]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_phys.c
MFV r328323,328324:
[FreeBSD/FreeBSD.git] / sys / vm / vm_phys.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2002-2006 Rice University
5  * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
6  * All rights reserved.
7  *
8  * This software was developed for the FreeBSD Project by Alan L. Cox,
9  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
24  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
27  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
30  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 /*
35  *      Physical memory system implementation
36  *
37  * Any external functions defined by this module are only to be used by the
38  * virtual memory system.
39  */
40
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43
44 #include "opt_ddb.h"
45 #include "opt_vm.h"
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/lock.h>
50 #include <sys/kernel.h>
51 #include <sys/malloc.h>
52 #include <sys/mutex.h>
53 #include <sys/proc.h>
54 #include <sys/queue.h>
55 #include <sys/rwlock.h>
56 #include <sys/sbuf.h>
57 #include <sys/sysctl.h>
58 #include <sys/tree.h>
59 #include <sys/vmmeter.h>
60 #include <sys/seq.h>
61
62 #include <ddb/ddb.h>
63
64 #include <vm/vm.h>
65 #include <vm/vm_param.h>
66 #include <vm/vm_kern.h>
67 #include <vm/vm_object.h>
68 #include <vm/vm_page.h>
69 #include <vm/vm_phys.h>
70
71 _Static_assert(sizeof(long) * NBBY >= VM_PHYSSEG_MAX,
72     "Too many physsegs.");
73
74 #ifdef NUMA
75 struct mem_affinity *mem_affinity;
76 int *mem_locality;
77 #endif
78
79 int vm_ndomains = 1;
80
81 struct vm_phys_seg vm_phys_segs[VM_PHYSSEG_MAX];
82 int vm_phys_nsegs;
83
84 struct vm_phys_fictitious_seg;
85 static int vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *,
86     struct vm_phys_fictitious_seg *);
87
88 RB_HEAD(fict_tree, vm_phys_fictitious_seg) vm_phys_fictitious_tree =
89     RB_INITIALIZER(_vm_phys_fictitious_tree);
90
91 struct vm_phys_fictitious_seg {
92         RB_ENTRY(vm_phys_fictitious_seg) node;
93         /* Memory region data */
94         vm_paddr_t      start;
95         vm_paddr_t      end;
96         vm_page_t       first_page;
97 };
98
99 RB_GENERATE_STATIC(fict_tree, vm_phys_fictitious_seg, node,
100     vm_phys_fictitious_cmp);
101
102 static struct rwlock vm_phys_fictitious_reg_lock;
103 MALLOC_DEFINE(M_FICT_PAGES, "vm_fictitious", "Fictitious VM pages");
104
105 static struct vm_freelist
106     vm_phys_free_queues[MAXMEMDOM][VM_NFREELIST][VM_NFREEPOOL][VM_NFREEORDER];
107
108 static int vm_nfreelists;
109
110 /*
111  * Provides the mapping from VM_FREELIST_* to free list indices (flind).
112  */
113 static int vm_freelist_to_flind[VM_NFREELIST];
114
115 CTASSERT(VM_FREELIST_DEFAULT == 0);
116
117 #ifdef VM_FREELIST_ISADMA
118 #define VM_ISADMA_BOUNDARY      16777216
119 #endif
120 #ifdef VM_FREELIST_DMA32
121 #define VM_DMA32_BOUNDARY       ((vm_paddr_t)1 << 32)
122 #endif
123
124 /*
125  * Enforce the assumptions made by vm_phys_add_seg() and vm_phys_init() about
126  * the ordering of the free list boundaries.
127  */
128 #if defined(VM_ISADMA_BOUNDARY) && defined(VM_LOWMEM_BOUNDARY)
129 CTASSERT(VM_ISADMA_BOUNDARY < VM_LOWMEM_BOUNDARY);
130 #endif
131 #if defined(VM_LOWMEM_BOUNDARY) && defined(VM_DMA32_BOUNDARY)
132 CTASSERT(VM_LOWMEM_BOUNDARY < VM_DMA32_BOUNDARY);
133 #endif
134
135 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
136 SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD,
137     NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info");
138
139 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
140 SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD,
141     NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info");
142
143 #ifdef NUMA
144 static int sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS);
145 SYSCTL_OID(_vm, OID_AUTO, phys_locality, CTLTYPE_STRING | CTLFLAG_RD,
146     NULL, 0, sysctl_vm_phys_locality, "A", "Phys Locality Info");
147 #endif
148
149 SYSCTL_INT(_vm, OID_AUTO, ndomains, CTLFLAG_RD,
150     &vm_ndomains, 0, "Number of physical memory domains available.");
151
152 static vm_page_t vm_phys_alloc_seg_contig(struct vm_phys_seg *seg,
153     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
154     vm_paddr_t boundary);
155 static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain);
156 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end);
157 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
158     int order);
159
160 /*
161  * Red-black tree helpers for vm fictitious range management.
