]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_phys.c
vm_phys_early_alloc: mem_index is only used under #ifdef NUMA.
[FreeBSD/FreeBSD.git] / sys / vm / vm_phys.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2002-2006 Rice University
5  * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
6  * All rights reserved.
7  *
8  * This software was developed for the FreeBSD Project by Alan L. Cox,
9  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
24  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
27  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
30  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 /*
35  *      Physical memory system implementation
36  *
37  * Any external functions defined by this module are only to be used by the
38  * virtual memory system.
39  */
40
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43
44 #include "opt_ddb.h"
45 #include "opt_vm.h"
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/domainset.h>
50 #include <sys/lock.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/mutex.h>
54 #include <sys/proc.h>
55 #include <sys/queue.h>
56 #include <sys/rwlock.h>
57 #include <sys/sbuf.h>
58 #include <sys/sysctl.h>
59 #include <sys/tree.h>
60 #include <sys/vmmeter.h>
61
62 #include <ddb/ddb.h>
63
64 #include <vm/vm.h>
65 #include <vm/vm_extern.h>
66 #include <vm/vm_param.h>
67 #include <vm/vm_kern.h>
68 #include <vm/vm_object.h>
69 #include <vm/vm_page.h>
70 #include <vm/vm_phys.h>
71 #include <vm/vm_pagequeue.h>
72
73 _Static_assert(sizeof(long) * NBBY >= VM_PHYSSEG_MAX,
74     "Too many physsegs.");
75
76 #ifdef NUMA
77 struct mem_affinity __read_mostly *mem_affinity;
78 int __read_mostly *mem_locality;
79 #endif
80
81 int __read_mostly vm_ndomains = 1;
82 domainset_t __read_mostly all_domains = DOMAINSET_T_INITIALIZER(0x1);
83
84 struct vm_phys_seg __read_mostly vm_phys_segs[VM_PHYSSEG_MAX];
85 int __read_mostly vm_phys_nsegs;
86 static struct vm_phys_seg vm_phys_early_segs[8];
87 static int vm_phys_early_nsegs;
88
89 struct vm_phys_fictitious_seg;
90 static int vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *,
91     struct vm_phys_fictitious_seg *);
92
93 RB_HEAD(fict_tree, vm_phys_fictitious_seg) vm_phys_fictitious_tree =
94     RB_INITIALIZER(&vm_phys_fictitious_tree);
95
96 struct vm_phys_fictitious_seg {
97         RB_ENTRY(vm_phys_fictitious_seg) node;
98         /* Memory region data */
99         vm_paddr_t      start;
100         vm_paddr_t      end;
101         vm_page_t       first_page;
102 };
103
104 RB_GENERATE_STATIC(fict_tree, vm_phys_fictitious_seg, node,
105     vm_phys_fictitious_cmp);
106
107 static struct rwlock_padalign vm_phys_fictitious_reg_lock;
108 MALLOC_DEFINE(M_FICT_PAGES, "vm_fictitious", "Fictitious VM pages");
109
110 static struct vm_freelist __aligned(CACHE_LINE_SIZE)
111     vm_phys_free_queues[MAXMEMDOM][VM_NFREELIST][VM_NFREEPOOL]
112     [VM_NFREEORDER_MAX];
113
114 static int __read_mostly vm_nfreelists;
115
116 /*
117  * These "avail lists" are globals used to communicate boot-time physical
118  * memory layout to other parts of the kernel.  Each physically contiguous
119  * region of memory is defined by a start address at an even index and an
120  * end address at the following odd index.  Each list is terminated by a
121  * pair of zero entries.
122  *
123  * dump_avail tells the dump code what regions to include in a crash dump, and
124  * phys_avail is all of the remaining physical memory that is available for
125  * the vm system.
126  *
127  * Initially dump_avail and phys_avail are identical.  Boot time memory
128  * allocations remove extents from phys_avail that may still be included
129  * in dumps.
130  */
131 vm_paddr_t phys_avail[PHYS_AVAIL_COUNT];
132 vm_paddr_t dump_avail[PHYS_AVAIL_COUNT];
133
134 /*
135  * Provides the mapping from VM_FREELIST_* to free list indices (flind).
136  */
137 static int __read_mostly vm_freelist_to_flind[VM_NFREELIST];
138
139 CTASSERT(VM_FREELIST_DEFAULT == 0);
140
141 #ifdef VM_FREELIST_DMA32
142 #define VM_DMA32_BOUNDARY       ((vm_paddr_t)1 << 32)
143 #endif
144
145 /*
146  * Enforce the assumptions made by vm_phys_add_seg() and vm_phys_init() about
147  * the ordering of the free list boundaries.
148  */
149 #if defined(VM_LOWMEM_BOUNDARY) && defined(VM_DMA32_BOUNDARY)
150 CTASSERT(VM_LOWMEM_BOUNDARY < VM_DMA32_BOUNDARY);
151 #endif
152
153 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
154 SYSCTL_OID(_vm, OID_AUTO, phys_free,
155     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
156     sysctl_vm_phys_free, "A",
157     "Phys Free Info");
158
159 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
160 SYSCTL_OID(_vm, OID_AUTO, phys_segs,
161     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
162     sysctl_vm_phys_segs, "A",
163     "Phys Seg Info");
164
165 #ifdef NUMA
166 static int sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS);
167 SYSCTL_OID(_vm, OID_AUTO, phys_locality,
168     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
169     sysctl_vm_phys_locality, "A",
170     "Phys Locality Info");
171 #endif
172
173 SYSCTL_INT(_vm, OID_AUTO, ndomains, CTLFLAG_RD,
174     &vm_ndomains, 0, "Number of physical memory domains available.");
175
176 static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain);
177 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end);
178 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
179     int order, int tail);
180
181 /*
182  * Red-black tree helpers for vm fictitious range management.
183  */
184 static inline int
185 vm_phys_fictitious_in_range(struct vm_phys_fictitious_seg *p,
186     struct vm_phys_fictitious_seg *range)
187 {
188
189         KASSERT(range->start != 0 && range->end != 0,
190             ("Invalid range passed on search for vm_fictitious page"));
191         if (p->start >= range->end)
192                 return (1);
193         if (p->start < range->start)
194                 return (-1);
195
196         return (0);
197 }
198
199 static int
200 vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *p1,
201     struct vm_phys_fictitious_seg *p2)
202 {
203
204         /* Check if this is a search for a page */
205         if (p1->end == 0)
206                 return (vm_phys_fictitious_in_range(p1, p2));
207
208         KASSERT(p2->end != 0,
209     ("Invalid range passed as second parameter to vm fictitious comparison"));
210
211         /* Searching to add a new range */
212         if (p1->end <= p2->start)
213                 return (-1);
214         if (p1->start >= p2->end)
215                 return (1);
216
217         panic("Trying to add overlapping vm fictitious ranges:\n"
218             "[%#jx:%#jx] and [%#jx:%#jx]", (uintmax_t)p1->start,
219             (uintmax_t)p1->end, (uintmax_t)p2->start, (uintmax_t)p2->end);
220 }
221
222 int
223 vm_phys_domain_match(int prefer, vm_paddr_t low, vm_paddr_t high)
224 {
225 #ifdef NUMA
226         domainset_t mask;
227         int i;
228
229         if (vm_ndomains == 1 || mem_affinity == NULL)
230                 return (0);
231
232         DOMAINSET_ZERO(&mask);
233         /*
234          * Check for any memory that overlaps low, high.
235          */
236         for (i = 0; mem_affinity[i].end != 0; i++)
237                 if (mem_affinity[i].start <= high &&
238                     mem_affinity[i].end >= low)
239                         DOMAINSET_SET(mem_affinity[i].domain, &mask);
240         if (prefer != -1 && DOMAINSET_ISSET(prefer, &mask))
241                 return (prefer);
242         if (DOMAINSET_EMPTY(&mask))
243                 panic("vm_phys_domain_match:  Impossible constraint");
244         return (DOMAINSET_FFS(&mask) - 1);
245 #else
246         return (0);
247 #endif
248 }
249
250 /*
251  * Outputs the state of the physical memory allocator, specifically,
252  * the amount of physical memory in each free list.
