]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_phys.c
Upgrade to OpenSSH 7.6p1. This will be followed shortly by 7.7p1.
[FreeBSD/FreeBSD.git] / sys / vm / vm_phys.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2002-2006 Rice University
5  * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
6  * All rights reserved.
7  *
8  * This software was developed for the FreeBSD Project by Alan L. Cox,
9  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
24  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
27  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
30  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 /*
35  *      Physical memory system implementation
36  *
37  * Any external functions defined by this module are only to be used by the
38  * virtual memory system.
39  */
40
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43
44 #include "opt_ddb.h"
45 #include "opt_vm.h"
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/lock.h>
50 #include <sys/kernel.h>
51 #include <sys/malloc.h>
52 #include <sys/mutex.h>
53 #include <sys/proc.h>
54 #include <sys/queue.h>
55 #include <sys/rwlock.h>
56 #include <sys/sbuf.h>
57 #include <sys/sysctl.h>
58 #include <sys/tree.h>
59 #include <sys/vmmeter.h>
60 #include <sys/seq.h>
61
62 #include <ddb/ddb.h>
63
64 #include <vm/vm.h>
65 #include <vm/vm_param.h>
66 #include <vm/vm_kern.h>
67 #include <vm/vm_object.h>
68 #include <vm/vm_page.h>
69 #include <vm/vm_phys.h>
70 #include <vm/vm_pagequeue.h>
71
72 _Static_assert(sizeof(long) * NBBY >= VM_PHYSSEG_MAX,
73     "Too many physsegs.");
74
75 #ifdef NUMA
76 struct mem_affinity __read_mostly *mem_affinity;
77 int __read_mostly *mem_locality;
78 #endif
79
80 int __read_mostly vm_ndomains = 1;
81
82 struct vm_phys_seg __read_mostly vm_phys_segs[VM_PHYSSEG_MAX];
83 int __read_mostly vm_phys_nsegs;
84
85 struct vm_phys_fictitious_seg;
86 static int vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *,
87     struct vm_phys_fictitious_seg *);
88
89 RB_HEAD(fict_tree, vm_phys_fictitious_seg) vm_phys_fictitious_tree =
90     RB_INITIALIZER(_vm_phys_fictitious_tree);
91
92 struct vm_phys_fictitious_seg {
93         RB_ENTRY(vm_phys_fictitious_seg) node;
94         /* Memory region data */
95         vm_paddr_t      start;
96         vm_paddr_t      end;
97         vm_page_t       first_page;
98 };
99
100 RB_GENERATE_STATIC(fict_tree, vm_phys_fictitious_seg, node,
101     vm_phys_fictitious_cmp);
102
103 static struct rwlock_padalign vm_phys_fictitious_reg_lock;
104 MALLOC_DEFINE(M_FICT_PAGES, "vm_fictitious", "Fictitious VM pages");
105
106 static struct vm_freelist __aligned(CACHE_LINE_SIZE)
107     vm_phys_free_queues[MAXMEMDOM][VM_NFREELIST][VM_NFREEPOOL][VM_NFREEORDER];
108
109 static int __read_mostly vm_nfreelists;
110
111 /*
112  * Provides the mapping from VM_FREELIST_* to free list indices (flind).
113  */
114 static int __read_mostly vm_freelist_to_flind[VM_NFREELIST];
115
116 CTASSERT(VM_FREELIST_DEFAULT == 0);
117
118 #ifdef VM_FREELIST_ISADMA
119 #define VM_ISADMA_BOUNDARY      16777216
120 #endif
121 #ifdef VM_FREELIST_DMA32
122 #define VM_DMA32_BOUNDARY       ((vm_paddr_t)1 << 32)
123 #endif
124
125 /*
126  * Enforce the assumptions made by vm_phys_add_seg() and vm_phys_init() about
127  * the ordering of the free list boundaries.
128  */
129 #if defined(VM_ISADMA_BOUNDARY) && defined(VM_LOWMEM_BOUNDARY)
130 CTASSERT(VM_ISADMA_BOUNDARY < VM_LOWMEM_BOUNDARY);
131 #endif
132 #if defined(VM_LOWMEM_BOUNDARY) && defined(VM_DMA32_BOUNDARY)
133 CTASSERT(VM_LOWMEM_BOUNDARY < VM_DMA32_BOUNDARY);
134 #endif
135
136 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
137 SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD,
138     NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info");
139
140 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
141 SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD,
142     NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info");
143
144 #ifdef NUMA
145 static int sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS);
146 SYSCTL_OID(_vm, OID_AUTO, phys_locality, CTLTYPE_STRING | CTLFLAG_RD,
147     NULL, 0, sysctl_vm_phys_locality, "A", "Phys Locality Info");
148 #endif
149
150 SYSCTL_INT(_vm, OID_AUTO, ndomains, CTLFLAG_RD,
151     &vm_ndomains, 0, "Number of physical memory domains available.");
152
153 static vm_page_t vm_phys_alloc_seg_contig(struct vm_phys_seg *seg,
154     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
155     vm_paddr_t boundary);
156 static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain);
157 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end);
158 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
159     int order);
160
161 /*
162  * Red-black tree helpers for vm fictitious range management.
