]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_phys.c
Merge sendmail 8.14.9 to HEAD
[FreeBSD/FreeBSD.git] / sys / vm / vm_phys.c
1 /*-
2  * Copyright (c) 2002-2006 Rice University
3  * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
4  * All rights reserved.
5  *
6  * This software was developed for the FreeBSD Project by Alan L. Cox,
7  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
22  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
28  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31
32 /*
33  *      Physical memory system implementation
34  *
35  * Any external functions defined by this module are only to be used by the
36  * virtual memory system.
37  */
38
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41
42 #include "opt_ddb.h"
43 #include "opt_vm.h"
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/lock.h>
48 #include <sys/kernel.h>
49 #include <sys/malloc.h>
50 #include <sys/mutex.h>
51 #if MAXMEMDOM > 1
52 #include <sys/proc.h>
53 #endif
54 #include <sys/queue.h>
55 #include <sys/sbuf.h>
56 #include <sys/sysctl.h>
57 #include <sys/vmmeter.h>
58
59 #include <ddb/ddb.h>
60
61 #include <vm/vm.h>
62 #include <vm/vm_param.h>
63 #include <vm/vm_kern.h>
64 #include <vm/vm_object.h>
65 #include <vm/vm_page.h>
66 #include <vm/vm_phys.h>
67
68 _Static_assert(sizeof(long) * NBBY >= VM_PHYSSEG_MAX,
69     "Too many physsegs.");
70
71 struct mem_affinity *mem_affinity;
72
73 int vm_ndomains = 1;
74
75 struct vm_phys_seg vm_phys_segs[VM_PHYSSEG_MAX];
76 int vm_phys_nsegs;
77
78 #define VM_PHYS_FICTITIOUS_NSEGS        8
79 static struct vm_phys_fictitious_seg {
80         vm_paddr_t      start;
81         vm_paddr_t      end;
82         vm_page_t       first_page;
83 } vm_phys_fictitious_segs[VM_PHYS_FICTITIOUS_NSEGS];
84 static struct mtx vm_phys_fictitious_reg_mtx;
85 MALLOC_DEFINE(M_FICT_PAGES, "vm_fictitious", "Fictitious VM pages");
86
87 static struct vm_freelist
88     vm_phys_free_queues[MAXMEMDOM][VM_NFREELIST][VM_NFREEPOOL][VM_NFREEORDER];
89
90 static int vm_nfreelists = VM_FREELIST_DEFAULT + 1;
91
92 static int cnt_prezero;
93 SYSCTL_INT(_vm_stats_misc, OID_AUTO, cnt_prezero, CTLFLAG_RD,
94     &cnt_prezero, 0, "The number of physical pages prezeroed at idle time");
95
96 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
97 SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD,
98     NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info");
99
100 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
101 SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD,
102     NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info");
103
104 SYSCTL_INT(_vm, OID_AUTO, ndomains, CTLFLAG_RD,
105     &vm_ndomains, 0, "Number of physical memory domains available.");
106
107 static vm_page_t vm_phys_alloc_domain_pages(int domain, int flind, int pool,
108     int order);
109 static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind,
110     int domain);
111 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind);
112 static int vm_phys_paddr_to_segind(vm_paddr_t pa);
113 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
114     int order);
115
116 static __inline int
117 vm_rr_selectdomain(void)
118 {
119 #if MAXMEMDOM > 1
120         struct thread *td;
121
122         td = curthread;
123
124         td->td_dom_rr_idx++;
125         td->td_dom_rr_idx %= vm_ndomains;
126         return (td->td_dom_rr_idx);
127 #else
128         return (0);
129 #endif
130 }
131
132 boolean_t
133 vm_phys_domain_intersects(long mask, vm_paddr_t low, vm_paddr_t high)
134 {
135         struct vm_phys_seg *s;
136         int idx;
137
138         while ((idx = ffsl(mask)) != 0) {
139                 idx--;  /* ffsl counts from 1 */
140                 mask &= ~(1UL << idx);
141                 s = &vm_phys_segs[idx];
142                 if (low < s->end && high > s->start)
143                         return (TRUE);
144         }
145         return (FALSE);
146 }
147
148 /*
149  * Outputs the state of the physical memory allocator, specifically,
150  * the amount of physical memory in each free list.
