]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_phys.c
Update mandoc to 1.13.1
[FreeBSD/FreeBSD.git] / sys / vm / vm_phys.c
1 /*-
2  * Copyright (c) 2002-2006 Rice University
3  * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
4  * All rights reserved.
5  *
6  * This software was developed for the FreeBSD Project by Alan L. Cox,
7  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
22  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
28  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31
32 /*
33  *      Physical memory system implementation
34  *
35  * Any external functions defined by this module are only to be used by the
36  * virtual memory system.
37  */
38
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41
42 #include "opt_ddb.h"
43 #include "opt_vm.h"
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/lock.h>
48 #include <sys/kernel.h>
49 #include <sys/malloc.h>
50 #include <sys/mutex.h>
51 #if MAXMEMDOM > 1
52 #include <sys/proc.h>
53 #endif
54 #include <sys/queue.h>
55 #include <sys/rwlock.h>
56 #include <sys/sbuf.h>
57 #include <sys/sysctl.h>
58 #include <sys/tree.h>
59 #include <sys/vmmeter.h>
60
61 #include <ddb/ddb.h>
62
63 #include <vm/vm.h>
64 #include <vm/vm_param.h>
65 #include <vm/vm_kern.h>
66 #include <vm/vm_object.h>
67 #include <vm/vm_page.h>
68 #include <vm/vm_phys.h>
69
70 _Static_assert(sizeof(long) * NBBY >= VM_PHYSSEG_MAX,
71     "Too many physsegs.");
72
73 struct mem_affinity *mem_affinity;
74
75 int vm_ndomains = 1;
76
77 struct vm_phys_seg vm_phys_segs[VM_PHYSSEG_MAX];
78 int vm_phys_nsegs;
79
80 struct vm_phys_fictitious_seg;
81 static int vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *,
82     struct vm_phys_fictitious_seg *);
83
84 RB_HEAD(fict_tree, vm_phys_fictitious_seg) vm_phys_fictitious_tree =
85     RB_INITIALIZER(_vm_phys_fictitious_tree);
86
87 struct vm_phys_fictitious_seg {
88         RB_ENTRY(vm_phys_fictitious_seg) node;
89         /* Memory region data */
90         vm_paddr_t      start;
91         vm_paddr_t      end;
92         vm_page_t       first_page;
93 };
94
95 RB_GENERATE_STATIC(fict_tree, vm_phys_fictitious_seg, node,
96     vm_phys_fictitious_cmp);
97
98 static struct rwlock vm_phys_fictitious_reg_lock;
99 MALLOC_DEFINE(M_FICT_PAGES, "vm_fictitious", "Fictitious VM pages");
100
101 static struct vm_freelist
102     vm_phys_free_queues[MAXMEMDOM][VM_NFREELIST][VM_NFREEPOOL][VM_NFREEORDER];
103
104 static int vm_nfreelists = VM_FREELIST_DEFAULT + 1;
105
106 static int cnt_prezero;
107 SYSCTL_INT(_vm_stats_misc, OID_AUTO, cnt_prezero, CTLFLAG_RD,
108     &cnt_prezero, 0, "The number of physical pages prezeroed at idle time");
109
110 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
111 SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD,
112     NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info");
113
114 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
115 SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD,
116     NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info");
117
118 SYSCTL_INT(_vm, OID_AUTO, ndomains, CTLFLAG_RD,
119     &vm_ndomains, 0, "Number of physical memory domains available.");
120
121 static vm_page_t vm_phys_alloc_domain_pages(int domain, int flind, int pool,
122     int order);
123 static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind,
124     int domain);
125 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind);
126 static int vm_phys_paddr_to_segind(vm_paddr_t pa);
127 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
128     int order);
129
130 /*
131  * Red-black tree helpers for vm fictitious range management.
132  */
133 static inline int
134 vm_phys_fictitious_in_range(struct vm_phys_fictitious_seg *p,
135     struct vm_phys_fictitious_seg *range)
136 {
137
138         KASSERT(range->start != 0 && range->end != 0,
139             ("Invalid range passed on search for vm_fictitious page"));
140         if (p->start >= range->end)
141                 return (1);
142         if (p->start < range->start)
143                 return (-1);
144
145         return (0);
146 }
147
148 static int
149 vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *p1,
150     struct vm_phys_fictitious_seg *p2)
151 {
152
153         /* Check if this is a search for a page */
154         if (p1->end == 0)
155                 return (vm_phys_fictitious_in_range(p1, p2));
156
157         KASSERT(p2->end != 0,
158     ("Invalid range passed as second parameter to vm fictitious comparison"));
159
160         /* Searching to add a new range */
161         if (p1->end <= p2->start)
162                 return (-1);
163         if (p1->start >= p2->end)
164                 return (1);
165
166         panic("Trying to add overlapping vm fictitious ranges:\n"
167             "[%#jx:%#jx] and [%#jx:%#jx]", (uintmax_t)p1->start,
168             (uintmax_t)p1->end, (uintmax_t)p2->start, (uintmax_t)p2->end);
169 }
170
171 static __inline int
172 vm_rr_selectdomain(void)
173 {
174 #if MAXMEMDOM > 1
175         struct thread *td;
176
177         td = curthread;
178
179         td->td_dom_rr_idx++;
180         td->td_dom_rr_idx %= vm_ndomains;
181         return (td->td_dom_rr_idx);
182 #else
183         return (0);
184 #endif
185 }
186
187 boolean_t
188 vm_phys_domain_intersects(long mask, vm_paddr_t low, vm_paddr_t high)
189 {
190         struct vm_phys_seg *s;
191         int idx;
192
193         while ((idx = ffsl(mask)) != 0) {
194                 idx--;  /* ffsl counts from 1 */
195                 mask &= ~(1UL << idx);
196                 s = &vm_phys_segs[idx];
197                 if (low < s->end && high > s->start)
198                         return (TRUE);
199         }
200         return (FALSE);
201 }
202
203 /*
204  * Outputs the state of the physical memory allocator, specifically,
205  * the amount of physical memory in each free list.