163  */
164 static inline int
165 vm_phys_fictitious_in_range(struct vm_phys_fictitious_seg *p,
166     struct vm_phys_fictitious_seg *range)
167 {
168
169         KASSERT(range->start != 0 && range->end != 0,
170             ("Invalid range passed on search for vm_fictitious page"));
171         if (p->start >= range->end)
172                 return (1);
173         if (p->start < range->start)
174                 return (-1);
175
176         return (0);
177 }
178
179 static int
180 vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *p1,
181     struct vm_phys_fictitious_seg *p2)
182 {
183
184         /* Check if this is a search for a page */
185         if (p1->end == 0)
186                 return (vm_phys_fictitious_in_range(p1, p2));
187
188         KASSERT(p2->end != 0,
189     ("Invalid range passed as second parameter to vm fictitious comparison"));
190
191         /* Searching to add a new range */
192         if (p1->end <= p2->start)
193                 return (-1);
194         if (p1->start >= p2->end)
195                 return (1);
196
197         panic("Trying to add overlapping vm fictitious ranges:\n"
198             "[%#jx:%#jx] and [%#jx:%#jx]", (uintmax_t)p1->start,
199             (uintmax_t)p1->end, (uintmax_t)p2->start, (uintmax_t)p2->end);
200 }
201
202 int
203 vm_phys_domain_match(int prefer, vm_paddr_t low, vm_paddr_t high)
204 {
205 #ifdef NUMA
206         domainset_t mask;
207         int i;
208
209         if (vm_ndomains == 1 || mem_affinity == NULL)
210                 return (0);
211
212         DOMAINSET_ZERO(&mask);
213         /*
214          * Check for any memory that overlaps low, high.
215          */
216         for (i = 0; mem_affinity[i].end != 0; i++)
217                 if (mem_affinity[i].start <= high &&
218                     mem_affinity[i].end >= low)
219                         DOMAINSET_SET(mem_affinity[i].domain, &mask);
220         if (prefer != -1 && DOMAINSET_ISSET(prefer, &mask))
221                 return (prefer);
222         if (DOMAINSET_EMPTY(&mask))
223                 panic("vm_phys_domain_match:  Impossible constraint");
224         return (DOMAINSET_FFS(&mask) - 1);
225 #else
226         return (0);
227 #endif
228 }
229
230 /*
231  * Outputs the state of the physical memory allocator, specifically,
232  * the amount of physical memory in each free list.
233  */
234 static int
235 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
236 {
237         struct sbuf sbuf;
238         struct vm_freelist *fl;
239         int dom, error, flind, oind, pind;
240
241         error = sysctl_wire_old_buffer(req, 0);
242         if (error != 0)
243                 return (error);
244         sbuf_new_for_sysctl(&sbuf, NULL, 128 * vm_ndomains, req);
245         for (dom = 0; dom < vm_ndomains; dom++) {
246                 sbuf_printf(&sbuf,"\nDOMAIN %d:\n", dom);
247                 for (flind = 0; flind < vm_nfreelists; flind++) {
248                         sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
249                             "\n  ORDER (SIZE)  |  NUMBER"
250                             "\n              ", flind);
251                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
252                                 sbuf_printf(&sbuf, "  |  POOL %d", pind);
253                         sbuf_printf(&sbuf, "\n--            ");
254                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
255                                 sbuf_printf(&sbuf, "-- --      ");
256                         sbuf_printf(&sbuf, "--\n");
257                         for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
258                                 sbuf_printf(&sbuf, "  %2d (%6dK)", oind,
259                                     1 << (PAGE_SHIFT - 10 + oind));
260                                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
261                                 fl = vm_phys_free_queues[dom][flind][pind];
262                                         sbuf_printf(&sbuf, "  |  %6d",
263                                             fl[oind].lcnt);
264                                 }
265                                 sbuf_printf(&sbuf, "\n");
266                         }
267                 }
268         }
269         error = sbuf_finish(&sbuf);
270         sbuf_delete(&sbuf);
271         return (error);
272 }
273
274 /*
275  * Outputs the set of physical memory segments.
276  */
277 static int
278 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
279 {
280         struct sbuf sbuf;
281         struct vm_phys_seg *seg;
282         int error, segind;
283
284         error = sysctl_wire_old_buffer(req, 0);
285         if (error != 0)
286                 return (error);
287         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
288         for (segind = 0; segind < vm_phys_nsegs; segind++) {
289                 sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
290                 seg = &vm_phys_segs[segind];
291                 sbuf_printf(&sbuf, "start:     %#jx\n",
292                     (uintmax_t)seg->start);
293                 sbuf_printf(&sbuf, "end:       %#jx\n",
294                     (uintmax_t)seg->end);
295                 sbuf_printf(&sbuf, "domain:    %d\n", seg->domain);
296                 sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
297         }
298         error = sbuf_finish(&sbuf);
299         sbuf_delete(&sbuf);
300         return (error);
301 }
302
303 /*
304  * Return affinity, or -1 if there's no affinity information.
305  */
306 int
307 vm_phys_mem_affinity(int f, int t)
308 {
309
310 #ifdef NUMA
311         if (mem_locality == NULL)
312                 return (-1);
313         if (f >= vm_ndomains || t >= vm_ndomains)
314                 return (-1);
315         return (mem_locality[f * vm_ndomains + t]);
316 #else
317         return (-1);
318 #endif
319 }
320
321 #ifdef NUMA
322 /*
323  * Outputs the VM locality table.
324  */
325 static int
326 sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS)
327 {
328         struct sbuf sbuf;
329         int error, i, j;
330
331         error = sysctl_wire_old_buffer(req, 0);
332         if (error != 0)
333                 return (error);
334         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
335
336         sbuf_printf(&sbuf, "\n");
337
338         for (i = 0; i < vm_ndomains; i++) {
339                 sbuf_printf(&sbuf, "%d: ", i);
340                 for (j = 0; j < vm_ndomains; j++) {
341                         sbuf_printf(&sbuf, "%d ", vm_phys_mem_affinity(i, j));
342                 }
343                 sbuf_printf(&sbuf, "\n");
344         }
345         error = sbuf_finish(&sbuf);
346         sbuf_delete(&sbuf);
347         return (error);
348 }
349 #endif
350
351 static void
352 vm_freelist_add(struct vm_freelist *fl, vm_page_t m, int order, int tail)
353 {
354
355         m->order = order;
356         if (tail)
357                 TAILQ_INSERT_TAIL(&fl[order].pl, m, listq);
358         else
359                 TAILQ_INSERT_HEAD(&fl[order].pl, m, listq);
360         fl[order].lcnt++;
361 }
362
363 static void
364 vm_freelist_rem(struct vm_freelist *fl, vm_page_t m, int order)
365 {
366
367         TAILQ_REMOVE(&fl[order].pl, m, listq);
368         fl[order].lcnt--;
369         m->order = VM_NFREEORDER;
370 }
371
372 /*
373  * Create a physical memory segment.