151  */
152 static int
153 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
154 {
155         struct sbuf sbuf;
156         struct vm_freelist *fl;
157         int dom, error, flind, oind, pind;
158
159         error = sysctl_wire_old_buffer(req, 0);
160         if (error != 0)
161                 return (error);
162         sbuf_new_for_sysctl(&sbuf, NULL, 128 * vm_ndomains, req);
163         for (dom = 0; dom < vm_ndomains; dom++) {
164                 sbuf_printf(&sbuf,"\nDOMAIN %d:\n", dom);
165                 for (flind = 0; flind < vm_nfreelists; flind++) {
166                         sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
167                             "\n  ORDER (SIZE)  |  NUMBER"
168                             "\n              ", flind);
169                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
170                                 sbuf_printf(&sbuf, "  |  POOL %d", pind);
171                         sbuf_printf(&sbuf, "\n--            ");
172                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
173                                 sbuf_printf(&sbuf, "-- --      ");
174                         sbuf_printf(&sbuf, "--\n");
175                         for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
176                                 sbuf_printf(&sbuf, "  %2d (%6dK)", oind,
177                                     1 << (PAGE_SHIFT - 10 + oind));
178                                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
179                                 fl = vm_phys_free_queues[dom][flind][pind];
180                                         sbuf_printf(&sbuf, "  |  %6d",
181                                             fl[oind].lcnt);
182                                 }
183                                 sbuf_printf(&sbuf, "\n");
184                         }
185                 }
186         }
187         error = sbuf_finish(&sbuf);
188         sbuf_delete(&sbuf);
189         return (error);
190 }
191
192 /*
193  * Outputs the set of physical memory segments.
194  */
195 static int
196 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
197 {
198         struct sbuf sbuf;
199         struct vm_phys_seg *seg;
200         int error, segind;
201
202         error = sysctl_wire_old_buffer(req, 0);
203         if (error != 0)
204                 return (error);
205         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
206         for (segind = 0; segind < vm_phys_nsegs; segind++) {
207                 sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
208                 seg = &vm_phys_segs[segind];
209                 sbuf_printf(&sbuf, "start:     %#jx\n",
210                     (uintmax_t)seg->start);
211                 sbuf_printf(&sbuf, "end:       %#jx\n",
212                     (uintmax_t)seg->end);
213                 sbuf_printf(&sbuf, "domain:    %d\n", seg->domain);
214                 sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
215         }
216         error = sbuf_finish(&sbuf);
217         sbuf_delete(&sbuf);
218         return (error);
219 }
220
221 static void
222 vm_freelist_add(struct vm_freelist *fl, vm_page_t m, int order, int tail)
223 {
224
225         m->order = order;
226         if (tail)
227                 TAILQ_INSERT_TAIL(&fl[order].pl, m, plinks.q);
228         else
229                 TAILQ_INSERT_HEAD(&fl[order].pl, m, plinks.q);
230         fl[order].lcnt++;
231 }
232
233 static void
234 vm_freelist_rem(struct vm_freelist *fl, vm_page_t m, int order)
235 {
236
237         TAILQ_REMOVE(&fl[order].pl, m, plinks.q);
238         fl[order].lcnt--;
239         m->order = VM_NFREEORDER;
240 }
241
242 /*
243  * Create a physical memory segment.
244  */
245 static void
246 _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind, int domain)
247 {
248         struct vm_phys_seg *seg;
249 #ifdef VM_PHYSSEG_SPARSE
250         long pages;
251         int segind;
252
253         pages = 0;
254         for (segind = 0; segind < vm_phys_nsegs; segind++) {
255                 seg = &vm_phys_segs[segind];
256                 pages += atop(seg->end - seg->start);
257         }
258 #endif
259         KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
260             ("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
261         KASSERT(domain < vm_ndomains,
262             ("vm_phys_create_seg: invalid domain provided"));
263         seg = &vm_phys_segs[vm_phys_nsegs++];
264         seg->start = start;
265         seg->end = end;
266         seg->domain = domain;
267 #ifdef VM_PHYSSEG_SPARSE
268         seg->first_page = &vm_page_array[pages];
269 #else
270         seg->first_page = PHYS_TO_VM_PAGE(start);
271 #endif
272         seg->free_queues = &vm_phys_free_queues[domain][flind];
273 }
274
275 static void
276 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind)
277 {
278         int i;
279
280         if (mem_affinity == NULL) {
281                 _vm_phys_create_seg(start, end, flind, 0);
282                 return;
283         }
284
285         for (i = 0;; i++) {
286                 if (mem_affinity[i].end == 0)
287                         panic("Reached end of affinity info");
288                 if (mem_affinity[i].end <= start)
289                         continue;
290                 if (mem_affinity[i].start > start)
291                         panic("No affinity info for start %jx",
292                             (uintmax_t)start);
293                 if (mem_affinity[i].end >= end) {
294                         _vm_phys_create_seg(start, end, flind,
295                             mem_affinity[i].domain);
296                         break;
297                 }
298                 _vm_phys_create_seg(start, mem_affinity[i].end, flind,
299                     mem_affinity[i].domain);
300                 start = mem_affinity[i].end;
301         }
302 }
303
304 /*
305  * Initialize the physical memory allocator.