162  */
163 static inline int
164 vm_phys_fictitious_in_range(struct vm_phys_fictitious_seg *p,
165     struct vm_phys_fictitious_seg *range)
166 {
167
168         KASSERT(range->start != 0 && range->end != 0,
169             ("Invalid range passed on search for vm_fictitious page"));
170         if (p->start >= range->end)
171                 return (1);
172         if (p->start < range->start)
173                 return (-1);
174
175         return (0);
176 }
177
178 static int
179 vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *p1,
180     struct vm_phys_fictitious_seg *p2)
181 {
182
183         /* Check if this is a search for a page */
184         if (p1->end == 0)
185                 return (vm_phys_fictitious_in_range(p1, p2));
186
187         KASSERT(p2->end != 0,
188     ("Invalid range passed as second parameter to vm fictitious comparison"));
189
190         /* Searching to add a new range */
191         if (p1->end <= p2->start)
192                 return (-1);
193         if (p1->start >= p2->end)
194                 return (1);
195
196         panic("Trying to add overlapping vm fictitious ranges:\n"
197             "[%#jx:%#jx] and [%#jx:%#jx]", (uintmax_t)p1->start,
198             (uintmax_t)p1->end, (uintmax_t)p2->start, (uintmax_t)p2->end);
199 }
200
201 int
202 vm_phys_domain_match(int prefer, vm_paddr_t low, vm_paddr_t high)
203 {
204 #ifdef NUMA
205         domainset_t mask;
206         int i;
207
208         if (vm_ndomains == 1 || mem_affinity == NULL)
209                 return (0);
210
211         DOMAINSET_ZERO(&mask);
212         /*
213          * Check for any memory that overlaps low, high.
214          */
215         for (i = 0; mem_affinity[i].end != 0; i++)
216                 if (mem_affinity[i].start <= high &&
217                     mem_affinity[i].end >= low)
218                         DOMAINSET_SET(mem_affinity[i].domain, &mask);
219         if (prefer != -1 && DOMAINSET_ISSET(prefer, &mask))
220                 return (prefer);
221         if (DOMAINSET_EMPTY(&mask))
222                 panic("vm_phys_domain_match:  Impossible constraint");
223         return (DOMAINSET_FFS(&mask) - 1);
224 #else
225         return (0);
226 #endif
227 }
228
229 /*
230  * Outputs the state of the physical memory allocator, specifically,
231  * the amount of physical memory in each free list.
232  */
233 static int
234 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
235 {
236         struct sbuf sbuf;
237         struct vm_freelist *fl;
238         int dom, error, flind, oind, pind;
239
240         error = sysctl_wire_old_buffer(req, 0);
241         if (error != 0)
242                 return (error);
243         sbuf_new_for_sysctl(&sbuf, NULL, 128 * vm_ndomains, req);
244         for (dom = 0; dom < vm_ndomains; dom++) {
245                 sbuf_printf(&sbuf,"\nDOMAIN %d:\n", dom);
246                 for (flind = 0; flind < vm_nfreelists; flind++) {
247                         sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
248                             "\n  ORDER (SIZE)  |  NUMBER"
249                             "\n              ", flind);
250                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
251                                 sbuf_printf(&sbuf, "  |  POOL %d", pind);
252                         sbuf_printf(&sbuf, "\n--            ");
253                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
254                                 sbuf_printf(&sbuf, "-- --      ");
255                         sbuf_printf(&sbuf, "--\n");
256                         for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
257                                 sbuf_printf(&sbuf, "  %2d (%6dK)", oind,
258                                     1 << (PAGE_SHIFT - 10 + oind));
259                                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
260                                 fl = vm_phys_free_queues[dom][flind][pind];
261                                         sbuf_printf(&sbuf, "  |  %6d",
262                                             fl[oind].lcnt);
263                                 }
264                                 sbuf_printf(&sbuf, "\n");
265                         }
266                 }
267         }
268         error = sbuf_finish(&sbuf);
269         sbuf_delete(&sbuf);
270         return (error);
271 }
272
273 /*
274  * Outputs the set of physical memory segments.
275  */
276 static int
277 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
278 {
279         struct sbuf sbuf;
280         struct vm_phys_seg *seg;
281         int error, segind;
282
283         error = sysctl_wire_old_buffer(req, 0);
284         if (error != 0)
285                 return (error);
286         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
287         for (segind = 0; segind < vm_phys_nsegs; segind++) {
288                 sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
289                 seg = &vm_phys_segs[segind];
290                 sbuf_printf(&sbuf, "start:     %#jx\n",
291                     (uintmax_t)seg->start);
292                 sbuf_printf(&sbuf, "end:       %#jx\n",
293                     (uintmax_t)seg->end);
294                 sbuf_printf(&sbuf, "domain:    %d\n", seg->domain);
295                 sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
296         }
297         error = sbuf_finish(&sbuf);
298         sbuf_delete(&sbuf);
299         return (error);
300 }
301
302 /*
303  * Return affinity, or -1 if there's no affinity information.
304  */
305 int
306 vm_phys_mem_affinity(int f, int t)
307 {
308
309 #ifdef NUMA
310         if (mem_locality == NULL)
311                 return (-1);
312         if (f >= vm_ndomains || t >= vm_ndomains)
313                 return (-1);
314         return (mem_locality[f * vm_ndomains + t]);
315 #else
316         return (-1);
317 #endif
318 }
319
320 #ifdef NUMA
321 /*
322  * Outputs the VM locality table.
323  */
324 static int
325 sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS)
326 {
327         struct sbuf sbuf;
328         int error, i, j;
329
330         error = sysctl_wire_old_buffer(req, 0);
331         if (error != 0)
332                 return (error);
333         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
334
335         sbuf_printf(&sbuf, "\n");
336
337         for (i = 0; i < vm_ndomains; i++) {
338                 sbuf_printf(&sbuf, "%d: ", i);
339                 for (j = 0; j < vm_ndomains; j++) {
340                         sbuf_printf(&sbuf, "%d ", vm_phys_mem_affinity(i, j));
341                 }
342                 sbuf_printf(&sbuf, "\n");
343         }
344         error = sbuf_finish(&sbuf);
345         sbuf_delete(&sbuf);
346         return (error);
347 }
348 #endif
349
350 static void
351 vm_freelist_add(struct vm_freelist *fl, vm_page_t m, int order, int tail)
352 {
353
354         m->order = order;
355         if (tail)
356                 TAILQ_INSERT_TAIL(&fl[order].pl, m, plinks.q);
357         else
358                 TAILQ_INSERT_HEAD(&fl[order].pl, m, plinks.q);
359         fl[order].lcnt++;
360 }
361
362 static void
363 vm_freelist_rem(struct vm_freelist *fl, vm_page_t m, int order)
364 {
365
366         TAILQ_REMOVE(&fl[order].pl, m, plinks.q);
367         fl[order].lcnt--;
368         m->order = VM_NFREEORDER;
369 }
370
371 /*
372  * Create a physical memory segment.