253  */
254 static int
255 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
256 {
257         struct sbuf sbuf;
258         struct vm_freelist *fl;
259         int dom, error, flind, oind, pind;
260
261         error = sysctl_wire_old_buffer(req, 0);
262         if (error != 0)
263                 return (error);
264         sbuf_new_for_sysctl(&sbuf, NULL, 128 * vm_ndomains, req);
265         for (dom = 0; dom < vm_ndomains; dom++) {
266                 sbuf_printf(&sbuf,"\nDOMAIN %d:\n", dom);
267                 for (flind = 0; flind < vm_nfreelists; flind++) {
268                         sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
269                             "\n  ORDER (SIZE)  |  NUMBER"
270                             "\n              ", flind);
271                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
272                                 sbuf_printf(&sbuf, "  |  POOL %d", pind);
273                         sbuf_printf(&sbuf, "\n--            ");
274                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
275                                 sbuf_printf(&sbuf, "-- --      ");
276                         sbuf_printf(&sbuf, "--\n");
277                         for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
278                                 sbuf_printf(&sbuf, "  %2d (%6dK)", oind,
279                                     1 << (PAGE_SHIFT - 10 + oind));
280                                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
281                                 fl = vm_phys_free_queues[dom][flind][pind];
282                                         sbuf_printf(&sbuf, "  |  %6d",
283                                             fl[oind].lcnt);
284                                 }
285                                 sbuf_printf(&sbuf, "\n");
286                         }
287                 }
288         }
289         error = sbuf_finish(&sbuf);
290         sbuf_delete(&sbuf);
291         return (error);
292 }
293
294 /*
295  * Outputs the set of physical memory segments.
296  */
297 static int
298 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
299 {
300         struct sbuf sbuf;
301         struct vm_phys_seg *seg;
302         int error, segind;
303
304         error = sysctl_wire_old_buffer(req, 0);
305         if (error != 0)
306                 return (error);
307         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
308         for (segind = 0; segind < vm_phys_nsegs; segind++) {
309                 sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
310                 seg = &vm_phys_segs[segind];
311                 sbuf_printf(&sbuf, "start:     %#jx\n",
312                     (uintmax_t)seg->start);
313                 sbuf_printf(&sbuf, "end:       %#jx\n",
314                     (uintmax_t)seg->end);
315                 sbuf_printf(&sbuf, "domain:    %d\n", seg->domain);
316                 sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
317         }
318         error = sbuf_finish(&sbuf);
319         sbuf_delete(&sbuf);
320         return (error);
321 }
322
323 /*
324  * Return affinity, or -1 if there's no affinity information.
325  */
326 int
327 vm_phys_mem_affinity(int f, int t)
328 {
329
330 #ifdef NUMA
331         if (mem_locality == NULL)
332                 return (-1);
333         if (f >= vm_ndomains || t >= vm_ndomains)
334                 return (-1);
335         return (mem_locality[f * vm_ndomains + t]);
336 #else
337         return (-1);
338 #endif
339 }
340
341 #ifdef NUMA
342 /*
343  * Outputs the VM locality table.
344  */
345 static int
346 sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS)
347 {
348         struct sbuf sbuf;
349         int error, i, j;
350
351         error = sysctl_wire_old_buffer(req, 0);
352         if (error != 0)
353                 return (error);
354         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
355
356         sbuf_printf(&sbuf, "\n");
357
358         for (i = 0; i < vm_ndomains; i++) {
359                 sbuf_printf(&sbuf, "%d: ", i);
360                 for (j = 0; j < vm_ndomains; j++) {
361                         sbuf_printf(&sbuf, "%d ", vm_phys_mem_affinity(i, j));
362                 }
363                 sbuf_printf(&sbuf, "\n");
364         }
365         error = sbuf_finish(&sbuf);
366         sbuf_delete(&sbuf);
367         return (error);
368 }
369 #endif
370
371 static void
372 vm_freelist_add(struct vm_freelist *fl, vm_page_t m, int order, int tail)
373 {
374
375         m->order = order;
376         if (tail)
377                 TAILQ_INSERT_TAIL(&fl[order].pl, m, listq);
378         else
379                 TAILQ_INSERT_HEAD(&fl[order].pl, m, listq);
380         fl[order].lcnt++;
381 }
382
383 static void
384 vm_freelist_rem(struct vm_freelist *fl, vm_page_t m, int order)
385 {
386
387         TAILQ_REMOVE(&fl[order].pl, m, listq);
388         fl[order].lcnt--;
389         m->order = VM_NFREEORDER;
390 }
391
392 /*
393  * Create a physical memory segment.
394  */
395 static void
396 _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain)
397 {
398         struct vm_phys_seg *seg;
399
400         KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
401             ("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
402         KASSERT(domain >= 0 && domain < vm_ndomains,
403             ("vm_phys_create_seg: invalid domain provided"));
404         seg = &vm_phys_segs[vm_phys_nsegs++];
405         while (seg > vm_phys_segs && (seg - 1)->start >= end) {
406                 *seg = *(seg - 1);
407                 seg--;
408         }
409         seg->start = start;
410         seg->end = end;
411         seg->domain = domain;
412 }
413
414 static void
415 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end)
416 {
417 #ifdef NUMA
418         int i;
419
420         if (mem_affinity == NULL) {
421                 _vm_phys_create_seg(start, end, 0);
422                 return;
423         }
424
425         for (i = 0;; i++) {
426                 if (mem_affinity[i].end == 0)
427                         panic("Reached end of affinity info");
428                 if (mem_affinity[i].end <= start)
429                         continue;
430                 if (mem_affinity[i].start > start)
431                         panic("No affinity info for start %jx",
432                             (uintmax_t)start);
433                 if (mem_affinity[i].end >= end) {
434                         _vm_phys_create_seg(start, end,
435                             mem_affinity[i].domain);
436                         break;
437                 }
438                 _vm_phys_create_seg(start, mem_affinity[i].end,
439                     mem_affinity[i].domain);
440                 start = mem_affinity[i].end;
441         }
442 #else
443         _vm_phys_create_seg(start, end, 0);
444 #endif
445 }
446
447 /*
448  * Add a physical memory segment.
449  */
450 void
451 vm_phys_add_seg(vm_paddr_t start, vm_paddr_t end)
452 {
453         vm_paddr_t paddr;
454
455         KASSERT((start & PAGE_MASK) == 0,
456             ("vm_phys_define_seg: start is not page aligned"));
457         KASSERT((end & PAGE_MASK) == 0,
458             ("vm_phys_define_seg: end is not page aligned"));
459
460         /*
461          * Split the physical memory segment if it spans two or more free
462          * list boundaries.
463          */
464         paddr = start;
465 #ifdef  VM_FREELIST_LOWMEM
466         if (paddr < VM_LOWMEM_BOUNDARY && end > VM_LOWMEM_BOUNDARY) {
467                 vm_phys_create_seg(paddr, VM_LOWMEM_BOUNDARY);
468                 paddr = VM_LOWMEM_BOUNDARY;
469         }
470 #endif
471 #ifdef  VM_FREELIST_DMA32
472         if (paddr < VM_DMA32_BOUNDARY && end > VM_DMA32_BOUNDARY) {
473                 vm_phys_create_seg(paddr, VM_DMA32_BOUNDARY);
474                 paddr = VM_DMA32_BOUNDARY;
475         }
476 #endif
477         vm_phys_create_seg(paddr, end);
478 }
479
480 /*
481  * Initialize the physical memory allocator.
482  *
483  * Requires that vm_page_array is initialized!
484  */
485 void
486 vm_phys_init(void)
487 {
488         struct vm_freelist *fl;
489         struct vm_phys_seg *end_seg, *prev_seg, *seg, *tmp_seg;
490         u_long npages;
491         int dom, flind, freelist, oind, pind, segind;
492
493         /*
494          * Compute the number of free lists, and generate the mapping from the
495          * manifest constants VM_FREELIST_* to the free list indices.
496          *
497          * Initially, the entries of vm_freelist_to_flind[] are set to either
498          * 0 or 1 to indicate which free lists should be created.