306  */
307 void
308 vm_phys_init(void)
309 {
310         struct vm_freelist *fl;
311         int dom, flind, i, oind, pind;
312
313         for (i = 0; phys_avail[i + 1] != 0; i += 2) {
314 #ifdef  VM_FREELIST_ISADMA
315                 if (phys_avail[i] < 16777216) {
316                         if (phys_avail[i + 1] > 16777216) {
317                                 vm_phys_create_seg(phys_avail[i], 16777216,
318                                     VM_FREELIST_ISADMA);
319                                 vm_phys_create_seg(16777216, phys_avail[i + 1],
320                                     VM_FREELIST_DEFAULT);
321                         } else {
322                                 vm_phys_create_seg(phys_avail[i],
323                                     phys_avail[i + 1], VM_FREELIST_ISADMA);
324                         }
325                         if (VM_FREELIST_ISADMA >= vm_nfreelists)
326                                 vm_nfreelists = VM_FREELIST_ISADMA + 1;
327                 } else
328 #endif
329 #ifdef  VM_FREELIST_HIGHMEM
330                 if (phys_avail[i + 1] > VM_HIGHMEM_ADDRESS) {
331                         if (phys_avail[i] < VM_HIGHMEM_ADDRESS) {
332                                 vm_phys_create_seg(phys_avail[i],
333                                     VM_HIGHMEM_ADDRESS, VM_FREELIST_DEFAULT);
334                                 vm_phys_create_seg(VM_HIGHMEM_ADDRESS,
335                                     phys_avail[i + 1], VM_FREELIST_HIGHMEM);
336                         } else {
337                                 vm_phys_create_seg(phys_avail[i],
338                                     phys_avail[i + 1], VM_FREELIST_HIGHMEM);
339                         }
340                         if (VM_FREELIST_HIGHMEM >= vm_nfreelists)
341                                 vm_nfreelists = VM_FREELIST_HIGHMEM + 1;
342                 } else
343 #endif
344                 vm_phys_create_seg(phys_avail[i], phys_avail[i + 1],
345                     VM_FREELIST_DEFAULT);
346         }
347         for (dom = 0; dom < vm_ndomains; dom++) {
348                 for (flind = 0; flind < vm_nfreelists; flind++) {
349                         for (pind = 0; pind < VM_NFREEPOOL; pind++) {
350                                 fl = vm_phys_free_queues[dom][flind][pind];
351                                 for (oind = 0; oind < VM_NFREEORDER; oind++)
352                                         TAILQ_INIT(&fl[oind].pl);
353                         }
354                 }
355         }
356         mtx_init(&vm_phys_fictitious_reg_mtx, "vmfctr", NULL, MTX_DEF);
357 }
358
359 /*
360  * Split a contiguous, power of two-sized set of physical pages.
361  */
362 static __inline void
363 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order)
364 {
365         vm_page_t m_buddy;
366
367         while (oind > order) {
368                 oind--;
369                 m_buddy = &m[1 << oind];
370                 KASSERT(m_buddy->order == VM_NFREEORDER,
371                     ("vm_phys_split_pages: page %p has unexpected order %d",
372                     m_buddy, m_buddy->order));
373                 vm_freelist_add(fl, m_buddy, oind, 0);
374         }
375 }
376
377 /*
378  * Initialize a physical page and add it to the free lists.