206  */
207 static int
208 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
209 {
210         struct sbuf sbuf;
211         struct vm_freelist *fl;
212         int dom, error, flind, oind, pind;
213
214         error = sysctl_wire_old_buffer(req, 0);
215         if (error != 0)
216                 return (error);
217         sbuf_new_for_sysctl(&sbuf, NULL, 128 * vm_ndomains, req);
218         for (dom = 0; dom < vm_ndomains; dom++) {
219                 sbuf_printf(&sbuf,"\nDOMAIN %d:\n", dom);
220                 for (flind = 0; flind < vm_nfreelists; flind++) {
221                         sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
222                             "\n  ORDER (SIZE)  |  NUMBER"
223                             "\n              ", flind);
224                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
225                                 sbuf_printf(&sbuf, "  |  POOL %d", pind);
226                         sbuf_printf(&sbuf, "\n--            ");
227                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
228                                 sbuf_printf(&sbuf, "-- --      ");
229                         sbuf_printf(&sbuf, "--\n");
230                         for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
231                                 sbuf_printf(&sbuf, "  %2d (%6dK)", oind,
232                                     1 << (PAGE_SHIFT - 10 + oind));
233                                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
234                                 fl = vm_phys_free_queues[dom][flind][pind];
235                                         sbuf_printf(&sbuf, "  |  %6d",
236                                             fl[oind].lcnt);
237                                 }
238                                 sbuf_printf(&sbuf, "\n");
239                         }
240                 }
241         }
242         error = sbuf_finish(&sbuf);
243         sbuf_delete(&sbuf);
244         return (error);
245 }
246
247 /*
248  * Outputs the set of physical memory segments.
249  */
250 static int
251 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
252 {
253         struct sbuf sbuf;
254         struct vm_phys_seg *seg;
255         int error, segind;
256
257         error = sysctl_wire_old_buffer(req, 0);
258         if (error != 0)
259                 return (error);
260         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
261         for (segind = 0; segind < vm_phys_nsegs; segind++) {
262                 sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
263                 seg = &vm_phys_segs[segind];
264                 sbuf_printf(&sbuf, "start:     %#jx\n",
265                     (uintmax_t)seg->start);
266                 sbuf_printf(&sbuf, "end:       %#jx\n",
267                     (uintmax_t)seg->end);
268                 sbuf_printf(&sbuf, "domain:    %d\n", seg->domain);
269                 sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
270         }
271         error = sbuf_finish(&sbuf);
272         sbuf_delete(&sbuf);
273         return (error);
274 }
275
276 static void
277 vm_freelist_add(struct vm_freelist *fl, vm_page_t m, int order, int tail)
278 {
279
280         m->order = order;
281         if (tail)
282                 TAILQ_INSERT_TAIL(&fl[order].pl, m, plinks.q);
283         else
284                 TAILQ_INSERT_HEAD(&fl[order].pl, m, plinks.q);
285         fl[order].lcnt++;
286 }
287
288 static void
289 vm_freelist_rem(struct vm_freelist *fl, vm_page_t m, int order)
290 {
291
292         TAILQ_REMOVE(&fl[order].pl, m, plinks.q);
293         fl[order].lcnt--;
294         m->order = VM_NFREEORDER;
295 }
296
297 /*
298  * Create a physical memory segment.
