]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_phys.c
Introduce vm_phys_enq_range(), and call it in vm_phys_alloc_npages()
[FreeBSD/FreeBSD.git] / sys / vm / vm_phys.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2002-2006 Rice University
5  * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
6  * All rights reserved.
7  *
8  * This software was developed for the FreeBSD Project by Alan L. Cox,
9  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
24  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
27  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
30  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 /*
35  *      Physical memory system implementation
36  *
37  * Any external functions defined by this module are only to be used by the
38  * virtual memory system.
39  */
40
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43
44 #include "opt_ddb.h"
45 #include "opt_vm.h"
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/lock.h>
50 #include <sys/kernel.h>
51 #include <sys/malloc.h>
52 #include <sys/mutex.h>
53 #include <sys/proc.h>
54 #include <sys/queue.h>
55 #include <sys/rwlock.h>
56 #include <sys/sbuf.h>
57 #include <sys/sysctl.h>
58 #include <sys/tree.h>
59 #include <sys/vmmeter.h>
60 #include <sys/seq.h>
61
62 #include <ddb/ddb.h>
63
64 #include <vm/vm.h>
65 #include <vm/vm_param.h>
66 #include <vm/vm_kern.h>
67 #include <vm/vm_object.h>
68 #include <vm/vm_page.h>
69 #include <vm/vm_phys.h>
70 #include <vm/vm_pagequeue.h>
71
72 _Static_assert(sizeof(long) * NBBY >= VM_PHYSSEG_MAX,
73     "Too many physsegs.");
74
75 #ifdef NUMA
76 struct mem_affinity __read_mostly *mem_affinity;
77 int __read_mostly *mem_locality;
78 #endif
79
80 int __read_mostly vm_ndomains = 1;
81
82 struct vm_phys_seg __read_mostly vm_phys_segs[VM_PHYSSEG_MAX];
83 int __read_mostly vm_phys_nsegs;
84
85 struct vm_phys_fictitious_seg;
86 static int vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *,
87     struct vm_phys_fictitious_seg *);
88
89 RB_HEAD(fict_tree, vm_phys_fictitious_seg) vm_phys_fictitious_tree =
90     RB_INITIALIZER(_vm_phys_fictitious_tree);
91
92 struct vm_phys_fictitious_seg {
93         RB_ENTRY(vm_phys_fictitious_seg) node;
94         /* Memory region data */
95         vm_paddr_t      start;
96         vm_paddr_t      end;
97         vm_page_t       first_page;
98 };
99
100 RB_GENERATE_STATIC(fict_tree, vm_phys_fictitious_seg, node,
101     vm_phys_fictitious_cmp);
102
103 static struct rwlock_padalign vm_phys_fictitious_reg_lock;
104 MALLOC_DEFINE(M_FICT_PAGES, "vm_fictitious", "Fictitious VM pages");
105
106 static struct vm_freelist __aligned(CACHE_LINE_SIZE)
107     vm_phys_free_queues[MAXMEMDOM][VM_NFREELIST][VM_NFREEPOOL][VM_NFREEORDER];
108
109 static int __read_mostly vm_nfreelists;
110
111 /*
112  * Provides the mapping from VM_FREELIST_* to free list indices (flind).
113  */
114 static int __read_mostly vm_freelist_to_flind[VM_NFREELIST];
115
116 CTASSERT(VM_FREELIST_DEFAULT == 0);
117
118 #ifdef VM_FREELIST_ISADMA
119 #define VM_ISADMA_BOUNDARY      16777216
120 #endif
121 #ifdef VM_FREELIST_DMA32
122 #define VM_DMA32_BOUNDARY       ((vm_paddr_t)1 << 32)
123 #endif
124
125 /*
126  * Enforce the assumptions made by vm_phys_add_seg() and vm_phys_init() about
127  * the ordering of the free list boundaries.
128  */
129 #if defined(VM_ISADMA_BOUNDARY) && defined(VM_LOWMEM_BOUNDARY)
130 CTASSERT(VM_ISADMA_BOUNDARY < VM_LOWMEM_BOUNDARY);
131 #endif
132 #if defined(VM_LOWMEM_BOUNDARY) && defined(VM_DMA32_BOUNDARY)
133 CTASSERT(VM_LOWMEM_BOUNDARY < VM_DMA32_BOUNDARY);
134 #endif
135
136 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
137 SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD,
138     NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info");
139
140 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
141 SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD,
142     NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info");
143
144 #ifdef NUMA
145 static int sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS);
146 SYSCTL_OID(_vm, OID_AUTO, phys_locality, CTLTYPE_STRING | CTLFLAG_RD,
147     NULL, 0, sysctl_vm_phys_locality, "A", "Phys Locality Info");
148 #endif
149
150 SYSCTL_INT(_vm, OID_AUTO, ndomains, CTLFLAG_RD,
151     &vm_ndomains, 0, "Number of physical memory domains available.");
152
153 static vm_page_t vm_phys_alloc_seg_contig(struct vm_phys_seg *seg,
154     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
155     vm_paddr_t boundary);
156 static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain);
157 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end);
158 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
159     int order);
160
161 /*
162  * Red-black tree helpers for vm fictitious range management.
163  */
164 static inline int
165 vm_phys_fictitious_in_range(struct vm_phys_fictitious_seg *p,
166     struct vm_phys_fictitious_seg *range)
167 {
168
169         KASSERT(range->start != 0 && range->end != 0,
170             ("Invalid range passed on search for vm_fictitious page"));
171         if (p->start >= range->end)
172                 return (1);
173         if (p->start < range->start)
174                 return (-1);
175
176         return (0);
177 }
178
179 static int
180 vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *p1,
181     struct vm_phys_fictitious_seg *p2)
182 {
183
184         /* Check if this is a search for a page */
185         if (p1->end == 0)
186                 return (vm_phys_fictitious_in_range(p1, p2));
187
188         KASSERT(p2->end != 0,
189     ("Invalid range passed as second parameter to vm fictitious comparison"));
190
191         /* Searching to add a new range */
192         if (p1->end <= p2->start)
193                 return (-1);
194         if (p1->start >= p2->end)
195                 return (1);
196
197         panic("Trying to add overlapping vm fictitious ranges:\n"
198             "[%#jx:%#jx] and [%#jx:%#jx]", (uintmax_t)p1->start,
199             (uintmax_t)p1->end, (uintmax_t)p2->start, (uintmax_t)p2->end);
200 }
201
202 int
203 vm_phys_domain_match(int prefer, vm_paddr_t low, vm_paddr_t high)
204 {
205 #ifdef NUMA
206         domainset_t mask;
207         int i;
208
209         if (vm_ndomains == 1 || mem_affinity == NULL)
210                 return (0);
211
212         DOMAINSET_ZERO(&mask);
213         /*
214          * Check for any memory that overlaps low, high.