379  */
380 void
381 vm_phys_add_page(vm_paddr_t pa)
382 {
383         vm_page_t m;
384         struct vm_domain *vmd;
385
386         vm_cnt.v_page_count++;
387         m = vm_phys_paddr_to_vm_page(pa);
388         m->phys_addr = pa;
389         m->queue = PQ_NONE;
390         m->segind = vm_phys_paddr_to_segind(pa);
391         vmd = vm_phys_domain(m);
392         vmd->vmd_page_count++;
393         vmd->vmd_segs |= 1UL << m->segind;
394         KASSERT(m->order == VM_NFREEORDER,
395             ("vm_phys_add_page: page %p has unexpected order %d",
396             m, m->order));
397         m->pool = VM_FREEPOOL_DEFAULT;
398         pmap_page_init(m);
399         mtx_lock(&vm_page_queue_free_mtx);
400         vm_phys_freecnt_adj(m, 1);
401         vm_phys_free_pages(m, 0);
402         mtx_unlock(&vm_page_queue_free_mtx);
403 }
404
405 /*
406  * Allocate a contiguous, power of two-sized set of physical pages
407  * from the free lists.
408  *
409  * The free page queues must be locked.
410  */
411 vm_page_t
412 vm_phys_alloc_pages(int pool, int order)
413 {
414         vm_page_t m;
415         int dom, domain, flind;
416
417         KASSERT(pool < VM_NFREEPOOL,
418             ("vm_phys_alloc_pages: pool %d is out of range", pool));
419         KASSERT(order < VM_NFREEORDER,
420             ("vm_phys_alloc_pages: order %d is out of range", order));
421
422         for (dom = 0; dom < vm_ndomains; dom++) {
423                 domain = vm_rr_selectdomain();
424                 for (flind = 0; flind < vm_nfreelists; flind++) {
425                         m = vm_phys_alloc_domain_pages(domain, flind, pool,
426                             order);
427                         if (m != NULL)
428                                 return (m);
429                 }
430         }
431         return (NULL);
432 }
433
434 /*
435  * Find and dequeue a free page on the given free list, with the 
436  * specified pool and order
437  */
438 vm_page_t
439 vm_phys_alloc_freelist_pages(int flind, int pool, int order)
440 {
441         vm_page_t m;
442         int dom, domain;
443
444         KASSERT(flind < VM_NFREELIST,
445             ("vm_phys_alloc_freelist_pages: freelist %d is out of range", flind));
446         KASSERT(pool < VM_NFREEPOOL,
447             ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool));
448         KASSERT(order < VM_NFREEORDER,
449             ("vm_phys_alloc_freelist_pages: order %d is out of range", order));
450
451         for (dom = 0; dom < vm_ndomains; dom++) {
452                 domain = vm_rr_selectdomain();
453                 m = vm_phys_alloc_domain_pages(domain, flind, pool, order);
454                 if (m != NULL)
455                         return (m);
456         }
457         return (NULL);
458 }
459
460 static vm_page_t
461 vm_phys_alloc_domain_pages(int domain, int flind, int pool, int order)
462 {       
463         struct vm_freelist *fl;
464         struct vm_freelist *alt;
465         int oind, pind;
466         vm_page_t m;
467
468         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
469         fl = &vm_phys_free_queues[domain][flind][pool][0];
470         for (oind = order; oind < VM_NFREEORDER; oind++) {
471                 m = TAILQ_FIRST(&fl[oind].pl);
472                 if (m != NULL) {
473                         vm_freelist_rem(fl, m, oind);
474                         vm_phys_split_pages(m, oind, fl, order);
475                         return (m);
476                 }
477         }
478
479         /*
480          * The given pool was empty.  Find the largest
481          * contiguous, power-of-two-sized set of pages in any
482          * pool.  Transfer these pages to the given pool, and
483          * use them to satisfy the allocation.
484          */
485         for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
486                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
487                         alt = &vm_phys_free_queues[domain][flind][pind][0];
488                         m = TAILQ_FIRST(&alt[oind].pl);
489                         if (m != NULL) {
490                                 vm_freelist_rem(alt, m, oind);
491                                 vm_phys_set_pool(pool, m, oind);
492                                 vm_phys_split_pages(m, oind, fl, order);
493                                 return (m);
494                         }
495                 }
496         }
497         return (NULL);
498 }
499
500 /*
501  * Find the vm_page corresponding to the given physical address.