499          */
500         npages = 0;
501         for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
502                 seg = &vm_phys_segs[segind];
503 #ifdef  VM_FREELIST_LOWMEM
504                 if (seg->end <= VM_LOWMEM_BOUNDARY)
505                         vm_freelist_to_flind[VM_FREELIST_LOWMEM] = 1;
506                 else
507 #endif
508 #ifdef  VM_FREELIST_DMA32
509                 if (
510 #ifdef  VM_DMA32_NPAGES_THRESHOLD
511                     /*
512                      * Create the DMA32 free list only if the amount of
513                      * physical memory above physical address 4G exceeds the
514                      * given threshold.
515                      */
516                     npages > VM_DMA32_NPAGES_THRESHOLD &&
517 #endif
518                     seg->end <= VM_DMA32_BOUNDARY)
519                         vm_freelist_to_flind[VM_FREELIST_DMA32] = 1;
520                 else
521 #endif
522                 {
523                         npages += atop(seg->end - seg->start);
524                         vm_freelist_to_flind[VM_FREELIST_DEFAULT] = 1;
525                 }
526         }
527         /* Change each entry into a running total of the free lists. */
528         for (freelist = 1; freelist < VM_NFREELIST; freelist++) {
529                 vm_freelist_to_flind[freelist] +=
530                     vm_freelist_to_flind[freelist - 1];
531         }
532         vm_nfreelists = vm_freelist_to_flind[VM_NFREELIST - 1];
533         KASSERT(vm_nfreelists > 0, ("vm_phys_init: no free lists"));
534         /* Change each entry into a free list index. */
535         for (freelist = 0; freelist < VM_NFREELIST; freelist++)
536                 vm_freelist_to_flind[freelist]--;
537
538         /*
539          * Initialize the first_page and free_queues fields of each physical
540          * memory segment.
541          */
542 #ifdef VM_PHYSSEG_SPARSE
543         npages = 0;
544 #endif
545         for (segind = 0; segind < vm_phys_nsegs; segind++) {
546                 seg = &vm_phys_segs[segind];
547 #ifdef VM_PHYSSEG_SPARSE
548                 seg->first_page = &vm_page_array[npages];
549                 npages += atop(seg->end - seg->start);
550 #else
551                 seg->first_page = PHYS_TO_VM_PAGE(seg->start);
552 #endif
553 #ifdef  VM_FREELIST_LOWMEM
554                 if (seg->end <= VM_LOWMEM_BOUNDARY) {
555                         flind = vm_freelist_to_flind[VM_FREELIST_LOWMEM];
556                         KASSERT(flind >= 0,
557                             ("vm_phys_init: LOWMEM flind < 0"));
558                 } else
559 #endif
560 #ifdef  VM_FREELIST_DMA32
561                 if (seg->end <= VM_DMA32_BOUNDARY) {
562                         flind = vm_freelist_to_flind[VM_FREELIST_DMA32];
563                         KASSERT(flind >= 0,
564                             ("vm_phys_init: DMA32 flind < 0"));
565                 } else
566 #endif
567                 {
568                         flind = vm_freelist_to_flind[VM_FREELIST_DEFAULT];
569                         KASSERT(flind >= 0,
570                             ("vm_phys_init: DEFAULT flind < 0"));
571                 }
572                 seg->free_queues = &vm_phys_free_queues[seg->domain][flind];
573         }
574
575         /*
576          * Coalesce physical memory segments that are contiguous and share the
577          * same per-domain free queues.
578          */
579         prev_seg = vm_phys_segs;
580         seg = &vm_phys_segs[1];
581         end_seg = &vm_phys_segs[vm_phys_nsegs];
582         while (seg < end_seg) {
583                 if (prev_seg->end == seg->start &&
584                     prev_seg->free_queues == seg->free_queues) {
585                         prev_seg->end = seg->end;
586                         KASSERT(prev_seg->domain == seg->domain,
587                             ("vm_phys_init: free queues cannot span domains"));
588                         vm_phys_nsegs--;
589                         end_seg--;
590                         for (tmp_seg = seg; tmp_seg < end_seg; tmp_seg++)
591                                 *tmp_seg = *(tmp_seg + 1);
592                 } else {
593                         prev_seg = seg;
594                         seg++;
595                 }
596         }
597
598         /*
599          * Initialize the free queues.
600          */
601         for (dom = 0; dom < vm_ndomains; dom++) {
602                 for (flind = 0; flind < vm_nfreelists; flind++) {
603                         for (pind = 0; pind < VM_NFREEPOOL; pind++) {
604                                 fl = vm_phys_free_queues[dom][flind][pind];
605                                 for (oind = 0; oind < VM_NFREEORDER; oind++)
606                                         TAILQ_INIT(&fl[oind].pl);
607                         }
608                 }
609         }
610
611         rw_init(&vm_phys_fictitious_reg_lock, "vmfctr");
612 }
613
614 /*
615  * Register info about the NUMA topology of the system.
616  *
617  * Invoked by platform-dependent code prior to vm_phys_init().
618  */
619 void
620 vm_phys_register_domains(int ndomains, struct mem_affinity *affinity,
621     int *locality)
622 {
623 #ifdef NUMA
624         int d, i;
625
626         /*
627          * For now the only override value that we support is 1, which
628          * effectively disables NUMA-awareness in the allocators.
629          */
630         d = 0;
631         TUNABLE_INT_FETCH("vm.numa.disabled", &d);
632         if (d)
633                 ndomains = 1;
634
635         if (ndomains > 1) {
636                 vm_ndomains = ndomains;
637                 mem_affinity = affinity;
638                 mem_locality = locality;
639         }
640
641         for (i = 0; i < vm_ndomains; i++)
642                 DOMAINSET_SET(i, &all_domains);
643 #else
644         (void)ndomains;
645         (void)affinity;
646         (void)locality;
647 #endif
648 }
649
650 /*
651  * Split a contiguous, power of two-sized set of physical pages.
652  *
653  * When this function is called by a page allocation function, the caller
654  * should request insertion at the head unless the order [order, oind) queues
655  * are known to be empty.  The objective being to reduce the likelihood of
656  * long-term fragmentation by promoting contemporaneous allocation and
657  * (hopefully) deallocation.
658  */
659 static __inline void
660 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order,
661     int tail)
662 {
663         vm_page_t m_buddy;
664
665         while (oind > order) {
666                 oind--;
667                 m_buddy = &m[1 << oind];
668                 KASSERT(m_buddy->order == VM_NFREEORDER,
669                     ("vm_phys_split_pages: page %p has unexpected order %d",
670                     m_buddy, m_buddy->order));
671                 vm_freelist_add(fl, m_buddy, oind, tail);
672         }
673 }
674
675 /*
676  * Add the physical pages [m, m + npages) at the end of a power-of-two aligned
677  * and sized set to the specified free list.
678  *
679  * When this function is called by a page allocation function, the caller
680  * should request insertion at the head unless the lower-order queues are
681  * known to be empty.  The objective being to reduce the likelihood of long-
682  * term fragmentation by promoting contemporaneous allocation and (hopefully)
683  * deallocation.
684  *
685  * The physical page m's buddy must not be free.
686  */
687 static void
688 vm_phys_enq_range(vm_page_t m, u_int npages, struct vm_freelist *fl, int tail)
689 {
690         u_int n;
691         int order;
692
693         KASSERT(npages > 0, ("vm_phys_enq_range: npages is 0"));
694         KASSERT(((VM_PAGE_TO_PHYS(m) + npages * PAGE_SIZE) &
695             ((PAGE_SIZE << (fls(npages) - 1)) - 1)) == 0,
696             ("vm_phys_enq_range: page %p and npages %u are misaligned",
697             m, npages));
698         do {
699                 KASSERT(m->order == VM_NFREEORDER,
700                     ("vm_phys_enq_range: page %p has unexpected order %d",
701                     m, m->order));
702                 order = ffs(npages) - 1;
703                 KASSERT(order < VM_NFREEORDER,
704                     ("vm_phys_enq_range: order %d is out of range", order));
705                 vm_freelist_add(fl, m, order, tail);
706                 n = 1 << order;
707                 m += n;
708                 npages -= n;
709         } while (npages > 0);
710 }
711
712 /*
713  * Set the pool for a contiguous, power of two-sized set of physical pages. 