215          */
216         for (i = 0; mem_affinity[i].end != 0; i++)
217                 if (mem_affinity[i].start <= high &&
218                     mem_affinity[i].end >= low)
219                         DOMAINSET_SET(mem_affinity[i].domain, &mask);
220         if (prefer != -1 && DOMAINSET_ISSET(prefer, &mask))
221                 return (prefer);
222         if (DOMAINSET_EMPTY(&mask))
223                 panic("vm_phys_domain_match:  Impossible constraint");
224         return (DOMAINSET_FFS(&mask) - 1);
225 #else
226         return (0);
227 #endif
228 }
229
230 /*
231  * Outputs the state of the physical memory allocator, specifically,
232  * the amount of physical memory in each free list.
233  */
234 static int
235 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
236 {
237         struct sbuf sbuf;
238         struct vm_freelist *fl;
239         int dom, error, flind, oind, pind;
240
241         error = sysctl_wire_old_buffer(req, 0);
242         if (error != 0)
243                 return (error);
244         sbuf_new_for_sysctl(&sbuf, NULL, 128 * vm_ndomains, req);
245         for (dom = 0; dom < vm_ndomains; dom++) {
246                 sbuf_printf(&sbuf,"\nDOMAIN %d:\n", dom);
247                 for (flind = 0; flind < vm_nfreelists; flind++) {
248                         sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
249                             "\n  ORDER (SIZE)  |  NUMBER"
250                             "\n              ", flind);
251                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
252                                 sbuf_printf(&sbuf, "  |  POOL %d", pind);
253                         sbuf_printf(&sbuf, "\n--            ");
254                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
255                                 sbuf_printf(&sbuf, "-- --      ");
256                         sbuf_printf(&sbuf, "--\n");
257                         for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
258                                 sbuf_printf(&sbuf, "  %2d (%6dK)", oind,
259                                     1 << (PAGE_SHIFT - 10 + oind));
260                                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
261                                 fl = vm_phys_free_queues[dom][flind][pind];
262                                         sbuf_printf(&sbuf, "  |  %6d",
263                                             fl[oind].lcnt);
264                                 }
265                                 sbuf_printf(&sbuf, "\n");
266                         }
267                 }
268         }
269         error = sbuf_finish(&sbuf);
270         sbuf_delete(&sbuf);
271         return (error);
272 }
273
274 /*
275  * Outputs the set of physical memory segments.
276  */
277 static int
278 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
279 {
280         struct sbuf sbuf;
281         struct vm_phys_seg *seg;
282         int error, segind;
283
284         error = sysctl_wire_old_buffer(req, 0);
285         if (error != 0)
286                 return (error);
287         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
288         for (segind = 0; segind < vm_phys_nsegs; segind++) {
289                 sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
290                 seg = &vm_phys_segs[segind];
291                 sbuf_printf(&sbuf, "start:     %#jx\n",
292                     (uintmax_t)seg->start);
293                 sbuf_printf(&sbuf, "end:       %#jx\n",
294                     (uintmax_t)seg->end);
295                 sbuf_printf(&sbuf, "domain:    %d\n", seg->domain);
296                 sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
297         }
298         error = sbuf_finish(&sbuf);
299         sbuf_delete(&sbuf);
300         return (error);
301 }
302
303 /*
304  * Return affinity, or -1 if there's no affinity information.
305  */
306 int
307 vm_phys_mem_affinity(int f, int t)
308 {
309
310 #ifdef NUMA
311         if (mem_locality == NULL)
312                 return (-1);
313         if (f >= vm_ndomains || t >= vm_ndomains)
314                 return (-1);
315         return (mem_locality[f * vm_ndomains + t]);
316 #else
317         return (-1);
318 #endif
319 }
320
321 #ifdef NUMA
322 /*
323  * Outputs the VM locality table.
324  */
325 static int
326 sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS)
327 {
328         struct sbuf sbuf;
329         int error, i, j;
330
331         error = sysctl_wire_old_buffer(req, 0);
332         if (error != 0)
333                 return (error);
334         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
335
336         sbuf_printf(&sbuf, "\n");
337
338         for (i = 0; i < vm_ndomains; i++) {
339                 sbuf_printf(&sbuf, "%d: ", i);
340                 for (j = 0; j < vm_ndomains; j++) {
341                         sbuf_printf(&sbuf, "%d ", vm_phys_mem_affinity(i, j));
342                 }
343                 sbuf_printf(&sbuf, "\n");
344         }
345         error = sbuf_finish(&sbuf);
346         sbuf_delete(&sbuf);
347         return (error);
348 }
349 #endif
350
351 static void
352 vm_freelist_add(struct vm_freelist *fl, vm_page_t m, int order, int tail)
353 {
354
355         m->order = order;
356         if (tail)
357                 TAILQ_INSERT_TAIL(&fl[order].pl, m, listq);
358         else
359                 TAILQ_INSERT_HEAD(&fl[order].pl, m, listq);
360         fl[order].lcnt++;
361 }
362
363 static void
364 vm_freelist_rem(struct vm_freelist *fl, vm_page_t m, int order)
365 {
366
367         TAILQ_REMOVE(&fl[order].pl, m, listq);
368         fl[order].lcnt--;
369         m->order = VM_NFREEORDER;
370 }
371
372 /*
373  * Create a physical memory segment.