502  */
503 vm_page_t
504 vm_phys_paddr_to_vm_page(vm_paddr_t pa)
505 {
506         struct vm_phys_seg *seg;
507         int segind;
508
509         for (segind = 0; segind < vm_phys_nsegs; segind++) {
510                 seg = &vm_phys_segs[segind];
511                 if (pa >= seg->start && pa < seg->end)
512                         return (&seg->first_page[atop(pa - seg->start)]);
513         }
514         return (NULL);
515 }
516
517 vm_page_t
518 vm_phys_fictitious_to_vm_page(vm_paddr_t pa)
519 {
520         struct vm_phys_fictitious_seg *seg;
521         vm_page_t m;
522         int segind;
523
524         m = NULL;
525         for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) {
526                 seg = &vm_phys_fictitious_segs[segind];
527                 if (pa >= seg->start && pa < seg->end) {
528                         m = &seg->first_page[atop(pa - seg->start)];
529                         KASSERT((m->flags & PG_FICTITIOUS) != 0,
530                             ("%p not fictitious", m));
531                         break;
532                 }
533         }
534         return (m);
535 }
536
537 int
538 vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end,
539     vm_memattr_t memattr)
540 {
541         struct vm_phys_fictitious_seg *seg;
542         vm_page_t fp;
543         long i, page_count;
544         int segind;
545 #ifdef VM_PHYSSEG_DENSE
546         long pi;
547         boolean_t malloced;
548 #endif
549
550         page_count = (end - start) / PAGE_SIZE;
551
552 #ifdef VM_PHYSSEG_DENSE
553         pi = atop(start);
554         if (pi >= first_page && pi < vm_page_array_size + first_page) {
555                 if (atop(end) >= vm_page_array_size + first_page)
556                         return (EINVAL);
557                 fp = &vm_page_array[pi - first_page];
558                 malloced = FALSE;
559         } else
560 #endif
561         {
562                 fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES,
563                     M_WAITOK | M_ZERO);
564 #ifdef VM_PHYSSEG_DENSE
565                 malloced = TRUE;
566 #endif
567         }
568         for (i = 0; i < page_count; i++) {
569                 vm_page_initfake(&fp[i], start + PAGE_SIZE * i, memattr);
570                 fp[i].oflags &= ~VPO_UNMANAGED;
571                 fp[i].busy_lock = VPB_UNBUSIED;
572         }
573         mtx_lock(&vm_phys_fictitious_reg_mtx);
574         for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) {
575                 seg = &vm_phys_fictitious_segs[segind];
576                 if (seg->start == 0 && seg->end == 0) {
577                         seg->start = start;
578                         seg->end = end;
579                         seg->first_page = fp;
580                         mtx_unlock(&vm_phys_fictitious_reg_mtx);
581                         return (0);
582                 }
583         }
584         mtx_unlock(&vm_phys_fictitious_reg_mtx);
585 #ifdef VM_PHYSSEG_DENSE
586         if (malloced)
587 #endif
588                 free(fp, M_FICT_PAGES);
589         return (EBUSY);
590 }
591
592 void
593 vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end)
594 {
595         struct vm_phys_fictitious_seg *seg;
596         vm_page_t fp;
597         int segind;
598 #ifdef VM_PHYSSEG_DENSE
599         long pi;
600 #endif
601
602 #ifdef VM_PHYSSEG_DENSE
603         pi = atop(start);
604 #endif
605
606         mtx_lock(&vm_phys_fictitious_reg_mtx);
607         for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) {
608                 seg = &vm_phys_fictitious_segs[segind];
609                 if (seg->start == start && seg->end == end) {
610                         seg->start = seg->end = 0;
611                         fp = seg->first_page;
612                         seg->first_page = NULL;
613                         mtx_unlock(&vm_phys_fictitious_reg_mtx);
614 #ifdef VM_PHYSSEG_DENSE
615                         if (pi < first_page || atop(end) >= vm_page_array_size)
616 #endif
617                                 free(fp, M_FICT_PAGES);
618                         return;
619                 }
620         }
621         mtx_unlock(&vm_phys_fictitious_reg_mtx);
622         KASSERT(0, ("Unregistering not registered fictitious range"));
623 }
624
625 /*
626  * Find the segment containing the given physical address.
627  */
628 static int
629 vm_phys_paddr_to_segind(vm_paddr_t pa)
630 {
631         struct vm_phys_seg *seg;
632         int segind;
633
634         for (segind = 0; segind < vm_phys_nsegs; segind++) {
635                 seg = &vm_phys_segs[segind];
636                 if (pa >= seg->start && pa < seg->end)
637                         return (segind);
638         }
639         panic("vm_phys_paddr_to_segind: paddr %#jx is not in any segment" ,
640             (uintmax_t)pa);
641 }
642
643 /*
644  * Free a contiguous, power of two-sized set of physical pages.