714  */
715 static void
716 vm_phys_set_pool(int pool, vm_page_t m, int order)
717 {
718         vm_page_t m_tmp;
719
720         for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
721                 m_tmp->pool = pool;
722 }
723
724 /*
725  * Tries to allocate the specified number of pages from the specified pool
726  * within the specified domain.  Returns the actual number of allocated pages
727  * and a pointer to each page through the array ma[].
728  *
729  * The returned pages may not be physically contiguous.  However, in contrast
730  * to performing multiple, back-to-back calls to vm_phys_alloc_pages(..., 0),
731  * calling this function once to allocate the desired number of pages will
732  * avoid wasted time in vm_phys_split_pages().
733  *
734  * The free page queues for the specified domain must be locked.
735  */
736 int
737 vm_phys_alloc_npages(int domain, int pool, int npages, vm_page_t ma[])
738 {
739         struct vm_freelist *alt, *fl;
740         vm_page_t m;
741         int avail, end, flind, freelist, i, need, oind, pind;
742
743         KASSERT(domain >= 0 && domain < vm_ndomains,
744             ("vm_phys_alloc_npages: domain %d is out of range", domain));
745         KASSERT(pool < VM_NFREEPOOL,
746             ("vm_phys_alloc_npages: pool %d is out of range", pool));
747         KASSERT(npages <= 1 << (VM_NFREEORDER - 1),
748             ("vm_phys_alloc_npages: npages %d is out of range", npages));
749         vm_domain_free_assert_locked(VM_DOMAIN(domain));
750         i = 0;
751         for (freelist = 0; freelist < VM_NFREELIST; freelist++) {
752                 flind = vm_freelist_to_flind[freelist];
753                 if (flind < 0)
754                         continue;
755                 fl = vm_phys_free_queues[domain][flind][pool];
756                 for (oind = 0; oind < VM_NFREEORDER; oind++) {
757                         while ((m = TAILQ_FIRST(&fl[oind].pl)) != NULL) {
758                                 vm_freelist_rem(fl, m, oind);
759                                 avail = 1 << oind;
760                                 need = imin(npages - i, avail);
761                                 for (end = i + need; i < end;)
762                                         ma[i++] = m++;
763                                 if (need < avail) {
764                                         /*
765                                          * Return excess pages to fl.  Its
766                                          * order [0, oind) queues are empty.
767                                          */
768                                         vm_phys_enq_range(m, avail - need, fl,
769                                             1);
770                                         return (npages);
771                                 } else if (i == npages)
772                                         return (npages);
773                         }
774                 }
775                 for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
776                         for (pind = 0; pind < VM_NFREEPOOL; pind++) {
777                                 alt = vm_phys_free_queues[domain][flind][pind];
778                                 while ((m = TAILQ_FIRST(&alt[oind].pl)) !=
779                                     NULL) {
780                                         vm_freelist_rem(alt, m, oind);
781                                         vm_phys_set_pool(pool, m, oind);
782                                         avail = 1 << oind;
783                                         need = imin(npages - i, avail);
784                                         for (end = i + need; i < end;)
785                                                 ma[i++] = m++;
786                                         if (need < avail) {
787                                                 /*
788                                                  * Return excess pages to fl.
789                                                  * Its order [0, oind) queues
790                                                  * are empty.
791                                                  */
792                                                 vm_phys_enq_range(m, avail -
793                                                     need, fl, 1);
794                                                 return (npages);
795                                         } else if (i == npages)
796                                                 return (npages);
797                                 }
798                         }
799                 }
800         }
801         return (i);
802 }
803
804 /*
805  * Allocate a contiguous, power of two-sized set of physical pages
806  * from the free lists.
807  *
808  * The free page queues must be locked.
809  */
810 vm_page_t
811 vm_phys_alloc_pages(int domain, int pool, int order)
812 {
813         vm_page_t m;
814         int freelist;
815
816         for (freelist = 0; freelist < VM_NFREELIST; freelist++) {
817                 m = vm_phys_alloc_freelist_pages(domain, freelist, pool, order);
818                 if (m != NULL)
819                         return (m);
820         }
821         return (NULL);
822 }
823
824 /*
825  * Allocate a contiguous, power of two-sized set of physical pages from the
826  * specified free list.  The free list must be specified using one of the
827  * manifest constants VM_FREELIST_*.
828  *
829  * The free page queues must be locked.
830  */
831 vm_page_t
832 vm_phys_alloc_freelist_pages(int domain, int freelist, int pool, int order)
833 {
834         struct vm_freelist *alt, *fl;
835         vm_page_t m;
836         int oind, pind, flind;
837
838         KASSERT(domain >= 0 && domain < vm_ndomains,
839             ("vm_phys_alloc_freelist_pages: domain %d is out of range",
840             domain));
841         KASSERT(freelist < VM_NFREELIST,
842             ("vm_phys_alloc_freelist_pages: freelist %d is out of range",
843             freelist));
844         KASSERT(pool < VM_NFREEPOOL,
845             ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool));
846         KASSERT(order < VM_NFREEORDER,
847             ("vm_phys_alloc_freelist_pages: order %d is out of range", order));
848
849         flind = vm_freelist_to_flind[freelist];
850         /* Check if freelist is present */
851         if (flind < 0)
852                 return (NULL);
853
854         vm_domain_free_assert_locked(VM_DOMAIN(domain));
855         fl = &vm_phys_free_queues[domain][flind][pool][0];
856         for (oind = order; oind < VM_NFREEORDER; oind++) {
857                 m = TAILQ_FIRST(&fl[oind].pl);
858                 if (m != NULL) {
859                         vm_freelist_rem(fl, m, oind);
860                         /* The order [order, oind) queues are empty. */
861                         vm_phys_split_pages(m, oind, fl, order, 1);
862                         return (m);
863                 }
864         }
865
866         /*
867          * The given pool was empty.  Find the largest
868          * contiguous, power-of-two-sized set of pages in any
869          * pool.  Transfer these pages to the given pool, and
870          * use them to satisfy the allocation.
871          */
872         for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
873                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
874                         alt = &vm_phys_free_queues[domain][flind][pind][0];
875                         m = TAILQ_FIRST(&alt[oind].pl);
876                         if (m != NULL) {
877                                 vm_freelist_rem(alt, m, oind);
878                                 vm_phys_set_pool(pool, m, oind);
879                                 /* The order [order, oind) queues are empty. */
880                                 vm_phys_split_pages(m, oind, fl, order, 1);
881                                 return (m);
882                         }
883                 }
884         }
885         return (NULL);
886 }
887
888 /*
889  * Find the vm_page corresponding to the given physical address.
890  */
891 vm_page_t
892 vm_phys_paddr_to_vm_page(vm_paddr_t pa)
893 {
894         struct vm_phys_seg *seg;
895         int segind;
896
897         for (segind = 0; segind < vm_phys_nsegs; segind++) {
898                 seg = &vm_phys_segs[segind];
899                 if (pa >= seg->start && pa < seg->end)
900                         return (&seg->first_page[atop(pa - seg->start)]);
901         }
902         return (NULL);
903 }
904
905 vm_page_t
906 vm_phys_fictitious_to_vm_page(vm_paddr_t pa)
907 {
908         struct vm_phys_fictitious_seg tmp, *seg;
909         vm_page_t m;
910
911         m = NULL;
912         tmp.start = pa;
913         tmp.end = 0;
914
915         rw_rlock(&vm_phys_fictitious_reg_lock);
916         seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
917         rw_runlock(&vm_phys_fictitious_reg_lock);
918         if (seg == NULL)
919                 return (NULL);
920
921         m = &seg->first_page[atop(pa - seg->start)];
922         KASSERT((m->flags & PG_FICTITIOUS) != 0, ("%p not fictitious", m));
923
924         return (m);
925 }
926
927 static inline void
928 vm_phys_fictitious_init_range(vm_page_t range, vm_paddr_t start,
929     long page_count, vm_memattr_t memattr)
930 {
931         long i;
932
933         bzero(range, page_count * sizeof(*range));
934         for (i = 0; i < page_count; i++) {
935                 vm_page_initfake(&range[i], start + PAGE_SIZE * i, memattr);
936                 range[i].oflags &= ~VPO_UNMANAGED;
937                 range[i].busy_lock = VPB_UNBUSIED;
938         }
939 }
940
941 int
942 vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end,
943     vm_memattr_t memattr)
944 {
945         struct vm_phys_fictitious_seg *seg;
946         vm_page_t fp;
947         long page_count;
948 #ifdef VM_PHYSSEG_DENSE
949         long pi, pe;
950         long dpage_count;
951 #endif
952
953         KASSERT(start < end,
954             ("Start of segment isn't less than end (start: %jx end: %jx)",
955             (uintmax_t)start, (uintmax_t)end));
956
957         page_count = (end - start) / PAGE_SIZE;
958
959 #ifdef VM_PHYSSEG_DENSE
960         pi = atop(start);
961         pe = atop(end);
962         if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
963                 fp = &vm_page_array[pi - first_page];
964                 if ((pe - first_page) > vm_page_array_size) {
965                         /*
966                          * We have a segment that starts inside
967                          * of vm_page_array, but ends outside of it.