374  */
375 static void
376 _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain)
377 {
378         struct vm_phys_seg *seg;
379
380         KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
381             ("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
382         KASSERT(domain >= 0 && domain < vm_ndomains,
383             ("vm_phys_create_seg: invalid domain provided"));
384         seg = &vm_phys_segs[vm_phys_nsegs++];
385         while (seg > vm_phys_segs && (seg - 1)->start >= end) {
386                 *seg = *(seg - 1);
387                 seg--;
388         }
389         seg->start = start;
390         seg->end = end;
391         seg->domain = domain;
392 }
393
394 static void
395 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end)
396 {
397 #ifdef NUMA
398         int i;
399
400         if (mem_affinity == NULL) {
401                 _vm_phys_create_seg(start, end, 0);
402                 return;
403         }
404
405         for (i = 0;; i++) {
406                 if (mem_affinity[i].end == 0)
407                         panic("Reached end of affinity info");
408                 if (mem_affinity[i].end <= start)
409                         continue;
410                 if (mem_affinity[i].start > start)
411                         panic("No affinity info for start %jx",
412                             (uintmax_t)start);
413                 if (mem_affinity[i].end >= end) {
414                         _vm_phys_create_seg(start, end,
415                             mem_affinity[i].domain);
416                         break;
417                 }
418                 _vm_phys_create_seg(start, mem_affinity[i].end,
419                     mem_affinity[i].domain);
420                 start = mem_affinity[i].end;
421         }
422 #else
423         _vm_phys_create_seg(start, end, 0);
424 #endif
425 }
426
427 /*
428  * Add a physical memory segment.
429  */
430 void
431 vm_phys_add_seg(vm_paddr_t start, vm_paddr_t end)
432 {
433         vm_paddr_t paddr;
434
435         KASSERT((start & PAGE_MASK) == 0,
436             ("vm_phys_define_seg: start is not page aligned"));
437         KASSERT((end & PAGE_MASK) == 0,
438             ("vm_phys_define_seg: end is not page aligned"));
439
440         /*
441          * Split the physical memory segment if it spans two or more free
442          * list boundaries.
443          */
444         paddr = start;
445 #ifdef  VM_FREELIST_ISADMA
446         if (paddr < VM_ISADMA_BOUNDARY && end > VM_ISADMA_BOUNDARY) {
447                 vm_phys_create_seg(paddr, VM_ISADMA_BOUNDARY);
448                 paddr = VM_ISADMA_BOUNDARY;
449         }
450 #endif
451 #ifdef  VM_FREELIST_LOWMEM
452         if (paddr < VM_LOWMEM_BOUNDARY && end > VM_LOWMEM_BOUNDARY) {
453                 vm_phys_create_seg(paddr, VM_LOWMEM_BOUNDARY);
454                 paddr = VM_LOWMEM_BOUNDARY;
455         }
456 #endif
457 #ifdef  VM_FREELIST_DMA32
458         if (paddr < VM_DMA32_BOUNDARY && end > VM_DMA32_BOUNDARY) {
459                 vm_phys_create_seg(paddr, VM_DMA32_BOUNDARY);
460                 paddr = VM_DMA32_BOUNDARY;
461         }
462 #endif
463         vm_phys_create_seg(paddr, end);
464 }
465
466 /*
467  * Initialize the physical memory allocator.
468  *
469  * Requires that vm_page_array is initialized!
470  */
471 void
472 vm_phys_init(void)
473 {
474         struct vm_freelist *fl;
475         struct vm_phys_seg *seg;
476         u_long npages;
477         int dom, flind, freelist, oind, pind, segind;
478
479         /*
480          * Compute the number of free lists, and generate the mapping from the
481          * manifest constants VM_FREELIST_* to the free list indices.
482          *
483          * Initially, the entries of vm_freelist_to_flind[] are set to either
484          * 0 or 1 to indicate which free lists should be created.
485          */
486         npages = 0;
487         for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
488                 seg = &vm_phys_segs[segind];
489 #ifdef  VM_FREELIST_ISADMA
490                 if (seg->end <= VM_ISADMA_BOUNDARY)
491                         vm_freelist_to_flind[VM_FREELIST_ISADMA] = 1;
492                 else
493 #endif
494 #ifdef  VM_FREELIST_LOWMEM
495                 if (seg->end <= VM_LOWMEM_BOUNDARY)
496                         vm_freelist_to_flind[VM_FREELIST_LOWMEM] = 1;
497                 else
498 #endif
499 #ifdef  VM_FREELIST_DMA32
500                 if (
501 #ifdef  VM_DMA32_NPAGES_THRESHOLD
502                     /*
503                      * Create the DMA32 free list only if the amount of
504                      * physical memory above physical address 4G exceeds the
505                      * given threshold.
506                      */
507                     npages > VM_DMA32_NPAGES_THRESHOLD &&
508 #endif
509                     seg->end <= VM_DMA32_BOUNDARY)
510                         vm_freelist_to_flind[VM_FREELIST_DMA32] = 1;
511                 else
512 #endif
513                 {
514                         npages += atop(seg->end - seg->start);
515                         vm_freelist_to_flind[VM_FREELIST_DEFAULT] = 1;
516                 }
517         }
518         /* Change each entry into a running total of the free lists. */
519         for (freelist = 1; freelist < VM_NFREELIST; freelist++) {
520                 vm_freelist_to_flind[freelist] +=
521                     vm_freelist_to_flind[freelist - 1];
522         }
523         vm_nfreelists = vm_freelist_to_flind[VM_NFREELIST - 1];
524         KASSERT(vm_nfreelists > 0, ("vm_phys_init: no free lists"));
525         /* Change each entry into a free list index. */
526         for (freelist = 0; freelist < VM_NFREELIST; freelist++)
527                 vm_freelist_to_flind[freelist]--;
528
529         /*
530          * Initialize the first_page and free_queues fields of each physical
531          * memory segment.
532          */
533 #ifdef VM_PHYSSEG_SPARSE
534         npages = 0;
535 #endif
536         for (segind = 0; segind < vm_phys_nsegs; segind++) {
537                 seg = &vm_phys_segs[segind];
538 #ifdef VM_PHYSSEG_SPARSE
539                 seg->first_page = &vm_page_array[npages];
540                 npages += atop(seg->end - seg->start);
541 #else
542                 seg->first_page = PHYS_TO_VM_PAGE(seg->start);
543 #endif
544 #ifdef  VM_FREELIST_ISADMA
545                 if (seg->end <= VM_ISADMA_BOUNDARY) {
546                         flind = vm_freelist_to_flind[VM_FREELIST_ISADMA];
547                         KASSERT(flind >= 0,
548                             ("vm_phys_init: ISADMA flind < 0"));
549                 } else
550 #endif
551 #ifdef  VM_FREELIST_LOWMEM
552                 if (seg->end <= VM_LOWMEM_BOUNDARY) {
553                         flind = vm_freelist_to_flind[VM_FREELIST_LOWMEM];
554                         KASSERT(flind >= 0,
555                             ("vm_phys_init: LOWMEM flind < 0"));
556                 } else
557 #endif
558 #ifdef  VM_FREELIST_DMA32
559                 if (seg->end <= VM_DMA32_BOUNDARY) {
560                         flind = vm_freelist_to_flind[VM_FREELIST_DMA32];
561                         KASSERT(flind >= 0,
562                             ("vm_phys_init: DMA32 flind < 0"));
563                 } else
564 #endif
565                 {
566                         flind = vm_freelist_to_flind[VM_FREELIST_DEFAULT];
567                         KASSERT(flind >= 0,
568                             ("vm_phys_init: DEFAULT flind < 0"));
569                 }
570                 seg->free_queues = &vm_phys_free_queues[seg->domain][flind];
571         }
572
573         /*
574          * Initialize the free queues.