374  */
375 static void
376 _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain)
377 {
378         struct vm_phys_seg *seg;
379
380         KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
381             ("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
382         KASSERT(domain >= 0 && domain < vm_ndomains,
383             ("vm_phys_create_seg: invalid domain provided"));
384         seg = &vm_phys_segs[vm_phys_nsegs++];
385         while (seg > vm_phys_segs && (seg - 1)->start >= end) {
386                 *seg = *(seg - 1);
387                 seg--;
388         }
389         seg->start = start;
390         seg->end = end;
391         seg->domain = domain;
392 }
393
394 static void
395 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end)
396 {
397 #ifdef NUMA
398         int i;
399
400         if (mem_affinity == NULL) {
401                 _vm_phys_create_seg(start, end, 0);
402                 return;
403         }
404
405         for (i = 0;; i++) {
406                 if (mem_affinity[i].end == 0)
407                         panic("Reached end of affinity info");
408                 if (mem_affinity[i].end <= start)
409                         continue;
410                 if (mem_affinity[i].start > start)
411                         panic("No affinity info for start %jx",
412                             (uintmax_t)start);
413                 if (mem_affinity[i].end >= end) {
414                         _vm_phys_create_seg(start, end,
415                             mem_affinity[i].domain);
416                         break;
417                 }
418                 _vm_phys_create_seg(start, mem_affinity[i].end,
419                     mem_affinity[i].domain);
420                 start = mem_affinity[i].end;
421         }
422 #else
423         _vm_phys_create_seg(start, end, 0);
424 #endif
425 }
426
427 /*
428  * Add a physical memory segment.
429  */
430 void
431 vm_phys_add_seg(vm_paddr_t start, vm_paddr_t end)
432 {
433         vm_paddr_t paddr;
434
435         KASSERT((start & PAGE_MASK) == 0,
436             ("vm_phys_define_seg: start is not page aligned"));
437         KASSERT((end & PAGE_MASK) == 0,
438             ("vm_phys_define_seg: end is not page aligned"));
439
440         /*
441          * Split the physical memory segment if it spans two or more free
442          * list boundaries.
443          */
444         paddr = start;
445 #ifdef  VM_FREELIST_ISADMA
446         if (paddr < VM_ISADMA_BOUNDARY && end > VM_ISADMA_BOUNDARY) {
447                 vm_phys_create_seg(paddr, VM_ISADMA_BOUNDARY);
448                 paddr = VM_ISADMA_BOUNDARY;
449         }
450 #endif
451 #ifdef  VM_FREELIST_LOWMEM
452         if (paddr < VM_LOWMEM_BOUNDARY && end > VM_LOWMEM_BOUNDARY) {
453                 vm_phys_create_seg(paddr, VM_LOWMEM_BOUNDARY);
454                 paddr = VM_LOWMEM_BOUNDARY;
455         }
456 #endif
457 #ifdef  VM_FREELIST_DMA32
458         if (paddr < VM_DMA32_BOUNDARY && end > VM_DMA32_BOUNDARY) {
459                 vm_phys_create_seg(paddr, VM_DMA32_BOUNDARY);
460                 paddr = VM_DMA32_BOUNDARY;
461         }
462 #endif
463         vm_phys_create_seg(paddr, end);
464 }
465
466 /*
467  * Initialize the physical memory allocator.
468  *
469  * Requires that vm_page_array is initialized!
470  */
471 void
472 vm_phys_init(void)
473 {
474         struct vm_freelist *fl;
475         struct vm_phys_seg *seg;
476         u_long npages;
477         int dom, flind, freelist, oind, pind, segind;
478
479         /*
480          * Compute the number of free lists, and generate the mapping from the
481          * manifest constants VM_FREELIST_* to the free list indices.
482          *
483          * Initially, the entries of vm_freelist_to_flind[] are set to either
484          * 0 or 1 to indicate which free lists should be created.
485          */
486         npages = 0;
487         for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
488                 seg = &vm_phys_segs[segind];
489 #ifdef  VM_FREELIST_ISADMA
490                 if (seg->end <= VM_ISADMA_BOUNDARY)
491                         vm_freelist_to_flind[VM_FREELIST_ISADMA] = 1;
492                 else
493 #endif
494 #ifdef  VM_FREELIST_LOWMEM
495                 if (seg->end <= VM_LOWMEM_BOUNDARY)
496                         vm_freelist_to_flind[VM_FREELIST_LOWMEM] = 1;
497                 else
498 #endif
499 #ifdef  VM_FREELIST_DMA32
500                 if (
501 #ifdef  VM_DMA32_NPAGES_THRESHOLD
502                     /*
503                      * Create the DMA32 free list only if the amount of
504                      * physical memory above physical address 4G exceeds the
505                      * given threshold.