373  */
374 static void
375 _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain)
376 {
377         struct vm_phys_seg *seg;
378
379         KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
380             ("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
381         KASSERT(domain >= 0 && domain < vm_ndomains,
382             ("vm_phys_create_seg: invalid domain provided"));
383         seg = &vm_phys_segs[vm_phys_nsegs++];
384         while (seg > vm_phys_segs && (seg - 1)->start >= end) {
385                 *seg = *(seg - 1);
386                 seg--;
387         }
388         seg->start = start;
389         seg->end = end;
390         seg->domain = domain;
391 }
392
393 static void
394 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end)
395 {
396 #ifdef NUMA
397         int i;
398
399         if (mem_affinity == NULL) {
400                 _vm_phys_create_seg(start, end, 0);
401                 return;
402         }
403
404         for (i = 0;; i++) {
405                 if (mem_affinity[i].end == 0)
406                         panic("Reached end of affinity info");
407                 if (mem_affinity[i].end <= start)
408                         continue;
409                 if (mem_affinity[i].start > start)
410                         panic("No affinity info for start %jx",
411                             (uintmax_t)start);
412                 if (mem_affinity[i].end >= end) {
413                         _vm_phys_create_seg(start, end,
414                             mem_affinity[i].domain);
415                         break;
416                 }
417                 _vm_phys_create_seg(start, mem_affinity[i].end,
418                     mem_affinity[i].domain);
419                 start = mem_affinity[i].end;
420         }
421 #else
422         _vm_phys_create_seg(start, end, 0);
423 #endif
424 }
425
426 /*
427  * Add a physical memory segment.
428  */
429 void
430 vm_phys_add_seg(vm_paddr_t start, vm_paddr_t end)
431 {
432         vm_paddr_t paddr;
433
434         KASSERT((start & PAGE_MASK) == 0,
435             ("vm_phys_define_seg: start is not page aligned"));
436         KASSERT((end & PAGE_MASK) == 0,
437             ("vm_phys_define_seg: end is not page aligned"));
438
439         /*
440          * Split the physical memory segment if it spans two or more free
441          * list boundaries.
442          */
443         paddr = start;
444 #ifdef  VM_FREELIST_ISADMA
445         if (paddr < VM_ISADMA_BOUNDARY && end > VM_ISADMA_BOUNDARY) {
446                 vm_phys_create_seg(paddr, VM_ISADMA_BOUNDARY);
447                 paddr = VM_ISADMA_BOUNDARY;
448         }
449 #endif
450 #ifdef  VM_FREELIST_LOWMEM
451         if (paddr < VM_LOWMEM_BOUNDARY && end > VM_LOWMEM_BOUNDARY) {
452                 vm_phys_create_seg(paddr, VM_LOWMEM_BOUNDARY);
453                 paddr = VM_LOWMEM_BOUNDARY;
454         }
455 #endif
456 #ifdef  VM_FREELIST_DMA32
457         if (paddr < VM_DMA32_BOUNDARY && end > VM_DMA32_BOUNDARY) {
458                 vm_phys_create_seg(paddr, VM_DMA32_BOUNDARY);
459                 paddr = VM_DMA32_BOUNDARY;
460         }
461 #endif
462         vm_phys_create_seg(paddr, end);
463 }
464
465 /*
466  * Initialize the physical memory allocator.
467  *
468  * Requires that vm_page_array is initialized!
469  */
470 void
471 vm_phys_init(void)
472 {
473         struct vm_freelist *fl;
474         struct vm_phys_seg *seg;
475         u_long npages;
476         int dom, flind, freelist, oind, pind, segind;
477
478         /*
479          * Compute the number of free lists, and generate the mapping from the
480          * manifest constants VM_FREELIST_* to the free list indices.
481          *
482          * Initially, the entries of vm_freelist_to_flind[] are set to either
483          * 0 or 1 to indicate which free lists should be created.
484          */
485         npages = 0;
486         for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
487                 seg = &vm_phys_segs[segind];
488 #ifdef  VM_FREELIST_ISADMA
489                 if (seg->end <= VM_ISADMA_BOUNDARY)
490                         vm_freelist_to_flind[VM_FREELIST_ISADMA] = 1;
491                 else
492 #endif
493 #ifdef  VM_FREELIST_LOWMEM
494                 if (seg->end <= VM_LOWMEM_BOUNDARY)
495                         vm_freelist_to_flind[VM_FREELIST_LOWMEM] = 1;
496                 else
497 #endif
498 #ifdef  VM_FREELIST_DMA32
499                 if (
500 #ifdef  VM_DMA32_NPAGES_THRESHOLD
501                     /*
502                      * Create the DMA32 free list only if the amount of
503                      * physical memory above physical address 4G exceeds the
504                      * given threshold.