575          */
576         for (dom = 0; dom < vm_ndomains; dom++) {
577                 for (flind = 0; flind < vm_nfreelists; flind++) {
578                         for (pind = 0; pind < VM_NFREEPOOL; pind++) {
579                                 fl = vm_phys_free_queues[dom][flind][pind];
580                                 for (oind = 0; oind < VM_NFREEORDER; oind++)
581                                         TAILQ_INIT(&fl[oind].pl);
582                         }
583                 }
584         }
585
586         rw_init(&vm_phys_fictitious_reg_lock, "vmfctr");
587 }
588
589 /*
590  * Split a contiguous, power of two-sized set of physical pages.
591  */
592 static __inline void
593 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order)
594 {
595         vm_page_t m_buddy;
596
597         while (oind > order) {
598                 oind--;
599                 m_buddy = &m[1 << oind];
600                 KASSERT(m_buddy->order == VM_NFREEORDER,
601                     ("vm_phys_split_pages: page %p has unexpected order %d",
602                     m_buddy, m_buddy->order));
603                 vm_freelist_add(fl, m_buddy, oind, 0);
604         }
605 }
606
607 /*
608  * Add the physical pages [m, m + npages) at the end of a power-of-two aligned
609  * and sized set to the specified free list.
610  *
611  * When this function is called by a page allocation function, the caller
612  * should request insertion at the head unless the lower-order queues are
613  * known to be empty.  The objective being to reduce the likelihood of long-
614  * term fragmentation by promoting contemporaneous allocation and (hopefully)
615  * deallocation.
616  *
617  * The physical page m's buddy must not be free.
618  */
619 static void
620 vm_phys_enq_range(vm_page_t m, u_int npages, struct vm_freelist *fl, int tail)
621 {
622         u_int n;
623         int order;
624
625         KASSERT(npages > 0, ("vm_phys_enq_range: npages is 0"));
626         KASSERT(((VM_PAGE_TO_PHYS(m) + npages * PAGE_SIZE) &
627             ((PAGE_SIZE << (fls(npages) - 1)) - 1)) == 0,
628             ("vm_phys_enq_range: page %p and npages %u are misaligned",
629             m, npages));
630         do {
631                 KASSERT(m->order == VM_NFREEORDER,
632                     ("vm_phys_enq_range: page %p has unexpected order %d",
633                     m, m->order));
634                 order = ffs(npages) - 1;
635                 KASSERT(order < VM_NFREEORDER,
636                     ("vm_phys_enq_range: order %d is out of range", order));
637                 vm_freelist_add(fl, m, order, tail);
638                 n = 1 << order;
639                 m += n;
640                 npages -= n;
641         } while (npages > 0);
642 }
643
644 /*
645  * Tries to allocate the specified number of pages from the specified pool
646  * within the specified domain.  Returns the actual number of allocated pages
647  * and a pointer to each page through the array ma[].
648  *
649  * The returned pages may not be physically contiguous.  However, in contrast
650  * to performing multiple, back-to-back calls to vm_phys_alloc_pages(..., 0),
651  * calling this function once to allocate the desired number of pages will
652  * avoid wasted time in vm_phys_split_pages().
653  *
654  * The free page queues for the specified domain must be locked.
655  */
656 int
657 vm_phys_alloc_npages(int domain, int pool, int npages, vm_page_t ma[])
658 {
659         struct vm_freelist *alt, *fl;
660         vm_page_t m;
661         int avail, end, flind, freelist, i, need, oind, pind;
662
663         KASSERT(domain >= 0 && domain < vm_ndomains,
664             ("vm_phys_alloc_npages: domain %d is out of range", domain));
665         KASSERT(pool < VM_NFREEPOOL,
666             ("vm_phys_alloc_npages: pool %d is out of range", pool));
667         KASSERT(npages <= 1 << (VM_NFREEORDER - 1),
668             ("vm_phys_alloc_npages: npages %d is out of range", npages));
669         vm_domain_free_assert_locked(VM_DOMAIN(domain));
670         i = 0;
671         for (freelist = 0; freelist < VM_NFREELIST; freelist++) {
672                 flind = vm_freelist_to_flind[freelist];
673                 if (flind < 0)
674                         continue;
675                 fl = vm_phys_free_queues[domain][flind][pool];
676                 for (oind = 0; oind < VM_NFREEORDER; oind++) {
677                         while ((m = TAILQ_FIRST(&fl[oind].pl)) != NULL) {
678                                 vm_freelist_rem(fl, m, oind);
679                                 avail = 1 << oind;
680                                 need = imin(npages - i, avail);
681                                 for (end = i + need; i < end;)
682                                         ma[i++] = m++;
683                                 if (need < avail) {
684                                         /*
685                                          * Return excess pages to fl.  Its
686                                          * order [0, oind) queues are empty.
687                                          */
688                                         vm_phys_enq_range(m, avail - need, fl,
689                                             1);
690                                         return (npages);
691                                 } else if (i == npages)
692                                         return (npages);
693                         }
694                 }
695                 for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
696                         for (pind = 0; pind < VM_NFREEPOOL; pind++) {
697                                 alt = vm_phys_free_queues[domain][flind][pind];
698                                 while ((m = TAILQ_FIRST(&alt[oind].pl)) !=
699                                     NULL) {
700                                         vm_freelist_rem(alt, m, oind);
701                                         vm_phys_set_pool(pool, m, oind);
702                                         avail = 1 << oind;
703                                         need = imin(npages - i, avail);
704                                         for (end = i + need; i < end;)
705                                                 ma[i++] = m++;
706                                         if (need < avail) {
707                                                 /*
708                                                  * Return excess pages to fl.