506                      */
507                     npages > VM_DMA32_NPAGES_THRESHOLD &&
508 #endif
509                     seg->end <= VM_DMA32_BOUNDARY)
510                         vm_freelist_to_flind[VM_FREELIST_DMA32] = 1;
511                 else
512 #endif
513                 {
514                         npages += atop(seg->end - seg->start);
515                         vm_freelist_to_flind[VM_FREELIST_DEFAULT] = 1;
516                 }
517         }
518         /* Change each entry into a running total of the free lists. */
519         for (freelist = 1; freelist < VM_NFREELIST; freelist++) {
520                 vm_freelist_to_flind[freelist] +=
521                     vm_freelist_to_flind[freelist - 1];
522         }
523         vm_nfreelists = vm_freelist_to_flind[VM_NFREELIST - 1];
524         KASSERT(vm_nfreelists > 0, ("vm_phys_init: no free lists"));
525         /* Change each entry into a free list index. */
526         for (freelist = 0; freelist < VM_NFREELIST; freelist++)
527                 vm_freelist_to_flind[freelist]--;
528
529         /*
530          * Initialize the first_page and free_queues fields of each physical
531          * memory segment.
532          */
533 #ifdef VM_PHYSSEG_SPARSE
534         npages = 0;
535 #endif
536         for (segind = 0; segind < vm_phys_nsegs; segind++) {
537                 seg = &vm_phys_segs[segind];
538 #ifdef VM_PHYSSEG_SPARSE
539                 seg->first_page = &vm_page_array[npages];
540                 npages += atop(seg->end - seg->start);
541 #else
542                 seg->first_page = PHYS_TO_VM_PAGE(seg->start);
543 #endif
544 #ifdef  VM_FREELIST_ISADMA
545                 if (seg->end <= VM_ISADMA_BOUNDARY) {
546                         flind = vm_freelist_to_flind[VM_FREELIST_ISADMA];
547                         KASSERT(flind >= 0,
548                             ("vm_phys_init: ISADMA flind < 0"));
549                 } else
550 #endif
551 #ifdef  VM_FREELIST_LOWMEM
552                 if (seg->end <= VM_LOWMEM_BOUNDARY) {
553                         flind = vm_freelist_to_flind[VM_FREELIST_LOWMEM];
554                         KASSERT(flind >= 0,
555                             ("vm_phys_init: LOWMEM flind < 0"));
556                 } else
557 #endif
558 #ifdef  VM_FREELIST_DMA32
559                 if (seg->end <= VM_DMA32_BOUNDARY) {
560                         flind = vm_freelist_to_flind[VM_FREELIST_DMA32];
561                         KASSERT(flind >= 0,
562                             ("vm_phys_init: DMA32 flind < 0"));
563                 } else
564 #endif
565                 {
566                         flind = vm_freelist_to_flind[VM_FREELIST_DEFAULT];
567                         KASSERT(flind >= 0,
568                             ("vm_phys_init: DEFAULT flind < 0"));
569                 }
570                 seg->free_queues = &vm_phys_free_queues[seg->domain][flind];
571         }
572
573         /*
574          * Initialize the free queues.
575          */
576         for (dom = 0; dom < vm_ndomains; dom++) {
577                 for (flind = 0; flind < vm_nfreelists; flind++) {
578                         for (pind = 0; pind < VM_NFREEPOOL; pind++) {
579                                 fl = vm_phys_free_queues[dom][flind][pind];
580                                 for (oind = 0; oind < VM_NFREEORDER; oind++)
581                                         TAILQ_INIT(&fl[oind].pl);
582                         }
583                 }
584         }
585
586         rw_init(&vm_phys_fictitious_reg_lock, "vmfctr");
587 }
588
589 /*
590  * Split a contiguous, power of two-sized set of physical pages.
591  */
592 static __inline void
593 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order)
594 {
595         vm_page_t m_buddy;
596
597         while (oind > order) {
598                 oind--;
599                 m_buddy = &m[1 << oind];
600                 KASSERT(m_buddy->order == VM_NFREEORDER,
601                     ("vm_phys_split_pages: page %p has unexpected order %d",
602                     m_buddy, m_buddy->order));
603                 vm_freelist_add(fl, m_buddy, oind, 0);
604         }
605 }
606
607 /*
608  * Allocate a contiguous, power of two-sized set of physical pages
609  * from the free lists.
610  *
611  * The free page queues must be locked.
612  */
613 vm_page_t
614 vm_phys_alloc_pages(int domain, int pool, int order)
615 {
616         vm_page_t m;
617         int freelist;
618
619         for (freelist = 0; freelist < VM_NFREELIST; freelist++) {
620                 m = vm_phys_alloc_freelist_pages(domain, freelist, pool, order);
621                 if (m != NULL)
622                         return (m);
623         }
624         return (NULL);
625 }
626
627 int
628 vm_phys_alloc_npages(int domain, int pool, vm_page_t *mp, int cnt)
629 {
630         vm_page_t m;
631         int order, freelist;
632
633         for (freelist = 0; freelist < VM_NFREELIST; freelist++) {
634                 for (order = fls(cnt) -1; order >= 0; order--) {
635                         m = vm_phys_alloc_freelist_pages(domain, freelist,
636                             pool, order);
637                         if (m != NULL) {
638                                 *mp = m;
639                                 return (1 << order);
640                         }
641                 }
642         }
643         *mp = NULL;
644         return (0);
645 }
646
647 /*
648  * Allocate a contiguous, power of two-sized set of physical pages from the
649  * specified free list.  The free list must be specified using one of the
650  * manifest constants VM_FREELIST_*.
651  *
652  * The free page queues must be locked.