505                      */
506                     npages > VM_DMA32_NPAGES_THRESHOLD &&
507 #endif
508                     seg->end <= VM_DMA32_BOUNDARY)
509                         vm_freelist_to_flind[VM_FREELIST_DMA32] = 1;
510                 else
511 #endif
512                 {
513                         npages += atop(seg->end - seg->start);
514                         vm_freelist_to_flind[VM_FREELIST_DEFAULT] = 1;
515                 }
516         }
517         /* Change each entry into a running total of the free lists. */
518         for (freelist = 1; freelist < VM_NFREELIST; freelist++) {
519                 vm_freelist_to_flind[freelist] +=
520                     vm_freelist_to_flind[freelist - 1];
521         }
522         vm_nfreelists = vm_freelist_to_flind[VM_NFREELIST - 1];
523         KASSERT(vm_nfreelists > 0, ("vm_phys_init: no free lists"));
524         /* Change each entry into a free list index. */
525         for (freelist = 0; freelist < VM_NFREELIST; freelist++)
526                 vm_freelist_to_flind[freelist]--;
527
528         /*
529          * Initialize the first_page and free_queues fields of each physical
530          * memory segment.
531          */
532 #ifdef VM_PHYSSEG_SPARSE
533         npages = 0;
534 #endif
535         for (segind = 0; segind < vm_phys_nsegs; segind++) {
536                 seg = &vm_phys_segs[segind];
537 #ifdef VM_PHYSSEG_SPARSE
538                 seg->first_page = &vm_page_array[npages];
539                 npages += atop(seg->end - seg->start);
540 #else
541                 seg->first_page = PHYS_TO_VM_PAGE(seg->start);
542 #endif
543 #ifdef  VM_FREELIST_ISADMA
544                 if (seg->end <= VM_ISADMA_BOUNDARY) {
545                         flind = vm_freelist_to_flind[VM_FREELIST_ISADMA];
546                         KASSERT(flind >= 0,
547                             ("vm_phys_init: ISADMA flind < 0"));
548                 } else
549 #endif
550 #ifdef  VM_FREELIST_LOWMEM
551                 if (seg->end <= VM_LOWMEM_BOUNDARY) {
552                         flind = vm_freelist_to_flind[VM_FREELIST_LOWMEM];
553                         KASSERT(flind >= 0,
554                             ("vm_phys_init: LOWMEM flind < 0"));
555                 } else
556 #endif
557 #ifdef  VM_FREELIST_DMA32
558                 if (seg->end <= VM_DMA32_BOUNDARY) {
559                         flind = vm_freelist_to_flind[VM_FREELIST_DMA32];
560                         KASSERT(flind >= 0,
561                             ("vm_phys_init: DMA32 flind < 0"));
562                 } else
563 #endif
564                 {
565                         flind = vm_freelist_to_flind[VM_FREELIST_DEFAULT];
566                         KASSERT(flind >= 0,
567                             ("vm_phys_init: DEFAULT flind < 0"));
568                 }
569                 seg->free_queues = &vm_phys_free_queues[seg->domain][flind];
570         }
571
572         /*
573          * Initialize the free queues.
574          */
575         for (dom = 0; dom < vm_ndomains; dom++) {
576                 for (flind = 0; flind < vm_nfreelists; flind++) {
577                         for (pind = 0; pind < VM_NFREEPOOL; pind++) {
578                                 fl = vm_phys_free_queues[dom][flind][pind];
579                                 for (oind = 0; oind < VM_NFREEORDER; oind++)
580                                         TAILQ_INIT(&fl[oind].pl);
581                         }
582                 }
583         }
584
585         rw_init(&vm_phys_fictitious_reg_lock, "vmfctr");
586 }
587
588 /*
589  * Split a contiguous, power of two-sized set of physical pages.
590  */
591 static __inline void
592 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order)
593 {
594         vm_page_t m_buddy;
595
596         while (oind > order) {
597                 oind--;
598                 m_buddy = &m[1 << oind];
599                 KASSERT(m_buddy->order == VM_NFREEORDER,
600                     ("vm_phys_split_pages: page %p has unexpected order %d",
601                     m_buddy, m_buddy->order));
602                 vm_freelist_add(fl, m_buddy, oind, 0);
603         }
604 }
605
606 /*
607  * Allocate a contiguous, power of two-sized set of physical pages
608  * from the free lists.
609  *
610  * The free page queues must be locked.
611  */
612 vm_page_t
613 vm_phys_alloc_pages(int domain, int pool, int order)
614 {
615         vm_page_t m;
616         int freelist;
617
618         for (freelist = 0; freelist < VM_NFREELIST; freelist++) {
619                 m = vm_phys_alloc_freelist_pages(domain, freelist, pool, order);
620                 if (m != NULL)
621                         return (m);
622         }
623         return (NULL);
624 }
625
626 /*
627  * Allocate a contiguous, power of two-sized set of physical pages from the
628  * specified free list.  The free list must be specified using one of the
629  * manifest constants VM_FREELIST_*.
630  *
631  * The free page queues must be locked.
632  */
633 vm_page_t
634 vm_phys_alloc_freelist_pages(int domain, int freelist, int pool, int order)
635 {
636         struct vm_freelist *alt, *fl;
637         vm_page_t m;
638         int oind, pind, flind;
639
640         KASSERT(domain >= 0 && domain < vm_ndomains,
641             ("vm_phys_alloc_freelist_pages: domain %d is out of range",
642             domain));
643         KASSERT(freelist < VM_NFREELIST,
644             ("vm_phys_alloc_freelist_pages: freelist %d is out of range",
645             freelist));
646         KASSERT(pool < VM_NFREEPOOL,
647             ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool));
648         KASSERT(order < VM_NFREEORDER,
649             ("vm_phys_alloc_freelist_pages: order %d is out of range", order));
650
651         flind = vm_freelist_to_flind[freelist];
652         /* Check if freelist is present */
653         if (flind < 0)
654                 return (NULL);
655
656         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
657         fl = &vm_phys_free_queues[domain][flind][pool][0];
658         for (oind = order; oind < VM_NFREEORDER; oind++) {
659                 m = TAILQ_FIRST(&fl[oind].pl);
660                 if (m != NULL) {
661                         vm_freelist_rem(fl, m, oind);
662                         vm_phys_split_pages(m, oind, fl, order);
663                         return (m);
664                 }
665         }
666
667         /*
668          * The given pool was empty.  Find the largest
669          * contiguous, power-of-two-sized set of pages in any
670          * pool.  Transfer these pages to the given pool, and
671          * use them to satisfy the allocation.