709                                                  * Its order [0, oind) queues
710                                                  * are empty.
711                                                  */
712                                                 vm_phys_enq_range(m, avail -
713                                                     need, fl, 1);
714                                                 return (npages);
715                                         } else if (i == npages)
716                                                 return (npages);
717                                 }
718                         }
719                 }
720         }
721         return (i);
722 }
723
724 /*
725  * Allocate a contiguous, power of two-sized set of physical pages
726  * from the free lists.
727  *
728  * The free page queues must be locked.
729  */
730 vm_page_t
731 vm_phys_alloc_pages(int domain, int pool, int order)
732 {
733         vm_page_t m;
734         int freelist;
735
736         for (freelist = 0; freelist < VM_NFREELIST; freelist++) {
737                 m = vm_phys_alloc_freelist_pages(domain, freelist, pool, order);
738                 if (m != NULL)
739                         return (m);
740         }
741         return (NULL);
742 }
743
744 /*
745  * Allocate a contiguous, power of two-sized set of physical pages from the
746  * specified free list.  The free list must be specified using one of the
747  * manifest constants VM_FREELIST_*.
748  *
749  * The free page queues must be locked.
750  */
751 vm_page_t
752 vm_phys_alloc_freelist_pages(int domain, int freelist, int pool, int order)
753 {
754         struct vm_freelist *alt, *fl;
755         vm_page_t m;
756         int oind, pind, flind;
757
758         KASSERT(domain >= 0 && domain < vm_ndomains,
759             ("vm_phys_alloc_freelist_pages: domain %d is out of range",
760             domain));
761         KASSERT(freelist < VM_NFREELIST,
762             ("vm_phys_alloc_freelist_pages: freelist %d is out of range",
763             freelist));
764         KASSERT(pool < VM_NFREEPOOL,
765             ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool));
766         KASSERT(order < VM_NFREEORDER,
767             ("vm_phys_alloc_freelist_pages: order %d is out of range", order));
768
769         flind = vm_freelist_to_flind[freelist];
770         /* Check if freelist is present */
771         if (flind < 0)
772                 return (NULL);
773
774         vm_domain_free_assert_locked(VM_DOMAIN(domain));
775         fl = &vm_phys_free_queues[domain][flind][pool][0];
776         for (oind = order; oind < VM_NFREEORDER; oind++) {
777                 m = TAILQ_FIRST(&fl[oind].pl);
778                 if (m != NULL) {
779                         vm_freelist_rem(fl, m, oind);
780                         vm_phys_split_pages(m, oind, fl, order);
781                         return (m);
782                 }
783         }
784
785         /*
786          * The given pool was empty.  Find the largest
787          * contiguous, power-of-two-sized set of pages in any
788          * pool.  Transfer these pages to the given pool, and
789          * use them to satisfy the allocation.
790          */
791         for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
792                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
793                         alt = &vm_phys_free_queues[domain][flind][pind][0];
794                         m = TAILQ_FIRST(&alt[oind].pl);
795                         if (m != NULL) {
796                                 vm_freelist_rem(alt, m, oind);
797                                 vm_phys_set_pool(pool, m, oind);
798                                 vm_phys_split_pages(m, oind, fl, order);
799                                 return (m);
800                         }
801                 }
802         }
803         return (NULL);
804 }
805
806 /*
807  * Find the vm_page corresponding to the given physical address.
808  */
809 vm_page_t
810 vm_phys_paddr_to_vm_page(vm_paddr_t pa)
811 {
812         struct vm_phys_seg *seg;
813         int segind;
814
815         for (segind = 0; segind < vm_phys_nsegs; segind++) {
816                 seg = &vm_phys_segs[segind];
817                 if (pa >= seg->start && pa < seg->end)
818                         return (&seg->first_page[atop(pa - seg->start)]);
819         }
820         return (NULL);
821 }
822
823 vm_page_t
824 vm_phys_fictitious_to_vm_page(vm_paddr_t pa)
825 {
826         struct vm_phys_fictitious_seg tmp, *seg;
827         vm_page_t m;
828
829         m = NULL;
830         tmp.start = pa;
831         tmp.end = 0;
832
833         rw_rlock(&vm_phys_fictitious_reg_lock);
834         seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
835         rw_runlock(&vm_phys_fictitious_reg_lock);
836         if (seg == NULL)
837                 return (NULL);
838
839         m = &seg->first_page[atop(pa - seg->start)];
840         KASSERT((m->flags & PG_FICTITIOUS) != 0, ("%p not fictitious", m));
841
842         return (m);
843 }
844
845 static inline void
846 vm_phys_fictitious_init_range(vm_page_t range, vm_paddr_t start,
847     long page_count, vm_memattr_t memattr)
848 {
849         long i;
850
851         bzero(range, page_count * sizeof(*range));
852         for (i = 0; i < page_count; i++) {
853                 vm_page_initfake(&range[i], start + PAGE_SIZE * i, memattr);
854                 range[i].oflags &= ~VPO_UNMANAGED;
855                 range[i].busy_lock = VPB_UNBUSIED;
856         }
857 }
858
859 int
860 vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end,
861     vm_memattr_t memattr)
862 {
863         struct vm_phys_fictitious_seg *seg;
864         vm_page_t fp;
865         long page_count;
866 #ifdef VM_PHYSSEG_DENSE
867         long pi, pe;
868         long dpage_count;
869 #endif
870
871         KASSERT(start < end,
872             ("Start of segment isn't less than end (start: %jx end: %jx)",
873             (uintmax_t)start, (uintmax_t)end));
874
875         page_count = (end - start) / PAGE_SIZE;
876
877 #ifdef VM_PHYSSEG_DENSE
878         pi = atop(start);
879         pe = atop(end);
880         if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
881                 fp = &vm_page_array[pi - first_page];
882                 if ((pe - first_page) > vm_page_array_size) {
883                         /*
884                          * We have a segment that starts inside
885                          * of vm_page_array, but ends outside of it.
886                          *
887                          * Use vm_page_array pages for those that are
888                          * inside of the vm_page_array range, and
889                          * allocate the remaining ones.