653  */
654 vm_page_t
655 vm_phys_alloc_freelist_pages(int domain, int freelist, int pool, int order)
656 {
657         struct vm_freelist *alt, *fl;
658         vm_page_t m;
659         int oind, pind, flind;
660
661         KASSERT(domain >= 0 && domain < vm_ndomains,
662             ("vm_phys_alloc_freelist_pages: domain %d is out of range",
663             domain));
664         KASSERT(freelist < VM_NFREELIST,
665             ("vm_phys_alloc_freelist_pages: freelist %d is out of range",
666             freelist));
667         KASSERT(pool < VM_NFREEPOOL,
668             ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool));
669         KASSERT(order < VM_NFREEORDER,
670             ("vm_phys_alloc_freelist_pages: order %d is out of range", order));
671
672         flind = vm_freelist_to_flind[freelist];
673         /* Check if freelist is present */
674         if (flind < 0)
675                 return (NULL);
676
677         vm_domain_free_assert_locked(VM_DOMAIN(domain));
678         fl = &vm_phys_free_queues[domain][flind][pool][0];
679         for (oind = order; oind < VM_NFREEORDER; oind++) {
680                 m = TAILQ_FIRST(&fl[oind].pl);
681                 if (m != NULL) {
682                         vm_freelist_rem(fl, m, oind);
683                         vm_phys_split_pages(m, oind, fl, order);
684                         return (m);
685                 }
686         }
687
688         /*
689          * The given pool was empty.  Find the largest
690          * contiguous, power-of-two-sized set of pages in any
691          * pool.  Transfer these pages to the given pool, and
692          * use them to satisfy the allocation.
693          */
694         for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
695                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
696                         alt = &vm_phys_free_queues[domain][flind][pind][0];
697                         m = TAILQ_FIRST(&alt[oind].pl);
698                         if (m != NULL) {
699                                 vm_freelist_rem(alt, m, oind);
700                                 vm_phys_set_pool(pool, m, oind);
701                                 vm_phys_split_pages(m, oind, fl, order);
702                                 return (m);
703                         }
704                 }
705         }
706         return (NULL);
707 }
708
709 /*
710  * Find the vm_page corresponding to the given physical address.
711  */
712 vm_page_t
713 vm_phys_paddr_to_vm_page(vm_paddr_t pa)
714 {
715         struct vm_phys_seg *seg;
716         int segind;
717
718         for (segind = 0; segind < vm_phys_nsegs; segind++) {
719                 seg = &vm_phys_segs[segind];
720                 if (pa >= seg->start && pa < seg->end)
721                         return (&seg->first_page[atop(pa - seg->start)]);
722         }
723         return (NULL);
724 }
725
726 vm_page_t
727 vm_phys_fictitious_to_vm_page(vm_paddr_t pa)
728 {
729         struct vm_phys_fictitious_seg tmp, *seg;
730         vm_page_t m;
731
732         m = NULL;
733         tmp.start = pa;
734         tmp.end = 0;
735
736         rw_rlock(&vm_phys_fictitious_reg_lock);
737         seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
738         rw_runlock(&vm_phys_fictitious_reg_lock);
739         if (seg == NULL)
740                 return (NULL);
741
742         m = &seg->first_page[atop(pa - seg->start)];
743         KASSERT((m->flags & PG_FICTITIOUS) != 0, ("%p not fictitious", m));
744
745         return (m);
746 }
747
748 static inline void
749 vm_phys_fictitious_init_range(vm_page_t range, vm_paddr_t start,
750     long page_count, vm_memattr_t memattr)
751 {
752         long i;
753
754         bzero(range, page_count * sizeof(*range));
755         for (i = 0; i < page_count; i++) {
756                 vm_page_initfake(&range[i], start + PAGE_SIZE * i, memattr);
757                 range[i].oflags &= ~VPO_UNMANAGED;
758                 range[i].busy_lock = VPB_UNBUSIED;
759         }
760 }
761
762 int
763 vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end,
764     vm_memattr_t memattr)
765 {
766         struct vm_phys_fictitious_seg *seg;
767         vm_page_t fp;
768         long page_count;
769 #ifdef VM_PHYSSEG_DENSE
770         long pi, pe;
771         long dpage_count;
772 #endif
773
774         KASSERT(start < end,
775             ("Start of segment isn't less than end (start: %jx end: %jx)",
776             (uintmax_t)start, (uintmax_t)end));
777
778         page_count = (end - start) / PAGE_SIZE;
779
780 #ifdef VM_PHYSSEG_DENSE
781         pi = atop(start);
782         pe = atop(end);
783         if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
784                 fp = &vm_page_array[pi - first_page];
785                 if ((pe - first_page) > vm_page_array_size) {
786                         /*
787                          * We have a segment that starts inside
788                          * of vm_page_array, but ends outside of it.
789                          *
790                          * Use vm_page_array pages for those that are
791                          * inside of the vm_page_array range, and
792                          * allocate the remaining ones.
793                          */
794                         dpage_count = vm_page_array_size - (pi - first_page);
795                         vm_phys_fictitious_init_range(fp, start, dpage_count,
796                             memattr);
797                         page_count -= dpage_count;
798                         start += ptoa(dpage_count);
799                         goto alloc;
800                 }
801                 /*
802                  * We can allocate the full range from vm_page_array,
803                  * so there's no need to register the range in the tree.
804                  */
805                 vm_phys_fictitious_init_range(fp, start, page_count, memattr);
806                 return (0);
807         } else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
808                 /*
809                  * We have a segment that ends inside of vm_page_array,
810                  * but starts outside of it.
811                  */
812                 fp = &vm_page_array[0];
813                 dpage_count = pe - first_page;
814                 vm_phys_fictitious_init_range(fp, ptoa(first_page), dpage_count,
815                     memattr);
816                 end -= ptoa(dpage_count);
817                 page_count -= dpage_count;
818                 goto alloc;
819         } else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
820                 /*
821                  * Trying to register a fictitious range that expands before
822                  * and after vm_page_array.