299  */
300 static void
301 _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind, int domain)
302 {
303         struct vm_phys_seg *seg;
304
305         KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
306             ("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
307         KASSERT(domain < vm_ndomains,
308             ("vm_phys_create_seg: invalid domain provided"));
309         seg = &vm_phys_segs[vm_phys_nsegs++];
310         while (seg > vm_phys_segs && (seg - 1)->start >= end) {
311                 *seg = *(seg - 1);
312                 seg--;
313         }
314         seg->start = start;
315         seg->end = end;
316         seg->domain = domain;
317         seg->free_queues = &vm_phys_free_queues[domain][flind];
318 }
319
320 static void
321 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind)
322 {
323         int i;
324
325         if (mem_affinity == NULL) {
326                 _vm_phys_create_seg(start, end, flind, 0);
327                 return;
328         }
329
330         for (i = 0;; i++) {
331                 if (mem_affinity[i].end == 0)
332                         panic("Reached end of affinity info");
333                 if (mem_affinity[i].end <= start)
334                         continue;
335                 if (mem_affinity[i].start > start)
336                         panic("No affinity info for start %jx",
337                             (uintmax_t)start);
338                 if (mem_affinity[i].end >= end) {
339                         _vm_phys_create_seg(start, end, flind,
340                             mem_affinity[i].domain);
341                         break;
342                 }
343                 _vm_phys_create_seg(start, mem_affinity[i].end, flind,
344                     mem_affinity[i].domain);
345                 start = mem_affinity[i].end;
346         }
347 }
348
349 /*
350  * Add a physical memory segment.
351  */
352 void
353 vm_phys_add_seg(vm_paddr_t start, vm_paddr_t end)
354 {
355
356         KASSERT((start & PAGE_MASK) == 0,
357             ("vm_phys_define_seg: start is not page aligned"));
358         KASSERT((end & PAGE_MASK) == 0,
359             ("vm_phys_define_seg: end is not page aligned"));
360 #ifdef  VM_FREELIST_ISADMA
361         if (start < 16777216) {
362                 if (end > 16777216) {
363                         vm_phys_create_seg(start, 16777216,
364                             VM_FREELIST_ISADMA);
365                         vm_phys_create_seg(16777216, end, VM_FREELIST_DEFAULT);
366                 } else
367                         vm_phys_create_seg(start, end, VM_FREELIST_ISADMA);
368                 if (VM_FREELIST_ISADMA >= vm_nfreelists)
369                         vm_nfreelists = VM_FREELIST_ISADMA + 1;
370         } else
371 #endif
372 #ifdef  VM_FREELIST_HIGHMEM
373         if (end > VM_HIGHMEM_ADDRESS) {
374                 if (start < VM_HIGHMEM_ADDRESS) {
375                         vm_phys_create_seg(start, VM_HIGHMEM_ADDRESS,
376                             VM_FREELIST_DEFAULT);
377                         vm_phys_create_seg(VM_HIGHMEM_ADDRESS, end,
378                             VM_FREELIST_HIGHMEM);
379                 } else
380                         vm_phys_create_seg(start, end, VM_FREELIST_HIGHMEM);
381                 if (VM_FREELIST_HIGHMEM >= vm_nfreelists)
382                         vm_nfreelists = VM_FREELIST_HIGHMEM + 1;
383         } else
384 #endif
385         vm_phys_create_seg(start, end, VM_FREELIST_DEFAULT);
386 }
387
388 /*
389  * Initialize the physical memory allocator.
390  */
391 void
392 vm_phys_init(void)
393 {
394         struct vm_freelist *fl;
395         struct vm_phys_seg *seg;
396 #ifdef VM_PHYSSEG_SPARSE
397         long pages;
398 #endif
399         int dom, flind, oind, pind, segind;
400
401 #ifdef VM_PHYSSEG_SPARSE
402         pages = 0;
403 #endif
404         for (segind = 0; segind < vm_phys_nsegs; segind++) {
405                 seg = &vm_phys_segs[segind];
406 #ifdef VM_PHYSSEG_SPARSE
407                 seg->first_page = &vm_page_array[pages];
408                 pages += atop(seg->end - seg->start);
409 #else
410                 seg->first_page = PHYS_TO_VM_PAGE(seg->start);
411 #endif
412         }
413         for (dom = 0; dom < vm_ndomains; dom++) {
414                 for (flind = 0; flind < vm_nfreelists; flind++) {
415                         for (pind = 0; pind < VM_NFREEPOOL; pind++) {
416                                 fl = vm_phys_free_queues[dom][flind][pind];
417                                 for (oind = 0; oind < VM_NFREEORDER; oind++)
418                                         TAILQ_INIT(&fl[oind].pl);
419                         }
420                 }
421         }
422         rw_init(&vm_phys_fictitious_reg_lock, "vmfctr");
423 }
424
425 /*
426  * Split a contiguous, power of two-sized set of physical pages.
427  */
428 static __inline void
429 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order)
430 {
431         vm_page_t m_buddy;
432
433         while (oind > order) {
434                 oind--;
435                 m_buddy = &m[1 << oind];
436                 KASSERT(m_buddy->order == VM_NFREEORDER,
437                     ("vm_phys_split_pages: page %p has unexpected order %d",
438                     m_buddy, m_buddy->order));
439                 vm_freelist_add(fl, m_buddy, oind, 0);
440         }
441 }
442
443 /*
444  * Initialize a physical page and add it to the free lists.