890                          */
891                         dpage_count = vm_page_array_size - (pi - first_page);
892                         vm_phys_fictitious_init_range(fp, start, dpage_count,
893                             memattr);
894                         page_count -= dpage_count;
895                         start += ptoa(dpage_count);
896                         goto alloc;
897                 }
898                 /*
899                  * We can allocate the full range from vm_page_array,
900                  * so there's no need to register the range in the tree.
901                  */
902                 vm_phys_fictitious_init_range(fp, start, page_count, memattr);
903                 return (0);
904         } else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
905                 /*
906                  * We have a segment that ends inside of vm_page_array,
907                  * but starts outside of it.
908                  */
909                 fp = &vm_page_array[0];
910                 dpage_count = pe - first_page;
911                 vm_phys_fictitious_init_range(fp, ptoa(first_page), dpage_count,
912                     memattr);
913                 end -= ptoa(dpage_count);
914                 page_count -= dpage_count;
915                 goto alloc;
916         } else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
917                 /*
918                  * Trying to register a fictitious range that expands before
919                  * and after vm_page_array.
920                  */
921                 return (EINVAL);
922         } else {
923 alloc:
924 #endif
925                 fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES,
926                     M_WAITOK);
927 #ifdef VM_PHYSSEG_DENSE
928         }
929 #endif
930         vm_phys_fictitious_init_range(fp, start, page_count, memattr);
931
932         seg = malloc(sizeof(*seg), M_FICT_PAGES, M_WAITOK | M_ZERO);
933         seg->start = start;
934         seg->end = end;
935         seg->first_page = fp;
936
937         rw_wlock(&vm_phys_fictitious_reg_lock);
938         RB_INSERT(fict_tree, &vm_phys_fictitious_tree, seg);
939         rw_wunlock(&vm_phys_fictitious_reg_lock);
940
941         return (0);
942 }
943
944 void
945 vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end)
946 {
947         struct vm_phys_fictitious_seg *seg, tmp;
948 #ifdef VM_PHYSSEG_DENSE
949         long pi, pe;
950 #endif
951
952         KASSERT(start < end,
953             ("Start of segment isn't less than end (start: %jx end: %jx)",
954             (uintmax_t)start, (uintmax_t)end));
955
956 #ifdef VM_PHYSSEG_DENSE
957         pi = atop(start);
958         pe = atop(end);
959         if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
960                 if ((pe - first_page) <= vm_page_array_size) {
961                         /*
962                          * This segment was allocated using vm_page_array
963                          * only, there's nothing to do since those pages
964                          * were never added to the tree.
965                          */
966                         return;
967                 }
968                 /*
969                  * We have a segment that starts inside
970                  * of vm_page_array, but ends outside of it.
971                  *
972                  * Calculate how many pages were added to the
973                  * tree and free them.
974                  */
975                 start = ptoa(first_page + vm_page_array_size);
976         } else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
977                 /*
978                  * We have a segment that ends inside of vm_page_array,
979                  * but starts outside of it.
980                  */
981                 end = ptoa(first_page);
982         } else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
983                 /* Since it's not possible to register such a range, panic. */
984                 panic(
985                     "Unregistering not registered fictitious range [%#jx:%#jx]",
986                     (uintmax_t)start, (uintmax_t)end);
987         }
988 #endif
989         tmp.start = start;
990         tmp.end = 0;
991
992         rw_wlock(&vm_phys_fictitious_reg_lock);
993         seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
994         if (seg->start != start || seg->end != end) {
995                 rw_wunlock(&vm_phys_fictitious_reg_lock);
996                 panic(
997                     "Unregistering not registered fictitious range [%#jx:%#jx]",
998                     (uintmax_t)start, (uintmax_t)end);
999         }
1000         RB_REMOVE(fict_tree, &vm_phys_fictitious_tree, seg);
1001         rw_wunlock(&vm_phys_fictitious_reg_lock);
1002         free(seg->first_page, M_FICT_PAGES);
1003         free(seg, M_FICT_PAGES);
1004 }
1005
1006 /*
1007  * Free a contiguous, power of two-sized set of physical pages.
1008  *
1009  * The free page queues must be locked.
1010  */
1011 void
1012 vm_phys_free_pages(vm_page_t m, int order)
1013 {
1014         struct vm_freelist *fl;
1015         struct vm_phys_seg *seg;
1016         vm_paddr_t pa;
1017         vm_page_t m_buddy;
1018
1019         KASSERT(m->order == VM_NFREEORDER,
1020             ("vm_phys_free_pages: page %p has unexpected order %d",
1021             m, m->order));
1022         KASSERT(m->pool < VM_NFREEPOOL,
1023             ("vm_phys_free_pages: page %p has unexpected pool %d",
1024             m, m->pool));
1025         KASSERT(order < VM_NFREEORDER,
1026             ("vm_phys_free_pages: order %d is out of range", order));
1027         seg = &vm_phys_segs[m->segind];
1028         vm_domain_free_assert_locked(VM_DOMAIN(seg->domain));
1029         if (order < VM_NFREEORDER - 1) {
1030                 pa = VM_PAGE_TO_PHYS(m);
1031                 do {
1032                         pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order));
1033                         if (pa < seg->start || pa >= seg->end)
1034                                 break;
1035                         m_buddy = &seg->first_page[atop(pa - seg->start)];
1036                         if (m_buddy->order != order)
1037                                 break;
1038                         fl = (*seg->free_queues)[m_buddy->pool];
1039                         vm_freelist_rem(fl, m_buddy, order);
1040                         if (m_buddy->pool != m->pool)
1041                                 vm_phys_set_pool(m->pool, m_buddy, order);
1042                         order++;
1043                         pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1);
1044                         m = &seg->first_page[atop(pa - seg->start)];
1045                 } while (order < VM_NFREEORDER - 1);
1046         }
1047         fl = (*seg->free_queues)[m->pool];
1048         vm_freelist_add(fl, m, order, 1);
1049 }
1050
1051 /*
1052  * Free a contiguous, arbitrarily sized set of physical pages.
1053  *
1054  * The free page queues must be locked.
1055  */
1056 void
1057 vm_phys_free_contig(vm_page_t m, u_long npages)
1058 {
1059         u_int n;
1060         int order;
1061
1062         /*
1063          * Avoid unnecessary coalescing by freeing the pages in the largest
1064          * possible power-of-two-sized subsets.