823                  */
824                 return (EINVAL);
825         } else {
826 alloc:
827 #endif
828                 fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES,
829                     M_WAITOK);
830 #ifdef VM_PHYSSEG_DENSE
831         }
832 #endif
833         vm_phys_fictitious_init_range(fp, start, page_count, memattr);
834
835         seg = malloc(sizeof(*seg), M_FICT_PAGES, M_WAITOK | M_ZERO);
836         seg->start = start;
837         seg->end = end;
838         seg->first_page = fp;
839
840         rw_wlock(&vm_phys_fictitious_reg_lock);
841         RB_INSERT(fict_tree, &vm_phys_fictitious_tree, seg);
842         rw_wunlock(&vm_phys_fictitious_reg_lock);
843
844         return (0);
845 }
846
847 void
848 vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end)
849 {
850         struct vm_phys_fictitious_seg *seg, tmp;
851 #ifdef VM_PHYSSEG_DENSE
852         long pi, pe;
853 #endif
854
855         KASSERT(start < end,
856             ("Start of segment isn't less than end (start: %jx end: %jx)",
857             (uintmax_t)start, (uintmax_t)end));
858
859 #ifdef VM_PHYSSEG_DENSE
860         pi = atop(start);
861         pe = atop(end);
862         if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
863                 if ((pe - first_page) <= vm_page_array_size) {
864                         /*
865                          * This segment was allocated using vm_page_array
866                          * only, there's nothing to do since those pages
867                          * were never added to the tree.
868                          */
869                         return;
870                 }
871                 /*
872                  * We have a segment that starts inside
873                  * of vm_page_array, but ends outside of it.
874                  *
875                  * Calculate how many pages were added to the
876                  * tree and free them.
877                  */
878                 start = ptoa(first_page + vm_page_array_size);
879         } else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
880                 /*
881                  * We have a segment that ends inside of vm_page_array,
882                  * but starts outside of it.
883                  */
884                 end = ptoa(first_page);
885         } else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
886                 /* Since it's not possible to register such a range, panic. */
887                 panic(
888                     "Unregistering not registered fictitious range [%#jx:%#jx]",
889                     (uintmax_t)start, (uintmax_t)end);
890         }
891 #endif
892         tmp.start = start;
893         tmp.end = 0;
894
895         rw_wlock(&vm_phys_fictitious_reg_lock);
896         seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
897         if (seg->start != start || seg->end != end) {
898                 rw_wunlock(&vm_phys_fictitious_reg_lock);
899                 panic(
900                     "Unregistering not registered fictitious range [%#jx:%#jx]",
901                     (uintmax_t)start, (uintmax_t)end);
902         }
903         RB_REMOVE(fict_tree, &vm_phys_fictitious_tree, seg);
904         rw_wunlock(&vm_phys_fictitious_reg_lock);
905         free(seg->first_page, M_FICT_PAGES);
906         free(seg, M_FICT_PAGES);
907 }
908
909 /*
910  * Free a contiguous, power of two-sized set of physical pages.
911  *
912  * The free page queues must be locked.
913  */
914 void
915 vm_phys_free_pages(vm_page_t m, int order)
916 {
917         struct vm_freelist *fl;
918         struct vm_phys_seg *seg;
919         vm_paddr_t pa;
920         vm_page_t m_buddy;
921
922         KASSERT(m->order == VM_NFREEORDER,
923             ("vm_phys_free_pages: page %p has unexpected order %d",
924             m, m->order));
925         KASSERT(m->pool < VM_NFREEPOOL,
926             ("vm_phys_free_pages: page %p has unexpected pool %d",
927             m, m->pool));
928         KASSERT(order < VM_NFREEORDER,
929             ("vm_phys_free_pages: order %d is out of range", order));
930         seg = &vm_phys_segs[m->segind];
931         vm_domain_free_assert_locked(VM_DOMAIN(seg->domain));
932         if (order < VM_NFREEORDER - 1) {
933                 pa = VM_PAGE_TO_PHYS(m);
934                 do {
935                         pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order));
936                         if (pa < seg->start || pa >= seg->end)
937                                 break;
938                         m_buddy = &seg->first_page[atop(pa - seg->start)];
939                         if (m_buddy->order != order)
940                                 break;
941                         fl = (*seg->free_queues)[m_buddy->pool];
942                         vm_freelist_rem(fl, m_buddy, order);
943                         if (m_buddy->pool != m->pool)
944                                 vm_phys_set_pool(m->pool, m_buddy, order);
945                         order++;
946                         pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1);
947                         m = &seg->first_page[atop(pa - seg->start)];
948                 } while (order < VM_NFREEORDER - 1);
949         }
950         fl = (*seg->free_queues)[m->pool];
951         vm_freelist_add(fl, m, order, 1);
952 }
953
954 /*
955  * Free a contiguous, arbitrarily sized set of physical pages.
956  *
957  * The free page queues must be locked.
958  */
959 void
960 vm_phys_free_contig(vm_page_t m, u_long npages)
961 {
962         u_int n;
963         int order;
964
965         /*
966          * Avoid unnecessary coalescing by freeing the pages in the largest
967          * possible power-of-two-sized subsets.
968          */
969         vm_domain_free_assert_locked(vm_pagequeue_domain(m));
970         for (;; npages -= n) {
971                 /*
972                  * Unsigned "min" is used here so that "order" is assigned
973                  * "VM_NFREEORDER - 1" when "m"'s physical address is zero
974                  * or the low-order bits of its physical address are zero
975                  * because the size of a physical address exceeds the size of
976                  * a long.
977                  */
978                 order = min(ffsl(VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) - 1,
979                     VM_NFREEORDER - 1);
980                 n = 1 << order;
981                 if (npages < n)
982                         break;
983                 vm_phys_free_pages(m, order);
984                 m += n;
985         }
986         /* The residual "npages" is less than "1 << (VM_NFREEORDER - 1)". */
987         for (; npages > 0; npages -= n) {
988                 order = flsl(npages) - 1;
989                 n = 1 << order;
990                 vm_phys_free_pages(m, order);
991                 m += n;
992         }
993 }
994
995 /*
996  * Scan physical memory between the specified addresses "low" and "high" for a
997  * run of contiguous physical pages that satisfy the specified conditions, and
998  * return the lowest page in the run.  The specified "alignment" determines
999  * the alignment of the lowest physical page in the run.  If the specified
1000  * "boundary" is non-zero, then the run of physical pages cannot span a
1001  * physical address that is a multiple of "boundary".