968                          *
969                          * Use vm_page_array pages for those that are
970                          * inside of the vm_page_array range, and
971                          * allocate the remaining ones.
972                          */
973                         dpage_count = vm_page_array_size - (pi - first_page);
974                         vm_phys_fictitious_init_range(fp, start, dpage_count,
975                             memattr);
976                         page_count -= dpage_count;
977                         start += ptoa(dpage_count);
978                         goto alloc;
979                 }
980                 /*
981                  * We can allocate the full range from vm_page_array,
982                  * so there's no need to register the range in the tree.
983                  */
984                 vm_phys_fictitious_init_range(fp, start, page_count, memattr);
985                 return (0);
986         } else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
987                 /*
988                  * We have a segment that ends inside of vm_page_array,
989                  * but starts outside of it.
990                  */
991                 fp = &vm_page_array[0];
992                 dpage_count = pe - first_page;
993                 vm_phys_fictitious_init_range(fp, ptoa(first_page), dpage_count,
994                     memattr);
995                 end -= ptoa(dpage_count);
996                 page_count -= dpage_count;
997                 goto alloc;
998         } else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
999                 /*
1000                  * Trying to register a fictitious range that expands before
1001                  * and after vm_page_array.
1002                  */
1003                 return (EINVAL);
1004         } else {
1005 alloc:
1006 #endif
1007                 fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES,
1008                     M_WAITOK);
1009 #ifdef VM_PHYSSEG_DENSE
1010         }
1011 #endif
1012         vm_phys_fictitious_init_range(fp, start, page_count, memattr);
1013
1014         seg = malloc(sizeof(*seg), M_FICT_PAGES, M_WAITOK | M_ZERO);
1015         seg->start = start;
1016         seg->end = end;
1017         seg->first_page = fp;
1018
1019         rw_wlock(&vm_phys_fictitious_reg_lock);
1020         RB_INSERT(fict_tree, &vm_phys_fictitious_tree, seg);
1021         rw_wunlock(&vm_phys_fictitious_reg_lock);
1022
1023         return (0);
1024 }
1025
1026 void
1027 vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end)
1028 {
1029         struct vm_phys_fictitious_seg *seg, tmp;
1030 #ifdef VM_PHYSSEG_DENSE
1031         long pi, pe;
1032 #endif
1033
1034         KASSERT(start < end,
1035             ("Start of segment isn't less than end (start: %jx end: %jx)",
1036             (uintmax_t)start, (uintmax_t)end));
1037
1038 #ifdef VM_PHYSSEG_DENSE
1039         pi = atop(start);
1040         pe = atop(end);
1041         if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
1042                 if ((pe - first_page) <= vm_page_array_size) {
1043                         /*
1044                          * This segment was allocated using vm_page_array
1045                          * only, there's nothing to do since those pages
1046                          * were never added to the tree.
1047                          */
1048                         return;
1049                 }
1050                 /*
1051                  * We have a segment that starts inside
1052                  * of vm_page_array, but ends outside of it.
1053                  *
1054                  * Calculate how many pages were added to the
1055                  * tree and free them.
1056                  */
1057                 start = ptoa(first_page + vm_page_array_size);
1058         } else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
1059                 /*
1060                  * We have a segment that ends inside of vm_page_array,
1061                  * but starts outside of it.
1062                  */
1063                 end = ptoa(first_page);
1064         } else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
1065                 /* Since it's not possible to register such a range, panic. */
1066                 panic(
1067                     "Unregistering not registered fictitious range [%#jx:%#jx]",
1068                     (uintmax_t)start, (uintmax_t)end);
1069         }
1070 #endif
1071         tmp.start = start;
1072         tmp.end = 0;
1073
1074         rw_wlock(&vm_phys_fictitious_reg_lock);
1075         seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
1076         if (seg->start != start || seg->end != end) {
1077                 rw_wunlock(&vm_phys_fictitious_reg_lock);
1078                 panic(
1079                     "Unregistering not registered fictitious range [%#jx:%#jx]",
1080                     (uintmax_t)start, (uintmax_t)end);
1081         }
1082         RB_REMOVE(fict_tree, &vm_phys_fictitious_tree, seg);
1083         rw_wunlock(&vm_phys_fictitious_reg_lock);
1084         free(seg->first_page, M_FICT_PAGES);
1085         free(seg, M_FICT_PAGES);
1086 }
1087
1088 /*
1089  * Free a contiguous, power of two-sized set of physical pages.
1090  *
1091  * The free page queues must be locked.
1092  */
1093 void
1094 vm_phys_free_pages(vm_page_t m, int order)
1095 {
1096         struct vm_freelist *fl;
1097         struct vm_phys_seg *seg;
1098         vm_paddr_t pa;
1099         vm_page_t m_buddy;
1100
1101         KASSERT(m->order == VM_NFREEORDER,
1102             ("vm_phys_free_pages: page %p has unexpected order %d",
1103             m, m->order));
1104         KASSERT(m->pool < VM_NFREEPOOL,
1105             ("vm_phys_free_pages: page %p has unexpected pool %d",
1106             m, m->pool));
1107         KASSERT(order < VM_NFREEORDER,
1108             ("vm_phys_free_pages: order %d is out of range", order));
1109         seg = &vm_phys_segs[m->segind];
1110         vm_domain_free_assert_locked(VM_DOMAIN(seg->domain));
1111         if (order < VM_NFREEORDER - 1) {
1112                 pa = VM_PAGE_TO_PHYS(m);
1113                 do {
1114                         pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order));
1115                         if (pa < seg->start || pa >= seg->end)
1116                                 break;
1117                         m_buddy = &seg->first_page[atop(pa - seg->start)];
1118                         if (m_buddy->order != order)
1119                                 break;
1120                         fl = (*seg->free_queues)[m_buddy->pool];
1121                         vm_freelist_rem(fl, m_buddy, order);
1122                         if (m_buddy->pool != m->pool)
1123                                 vm_phys_set_pool(m->pool, m_buddy, order);
1124                         order++;
1125                         pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1);
1126                         m = &seg->first_page[atop(pa - seg->start)];
1127                 } while (order < VM_NFREEORDER - 1);
1128         }
1129         fl = (*seg->free_queues)[m->pool];
1130         vm_freelist_add(fl, m, order, 1);
1131 }
1132
1133 /*
1134  * Return the largest possible order of a set of pages starting at m.
1135  */
1136 static int
1137 max_order(vm_page_t m)
1138 {
1139
1140         /*
1141          * Unsigned "min" is used here so that "order" is assigned
1142          * "VM_NFREEORDER - 1" when "m"'s physical address is zero
1143          * or the low-order bits of its physical address are zero
1144          * because the size of a physical address exceeds the size of
1145          * a long.
1146          */
1147         return (min(ffsl(VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) - 1,
1148             VM_NFREEORDER - 1));
1149 }
1150
1151 /*
1152  * Free a contiguous, arbitrarily sized set of physical pages, without
1153  * merging across set boundaries.
1154  *
1155  * The free page queues must be locked.