1065          */
1066         vm_domain_free_assert_locked(vm_pagequeue_domain(m));
1067         for (;; npages -= n) {
1068                 /*
1069                  * Unsigned "min" is used here so that "order" is assigned
1070                  * "VM_NFREEORDER - 1" when "m"'s physical address is zero
1071                  * or the low-order bits of its physical address are zero
1072                  * because the size of a physical address exceeds the size of
1073                  * a long.
1074                  */
1075                 order = min(ffsl(VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) - 1,
1076                     VM_NFREEORDER - 1);
1077                 n = 1 << order;
1078                 if (npages < n)
1079                         break;
1080                 vm_phys_free_pages(m, order);
1081                 m += n;
1082         }
1083         /* The residual "npages" is less than "1 << (VM_NFREEORDER - 1)". */
1084         for (; npages > 0; npages -= n) {
1085                 order = flsl(npages) - 1;
1086                 n = 1 << order;
1087                 vm_phys_free_pages(m, order);
1088                 m += n;
1089         }
1090 }
1091
1092 /*
1093  * Scan physical memory between the specified addresses "low" and "high" for a
1094  * run of contiguous physical pages that satisfy the specified conditions, and
1095  * return the lowest page in the run.  The specified "alignment" determines
1096  * the alignment of the lowest physical page in the run.  If the specified
1097  * "boundary" is non-zero, then the run of physical pages cannot span a
1098  * physical address that is a multiple of "boundary".
1099  *
1100  * "npages" must be greater than zero.  Both "alignment" and "boundary" must
1101  * be a power of two.
1102  */
1103 vm_page_t
1104 vm_phys_scan_contig(int domain, u_long npages, vm_paddr_t low, vm_paddr_t high,
1105     u_long alignment, vm_paddr_t boundary, int options)
1106 {
1107         vm_paddr_t pa_end;
1108         vm_page_t m_end, m_run, m_start;
1109         struct vm_phys_seg *seg;
1110         int segind;
1111
1112         KASSERT(npages > 0, ("npages is 0"));
1113         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1114         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1115         if (low >= high)
1116                 return (NULL);
1117         for (segind = 0; segind < vm_phys_nsegs; segind++) {
1118                 seg = &vm_phys_segs[segind];
1119                 if (seg->domain != domain)
1120                         continue;
1121                 if (seg->start >= high)
1122                         break;
1123                 if (low >= seg->end)
1124                         continue;
1125                 if (low <= seg->start)
1126                         m_start = seg->first_page;
1127                 else
1128                         m_start = &seg->first_page[atop(low - seg->start)];
1129                 if (high < seg->end)
1130                         pa_end = high;
1131                 else
1132                         pa_end = seg->end;
1133                 if (pa_end - VM_PAGE_TO_PHYS(m_start) < ptoa(npages))
1134                         continue;
1135                 m_end = &seg->first_page[atop(pa_end - seg->start)];
1136                 m_run = vm_page_scan_contig(npages, m_start, m_end,
1137                     alignment, boundary, options);
1138                 if (m_run != NULL)
1139                         return (m_run);
1140         }
1141         return (NULL);
1142 }
1143
1144 /*
1145  * Set the pool for a contiguous, power of two-sized set of physical pages. 
1146  */
1147 void
1148 vm_phys_set_pool(int pool, vm_page_t m, int order)
1149 {
1150         vm_page_t m_tmp;
1151
1152         for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
1153                 m_tmp->pool = pool;
1154 }
1155
1156 /*
1157  * Search for the given physical page "m" in the free lists.  If the search
1158  * succeeds, remove "m" from the free lists and return TRUE.  Otherwise, return
1159  * FALSE, indicating that "m" is not in the free lists.
1160  *
1161  * The free page queues must be locked.
1162  */
1163 boolean_t
1164 vm_phys_unfree_page(vm_page_t m)
1165 {
1166         struct vm_freelist *fl;
1167         struct vm_phys_seg *seg;
1168         vm_paddr_t pa, pa_half;
1169         vm_page_t m_set, m_tmp;
1170         int order;
1171
1172         /*
1173          * First, find the contiguous, power of two-sized set of free
1174          * physical pages containing the given physical page "m" and
1175          * assign it to "m_set".
1176          */
1177         seg = &vm_phys_segs[m->segind];
1178         vm_domain_free_assert_locked(VM_DOMAIN(seg->domain));
1179         for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
1180             order < VM_NFREEORDER - 1; ) {
1181                 order++;
1182                 pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
1183                 if (pa >= seg->start)
1184                         m_set = &seg->first_page[atop(pa - seg->start)];
1185                 else
1186                         return (FALSE);
1187         }
1188         if (m_set->order < order)
1189                 return (FALSE);
1190         if (m_set->order == VM_NFREEORDER)
1191                 return (FALSE);
1192         KASSERT(m_set->order < VM_NFREEORDER,
1193             ("vm_phys_unfree_page: page %p has unexpected order %d",
1194             m_set, m_set->order));
1195
1196         /*
1197          * Next, remove "m_set" from the free lists.  Finally, extract
1198          * "m" from "m_set" using an iterative algorithm: While "m_set"
1199          * is larger than a page, shrink "m_set" by returning the half
1200          * of "m_set" that does not contain "m" to the free lists.
1201          */
1202         fl = (*seg->free_queues)[m_set->pool];
1203         order = m_set->order;
1204         vm_freelist_rem(fl, m_set, order);
1205         while (order > 0) {
1206                 order--;
1207                 pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
1208                 if (m->phys_addr < pa_half)
1209                         m_tmp = &seg->first_page[atop(pa_half - seg->start)];
1210                 else {
1211                         m_tmp = m_set;
1212                         m_set = &seg->first_page[atop(pa_half - seg->start)];
1213                 }
1214                 vm_freelist_add(fl, m_tmp, order, 0);
1215         }
1216         KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
1217         return (TRUE);
1218 }
1219
1220 /*
1221  * Allocate a contiguous set of physical pages of the given size
1222  * "npages" from the free lists.  All of the physical pages must be at
1223  * or above the given physical address "low" and below the given
1224  * physical address "high".  The given value "alignment" determines the
1225  * alignment of the first physical page in the set.  If the given value
1226  * "boundary" is non-zero, then the set of physical pages cannot cross
1227  * any physical address boundary that is a multiple of that value.  Both
1228  * "alignment" and "boundary" must be a power of two.