1002  *
1003  * "npages" must be greater than zero.  Both "alignment" and "boundary" must
1004  * be a power of two.
1005  */
1006 vm_page_t
1007 vm_phys_scan_contig(int domain, u_long npages, vm_paddr_t low, vm_paddr_t high,
1008     u_long alignment, vm_paddr_t boundary, int options)
1009 {
1010         vm_paddr_t pa_end;
1011         vm_page_t m_end, m_run, m_start;
1012         struct vm_phys_seg *seg;
1013         int segind;
1014
1015         KASSERT(npages > 0, ("npages is 0"));
1016         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1017         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1018         if (low >= high)
1019                 return (NULL);
1020         for (segind = 0; segind < vm_phys_nsegs; segind++) {
1021                 seg = &vm_phys_segs[segind];
1022                 if (seg->domain != domain)
1023                         continue;
1024                 if (seg->start >= high)
1025                         break;
1026                 if (low >= seg->end)
1027                         continue;
1028                 if (low <= seg->start)
1029                         m_start = seg->first_page;
1030                 else
1031                         m_start = &seg->first_page[atop(low - seg->start)];
1032                 if (high < seg->end)
1033                         pa_end = high;
1034                 else
1035                         pa_end = seg->end;
1036                 if (pa_end - VM_PAGE_TO_PHYS(m_start) < ptoa(npages))
1037                         continue;
1038                 m_end = &seg->first_page[atop(pa_end - seg->start)];
1039                 m_run = vm_page_scan_contig(npages, m_start, m_end,
1040                     alignment, boundary, options);
1041                 if (m_run != NULL)
1042                         return (m_run);
1043         }
1044         return (NULL);
1045 }
1046
1047 /*
1048  * Set the pool for a contiguous, power of two-sized set of physical pages. 
1049  */
1050 void
1051 vm_phys_set_pool(int pool, vm_page_t m, int order)
1052 {
1053         vm_page_t m_tmp;
1054
1055         for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
1056                 m_tmp->pool = pool;
1057 }
1058
1059 /*
1060  * Search for the given physical page "m" in the free lists.  If the search
1061  * succeeds, remove "m" from the free lists and return TRUE.  Otherwise, return
1062  * FALSE, indicating that "m" is not in the free lists.
1063  *
1064  * The free page queues must be locked.
1065  */
1066 boolean_t
1067 vm_phys_unfree_page(vm_page_t m)
1068 {
1069         struct vm_freelist *fl;
1070         struct vm_phys_seg *seg;
1071         vm_paddr_t pa, pa_half;
1072         vm_page_t m_set, m_tmp;
1073         int order;
1074
1075         /*
1076          * First, find the contiguous, power of two-sized set of free
1077          * physical pages containing the given physical page "m" and
1078          * assign it to "m_set".
1079          */
1080         seg = &vm_phys_segs[m->segind];
1081         vm_domain_free_assert_locked(VM_DOMAIN(seg->domain));
1082         for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
1083             order < VM_NFREEORDER - 1; ) {
1084                 order++;
1085                 pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
1086                 if (pa >= seg->start)
1087                         m_set = &seg->first_page[atop(pa - seg->start)];
1088                 else
1089                         return (FALSE);
1090         }
1091         if (m_set->order < order)
1092                 return (FALSE);
1093         if (m_set->order == VM_NFREEORDER)
1094                 return (FALSE);
1095         KASSERT(m_set->order < VM_NFREEORDER,
1096             ("vm_phys_unfree_page: page %p has unexpected order %d",
1097             m_set, m_set->order));
1098
1099         /*
1100          * Next, remove "m_set" from the free lists.  Finally, extract
1101          * "m" from "m_set" using an iterative algorithm: While "m_set"
1102          * is larger than a page, shrink "m_set" by returning the half
1103          * of "m_set" that does not contain "m" to the free lists.
1104          */
1105         fl = (*seg->free_queues)[m_set->pool];
1106         order = m_set->order;
1107         vm_freelist_rem(fl, m_set, order);
1108         while (order > 0) {
1109                 order--;
1110                 pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
1111                 if (m->phys_addr < pa_half)
1112                         m_tmp = &seg->first_page[atop(pa_half - seg->start)];
1113                 else {
1114                         m_tmp = m_set;
1115                         m_set = &seg->first_page[atop(pa_half - seg->start)];
1116                 }
1117                 vm_freelist_add(fl, m_tmp, order, 0);
1118         }
1119         KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
1120         return (TRUE);
1121 }
1122
1123 /*
1124  * Allocate a contiguous set of physical pages of the given size
1125  * "npages" from the free lists.  All of the physical pages must be at
1126  * or above the given physical address "low" and below the given
1127  * physical address "high".  The given value "alignment" determines the
1128  * alignment of the first physical page in the set.  If the given value
1129  * "boundary" is non-zero, then the set of physical pages cannot cross
1130  * any physical address boundary that is a multiple of that value.  Both
1131  * "alignment" and "boundary" must be a power of two.