445  */
446 void
447 vm_phys_add_page(vm_paddr_t pa)
448 {
449         vm_page_t m;
450         struct vm_domain *vmd;
451
452         vm_cnt.v_page_count++;
453         m = vm_phys_paddr_to_vm_page(pa);
454         m->phys_addr = pa;
455         m->queue = PQ_NONE;
456         m->segind = vm_phys_paddr_to_segind(pa);
457         vmd = vm_phys_domain(m);
458         vmd->vmd_page_count++;
459         vmd->vmd_segs |= 1UL << m->segind;
460         KASSERT(m->order == VM_NFREEORDER,
461             ("vm_phys_add_page: page %p has unexpected order %d",
462             m, m->order));
463         m->pool = VM_FREEPOOL_DEFAULT;
464         pmap_page_init(m);
465         mtx_lock(&vm_page_queue_free_mtx);
466         vm_phys_freecnt_adj(m, 1);
467         vm_phys_free_pages(m, 0);
468         mtx_unlock(&vm_page_queue_free_mtx);
469 }
470
471 /*
472  * Allocate a contiguous, power of two-sized set of physical pages
473  * from the free lists.
474  *
475  * The free page queues must be locked.
476  */
477 vm_page_t
478 vm_phys_alloc_pages(int pool, int order)
479 {
480         vm_page_t m;
481         int dom, domain, flind;
482
483         KASSERT(pool < VM_NFREEPOOL,
484             ("vm_phys_alloc_pages: pool %d is out of range", pool));
485         KASSERT(order < VM_NFREEORDER,
486             ("vm_phys_alloc_pages: order %d is out of range", order));
487
488         for (dom = 0; dom < vm_ndomains; dom++) {
489                 domain = vm_rr_selectdomain();
490                 for (flind = 0; flind < vm_nfreelists; flind++) {
491                         m = vm_phys_alloc_domain_pages(domain, flind, pool,
492                             order);
493                         if (m != NULL)
494                                 return (m);
495                 }
496         }
497         return (NULL);
498 }
499
500 /*
501  * Find and dequeue a free page on the given free list, with the 
502  * specified pool and order
503  */
504 vm_page_t
505 vm_phys_alloc_freelist_pages(int flind, int pool, int order)
506 {
507         vm_page_t m;
508         int dom, domain;
509
510         KASSERT(flind < VM_NFREELIST,
511             ("vm_phys_alloc_freelist_pages: freelist %d is out of range", flind));
512         KASSERT(pool < VM_NFREEPOOL,
513             ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool));
514         KASSERT(order < VM_NFREEORDER,
515             ("vm_phys_alloc_freelist_pages: order %d is out of range", order));
516
517         for (dom = 0; dom < vm_ndomains; dom++) {
518                 domain = vm_rr_selectdomain();
519                 m = vm_phys_alloc_domain_pages(domain, flind, pool, order);
520                 if (m != NULL)
521                         return (m);
522         }
523         return (NULL);
524 }
525
526 static vm_page_t
527 vm_phys_alloc_domain_pages(int domain, int flind, int pool, int order)
528 {       
529         struct vm_freelist *fl;
530         struct vm_freelist *alt;
531         int oind, pind;
532         vm_page_t m;
533
534         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
535         fl = &vm_phys_free_queues[domain][flind][pool][0];
536         for (oind = order; oind < VM_NFREEORDER; oind++) {
537                 m = TAILQ_FIRST(&fl[oind].pl);
538                 if (m != NULL) {
539                         vm_freelist_rem(fl, m, oind);
540                         vm_phys_split_pages(m, oind, fl, order);
541                         return (m);
542                 }
543         }
544
545         /*
546          * The given pool was empty.  Find the largest
547          * contiguous, power-of-two-sized set of pages in any
548          * pool.  Transfer these pages to the given pool, and
549          * use them to satisfy the allocation.
550          */
551         for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
552                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
553                         alt = &vm_phys_free_queues[domain][flind][pind][0];
554                         m = TAILQ_FIRST(&alt[oind].pl);
555                         if (m != NULL) {
556                                 vm_freelist_rem(alt, m, oind);
557                                 vm_phys_set_pool(pool, m, oind);
558                                 vm_phys_split_pages(m, oind, fl, order);
559                                 return (m);
560                         }
561                 }
562         }
563         return (NULL);
564 }
565
566 /*
567  * Find the vm_page corresponding to the given physical address.