672          */
673         for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
674                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
675                         alt = &vm_phys_free_queues[domain][flind][pind][0];
676                         m = TAILQ_FIRST(&alt[oind].pl);
677                         if (m != NULL) {
678                                 vm_freelist_rem(alt, m, oind);
679                                 vm_phys_set_pool(pool, m, oind);
680                                 vm_phys_split_pages(m, oind, fl, order);
681                                 return (m);
682                         }
683                 }
684         }
685         return (NULL);
686 }
687
688 /*
689  * Find the vm_page corresponding to the given physical address.
690  */
691 vm_page_t
692 vm_phys_paddr_to_vm_page(vm_paddr_t pa)
693 {
694         struct vm_phys_seg *seg;
695         int segind;
696
697         for (segind = 0; segind < vm_phys_nsegs; segind++) {
698                 seg = &vm_phys_segs[segind];
699                 if (pa >= seg->start && pa < seg->end)
700                         return (&seg->first_page[atop(pa - seg->start)]);
701         }
702         return (NULL);
703 }
704
705 vm_page_t
706 vm_phys_fictitious_to_vm_page(vm_paddr_t pa)
707 {
708         struct vm_phys_fictitious_seg tmp, *seg;
709         vm_page_t m;
710
711         m = NULL;
712         tmp.start = pa;
713         tmp.end = 0;
714
715         rw_rlock(&vm_phys_fictitious_reg_lock);
716         seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
717         rw_runlock(&vm_phys_fictitious_reg_lock);
718         if (seg == NULL)
719                 return (NULL);
720
721         m = &seg->first_page[atop(pa - seg->start)];
722         KASSERT((m->flags & PG_FICTITIOUS) != 0, ("%p not fictitious", m));
723
724         return (m);
725 }
726
727 static inline void
728 vm_phys_fictitious_init_range(vm_page_t range, vm_paddr_t start,
729     long page_count, vm_memattr_t memattr)
730 {
731         long i;
732
733         bzero(range, page_count * sizeof(*range));
734         for (i = 0; i < page_count; i++) {
735                 vm_page_initfake(&range[i], start + PAGE_SIZE * i, memattr);
736                 range[i].oflags &= ~VPO_UNMANAGED;
737                 range[i].busy_lock = VPB_UNBUSIED;
738         }
739 }
740
741 int
742 vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end,
743     vm_memattr_t memattr)
744 {
745         struct vm_phys_fictitious_seg *seg;
746         vm_page_t fp;
747         long page_count;
748 #ifdef VM_PHYSSEG_DENSE
749         long pi, pe;
750         long dpage_count;
751 #endif
752
753         KASSERT(start < end,
754             ("Start of segment isn't less than end (start: %jx end: %jx)",
755             (uintmax_t)start, (uintmax_t)end));
756
757         page_count = (end - start) / PAGE_SIZE;
758
759 #ifdef VM_PHYSSEG_DENSE
760         pi = atop(start);
761         pe = atop(end);
762         if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
763                 fp = &vm_page_array[pi - first_page];
764                 if ((pe - first_page) > vm_page_array_size) {
765                         /*
766                          * We have a segment that starts inside
767                          * of vm_page_array, but ends outside of it.
768                          *
769                          * Use vm_page_array pages for those that are
770                          * inside of the vm_page_array range, and
771                          * allocate the remaining ones.
772                          */
773                         dpage_count = vm_page_array_size - (pi - first_page);
774                         vm_phys_fictitious_init_range(fp, start, dpage_count,
775                             memattr);
776                         page_count -= dpage_count;
777                         start += ptoa(dpage_count);
778                         goto alloc;
779                 }
780                 /*
781                  * We can allocate the full range from vm_page_array,
782                  * so there's no need to register the range in the tree.
783                  */
784                 vm_phys_fictitious_init_range(fp, start, page_count, memattr);
785                 return (0);
786         } else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
787                 /*
788                  * We have a segment that ends inside of vm_page_array,
789                  * but starts outside of it.
790                  */
791                 fp = &vm_page_array[0];
792                 dpage_count = pe - first_page;
793                 vm_phys_fictitious_init_range(fp, ptoa(first_page), dpage_count,
794                     memattr);
795                 end -= ptoa(dpage_count);
796                 page_count -= dpage_count;
797                 goto alloc;
798         } else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
799                 /*
800                  * Trying to register a fictitious range that expands before
801                  * and after vm_page_array.