645  *
646  * The free page queues must be locked.
647  */
648 void
649 vm_phys_free_pages(vm_page_t m, int order)
650 {
651         struct vm_freelist *fl;
652         struct vm_phys_seg *seg;
653         vm_paddr_t pa;
654         vm_page_t m_buddy;
655
656         KASSERT(m->order == VM_NFREEORDER,
657             ("vm_phys_free_pages: page %p has unexpected order %d",
658             m, m->order));
659         KASSERT(m->pool < VM_NFREEPOOL,
660             ("vm_phys_free_pages: page %p has unexpected pool %d",
661             m, m->pool));
662         KASSERT(order < VM_NFREEORDER,
663             ("vm_phys_free_pages: order %d is out of range", order));
664         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
665         seg = &vm_phys_segs[m->segind];
666         if (order < VM_NFREEORDER - 1) {
667                 pa = VM_PAGE_TO_PHYS(m);
668                 do {
669                         pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order));
670                         if (pa < seg->start || pa >= seg->end)
671                                 break;
672                         m_buddy = &seg->first_page[atop(pa - seg->start)];
673                         if (m_buddy->order != order)
674                                 break;
675                         fl = (*seg->free_queues)[m_buddy->pool];
676                         vm_freelist_rem(fl, m_buddy, order);
677                         if (m_buddy->pool != m->pool)
678                                 vm_phys_set_pool(m->pool, m_buddy, order);
679                         order++;
680                         pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1);
681                         m = &seg->first_page[atop(pa - seg->start)];
682                 } while (order < VM_NFREEORDER - 1);
683         }
684         fl = (*seg->free_queues)[m->pool];
685         vm_freelist_add(fl, m, order, 1);
686 }
687
688 /*
689  * Free a contiguous, arbitrarily sized set of physical pages.
690  *
691  * The free page queues must be locked.
692  */
693 void
694 vm_phys_free_contig(vm_page_t m, u_long npages)
695 {
696         u_int n;
697         int order;
698
699         /*
700          * Avoid unnecessary coalescing by freeing the pages in the largest
701          * possible power-of-two-sized subsets.
702          */
703         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
704         for (;; npages -= n) {
705                 /*
706                  * Unsigned "min" is used here so that "order" is assigned
707                  * "VM_NFREEORDER - 1" when "m"'s physical address is zero
708                  * or the low-order bits of its physical address are zero
709                  * because the size of a physical address exceeds the size of
710                  * a long.
711                  */
712                 order = min(ffsl(VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) - 1,
713                     VM_NFREEORDER - 1);
714                 n = 1 << order;
715                 if (npages < n)
716                         break;
717                 vm_phys_free_pages(m, order);
718                 m += n;
719         }
720         /* The residual "npages" is less than "1 << (VM_NFREEORDER - 1)". */
721         for (; npages > 0; npages -= n) {
722                 order = flsl(npages) - 1;
723                 n = 1 << order;
724                 vm_phys_free_pages(m, order);
725                 m += n;
726         }
727 }
728
729 /*
730  * Set the pool for a contiguous, power of two-sized set of physical pages. 
731  */
732 void
733 vm_phys_set_pool(int pool, vm_page_t m, int order)
734 {
735         vm_page_t m_tmp;
736
737         for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
738                 m_tmp->pool = pool;
739 }
740
741 /*
742  * Search for the given physical page "m" in the free lists.  If the search
743  * succeeds, remove "m" from the free lists and return TRUE.  Otherwise, return
744  * FALSE, indicating that "m" is not in the free lists.
745  *
746  * The free page queues must be locked.
747  */
748 boolean_t
749 vm_phys_unfree_page(vm_page_t m)
750 {
751         struct vm_freelist *fl;
752         struct vm_phys_seg *seg;
753         vm_paddr_t pa, pa_half;
754         vm_page_t m_set, m_tmp;
755         int order;
756
757         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
758
759         /*
760          * First, find the contiguous, power of two-sized set of free
761          * physical pages containing the given physical page "m" and
762          * assign it to "m_set".