568  */
569 vm_page_t
570 vm_phys_paddr_to_vm_page(vm_paddr_t pa)
571 {
572         struct vm_phys_seg *seg;
573         int segind;
574
575         for (segind = 0; segind < vm_phys_nsegs; segind++) {
576                 seg = &vm_phys_segs[segind];
577                 if (pa >= seg->start && pa < seg->end)
578                         return (&seg->first_page[atop(pa - seg->start)]);
579         }
580         return (NULL);
581 }
582
583 vm_page_t
584 vm_phys_fictitious_to_vm_page(vm_paddr_t pa)
585 {
586         struct vm_phys_fictitious_seg tmp, *seg;
587         vm_page_t m;
588
589         m = NULL;
590         tmp.start = pa;
591         tmp.end = 0;
592
593         rw_rlock(&vm_phys_fictitious_reg_lock);
594         seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
595         rw_runlock(&vm_phys_fictitious_reg_lock);
596         if (seg == NULL)
597                 return (NULL);
598
599         m = &seg->first_page[atop(pa - seg->start)];
600         KASSERT((m->flags & PG_FICTITIOUS) != 0, ("%p not fictitious", m));
601
602         return (m);
603 }
604
605 static inline void
606 vm_phys_fictitious_init_range(vm_page_t range, vm_paddr_t start,
607     long page_count, vm_memattr_t memattr)
608 {
609         long i;
610
611         for (i = 0; i < page_count; i++) {
612                 vm_page_initfake(&range[i], start + PAGE_SIZE * i, memattr);
613                 range[i].oflags &= ~VPO_UNMANAGED;
614                 range[i].busy_lock = VPB_UNBUSIED;
615         }
616 }
617
618 int
619 vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end,
620     vm_memattr_t memattr)
621 {
622         struct vm_phys_fictitious_seg *seg;
623         vm_page_t fp;
624         long page_count;
625 #ifdef VM_PHYSSEG_DENSE
626         long pi, pe;
627         long dpage_count;
628 #endif
629
630         KASSERT(start < end,
631             ("Start of segment isn't less than end (start: %jx end: %jx)",
632             (uintmax_t)start, (uintmax_t)end));
633
634         page_count = (end - start) / PAGE_SIZE;
635
636 #ifdef VM_PHYSSEG_DENSE
637         pi = atop(start);
638         pe = atop(end);
639         if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
640                 fp = &vm_page_array[pi - first_page];
641                 if ((pe - first_page) > vm_page_array_size) {
642                         /*
643                          * We have a segment that starts inside
644                          * of vm_page_array, but ends outside of it.
645                          *
646                          * Use vm_page_array pages for those that are
647                          * inside of the vm_page_array range, and
648                          * allocate the remaining ones.
649                          */
650                         dpage_count = vm_page_array_size - (pi - first_page);
651                         vm_phys_fictitious_init_range(fp, start, dpage_count,
652                             memattr);
653                         page_count -= dpage_count;
654                         start += ptoa(dpage_count);
655                         goto alloc;
656                 }
657                 /*
658                  * We can allocate the full range from vm_page_array,
659                  * so there's no need to register the range in the tree.
660                  */
661                 vm_phys_fictitious_init_range(fp, start, page_count, memattr);
662                 return (0);
663         } else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
664                 /*
665                  * We have a segment that ends inside of vm_page_array,
666                  * but starts outside of it.
667                  */
668                 fp = &vm_page_array[0];
669                 dpage_count = pe - first_page;
670                 vm_phys_fictitious_init_range(fp, ptoa(first_page), dpage_count,
671                     memattr);
672                 end -= ptoa(dpage_count);
673                 page_count -= dpage_count;
674                 goto alloc;
675         } else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
676                 /*
677                  * Trying to register a fictitious range that expands before
678                  * and after vm_page_array.
679                  */
680                 return (EINVAL);
681         } else {
682 alloc:
683 #endif
684                 fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES,
685                     M_WAITOK | M_ZERO);
686 #ifdef VM_PHYSSEG_DENSE
687         }
688 #endif
689         vm_phys_fictitious_init_range(fp, start, page_count, memattr);
690
691         seg = malloc(sizeof(*seg), M_FICT_PAGES, M_WAITOK | M_ZERO);
692         seg->start = start;
693         seg->end = end;
694         seg->first_page = fp;
695
696         rw_wlock(&vm_phys_fictitious_reg_lock);
697         RB_INSERT(fict_tree, &vm_phys_fictitious_tree, seg);
698         rw_wunlock(&vm_phys_fictitious_reg_lock);
699
700         return (0);
701 }
702
703 void
704 vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end)
705 {
706         struct vm_phys_fictitious_seg *seg, tmp;
707 #ifdef VM_PHYSSEG_DENSE
708         long pi, pe;
709 #endif
710
711         KASSERT(start < end,
712             ("Start of segment isn't less than end (start: %jx end: %jx)",
713             (uintmax_t)start, (uintmax_t)end));
714
715 #ifdef VM_PHYSSEG_DENSE
716         pi = atop(start);
717         pe = atop(end);
718         if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
719                 if ((pe - first_page) <= vm_page_array_size) {
720                         /*
721                          * This segment was allocated using vm_page_array
722                          * only, there's nothing to do since those pages
723                          * were never added to the tree.
724                          */
725                         return;
726                 }
727                 /*
728                  * We have a segment that starts inside
729                  * of vm_page_array, but ends outside of it.
730                  *
731                  * Calculate how many pages were added to the
732                  * tree and free them.
733                  */
734                 start = ptoa(first_page + vm_page_array_size);
735         } else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
736                 /*
737                  * We have a segment that ends inside of vm_page_array,
738                  * but starts outside of it.