802                  */
803                 return (EINVAL);
804         } else {
805 alloc:
806 #endif
807                 fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES,
808                     M_WAITOK);
809 #ifdef VM_PHYSSEG_DENSE
810         }
811 #endif
812         vm_phys_fictitious_init_range(fp, start, page_count, memattr);
813
814         seg = malloc(sizeof(*seg), M_FICT_PAGES, M_WAITOK | M_ZERO);
815         seg->start = start;
816         seg->end = end;
817         seg->first_page = fp;
818
819         rw_wlock(&vm_phys_fictitious_reg_lock);
820         RB_INSERT(fict_tree, &vm_phys_fictitious_tree, seg);
821         rw_wunlock(&vm_phys_fictitious_reg_lock);
822
823         return (0);
824 }
825
826 void
827 vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end)
828 {
829         struct vm_phys_fictitious_seg *seg, tmp;
830 #ifdef VM_PHYSSEG_DENSE
831         long pi, pe;
832 #endif
833
834         KASSERT(start < end,
835             ("Start of segment isn't less than end (start: %jx end: %jx)",
836             (uintmax_t)start, (uintmax_t)end));
837
838 #ifdef VM_PHYSSEG_DENSE
839         pi = atop(start);
840         pe = atop(end);
841         if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
842                 if ((pe - first_page) <= vm_page_array_size) {
843                         /*
844                          * This segment was allocated using vm_page_array
845                          * only, there's nothing to do since those pages
846                          * were never added to the tree.
847                          */
848                         return;
849                 }
850                 /*
851                  * We have a segment that starts inside
852                  * of vm_page_array, but ends outside of it.
853                  *
854                  * Calculate how many pages were added to the
855                  * tree and free them.
856                  */
857                 start = ptoa(first_page + vm_page_array_size);
858         } else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
859                 /*
860                  * We have a segment that ends inside of vm_page_array,
861                  * but starts outside of it.
862                  */
863                 end = ptoa(first_page);
864         } else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
865                 /* Since it's not possible to register such a range, panic. */
866                 panic(
867                     "Unregistering not registered fictitious range [%#jx:%#jx]",
868                     (uintmax_t)start, (uintmax_t)end);
869         }
870 #endif
871         tmp.start = start;
872         tmp.end = 0;
873
874         rw_wlock(&vm_phys_fictitious_reg_lock);
875         seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
876         if (seg->start != start || seg->end != end) {
877                 rw_wunlock(&vm_phys_fictitious_reg_lock);
878                 panic(
879                     "Unregistering not registered fictitious range [%#jx:%#jx]",
880                     (uintmax_t)start, (uintmax_t)end);
881         }
882         RB_REMOVE(fict_tree, &vm_phys_fictitious_tree, seg);
883         rw_wunlock(&vm_phys_fictitious_reg_lock);
884         free(seg->first_page, M_FICT_PAGES);
885         free(seg, M_FICT_PAGES);
886 }
887
888 /*
889  * Free a contiguous, power of two-sized set of physical pages.
890  *
891  * The free page queues must be locked.
892  */
893 void
894 vm_phys_free_pages(vm_page_t m, int order)
895 {
896         struct vm_freelist *fl;
897         struct vm_phys_seg *seg;
898         vm_paddr_t pa;
899         vm_page_t m_buddy;
900
901         KASSERT(m->order == VM_NFREEORDER,
902             ("vm_phys_free_pages: page %p has unexpected order %d",
903             m, m->order));
904         KASSERT(m->pool < VM_NFREEPOOL,
905             ("vm_phys_free_pages: page %p has unexpected pool %d",
906             m, m->pool));
907         KASSERT(order < VM_NFREEORDER,
908             ("vm_phys_free_pages: order %d is out of range", order));
909         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
910         seg = &vm_phys_segs[m->segind];
911         if (order < VM_NFREEORDER - 1) {
912                 pa = VM_PAGE_TO_PHYS(m);
913                 do {
914                         pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order));
915                         if (pa < seg->start || pa >= seg->end)
916                                 break;
917                         m_buddy = &seg->first_page[atop(pa - seg->start)];
918                         if (m_buddy->order != order)
919                                 break;
920                         fl = (*seg->free_queues)[m_buddy->pool];
921                         vm_freelist_rem(fl, m_buddy, order);
922                         if (m_buddy->pool != m->pool)
923                                 vm_phys_set_pool(m->pool, m_buddy, order);
924                         order++;
925                         pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1);
926                         m = &seg->first_page[atop(pa - seg->start)];
927                 } while (order < VM_NFREEORDER - 1);
928         }
929         fl = (*seg->free_queues)[m->pool];
930         vm_freelist_add(fl, m, order, 1);
931 }
932
933 /*
934  * Free a contiguous, arbitrarily sized set of physical pages.
935  *
936  * The free page queues must be locked.
937  */
938 void
939 vm_phys_free_contig(vm_page_t m, u_long npages)
940 {
941         u_int n;
942         int order;
943
944         /*
945          * Avoid unnecessary coalescing by freeing the pages in the largest
946          * possible power-of-two-sized subsets.
947          */
948         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
949         for (;; npages -= n) {
950                 /*
951                  * Unsigned "min" is used here so that "order" is assigned
952                  * "VM_NFREEORDER - 1" when "m"'s physical address is zero
953                  * or the low-order bits of its physical address are zero
954                  * because the size of a physical address exceeds the size of
955                  * a long.
956                  */
957                 order = min(ffsl(VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) - 1,
958                     VM_NFREEORDER - 1);
959                 n = 1 << order;
960                 if (npages < n)
961                         break;
962                 vm_phys_free_pages(m, order);
963                 m += n;
964         }
965         /* The residual "npages" is less than "1 << (VM_NFREEORDER - 1)". */
966         for (; npages > 0; npages -= n) {
967                 order = flsl(npages) - 1;
968                 n = 1 << order;
969                 vm_phys_free_pages(m, order);
970                 m += n;
971         }
972 }
973
974 /*
975  * Scan physical memory between the specified addresses "low" and "high" for a
976  * run of contiguous physical pages that satisfy the specified conditions, and
977  * return the lowest page in the run.  The specified "alignment" determines
978  * the alignment of the lowest physical page in the run.  If the specified
979  * "boundary" is non-zero, then the run of physical pages cannot span a
980  * physical address that is a multiple of "boundary".