1132  */
1133 vm_page_t
1134 vm_phys_alloc_contig(int domain, u_long npages, vm_paddr_t low, vm_paddr_t high,
1135     u_long alignment, vm_paddr_t boundary)
1136 {
1137         vm_paddr_t pa_end, pa_start;
1138         vm_page_t m_run;
1139         struct vm_phys_seg *seg;
1140         int segind;
1141
1142         KASSERT(npages > 0, ("npages is 0"));
1143         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1144         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1145         vm_domain_free_assert_locked(VM_DOMAIN(domain));
1146         if (low >= high)
1147                 return (NULL);
1148         m_run = NULL;
1149         for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
1150                 seg = &vm_phys_segs[segind];
1151                 if (seg->start >= high || seg->domain != domain)
1152                         continue;
1153                 if (low >= seg->end)
1154                         break;
1155                 if (low <= seg->start)
1156                         pa_start = seg->start;
1157                 else
1158                         pa_start = low;
1159                 if (high < seg->end)
1160                         pa_end = high;
1161                 else
1162                         pa_end = seg->end;
1163                 if (pa_end - pa_start < ptoa(npages))
1164                         continue;
1165                 m_run = vm_phys_alloc_seg_contig(seg, npages, low, high,
1166                     alignment, boundary);
1167                 if (m_run != NULL)
1168                         break;
1169         }
1170         return (m_run);
1171 }
1172
1173 /*
1174  * Allocate a run of contiguous physical pages from the free list for the
1175  * specified segment.
1176  */
1177 static vm_page_t
1178 vm_phys_alloc_seg_contig(struct vm_phys_seg *seg, u_long npages,
1179     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
1180 {
1181         struct vm_freelist *fl;
1182         vm_paddr_t pa, pa_end, size;
1183         vm_page_t m, m_ret;
1184         u_long npages_end;
1185         int oind, order, pind;
1186
1187         KASSERT(npages > 0, ("npages is 0"));
1188         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1189         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1190         vm_domain_free_assert_locked(VM_DOMAIN(seg->domain));
1191         /* Compute the queue that is the best fit for npages. */
1192         for (order = 0; (1 << order) < npages; order++);
1193         /* Search for a run satisfying the specified conditions. */
1194         size = npages << PAGE_SHIFT;
1195         for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER;
1196             oind++) {
1197                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1198                         fl = (*seg->free_queues)[pind];
1199                         TAILQ_FOREACH(m_ret, &fl[oind].pl, listq) {
1200                                 /*
1201                                  * Is the size of this allocation request
1202                                  * larger than the largest block size?
1203                                  */
1204                                 if (order >= VM_NFREEORDER) {
1205                                         /*
1206                                          * Determine if a sufficient number of
1207                                          * subsequent blocks to satisfy the
1208                                          * allocation request are free.
1209                                          */
1210                                         pa = VM_PAGE_TO_PHYS(m_ret);
1211                                         pa_end = pa + size;
1212                                         if (pa_end < pa)
1213                                                 continue;
1214                                         for (;;) {
1215                                                 pa += 1 << (PAGE_SHIFT +
1216                                                     VM_NFREEORDER - 1);
1217                                                 if (pa >= pa_end ||
1218                                                     pa < seg->start ||
1219                                                     pa >= seg->end)
1220                                                         break;
1221                                                 m = &seg->first_page[atop(pa -
1222                                                     seg->start)];
1223                                                 if (m->order != VM_NFREEORDER -
1224                                                     1)
1225                                                         break;
1226                                         }
1227                                         /* If not, go to the next block. */
1228                                         if (pa < pa_end)
1229                                                 continue;
1230                                 }
1231
1232                                 /*
1233                                  * Determine if the blocks are within the
1234                                  * given range, satisfy the given alignment,
1235                                  * and do not cross the given boundary.
1236                                  */
1237                                 pa = VM_PAGE_TO_PHYS(m_ret);
1238                                 pa_end = pa + size;
1239                                 if (pa >= low && pa_end <= high &&
1240                                     (pa & (alignment - 1)) == 0 &&
1241                                     rounddown2(pa ^ (pa_end - 1), boundary) == 0)
1242                                         goto done;
1243                         }
1244                 }
1245         }
1246         return (NULL);
1247 done:
1248         for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) {
1249                 fl = (*seg->free_queues)[m->pool];
1250                 vm_freelist_rem(fl, m, m->order);
1251         }
1252         if (m_ret->pool != VM_FREEPOOL_DEFAULT)
1253                 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m_ret, oind);
1254         fl = (*seg->free_queues)[m_ret->pool];
1255         vm_phys_split_pages(m_ret, oind, fl, order);
1256         /* Return excess pages to the free lists. */
1257         npages_end = roundup2(npages, 1 << imin(oind, order));
1258         if (npages < npages_end)
1259                 vm_phys_free_contig(&m_ret[npages], npages_end - npages);
1260         return (m_ret);
1261 }
1262
1263 #ifdef DDB
1264 /*
1265  * Show the number of physical pages in each of the free lists.
1266  */
1267 DB_SHOW_COMMAND(freepages, db_show_freepages)
1268 {
1269         struct vm_freelist *fl;
1270         int flind, oind, pind, dom;
1271
1272         for (dom = 0; dom < vm_ndomains; dom++) {
1273                 db_printf("DOMAIN: %d\n", dom);
1274                 for (flind = 0; flind < vm_nfreelists; flind++) {
1275                         db_printf("FREE LIST %d:\n"
1276                             "\n  ORDER (SIZE)  |  NUMBER"
1277                             "\n              ", flind);
1278                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
1279                                 db_printf("  |  POOL %d", pind);
1280                         db_printf("\n--            ");
1281                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
1282                                 db_printf("-- --      ");
1283                         db_printf("--\n");
1284                         for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
1285                                 db_printf("  %2.2d (%6.6dK)", oind,
1286                                     1 << (PAGE_SHIFT - 10 + oind));
1287                                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1288                                 fl = vm_phys_free_queues[dom][flind][pind];
1289                                         db_printf("  |  %6.6d", fl[oind].lcnt);
1290                                 }
1291                                 db_printf("\n");
1292                         }
1293                         db_printf("\n");
1294                 }
1295                 db_printf("\n");
1296         }
1297 }
1298 #endif