739                  */
740                 end = ptoa(first_page);
741         } else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
742                 /* Since it's not possible to register such a range, panic. */
743                 panic(
744                     "Unregistering not registered fictitious range [%#jx:%#jx]",
745                     (uintmax_t)start, (uintmax_t)end);
746         }
747 #endif
748         tmp.start = start;
749         tmp.end = 0;
750
751         rw_wlock(&vm_phys_fictitious_reg_lock);
752         seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
753         if (seg->start != start || seg->end != end) {
754                 rw_wunlock(&vm_phys_fictitious_reg_lock);
755                 panic(
756                     "Unregistering not registered fictitious range [%#jx:%#jx]",
757                     (uintmax_t)start, (uintmax_t)end);
758         }
759         RB_REMOVE(fict_tree, &vm_phys_fictitious_tree, seg);
760         rw_wunlock(&vm_phys_fictitious_reg_lock);
761         free(seg->first_page, M_FICT_PAGES);
762         free(seg, M_FICT_PAGES);
763 }
764
765 /*
766  * Find the segment containing the given physical address.
767  */
768 static int
769 vm_phys_paddr_to_segind(vm_paddr_t pa)
770 {
771         struct vm_phys_seg *seg;
772         int segind;
773
774         for (segind = 0; segind < vm_phys_nsegs; segind++) {
775                 seg = &vm_phys_segs[segind];
776                 if (pa >= seg->start && pa < seg->end)
777                         return (segind);
778         }
779         panic("vm_phys_paddr_to_segind: paddr %#jx is not in any segment" ,
780             (uintmax_t)pa);
781 }
782
783 /*
784  * Free a contiguous, power of two-sized set of physical pages.
785  *
786  * The free page queues must be locked.
787  */
788 void
789 vm_phys_free_pages(vm_page_t m, int order)
790 {
791         struct vm_freelist *fl;
792         struct vm_phys_seg *seg;
793         vm_paddr_t pa;
794         vm_page_t m_buddy;
795
796         KASSERT(m->order == VM_NFREEORDER,
797             ("vm_phys_free_pages: page %p has unexpected order %d",
798             m, m->order));
799         KASSERT(m->pool < VM_NFREEPOOL,
800             ("vm_phys_free_pages: page %p has unexpected pool %d",
801             m, m->pool));
802         KASSERT(order < VM_NFREEORDER,
803             ("vm_phys_free_pages: order %d is out of range", order));
804         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
805         seg = &vm_phys_segs[m->segind];
806         if (order < VM_NFREEORDER - 1) {
807                 pa = VM_PAGE_TO_PHYS(m);
808                 do {
809                         pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order));
810                         if (pa < seg->start || pa >= seg->end)
811                                 break;
812                         m_buddy = &seg->first_page[atop(pa - seg->start)];
813                         if (m_buddy->order != order)
814                                 break;
815                         fl = (*seg->free_queues)[m_buddy->pool];
816                         vm_freelist_rem(fl, m_buddy, order);
817                         if (m_buddy->pool != m->pool)
818                                 vm_phys_set_pool(m->pool, m_buddy, order);
819                         order++;
820                         pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1);
821                         m = &seg->first_page[atop(pa - seg->start)];
822                 } while (order < VM_NFREEORDER - 1);
823         }
824         fl = (*seg->free_queues)[m->pool];
825         vm_freelist_add(fl, m, order, 1);
826 }
827
828 /*
829  * Free a contiguous, arbitrarily sized set of physical pages.
830  *
831  * The free page queues must be locked.
832  */
833 void
834 vm_phys_free_contig(vm_page_t m, u_long npages)
835 {
836         u_int n;
837         int order;
838
839         /*
840          * Avoid unnecessary coalescing by freeing the pages in the largest
841          * possible power-of-two-sized subsets.
842          */
843         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
844         for (;; npages -= n) {
845                 /*
846                  * Unsigned "min" is used here so that "order" is assigned
847                  * "VM_NFREEORDER - 1" when "m"'s physical address is zero
848                  * or the low-order bits of its physical address are zero
849                  * because the size of a physical address exceeds the size of
850                  * a long.
851                  */
852                 order = min(ffsl(VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) - 1,
853                     VM_NFREEORDER - 1);
854                 n = 1 << order;
855                 if (npages < n)
856                         break;
857                 vm_phys_free_pages(m, order);
858                 m += n;
859         }
860         /* The residual "npages" is less than "1 << (VM_NFREEORDER - 1)". */
861         for (; npages > 0; npages -= n) {
862                 order = flsl(npages) - 1;
863                 n = 1 << order;
864                 vm_phys_free_pages(m, order);
865                 m += n;
866         }
867 }
868
869 /*
870  * Set the pool for a contiguous, power of two-sized set of physical pages. 
871  */
872 void
873 vm_phys_set_pool(int pool, vm_page_t m, int order)
874 {
875         vm_page_t m_tmp;
876
877         for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
878                 m_tmp->pool = pool;
879 }
880
881 /*
882  * Search for the given physical page "m" in the free lists.  If the search
883  * succeeds, remove "m" from the free lists and return TRUE.  Otherwise, return
884  * FALSE, indicating that "m" is not in the free lists.