981  *
982  * "npages" must be greater than zero.  Both "alignment" and "boundary" must
983  * be a power of two.
984  */
985 vm_page_t
986 vm_phys_scan_contig(int domain, u_long npages, vm_paddr_t low, vm_paddr_t high,
987     u_long alignment, vm_paddr_t boundary, int options)
988 {
989         vm_paddr_t pa_end;
990         vm_page_t m_end, m_run, m_start;
991         struct vm_phys_seg *seg;
992         int segind;
993
994         KASSERT(npages > 0, ("npages is 0"));
995         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
996         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
997         if (low >= high)
998                 return (NULL);
999         for (segind = 0; segind < vm_phys_nsegs; segind++) {
1000                 seg = &vm_phys_segs[segind];
1001                 if (seg->domain != domain)
1002                         continue;
1003                 if (seg->start >= high)
1004                         break;
1005                 if (low >= seg->end)
1006                         continue;
1007                 if (low <= seg->start)
1008                         m_start = seg->first_page;
1009                 else
1010                         m_start = &seg->first_page[atop(low - seg->start)];
1011                 if (high < seg->end)
1012                         pa_end = high;
1013                 else
1014                         pa_end = seg->end;
1015                 if (pa_end - VM_PAGE_TO_PHYS(m_start) < ptoa(npages))
1016                         continue;
1017                 m_end = &seg->first_page[atop(pa_end - seg->start)];
1018                 m_run = vm_page_scan_contig(npages, m_start, m_end,
1019                     alignment, boundary, options);
1020                 if (m_run != NULL)
1021                         return (m_run);
1022         }
1023         return (NULL);
1024 }
1025
1026 /*
1027  * Set the pool for a contiguous, power of two-sized set of physical pages. 
1028  */
1029 void
1030 vm_phys_set_pool(int pool, vm_page_t m, int order)
1031 {
1032         vm_page_t m_tmp;
1033
1034         for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
1035                 m_tmp->pool = pool;
1036 }
1037
1038 /*
1039  * Search for the given physical page "m" in the free lists.  If the search
1040  * succeeds, remove "m" from the free lists and return TRUE.  Otherwise, return
1041  * FALSE, indicating that "m" is not in the free lists.
1042  *
1043  * The free page queues must be locked.
1044  */
1045 boolean_t
1046 vm_phys_unfree_page(vm_page_t m)
1047 {
1048         struct vm_freelist *fl;
1049         struct vm_phys_seg *seg;
1050         vm_paddr_t pa, pa_half;
1051         vm_page_t m_set, m_tmp;
1052         int order;
1053
1054         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1055
1056         /*
1057          * First, find the contiguous, power of two-sized set of free
1058          * physical pages containing the given physical page "m" and
1059          * assign it to "m_set".
1060          */
1061         seg = &vm_phys_segs[m->segind];
1062         for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
1063             order < VM_NFREEORDER - 1; ) {
1064                 order++;
1065                 pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
1066                 if (pa >= seg->start)
1067                         m_set = &seg->first_page[atop(pa - seg->start)];
1068                 else
1069                         return (FALSE);
1070         }
1071         if (m_set->order < order)
1072                 return (FALSE);
1073         if (m_set->order == VM_NFREEORDER)
1074                 return (FALSE);
1075         KASSERT(m_set->order < VM_NFREEORDER,
1076             ("vm_phys_unfree_page: page %p has unexpected order %d",
1077             m_set, m_set->order));
1078
1079         /*
1080          * Next, remove "m_set" from the free lists.  Finally, extract
1081          * "m" from "m_set" using an iterative algorithm: While "m_set"
1082          * is larger than a page, shrink "m_set" by returning the half
1083          * of "m_set" that does not contain "m" to the free lists.
1084          */
1085         fl = (*seg->free_queues)[m_set->pool];
1086         order = m_set->order;
1087         vm_freelist_rem(fl, m_set, order);
1088         while (order > 0) {
1089                 order--;
1090                 pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
1091                 if (m->phys_addr < pa_half)
1092                         m_tmp = &seg->first_page[atop(pa_half - seg->start)];
1093                 else {
1094                         m_tmp = m_set;
1095                         m_set = &seg->first_page[atop(pa_half - seg->start)];
1096                 }
1097                 vm_freelist_add(fl, m_tmp, order, 0);
1098         }
1099         KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
1100         return (TRUE);
1101 }
1102
1103 /*
1104  * Allocate a contiguous set of physical pages of the given size
1105  * "npages" from the free lists.  All of the physical pages must be at
1106  * or above the given physical address "low" and below the given
1107  * physical address "high".  The given value "alignment" determines the
1108  * alignment of the first physical page in the set.  If the given value
1109  * "boundary" is non-zero, then the set of physical pages cannot cross
1110  * any physical address boundary that is a multiple of that value.  Both
1111  * "alignment" and "boundary" must be a power of two.