1156  */
1157 void
1158 vm_phys_enqueue_contig(vm_page_t m, u_long npages)
1159 {
1160         struct vm_freelist *fl;
1161         struct vm_phys_seg *seg;
1162         vm_page_t m_end;
1163         int order;
1164
1165         /*
1166          * Avoid unnecessary coalescing by freeing the pages in the largest
1167          * possible power-of-two-sized subsets.
1168          */
1169         vm_domain_free_assert_locked(vm_pagequeue_domain(m));
1170         seg = &vm_phys_segs[m->segind];
1171         fl = (*seg->free_queues)[m->pool];
1172         m_end = m + npages;
1173         /* Free blocks of increasing size. */
1174         while ((order = max_order(m)) < VM_NFREEORDER - 1 &&
1175             m + (1 << order) <= m_end) {
1176                 KASSERT(seg == &vm_phys_segs[m->segind],
1177                     ("%s: page range [%p,%p) spans multiple segments",
1178                     __func__, m_end - npages, m));
1179                 vm_freelist_add(fl, m, order, 1);
1180                 m += 1 << order;
1181         }
1182         /* Free blocks of maximum size. */
1183         while (m + (1 << order) <= m_end) {
1184                 KASSERT(seg == &vm_phys_segs[m->segind],
1185                     ("%s: page range [%p,%p) spans multiple segments",
1186                     __func__, m_end - npages, m));
1187                 vm_freelist_add(fl, m, order, 1);
1188                 m += 1 << order;
1189         }
1190         /* Free blocks of diminishing size. */
1191         while (m < m_end) {
1192                 KASSERT(seg == &vm_phys_segs[m->segind],
1193                     ("%s: page range [%p,%p) spans multiple segments",
1194                     __func__, m_end - npages, m));
1195                 order = flsl(m_end - m) - 1;
1196                 vm_freelist_add(fl, m, order, 1);
1197                 m += 1 << order;
1198         }
1199 }
1200
1201 /*
1202  * Free a contiguous, arbitrarily sized set of physical pages.
1203  *
1204  * The free page queues must be locked.
1205  */
1206 void
1207 vm_phys_free_contig(vm_page_t m, u_long npages)
1208 {
1209         int order_start, order_end;
1210         vm_page_t m_start, m_end;
1211
1212         vm_domain_free_assert_locked(vm_pagequeue_domain(m));
1213
1214         m_start = m;
1215         order_start = max_order(m_start);
1216         if (order_start < VM_NFREEORDER - 1)
1217                 m_start += 1 << order_start;
1218         m_end = m + npages;
1219         order_end = max_order(m_end);
1220         if (order_end < VM_NFREEORDER - 1)
1221                 m_end -= 1 << order_end;
1222         /*
1223          * Avoid unnecessary coalescing by freeing the pages at the start and
1224          * end of the range last.
1225          */
1226         if (m_start < m_end)
1227                 vm_phys_enqueue_contig(m_start, m_end - m_start);
1228         if (order_start < VM_NFREEORDER - 1)
1229                 vm_phys_free_pages(m, order_start);
1230         if (order_end < VM_NFREEORDER - 1)
1231                 vm_phys_free_pages(m_end, order_end);
1232 }
1233
1234 /*
1235  * Scan physical memory between the specified addresses "low" and "high" for a
1236  * run of contiguous physical pages that satisfy the specified conditions, and
1237  * return the lowest page in the run.  The specified "alignment" determines
1238  * the alignment of the lowest physical page in the run.  If the specified
1239  * "boundary" is non-zero, then the run of physical pages cannot span a
1240  * physical address that is a multiple of "boundary".
1241  *
1242  * "npages" must be greater than zero.  Both "alignment" and "boundary" must
1243  * be a power of two.
1244  */
1245 vm_page_t
1246 vm_phys_scan_contig(int domain, u_long npages, vm_paddr_t low, vm_paddr_t high,
1247     u_long alignment, vm_paddr_t boundary, int options)
1248 {
1249         vm_paddr_t pa_end;
1250         vm_page_t m_end, m_run, m_start;
1251         struct vm_phys_seg *seg;
1252         int segind;
1253
1254         KASSERT(npages > 0, ("npages is 0"));
1255         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1256         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1257         if (low >= high)
1258                 return (NULL);
1259         for (segind = 0; segind < vm_phys_nsegs; segind++) {
1260                 seg = &vm_phys_segs[segind];
1261                 if (seg->domain != domain)
1262                         continue;
1263                 if (seg->start >= high)
1264                         break;
1265                 if (low >= seg->end)
1266                         continue;
1267                 if (low <= seg->start)
1268                         m_start = seg->first_page;
1269                 else
1270                         m_start = &seg->first_page[atop(low - seg->start)];
1271                 if (high < seg->end)
1272                         pa_end = high;
1273                 else
1274                         pa_end = seg->end;
1275                 if (pa_end - VM_PAGE_TO_PHYS(m_start) < ptoa(npages))
1276                         continue;
1277                 m_end = &seg->first_page[atop(pa_end - seg->start)];
1278                 m_run = vm_page_scan_contig(npages, m_start, m_end,
1279                     alignment, boundary, options);
1280                 if (m_run != NULL)
1281                         return (m_run);
1282         }
1283         return (NULL);
1284 }
1285
1286 /*
1287  * Search for the given physical page "m" in the free lists.  If the search
1288  * succeeds, remove "m" from the free lists and return TRUE.  Otherwise, return
1289  * FALSE, indicating that "m" is not in the free lists.
1290  *
1291  * The free page queues must be locked.
1292  */
1293 boolean_t
1294 vm_phys_unfree_page(vm_page_t m)
1295 {
1296         struct vm_freelist *fl;
1297         struct vm_phys_seg *seg;
1298         vm_paddr_t pa, pa_half;
1299         vm_page_t m_set, m_tmp;
1300         int order;
1301
1302         /*
1303          * First, find the contiguous, power of two-sized set of free
1304          * physical pages containing the given physical page "m" and
1305          * assign it to "m_set".
1306          */
1307         seg = &vm_phys_segs[m->segind];
1308         vm_domain_free_assert_locked(VM_DOMAIN(seg->domain));
1309         for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
1310             order < VM_NFREEORDER - 1; ) {
1311                 order++;
1312                 pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
1313                 if (pa >= seg->start)
1314                         m_set = &seg->first_page[atop(pa - seg->start)];
1315                 else
1316                         return (FALSE);
1317         }
1318         if (m_set->order < order)
1319                 return (FALSE);
1320         if (m_set->order == VM_NFREEORDER)
1321                 return (FALSE);
1322         KASSERT(m_set->order < VM_NFREEORDER,
1323             ("vm_phys_unfree_page: page %p has unexpected order %d",
1324             m_set, m_set->order));
1325
1326         /*
1327          * Next, remove "m_set" from the free lists.  Finally, extract
1328          * "m" from "m_set" using an iterative algorithm: While "m_set"
1329          * is larger than a page, shrink "m_set" by returning the half
1330          * of "m_set" that does not contain "m" to the free lists.
1331          */
1332         fl = (*seg->free_queues)[m_set->pool];
1333         order = m_set->order;
1334         vm_freelist_rem(fl, m_set, order);
1335         while (order > 0) {
1336                 order--;
1337                 pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
1338                 if (m->phys_addr < pa_half)
1339                         m_tmp = &seg->first_page[atop(pa_half - seg->start)];
1340                 else {
1341                         m_tmp = m_set;
1342                         m_set = &seg->first_page[atop(pa_half - seg->start)];
1343                 }
1344                 vm_freelist_add(fl, m_tmp, order, 0);
1345         }
1346         KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
1347         return (TRUE);
1348 }
1349
1350 /*
1351  * Allocate a run of contiguous physical pages from the specified free list
1352  * table.