885  *
886  * The free page queues must be locked.
887  */
888 boolean_t
889 vm_phys_unfree_page(vm_page_t m)
890 {
891         struct vm_freelist *fl;
892         struct vm_phys_seg *seg;
893         vm_paddr_t pa, pa_half;
894         vm_page_t m_set, m_tmp;
895         int order;
896
897         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
898
899         /*
900          * First, find the contiguous, power of two-sized set of free
901          * physical pages containing the given physical page "m" and
902          * assign it to "m_set".
903          */
904         seg = &vm_phys_segs[m->segind];
905         for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
906             order < VM_NFREEORDER - 1; ) {
907                 order++;
908                 pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
909                 if (pa >= seg->start)
910                         m_set = &seg->first_page[atop(pa - seg->start)];
911                 else
912                         return (FALSE);
913         }
914         if (m_set->order < order)
915                 return (FALSE);
916         if (m_set->order == VM_NFREEORDER)
917                 return (FALSE);
918         KASSERT(m_set->order < VM_NFREEORDER,
919             ("vm_phys_unfree_page: page %p has unexpected order %d",
920             m_set, m_set->order));
921
922         /*
923          * Next, remove "m_set" from the free lists.  Finally, extract
924          * "m" from "m_set" using an iterative algorithm: While "m_set"
925          * is larger than a page, shrink "m_set" by returning the half
926          * of "m_set" that does not contain "m" to the free lists.
927          */
928         fl = (*seg->free_queues)[m_set->pool];
929         order = m_set->order;
930         vm_freelist_rem(fl, m_set, order);
931         while (order > 0) {
932                 order--;
933                 pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
934                 if (m->phys_addr < pa_half)
935                         m_tmp = &seg->first_page[atop(pa_half - seg->start)];
936                 else {
937                         m_tmp = m_set;
938                         m_set = &seg->first_page[atop(pa_half - seg->start)];
939                 }
940                 vm_freelist_add(fl, m_tmp, order, 0);
941         }
942         KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
943         return (TRUE);
944 }
945
946 /*
947  * Try to zero one physical page.  Used by an idle priority thread.
948  */
949 boolean_t
950 vm_phys_zero_pages_idle(void)
951 {
952         static struct vm_freelist *fl;
953         static int flind, oind, pind;
954         vm_page_t m, m_tmp;
955         int domain;
956
957         domain = vm_rr_selectdomain();
958         fl = vm_phys_free_queues[domain][0][0];
959         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
960         for (;;) {
961                 TAILQ_FOREACH_REVERSE(m, &fl[oind].pl, pglist, plinks.q) {
962                         for (m_tmp = m; m_tmp < &m[1 << oind]; m_tmp++) {
963                                 if ((m_tmp->flags & (PG_CACHED | PG_ZERO)) == 0) {
964                                         vm_phys_unfree_page(m_tmp);
965                                         vm_phys_freecnt_adj(m, -1);
966                                         mtx_unlock(&vm_page_queue_free_mtx);
967                                         pmap_zero_page_idle(m_tmp);
968                                         m_tmp->flags |= PG_ZERO;
969                                         mtx_lock(&vm_page_queue_free_mtx);
970                                         vm_phys_freecnt_adj(m, 1);
971                                         vm_phys_free_pages(m_tmp, 0);
972                                         vm_page_zero_count++;
973                                         cnt_prezero++;
974                                         return (TRUE);
975                                 }
976                         }
977                 }
978                 oind++;
979                 if (oind == VM_NFREEORDER) {
980                         oind = 0;
981                         pind++;
982                         if (pind == VM_NFREEPOOL) {
983                                 pind = 0;
984                                 flind++;
985                                 if (flind == vm_nfreelists)
986                                         flind = 0;
987                         }
988                         fl = vm_phys_free_queues[domain][flind][pind];
989                 }
990         }
991 }
992
993 /*
994  * Allocate a contiguous set of physical pages of the given size
995  * "npages" from the free lists.  All of the physical pages must be at
996  * or above the given physical address "low" and below the given
997  * physical address "high".  The given value "alignment" determines the
998  * alignment of the first physical page in the set.  If the given value
999  * "boundary" is non-zero, then the set of physical pages cannot cross
1000  * any physical address boundary that is a multiple of that value.  Both
1001  * "alignment" and "boundary" must be a power of two.