1229  */
1230 vm_page_t
1231 vm_phys_alloc_contig(int domain, u_long npages, vm_paddr_t low, vm_paddr_t high,
1232     u_long alignment, vm_paddr_t boundary)
1233 {
1234         vm_paddr_t pa_end, pa_start;
1235         vm_page_t m_run;
1236         struct vm_phys_seg *seg;
1237         int segind;
1238
1239         KASSERT(npages > 0, ("npages is 0"));
1240         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1241         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1242         vm_domain_free_assert_locked(VM_DOMAIN(domain));
1243         if (low >= high)
1244                 return (NULL);
1245         m_run = NULL;
1246         for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
1247                 seg = &vm_phys_segs[segind];
1248                 if (seg->start >= high || seg->domain != domain)
1249                         continue;
1250                 if (low >= seg->end)
1251                         break;
1252                 if (low <= seg->start)
1253                         pa_start = seg->start;
1254                 else
1255                         pa_start = low;
1256                 if (high < seg->end)
1257                         pa_end = high;
1258                 else
1259                         pa_end = seg->end;
1260                 if (pa_end - pa_start < ptoa(npages))
1261                         continue;
1262                 m_run = vm_phys_alloc_seg_contig(seg, npages, low, high,
1263                     alignment, boundary);
1264                 if (m_run != NULL)
1265                         break;
1266         }
1267         return (m_run);
1268 }
1269
1270 /*
1271  * Allocate a run of contiguous physical pages from the free list for the
1272  * specified segment.
1273  */
1274 static vm_page_t
1275 vm_phys_alloc_seg_contig(struct vm_phys_seg *seg, u_long npages,
1276     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
1277 {
1278         struct vm_freelist *fl;
1279         vm_paddr_t pa, pa_end, size;
1280         vm_page_t m, m_ret;
1281         u_long npages_end;
1282         int oind, order, pind;
1283
1284         KASSERT(npages > 0, ("npages is 0"));
1285         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1286         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1287         vm_domain_free_assert_locked(VM_DOMAIN(seg->domain));
1288         /* Compute the queue that is the best fit for npages. */
1289         order = flsl(npages - 1);
1290         /* Search for a run satisfying the specified conditions. */
1291         size = npages << PAGE_SHIFT;
1292         for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER;
1293             oind++) {
1294                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1295                         fl = (*seg->free_queues)[pind];
1296                         TAILQ_FOREACH(m_ret, &fl[oind].pl, listq) {
1297                                 /*
1298                                  * Is the size of this allocation request
1299                                  * larger than the largest block size?
1300                                  */
1301                                 if (order >= VM_NFREEORDER) {
1302                                         /*
1303                                          * Determine if a sufficient number of
1304                                          * subsequent blocks to satisfy the
1305                                          * allocation request are free.
1306                                          */
1307                                         pa = VM_PAGE_TO_PHYS(m_ret);
1308                                         pa_end = pa + size;
1309                                         if (pa_end < pa)
1310                                                 continue;
1311                                         for (;;) {
1312                                                 pa += 1 << (PAGE_SHIFT +
1313                                                     VM_NFREEORDER - 1);
1314                                                 if (pa >= pa_end ||
1315                                                     pa < seg->start ||
1316                                                     pa >= seg->end)
1317                                                         break;
1318                                                 m = &seg->first_page[atop(pa -
1319                                                     seg->start)];
1320                                                 if (m->order != VM_NFREEORDER -
1321                                                     1)
1322                                                         break;
1323                                         }
1324                                         /* If not, go to the next block. */
1325                                         if (pa < pa_end)
1326                                                 continue;
1327                                 }
1328
1329                                 /*
1330                                  * Determine if the blocks are within the
1331                                  * given range, satisfy the given alignment,
1332                                  * and do not cross the given boundary.
1333                                  */
1334                                 pa = VM_PAGE_TO_PHYS(m_ret);
1335                                 pa_end = pa + size;
1336                                 if (pa >= low && pa_end <= high &&
1337                                     (pa & (alignment - 1)) == 0 &&
1338                                     rounddown2(pa ^ (pa_end - 1), boundary) == 0)
1339                                         goto done;
1340                         }
1341                 }
1342         }
1343         return (NULL);
1344 done:
1345         for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) {
1346                 fl = (*seg->free_queues)[m->pool];
1347                 vm_freelist_rem(fl, m, oind);
1348                 if (m->pool != VM_FREEPOOL_DEFAULT)
1349                         vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, oind);
1350         }
1351         /* Return excess pages to the free lists. */
1352         npages_end = roundup2(npages, 1 << oind);
1353         if (npages < npages_end) {
1354                 fl = (*seg->free_queues)[VM_FREEPOOL_DEFAULT];
1355                 vm_phys_enq_range(&m_ret[npages], npages_end - npages, fl, 0);
1356         }
1357         return (m_ret);
1358 }
1359
1360 #ifdef DDB
1361 /*
1362  * Show the number of physical pages in each of the free lists.
1363  */
1364 DB_SHOW_COMMAND(freepages, db_show_freepages)
1365 {
1366         struct vm_freelist *fl;
1367         int flind, oind, pind, dom;
1368
1369         for (dom = 0; dom < vm_ndomains; dom++) {
1370                 db_printf("DOMAIN: %d\n", dom);
1371                 for (flind = 0; flind < vm_nfreelists; flind++) {
1372                         db_printf("FREE LIST %d:\n"
1373                             "\n  ORDER (SIZE)  |  NUMBER"
1374                             "\n              ", flind);
1375                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
1376                                 db_printf("  |  POOL %d", pind);
1377                         db_printf("\n--            ");
1378                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
1379                                 db_printf("-- --      ");
1380                         db_printf("--\n");
1381                         for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
1382                                 db_printf("  %2.2d (%6.6dK)", oind,
1383                                     1 << (PAGE_SHIFT - 10 + oind));
1384                                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1385                                 fl = vm_phys_free_queues[dom][flind][pind];
1386                                         db_printf("  |  %6.6d", fl[oind].lcnt);
1387                                 }
1388                                 db_printf("\n");
1389                         }
1390                         db_printf("\n");
1391                 }
1392                 db_printf("\n");
1393         }
1394 }
1395 #endif