763          */
764         seg = &vm_phys_segs[m->segind];
765         for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
766             order < VM_NFREEORDER - 1; ) {
767                 order++;
768                 pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
769                 if (pa >= seg->start)
770                         m_set = &seg->first_page[atop(pa - seg->start)];
771                 else
772                         return (FALSE);
773         }
774         if (m_set->order < order)
775                 return (FALSE);
776         if (m_set->order == VM_NFREEORDER)
777                 return (FALSE);
778         KASSERT(m_set->order < VM_NFREEORDER,
779             ("vm_phys_unfree_page: page %p has unexpected order %d",
780             m_set, m_set->order));
781
782         /*
783          * Next, remove "m_set" from the free lists.  Finally, extract
784          * "m" from "m_set" using an iterative algorithm: While "m_set"
785          * is larger than a page, shrink "m_set" by returning the half
786          * of "m_set" that does not contain "m" to the free lists.
787          */
788         fl = (*seg->free_queues)[m_set->pool];
789         order = m_set->order;
790         vm_freelist_rem(fl, m_set, order);
791         while (order > 0) {
792                 order--;
793                 pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
794                 if (m->phys_addr < pa_half)
795                         m_tmp = &seg->first_page[atop(pa_half - seg->start)];
796                 else {
797                         m_tmp = m_set;
798                         m_set = &seg->first_page[atop(pa_half - seg->start)];
799                 }
800                 vm_freelist_add(fl, m_tmp, order, 0);
801         }
802         KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
803         return (TRUE);
804 }
805
806 /*
807  * Try to zero one physical page.  Used by an idle priority thread.
808  */
809 boolean_t
810 vm_phys_zero_pages_idle(void)
811 {
812         static struct vm_freelist *fl;
813         static int flind, oind, pind;
814         vm_page_t m, m_tmp;
815         int domain;
816
817         domain = vm_rr_selectdomain();
818         fl = vm_phys_free_queues[domain][0][0];
819         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
820         for (;;) {
821                 TAILQ_FOREACH_REVERSE(m, &fl[oind].pl, pglist, plinks.q) {
822                         for (m_tmp = m; m_tmp < &m[1 << oind]; m_tmp++) {
823                                 if ((m_tmp->flags & (PG_CACHED | PG_ZERO)) == 0) {
824                                         vm_phys_unfree_page(m_tmp);
825                                         vm_phys_freecnt_adj(m, -1);
826                                         mtx_unlock(&vm_page_queue_free_mtx);
827                                         pmap_zero_page_idle(m_tmp);
828                                         m_tmp->flags |= PG_ZERO;
829                                         mtx_lock(&vm_page_queue_free_mtx);
830                                         vm_phys_freecnt_adj(m, 1);
831                                         vm_phys_free_pages(m_tmp, 0);
832                                         vm_page_zero_count++;
833                                         cnt_prezero++;
834                                         return (TRUE);
835                                 }
836                         }
837                 }
838                 oind++;
839                 if (oind == VM_NFREEORDER) {
840                         oind = 0;
841                         pind++;
842                         if (pind == VM_NFREEPOOL) {
843                                 pind = 0;
844                                 flind++;
845                                 if (flind == vm_nfreelists)
846                                         flind = 0;
847                         }
848                         fl = vm_phys_free_queues[domain][flind][pind];
849                 }
850         }
851 }
852
853 /*
854  * Allocate a contiguous set of physical pages of the given size
855  * "npages" from the free lists.  All of the physical pages must be at
856  * or above the given physical address "low" and below the given
857  * physical address "high".  The given value "alignment" determines the
858  * alignment of the first physical page in the set.  If the given value
859  * "boundary" is non-zero, then the set of physical pages cannot cross
860  * any physical address boundary that is a multiple of that value.  Both
861  * "alignment" and "boundary" must be a power of two.
862  */
863 vm_page_t
864 vm_phys_alloc_contig(u_long npages, vm_paddr_t low, vm_paddr_t high,
865     u_long alignment, vm_paddr_t boundary)
866 {
867         struct vm_freelist *fl;
868         struct vm_phys_seg *seg;
869         vm_paddr_t pa, pa_last, size;
870         vm_page_t m, m_ret;
871         u_long npages_end;
872         int dom, domain, flind, oind, order, pind;
873
874         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
875         size = npages << PAGE_SHIFT;
876         KASSERT(size != 0,
877             ("vm_phys_alloc_contig: size must not be 0"));
878         KASSERT((alignment & (alignment - 1)) == 0,
879             ("vm_phys_alloc_contig: alignment must be a power of 2"));
880         KASSERT((boundary & (boundary - 1)) == 0,
881             ("vm_phys_alloc_contig: boundary must be a power of 2"));
882         /* Compute the queue that is the best fit for npages. */
883         for (order = 0; (1 << order) < npages; order++);
884         dom = 0;
885 restartdom:
886         domain = vm_rr_selectdomain();
887         for (flind = 0; flind < vm_nfreelists; flind++) {
888                 for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER; oind++) {
889                         for (pind = 0; pind < VM_NFREEPOOL; pind++) {
890                                 fl = &vm_phys_free_queues[domain][flind][pind][0];
891                                 TAILQ_FOREACH(m_ret, &fl[oind].pl, plinks.q) {
892                                         /*
893                                          * A free list may contain physical pages
894                                          * from one or more segments.