1002  */
1003 vm_page_t
1004 vm_phys_alloc_contig(u_long npages, vm_paddr_t low, vm_paddr_t high,
1005     u_long alignment, vm_paddr_t boundary)
1006 {
1007         struct vm_freelist *fl;
1008         struct vm_phys_seg *seg;
1009         vm_paddr_t pa, pa_last, size;
1010         vm_page_t m, m_ret;
1011         u_long npages_end;
1012         int dom, domain, flind, oind, order, pind;
1013
1014         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1015         size = npages << PAGE_SHIFT;
1016         KASSERT(size != 0,
1017             ("vm_phys_alloc_contig: size must not be 0"));
1018         KASSERT((alignment & (alignment - 1)) == 0,
1019             ("vm_phys_alloc_contig: alignment must be a power of 2"));
1020         KASSERT((boundary & (boundary - 1)) == 0,
1021             ("vm_phys_alloc_contig: boundary must be a power of 2"));
1022         /* Compute the queue that is the best fit for npages. */
1023         for (order = 0; (1 << order) < npages; order++);
1024         dom = 0;
1025 restartdom:
1026         domain = vm_rr_selectdomain();
1027         for (flind = 0; flind < vm_nfreelists; flind++) {
1028                 for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER; oind++) {
1029                         for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1030                                 fl = &vm_phys_free_queues[domain][flind][pind][0];
1031                                 TAILQ_FOREACH(m_ret, &fl[oind].pl, plinks.q) {
1032                                         /*
1033                                          * A free list may contain physical pages
1034                                          * from one or more segments.
1035                                          */
1036                                         seg = &vm_phys_segs[m_ret->segind];
1037                                         if (seg->start > high ||
1038                                             low >= seg->end)
1039                                                 continue;
1040
1041                                         /*
1042                                          * Is the size of this allocation request
1043                                          * larger than the largest block size?
1044                                          */
1045                                         if (order >= VM_NFREEORDER) {
1046                                                 /*
1047                                                  * Determine if a sufficient number
1048                                                  * of subsequent blocks to satisfy
1049                                                  * the allocation request are free.
1050                                                  */
1051                                                 pa = VM_PAGE_TO_PHYS(m_ret);
1052                                                 pa_last = pa + size;
1053                                                 for (;;) {
1054                                                         pa += 1 << (PAGE_SHIFT + VM_NFREEORDER - 1);
1055                                                         if (pa >= pa_last)
1056                                                                 break;
1057                                                         if (pa < seg->start ||
1058                                                             pa >= seg->end)
1059                                                                 break;
1060                                                         m = &seg->first_page[atop(pa - seg->start)];
1061                                                         if (m->order != VM_NFREEORDER - 1)
1062                                                                 break;
1063                                                 }
1064                                                 /* If not, continue to the next block. */
1065                                                 if (pa < pa_last)
1066                                                         continue;
1067                                         }
1068
1069                                         /*
1070                                          * Determine if the blocks are within the given range,
1071                                          * satisfy the given alignment, and do not cross the
1072                                          * given boundary.
1073                                          */
1074                                         pa = VM_PAGE_TO_PHYS(m_ret);
1075                                         if (pa >= low &&
1076                                             pa + size <= high &&
1077                                             (pa & (alignment - 1)) == 0 &&
1078                                             ((pa ^ (pa + size - 1)) & ~(boundary - 1)) == 0)
1079                                                 goto done;
1080                                 }
1081                         }
1082                 }
1083         }
1084         if (++dom < vm_ndomains)
1085                 goto restartdom;
1086         return (NULL);
1087 done:
1088         for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) {
1089                 fl = (*seg->free_queues)[m->pool];
1090                 vm_freelist_rem(fl, m, m->order);
1091         }
1092         if (m_ret->pool != VM_FREEPOOL_DEFAULT)
1093                 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m_ret, oind);
1094         fl = (*seg->free_queues)[m_ret->pool];
1095         vm_phys_split_pages(m_ret, oind, fl, order);
1096         /* Return excess pages to the free lists. */
1097         npages_end = roundup2(npages, 1 << imin(oind, order));
1098         if (npages < npages_end)
1099                 vm_phys_free_contig(&m_ret[npages], npages_end - npages);
1100         return (m_ret);
1101 }
1102
1103 #ifdef DDB
1104 /*
1105  * Show the number of physical pages in each of the free lists.
1106  */
1107 DB_SHOW_COMMAND(freepages, db_show_freepages)
1108 {
1109         struct vm_freelist *fl;
1110         int flind, oind, pind, dom;
1111
1112         for (dom = 0; dom < vm_ndomains; dom++) {
1113                 db_printf("DOMAIN: %d\n", dom);
1114                 for (flind = 0; flind < vm_nfreelists; flind++) {
1115                         db_printf("FREE LIST %d:\n"
1116                             "\n  ORDER (SIZE)  |  NUMBER"
1117                             "\n              ", flind);
1118                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
1119                                 db_printf("  |  POOL %d", pind);
1120                         db_printf("\n--            ");
1121                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
1122                                 db_printf("-- --      ");
1123                         db_printf("--\n");
1124                         for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
1125                                 db_printf("  %2.2d (%6.6dK)", oind,
1126                                     1 << (PAGE_SHIFT - 10 + oind));
1127                                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1128                                 fl = vm_phys_free_queues[dom][flind][pind];
1129                                         db_printf("  |  %6.6d", fl[oind].lcnt);
1130                                 }
1131                                 db_printf("\n");
1132                         }
1133                         db_printf("\n");
1134                 }
1135                 db_printf("\n");
1136         }
1137 }
1138 #endif