1112  */
1113 vm_page_t
1114 vm_phys_alloc_contig(int domain, u_long npages, vm_paddr_t low, vm_paddr_t high,
1115     u_long alignment, vm_paddr_t boundary)
1116 {
1117         vm_paddr_t pa_end, pa_start;
1118         vm_page_t m_run;
1119         struct vm_phys_seg *seg;
1120         int segind;
1121
1122         KASSERT(npages > 0, ("npages is 0"));
1123         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1124         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1125         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1126         if (low >= high)
1127                 return (NULL);
1128         m_run = NULL;
1129         for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
1130                 seg = &vm_phys_segs[segind];
1131                 if (seg->start >= high || seg->domain != domain)
1132                         continue;
1133                 if (low >= seg->end)
1134                         break;
1135                 if (low <= seg->start)
1136                         pa_start = seg->start;
1137                 else
1138                         pa_start = low;
1139                 if (high < seg->end)
1140                         pa_end = high;
1141                 else
1142                         pa_end = seg->end;
1143                 if (pa_end - pa_start < ptoa(npages))
1144                         continue;
1145                 m_run = vm_phys_alloc_seg_contig(seg, npages, low, high,
1146                     alignment, boundary);
1147                 if (m_run != NULL)
1148                         break;
1149         }
1150         return (m_run);
1151 }
1152
1153 /*
1154  * Allocate a run of contiguous physical pages from the free list for the
1155  * specified segment.
1156  */
1157 static vm_page_t
1158 vm_phys_alloc_seg_contig(struct vm_phys_seg *seg, u_long npages,
1159     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
1160 {
1161         struct vm_freelist *fl;
1162         vm_paddr_t pa, pa_end, size;
1163         vm_page_t m, m_ret;
1164         u_long npages_end;
1165         int oind, order, pind;
1166
1167         KASSERT(npages > 0, ("npages is 0"));
1168         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1169         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1170         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1171         /* Compute the queue that is the best fit for npages. */
1172         for (order = 0; (1 << order) < npages; order++);
1173         /* Search for a run satisfying the specified conditions. */
1174         size = npages << PAGE_SHIFT;
1175         for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER;
1176             oind++) {
1177                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1178                         fl = (*seg->free_queues)[pind];
1179                         TAILQ_FOREACH(m_ret, &fl[oind].pl, plinks.q) {
1180                                 /*
1181                                  * Is the size of this allocation request
1182                                  * larger than the largest block size?
1183                                  */
1184                                 if (order >= VM_NFREEORDER) {
1185                                         /*
1186                                          * Determine if a sufficient number of
1187                                          * subsequent blocks to satisfy the
1188                                          * allocation request are free.
1189                                          */
1190                                         pa = VM_PAGE_TO_PHYS(m_ret);
1191                                         pa_end = pa + size;
1192                                         for (;;) {
1193                                                 pa += 1 << (PAGE_SHIFT +
1194                                                     VM_NFREEORDER - 1);
1195                                                 if (pa >= pa_end ||
1196                                                     pa < seg->start ||
1197                                                     pa >= seg->end)
1198                                                         break;
1199                                                 m = &seg->first_page[atop(pa -
1200                                                     seg->start)];
1201                                                 if (m->order != VM_NFREEORDER -
1202                                                     1)
1203                                                         break;
1204                                         }
1205                                         /* If not, go to the next block. */
1206                                         if (pa < pa_end)
1207                                                 continue;
1208                                 }
1209
1210                                 /*
1211                                  * Determine if the blocks are within the
1212                                  * given range, satisfy the given alignment,
1213                                  * and do not cross the given boundary.
1214                                  */
1215                                 pa = VM_PAGE_TO_PHYS(m_ret);
1216                                 pa_end = pa + size;
1217                                 if (pa >= low && pa_end <= high &&
1218                                     (pa & (alignment - 1)) == 0 &&
1219                                     rounddown2(pa ^ (pa_end - 1), boundary) == 0)
1220                                         goto done;
1221                         }
1222                 }
1223         }
1224         return (NULL);
1225 done:
1226         for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) {
1227                 fl = (*seg->free_queues)[m->pool];
1228                 vm_freelist_rem(fl, m, m->order);
1229         }
1230         if (m_ret->pool != VM_FREEPOOL_DEFAULT)
1231                 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m_ret, oind);
1232         fl = (*seg->free_queues)[m_ret->pool];
1233         vm_phys_split_pages(m_ret, oind, fl, order);
1234         /* Return excess pages to the free lists. */
1235         npages_end = roundup2(npages, 1 << imin(oind, order));
1236         if (npages < npages_end)
1237                 vm_phys_free_contig(&m_ret[npages], npages_end - npages);
1238         return (m_ret);
1239 }
1240
1241 #ifdef DDB
1242 /*
1243  * Show the number of physical pages in each of the free lists.
1244  */
1245 DB_SHOW_COMMAND(freepages, db_show_freepages)
1246 {
1247         struct vm_freelist *fl;
1248         int flind, oind, pind, dom;
1249
1250         for (dom = 0; dom < vm_ndomains; dom++) {
1251                 db_printf("DOMAIN: %d\n", dom);
1252                 for (flind = 0; flind < vm_nfreelists; flind++) {
1253                         db_printf("FREE LIST %d:\n"
1254                             "\n  ORDER (SIZE)  |  NUMBER"
1255                             "\n              ", flind);
1256                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
1257                                 db_printf("  |  POOL %d", pind);
1258                         db_printf("\n--            ");
1259                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
1260                                 db_printf("-- --      ");
1261                         db_printf("--\n");
1262                         for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
1263                                 db_printf("  %2.2d (%6.6dK)", oind,
1264                                     1 << (PAGE_SHIFT - 10 + oind));
1265                                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1266                                 fl = vm_phys_free_queues[dom][flind][pind];
1267                                         db_printf("  |  %6.6d", fl[oind].lcnt);
1268                                 }
1269                                 db_printf("\n");
1270                         }
1271                         db_printf("\n");
1272                 }
1273                 db_printf("\n");
1274         }
1275 }
1276 #endif