895                                          */
896                                         seg = &vm_phys_segs[m_ret->segind];
897                                         if (seg->start > high ||
898                                             low >= seg->end)
899                                                 continue;
900
901                                         /*
902                                          * Is the size of this allocation request
903                                          * larger than the largest block size?
904                                          */
905                                         if (order >= VM_NFREEORDER) {
906                                                 /*
907                                                  * Determine if a sufficient number
908                                                  * of subsequent blocks to satisfy
909                                                  * the allocation request are free.
910                                                  */
911                                                 pa = VM_PAGE_TO_PHYS(m_ret);
912                                                 pa_last = pa + size;
913                                                 for (;;) {
914                                                         pa += 1 << (PAGE_SHIFT + VM_NFREEORDER - 1);
915                                                         if (pa >= pa_last)
916                                                                 break;
917                                                         if (pa < seg->start ||
918                                                             pa >= seg->end)
919                                                                 break;
920                                                         m = &seg->first_page[atop(pa - seg->start)];
921                                                         if (m->order != VM_NFREEORDER - 1)
922                                                                 break;
923                                                 }
924                                                 /* If not, continue to the next block. */
925                                                 if (pa < pa_last)
926                                                         continue;
927                                         }
928
929                                         /*
930                                          * Determine if the blocks are within the given range,
931                                          * satisfy the given alignment, and do not cross the
932                                          * given boundary.
933                                          */
934                                         pa = VM_PAGE_TO_PHYS(m_ret);
935                                         if (pa >= low &&
936                                             pa + size <= high &&
937                                             (pa & (alignment - 1)) == 0 &&
938                                             ((pa ^ (pa + size - 1)) & ~(boundary - 1)) == 0)
939                                                 goto done;
940                                 }
941                         }
942                 }
943         }
944         if (++dom < vm_ndomains)
945                 goto restartdom;
946         return (NULL);
947 done:
948         for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) {
949                 fl = (*seg->free_queues)[m->pool];
950                 vm_freelist_rem(fl, m, m->order);
951         }
952         if (m_ret->pool != VM_FREEPOOL_DEFAULT)
953                 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m_ret, oind);
954         fl = (*seg->free_queues)[m_ret->pool];
955         vm_phys_split_pages(m_ret, oind, fl, order);
956         /* Return excess pages to the free lists. */
957         npages_end = roundup2(npages, 1 << imin(oind, order));
958         if (npages < npages_end)
959                 vm_phys_free_contig(&m_ret[npages], npages_end - npages);
960         return (m_ret);
961 }
962
963 #ifdef DDB
964 /*
965  * Show the number of physical pages in each of the free lists.
966  */
967 DB_SHOW_COMMAND(freepages, db_show_freepages)
968 {
969         struct vm_freelist *fl;
970         int flind, oind, pind, dom;
971
972         for (dom = 0; dom < vm_ndomains; dom++) {
973                 db_printf("DOMAIN: %d\n", dom);
974                 for (flind = 0; flind < vm_nfreelists; flind++) {
975                         db_printf("FREE LIST %d:\n"
976                             "\n  ORDER (SIZE)  |  NUMBER"
977                             "\n              ", flind);
978                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
979                                 db_printf("  |  POOL %d", pind);
980                         db_printf("\n--            ");
981                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
982                                 db_printf("-- --      ");
983                         db_printf("--\n");
984                         for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
985                                 db_printf("  %2.2d (%6.6dK)", oind,
986                                     1 << (PAGE_SHIFT - 10 + oind));
987                                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
988                                 fl = vm_phys_free_queues[dom][flind][pind];
989                                         db_printf("  |  %6.6d", fl[oind].lcnt);
990                                 }
991                                 db_printf("\n");
992                         }
993                         db_printf("\n");
994                 }
995                 db_printf("\n");
996         }
997 }
998 #endif