1353  */
1354 static vm_page_t
1355 vm_phys_alloc_queues_contig(
1356     struct vm_freelist (*queues)[VM_NFREEPOOL][VM_NFREEORDER_MAX],
1357     u_long npages, vm_paddr_t low, vm_paddr_t high,
1358     u_long alignment, vm_paddr_t boundary)
1359 {
1360         struct vm_phys_seg *seg;
1361         struct vm_freelist *fl;
1362         vm_paddr_t pa, pa_end, size;
1363         vm_page_t m, m_ret;
1364         u_long npages_end;
1365         int oind, order, pind;
1366
1367         KASSERT(npages > 0, ("npages is 0"));
1368         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1369         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1370         /* Compute the queue that is the best fit for npages. */
1371         order = flsl(npages - 1);
1372         /* Search for a run satisfying the specified conditions. */
1373         size = npages << PAGE_SHIFT;
1374         for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER;
1375             oind++) {
1376                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1377                         fl = (*queues)[pind];
1378                         TAILQ_FOREACH(m_ret, &fl[oind].pl, listq) {
1379                                 /*
1380                                  * Determine if the address range starting at pa
1381                                  * is within the given range, satisfies the
1382                                  * given alignment, and does not cross the given
1383                                  * boundary.
1384                                  */
1385                                 pa = VM_PAGE_TO_PHYS(m_ret);
1386                                 pa_end = pa + size;
1387                                 if (pa < low || pa_end > high ||
1388                                     !vm_addr_ok(pa, size, alignment, boundary))
1389                                         continue;
1390
1391                                 /*
1392                                  * Is the size of this allocation request
1393                                  * no more than the largest block size?
1394                                  */
1395                                 if (order < VM_NFREEORDER)
1396                                         goto done;
1397
1398                                 /*
1399                                  * Determine if the address range is valid
1400                                  * (without overflow in pa_end calculation)
1401                                  * and fits within the segment.
1402                                  */
1403                                 seg = &vm_phys_segs[m_ret->segind];
1404                                 if (pa_end < pa || seg->end < pa_end)
1405                                         continue;
1406
1407                                 /*
1408                                  * Determine if a series of free oind-blocks
1409                                  * starting here can satisfy the allocation
1410                                  * request.
1411                                  */
1412                                 do {
1413                                         pa += 1 <<
1414                                             (PAGE_SHIFT + VM_NFREEORDER - 1);
1415                                         if (pa >= pa_end)
1416                                                 goto done;
1417                                 } while (VM_NFREEORDER - 1 == seg->first_page[
1418                                     atop(pa - seg->start)].order);
1419
1420                                 /*
1421                                  * Determine if an additional series of free
1422                                  * blocks of diminishing size can help to
1423                                  * satisfy the allocation request.
1424                                  */
1425                                 for (;;) {
1426                                         m = &seg->first_page[
1427                                             atop(pa - seg->start)];
1428                                         if (m->order == VM_NFREEORDER ||
1429                                             pa + (2 << (PAGE_SHIFT + m->order))
1430                                             <= pa_end)
1431                                                 break;
1432                                         pa += 1 << (PAGE_SHIFT + m->order);
1433                                         if (pa >= pa_end)
1434                                                 goto done;
1435                                 }
1436                         }
1437                 }
1438         }
1439         return (NULL);
1440 done:
1441         for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) {
1442                 fl = (*queues)[m->pool];
1443                 oind = m->order;
1444                 vm_freelist_rem(fl, m, oind);
1445                 if (m->pool != VM_FREEPOOL_DEFAULT)
1446                         vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, oind);
1447         }
1448         /* Return excess pages to the free lists. */
1449         npages_end = roundup2(npages, 1 << oind);
1450         if (npages < npages_end) {
1451                 fl = (*queues)[VM_FREEPOOL_DEFAULT];
1452                 vm_phys_enq_range(&m_ret[npages], npages_end - npages, fl, 0);
1453         }
1454         return (m_ret);
1455 }
1456
1457 /*
1458  * Allocate a contiguous set of physical pages of the given size
1459  * "npages" from the free lists.  All of the physical pages must be at
1460  * or above the given physical address "low" and below the given
1461  * physical address "high".  The given value "alignment" determines the
1462  * alignment of the first physical page in the set.  If the given value
1463  * "boundary" is non-zero, then the set of physical pages cannot cross
1464  * any physical address boundary that is a multiple of that value.  Both
1465  * "alignment" and "boundary" must be a power of two.
1466  */
1467 vm_page_t
1468 vm_phys_alloc_contig(int domain, u_long npages, vm_paddr_t low, vm_paddr_t high,
1469     u_long alignment, vm_paddr_t boundary)
1470 {
1471         vm_paddr_t pa_end, pa_start;
1472         vm_page_t m_run;
1473         struct vm_phys_seg *seg;
1474         struct vm_freelist (*queues)[VM_NFREEPOOL][VM_NFREEORDER_MAX];
1475         int segind;
1476
1477         KASSERT(npages > 0, ("npages is 0"));
1478         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1479         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1480         vm_domain_free_assert_locked(VM_DOMAIN(domain));
1481         if (low >= high)
1482                 return (NULL);
1483         queues = NULL;
1484         m_run = NULL;
1485         for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
1486                 seg = &vm_phys_segs[segind];
1487                 if (seg->start >= high || seg->domain != domain)
1488                         continue;
1489                 if (low >= seg->end)
1490                         break;
1491                 if (low <= seg->start)
1492                         pa_start = seg->start;
1493                 else
1494                         pa_start = low;
1495                 if (high < seg->end)
1496                         pa_end = high;
1497                 else
1498                         pa_end = seg->end;
1499                 if (pa_end - pa_start < ptoa(npages))
1500                         continue;
1501                 /*
1502                  * If a previous segment led to a search using
1503                  * the same free lists as would this segment, then
1504                  * we've actually already searched within this
1505                  * too.  So skip it.
1506                  */
1507                 if (seg->free_queues == queues)
1508                         continue;
1509                 queues = seg->free_queues;
1510                 m_run = vm_phys_alloc_queues_contig(queues, npages,
1511                     low, high, alignment, boundary);
1512                 if (m_run != NULL)
1513                         break;
1514         }
1515         return (m_run);
1516 }
1517
1518 /*
1519  * Return the index of the first unused slot which may be the terminating
1520  * entry.
1521  */
1522 static int
1523 vm_phys_avail_count(void)
1524 {
1525         int i;
1526
1527         for (i = 0; phys_avail[i + 1]; i += 2)
1528                 continue;
1529         if (i > PHYS_AVAIL_ENTRIES)
1530                 panic("Improperly terminated phys_avail %d entries", i);
1531
1532         return (i);
1533 }
1534
1535 /*
1536  * Assert that a phys_avail entry is valid.
1537  */
1538 static void
1539 vm_phys_avail_check(int i)
1540 {
1541         if (phys_avail[i] & PAGE_MASK)
1542                 panic("Unaligned phys_avail[%d]: %#jx", i,
1543                     (intmax_t)phys_avail[i]);
1544         if (phys_avail[i+1] & PAGE_MASK)
1545                 panic("Unaligned phys_avail[%d + 1]: %#jx", i,
1546                     (intmax_t)phys_avail[i]);
1547         if (phys_avail[i + 1] < phys_avail[i])
1548                 panic("phys_avail[%d] start %#jx < end %#jx", i,
1549                     (intmax_t)phys_avail[i], (intmax_t)phys_avail[i+1]);
1550 }
1551
1552 /*
1553  * Return the index of an overlapping phys_avail entry or -1.
1554  */
1555 #ifdef NUMA
1556 static int
1557 vm_phys_avail_find(vm_paddr_t pa)
1558 {
1559         int i;
1560
1561         for (i = 0; phys_avail[i + 1]; i += 2)
1562                 if (phys_avail[i] <= pa && phys_avail[i + 1] > pa)
1563                         return (i);
1564         return (-1);
1565 }
1566 #endif
1567
1568 /*
1569  * Return the index of the largest entry.
1570  */
1571 int
1572 vm_phys_avail_largest(void)
1573 {
1574         vm_paddr_t sz, largesz;
1575         int largest;
1576         int i;
1577
1578         largest = 0;
1579         largesz = 0;
1580         for (i = 0; phys_avail[i + 1]; i += 2) {
1581                 sz = vm_phys_avail_size(i);
1582                 if (sz > largesz) {
1583                         largesz = sz;
1584                         largest = i;
1585                 }
1586         }
1587
1588         return (largest);
1589 }
1590
1591 vm_paddr_t
1592 vm_phys_avail_size(int i)
1593 {
1594
1595         return (phys_avail[i + 1] - phys_avail[i]);
1596 }
1597
1598 /*
1599  * Split an entry at the address 'pa'.  Return zero on success or errno.
