, low, high,
1350                     alignment, boundary);
1351                 if (m_run != NULL)
1352                         break;
1353         }
1354         if (m_run == NULL && !vm_domain_iterator_isdone(&vi))
1355                 goto restartdom;
1356         vm_policy_iterator_finish(&vi);
1357         return (m_run);
1358 }
1359
1360 /*
1361  * Allocate a run of contiguous physical pages from the free list for the
1362  * specified segment.
1363  */
1364 static vm_page_t
1365 vm_phys_alloc_seg_contig(struct vm_phys_seg *seg, u_long npages,
1366     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
1367 {
1368         struct vm_freelist *fl;
1369         vm_paddr_t pa, pa_end, size;
1370         vm_page_t m, m_ret;
1371         u_long npages_end;
1372         int oind, order, pind;
1373
1374         KASSERT(npages > 0, ("npages is 0"));
1375         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1376         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1377         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1378         /* Compute the queue that is the best fit for npages. */
1379         for (order = 0; (1 << order) < npages; order++);
1380         /* Search for a run satisfying the specified conditions. */
1381         size = npages << PAGE_SHIFT;
1382         for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER;
1383             oind++) {
1384                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1385                         fl = (*seg->free_queues)[pind];
1386                         TAILQ_FOREACH(m_ret, &fl[oind].pl, plinks.q) {
1387                                 /*
1388                                  * Is the size of this allocation request
1389                                  * larger than the largest block size?
1390                                  */
1391                                 if (order >= VM_NFREEORDER) {
1392                                         /*
1393                                          * Determine if a sufficient number of
1394                                          * subsequent blocks to satisfy the
1395                                          * allocation request are free.
1396                                          */
1397                                         pa = VM_PAGE_TO_PHYS(m_ret);
1398                                         pa_end = pa + size;
1399                                         if (pa_end < pa)
1400                                                 continue;
1401                                         for (;;) {
1402                                                 pa += 1 << (PAGE_SHIFT +
1403                                                     VM_NFREEORDER - 1);
1404                                                 if (pa >= pa_end ||
1405                                                     pa < seg->start ||
1406                                                     pa >= seg->end)
1407                                                         break;
1408                                                 m = &seg->first_page[atop(pa -
1409                                                     seg->start)];
1410                                                 if (m->order != VM_NFREEORDER -
1411                                                     1)
1412                                                         break;
1413                                         }
1414                                         /* If not, go to the next block. */
1415                                         if (pa < pa_end)
1416                                                 continue;
1417                                 }
1418
1419                                 /*
1420                                  * Determine if the blocks are within the
1421                                  * given range, satisfy the given alignment,
1422                                  * and do not cross the given boundary.
1423                                  */
1424                                 pa = VM_PAGE_TO_PHYS(m_ret);
1425                                 pa_end = pa + size;
1426                                 if (pa >= low && pa_end <= high &&
1427                                     (pa & (alignment - 1)) == 0 &&
1428                                     rounddown2(pa ^ (pa_end - 1), boundary) == 0)
1429                                         goto done;
1430                         }
1431                 }
1432         }
1433         return (NULL);
1434 done:
1435         for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) {
1436                 fl = (*seg->free_queues)[m->pool];
1437                 vm_freelist_rem(fl, m, m->order);
1438         }
1439         if (m_ret->pool != VM_FREEPOOL_DEFAULT)
1440                 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m_ret, oind);
1441         fl = (*seg->free_queues)[m_ret->pool];
1442         vm_phys_split_pages(m_ret, oind, fl, order);
1443         /* Return excess pages to the free lists. */
1444         npages_end = roundup2(npages, 1 << imin(oind, order));
1445         if (npages < npages_end)
1446                 vm_phys_free_contig(&m_ret[npages], npages_end - npages);
1447         return (m_ret);
1448 }
1449
1450 #ifdef DDB
1451 /*
1452  * Show the number of physical pages in each of the free lists.
1453  */
1454 DB_SHOW_COMMAND(freepages, db_show_freepages)
1455 {
1456         struct vm_freelist *fl;
1457         int flind, oind, pind, dom;
1458
1459         for (dom = 0; dom < vm_ndomains; dom++) {
1460                 db_printf("DOMAIN: %d\n", dom);
1461                 for (flind = 0; flind < vm_nfreelists; flind++) {
1462                         db_printf("FREE LIST %d:\n"
1463                             "\n  ORDER (SIZE)  |  NUMBER"
1464                             "\n              ", flind);
1465                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
1466                                 db_printf("  |  POOL %d", pind);
1467                         db_printf("\n--            ");
1468                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
1469                                 db_printf("-- --      ");
1470                         db_printf("--\n");
1471                         for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
1472                                 db_printf("  %2.2d (%6.6dK)", oind,
1473                                     1 << (PAGE_SHIFT - 10 + oind));
1474                                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1475                                 fl = vm_phys_free_queues[dom][flind][pind];
1476                                         db_printf("  |  %6.6d", fl[oind].lcnt);
1477                                 }
1478                                 db_printf("\n");
1479                         }
1480                         db_printf("\n");
1481                 }
1482                 db_printf("\n");
1483         }
1484 }
1485 #endif