1600  */
1601 static int
1602 vm_phys_avail_split(vm_paddr_t pa, int i)
1603 {
1604         int cnt;
1605
1606         vm_phys_avail_check(i);
1607         if (pa <= phys_avail[i] || pa >= phys_avail[i + 1])
1608                 panic("vm_phys_avail_split: invalid address");
1609         cnt = vm_phys_avail_count();
1610         if (cnt >= PHYS_AVAIL_ENTRIES)
1611                 return (ENOSPC);
1612         memmove(&phys_avail[i + 2], &phys_avail[i],
1613             (cnt - i) * sizeof(phys_avail[0]));
1614         phys_avail[i + 1] = pa;
1615         phys_avail[i + 2] = pa;
1616         vm_phys_avail_check(i);
1617         vm_phys_avail_check(i+2);
1618
1619         return (0);
1620 }
1621
1622 /*
1623  * Check if a given physical address can be included as part of a crash dump.
1624  */
1625 bool
1626 vm_phys_is_dumpable(vm_paddr_t pa)
1627 {
1628         vm_page_t m;
1629         int i;
1630
1631         if ((m = vm_phys_paddr_to_vm_page(pa)) != NULL)
1632                 return ((m->flags & PG_NODUMP) == 0);
1633
1634         for (i = 0; dump_avail[i] != 0 || dump_avail[i + 1] != 0; i += 2) {
1635                 if (pa >= dump_avail[i] && pa < dump_avail[i + 1])
1636                         return (true);
1637         }
1638         return (false);
1639 }
1640
1641 void
1642 vm_phys_early_add_seg(vm_paddr_t start, vm_paddr_t end)
1643 {
1644         struct vm_phys_seg *seg;
1645
1646         if (vm_phys_early_nsegs == -1)
1647                 panic("%s: called after initialization", __func__);
1648         if (vm_phys_early_nsegs == nitems(vm_phys_early_segs))
1649                 panic("%s: ran out of early segments", __func__);
1650
1651         seg = &vm_phys_early_segs[vm_phys_early_nsegs++];
1652         seg->start = start;
1653         seg->end = end;
1654 }
1655
1656 /*
1657  * This routine allocates NUMA node specific memory before the page
1658  * allocator is bootstrapped.
1659  */
1660 vm_paddr_t
1661 vm_phys_early_alloc(int domain, size_t alloc_size)
1662 {
1663 #ifdef NUMA
1664         int mem_index;
1665 #endif
1666         int i, biggestone;
1667         vm_paddr_t pa, mem_start, mem_end, size, biggestsize, align;
1668
1669         KASSERT(domain == -1 || (domain >= 0 && domain < vm_ndomains),
1670             ("%s: invalid domain index %d", __func__, domain));
1671
1672         /*
1673          * Search the mem_affinity array for the biggest address
1674          * range in the desired domain.  This is used to constrain
1675          * the phys_avail selection below.
1676          */
1677         biggestsize = 0;
1678         mem_start = 0;
1679         mem_end = -1;
1680 #ifdef NUMA
1681         mem_index = 0;
1682         if (mem_affinity != NULL) {
1683                 for (i = 0;; i++) {
1684                         size = mem_affinity[i].end - mem_affinity[i].start;
1685                         if (size == 0)
1686                                 break;
1687                         if (domain != -1 && mem_affinity[i].domain != domain)
1688                                 continue;
1689                         if (size > biggestsize) {
1690                                 mem_index = i;
1691                                 biggestsize = size;
1692                         }
1693                 }
1694                 mem_start = mem_affinity[mem_index].start;
1695                 mem_end = mem_affinity[mem_index].end;
1696         }
1697 #endif
1698
1699         /*
1700          * Now find biggest physical segment in within the desired
1701          * numa domain.
1702          */
1703         biggestsize = 0;
1704         biggestone = 0;
1705         for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1706                 /* skip regions that are out of range */
1707                 if (phys_avail[i+1] - alloc_size < mem_start ||
1708                     phys_avail[i+1] > mem_end)
1709                         continue;
1710                 size = vm_phys_avail_size(i);
1711                 if (size > biggestsize) {
1712                         biggestone = i;
1713                         biggestsize = size;
1714                 }
1715         }
1716         alloc_size = round_page(alloc_size);
1717
1718         /*
1719          * Grab single pages from the front to reduce fragmentation.
1720          */
1721         if (alloc_size == PAGE_SIZE) {
1722                 pa = phys_avail[biggestone];
1723                 phys_avail[biggestone] += PAGE_SIZE;
1724                 vm_phys_avail_check(biggestone);
1725                 return (pa);
1726         }
1727
1728         /*
1729          * Naturally align large allocations.
1730          */
1731         align = phys_avail[biggestone + 1] & (alloc_size - 1);
1732         if (alloc_size + align > biggestsize)
1733                 panic("cannot find a large enough size\n");
1734         if (align != 0 &&
1735             vm_phys_avail_split(phys_avail[biggestone + 1] - align,
1736             biggestone) != 0)
1737                 /* Wasting memory. */
1738                 phys_avail[biggestone + 1] -= align;
1739
1740         phys_avail[biggestone + 1] -= alloc_size;
1741         vm_phys_avail_check(biggestone);
1742         pa = phys_avail[biggestone + 1];
1743         return (pa);
1744 }
1745
1746 void
1747 vm_phys_early_startup(void)
1748 {
1749         struct vm_phys_seg *seg;
1750         int i;
1751
1752         for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1753                 phys_avail[i] = round_page(phys_avail[i]);
1754                 phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
1755         }
1756
1757         for (i = 0; i < vm_phys_early_nsegs; i++) {
1758                 seg = &vm_phys_early_segs[i];
1759                 vm_phys_add_seg(seg->start, seg->end);
1760         }
1761         vm_phys_early_nsegs = -1;
1762
1763 #ifdef NUMA
1764         /* Force phys_avail to be split by domain. */
1765         if (mem_affinity != NULL) {
1766                 int idx;
1767
1768                 for (i = 0; mem_affinity[i].end != 0; i++) {
1769                         idx = vm_phys_avail_find(mem_affinity[i].start);
1770                         if (idx != -1 &&
1771                             phys_avail[idx] != mem_affinity[i].start)
1772                                 vm_phys_avail_split(mem_affinity[i].start, idx);
1773                         idx = vm_phys_avail_find(mem_affinity[i].end);
1774                         if (idx != -1 &&
1775                             phys_avail[idx] != mem_affinity[i].end)
1776                                 vm_phys_avail_split(mem_affinity[i].end, idx);
1777                 }
1778         }
1779 #endif
1780 }
1781
1782 #ifdef DDB
1783 /*
1784  * Show the number of physical pages in each of the free lists.
1785  */
1786 DB_SHOW_COMMAND(freepages, db_show_freepages)
1787 {
1788         struct vm_freelist *fl;
1789         int flind, oind, pind, dom;
1790
1791         for (dom = 0; dom < vm_ndomains; dom++) {
1792                 db_printf("DOMAIN: %d\n", dom);
1793                 for (flind = 0; flind < vm_nfreelists; flind++) {
1794                         db_printf("FREE LIST %d:\n"
1795                             "\n  ORDER (SIZE)  |  NUMBER"
1796                             "\n              ", flind);
1797                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
1798                                 db_printf("  |  POOL %d", pind);
1799                         db_printf("\n--            ");
1800                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
1801                                 db_printf("-- --      ");
1802                         db_printf("--\n");
1803                         for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
1804                                 db_printf("  %2.2d (%6.6dK)", oind,
1805                                     1 << (PAGE_SHIFT - 10 + oind));
1806                                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1807                                 fl = vm_phys_free_queues[dom][flind][pind];
1808                                         db_printf("  |  %6.6d", fl[oind].lcnt);
1809                                 }
1810                                 db_printf("\n");
1811                         }
1812                         db_printf("\n");
1813                 }
1814                 db_printf("\n");
1815         }
1816 }
1817 #endif