]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_phys.c
Import lua 5.3.4 to contrib
[FreeBSD/FreeBSD.git] / sys / vm / vm_phys.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2002-2006 Rice University
5  * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
6  * All rights reserved.
7  *
8  * This software was developed for the FreeBSD Project by Alan L. Cox,
9  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
24  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
27  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
30  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 /*
35  *      Physical memory system implementation
36  *
37  * Any external functions defined by this module are only to be used by the
38  * virtual memory system.
39  */
40
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43
44 #include "opt_ddb.h"
45 #include "opt_vm.h"
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/lock.h>
50 #include <sys/kernel.h>
51 #include <sys/malloc.h>
52 #include <sys/mutex.h>
53 #include <sys/proc.h>
54 #include <sys/queue.h>
55 #include <sys/rwlock.h>
56 #include <sys/sbuf.h>
57 #include <sys/sysctl.h>
58 #include <sys/tree.h>
59 #include <sys/vmmeter.h>
60 #include <sys/seq.h>
61
62 #include <ddb/ddb.h>
63
64 #include <vm/vm.h>
65 #include <vm/vm_param.h>
66 #include <vm/vm_kern.h>
67 #include <vm/vm_object.h>
68 #include <vm/vm_page.h>
69 #include <vm/vm_phys.h>
70
71 #include <vm/vm_domain.h>
72
73 _Static_assert(sizeof(long) * NBBY >= VM_PHYSSEG_MAX,
74     "Too many physsegs.");
75
76 #ifdef VM_NUMA_ALLOC
77 struct mem_affinity *mem_affinity;
78 int *mem_locality;
79 #endif
80
81 int vm_ndomains = 1;
82
83 struct vm_phys_seg vm_phys_segs[VM_PHYSSEG_MAX];
84 int vm_phys_nsegs;
85
86 struct vm_phys_fictitious_seg;
87 static int vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *,
88     struct vm_phys_fictitious_seg *);
89
90 RB_HEAD(fict_tree, vm_phys_fictitious_seg) vm_phys_fictitious_tree =
91     RB_INITIALIZER(_vm_phys_fictitious_tree);
92
93 struct vm_phys_fictitious_seg {
94         RB_ENTRY(vm_phys_fictitious_seg) node;
95         /* Memory region data */
96         vm_paddr_t      start;
97         vm_paddr_t      end;
98         vm_page_t       first_page;
99 };
100
101 RB_GENERATE_STATIC(fict_tree, vm_phys_fictitious_seg, node,
102     vm_phys_fictitious_cmp);
103
104 static struct rwlock vm_phys_fictitious_reg_lock;
105 MALLOC_DEFINE(M_FICT_PAGES, "vm_fictitious", "Fictitious VM pages");
106
107 static struct vm_freelist
108     vm_phys_free_queues[MAXMEMDOM][VM_NFREELIST][VM_NFREEPOOL][VM_NFREEORDER];
109
110 static int vm_nfreelists;
111
112 /*
113  * Provides the mapping from VM_FREELIST_* to free list indices (flind).
114  */
115 static int vm_freelist_to_flind[VM_NFREELIST];
116
117 CTASSERT(VM_FREELIST_DEFAULT == 0);
118
119 #ifdef VM_FREELIST_ISADMA
120 #define VM_ISADMA_BOUNDARY      16777216
121 #endif
122 #ifdef VM_FREELIST_DMA32
123 #define VM_DMA32_BOUNDARY       ((vm_paddr_t)1 << 32)
124 #endif
125
126 /*
127  * Enforce the assumptions made by vm_phys_add_seg() and vm_phys_init() about
128  * the ordering of the free list boundaries.
129  */
130 #if defined(VM_ISADMA_BOUNDARY) && defined(VM_LOWMEM_BOUNDARY)
131 CTASSERT(VM_ISADMA_BOUNDARY < VM_LOWMEM_BOUNDARY);
132 #endif
133 #if defined(VM_LOWMEM_BOUNDARY) && defined(VM_DMA32_BOUNDARY)
134 CTASSERT(VM_LOWMEM_BOUNDARY < VM_DMA32_BOUNDARY);
135 #endif
136
137 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
138 SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD,
139     NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info");
140
141 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
142 SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD,
143     NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info");
144
145 #ifdef VM_NUMA_ALLOC
146 static int sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS);
147 SYSCTL_OID(_vm, OID_AUTO, phys_locality, CTLTYPE_STRING | CTLFLAG_RD,
148     NULL, 0, sysctl_vm_phys_locality, "A", "Phys Locality Info");
149 #endif
150
151 SYSCTL_INT(_vm, OID_AUTO, ndomains, CTLFLAG_RD,
152     &vm_ndomains, 0, "Number of physical memory domains available.");
153
154 static vm_page_t vm_phys_alloc_seg_contig(struct vm_phys_seg *seg,
155     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
156     vm_paddr_t boundary);
157 static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain);
158 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end);
159 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
160     int order);
161
162 /*
163  * Red-black tree helpers for vm fictitious range management.
164  */
165 static inline int
166 vm_phys_fictitious_in_range(struct vm_phys_fictitious_seg *p,
167     struct vm_phys_fictitious_seg *range)
168 {
169
170         KASSERT(range->start != 0 && range->end != 0,
171             ("Invalid range passed on search for vm_fictitious page"));
172         if (p->start >= range->end)
173                 return (1);
174         if (p->start < range->start)
175                 return (-1);
176
177         return (0);
178 }
179
180 static int
181 vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *p1,
182     struct vm_phys_fictitious_seg *p2)
183 {
184
185         /* Check if this is a search for a page */
186         if (p1->end == 0)
187                 return (vm_phys_fictitious_in_range(p1, p2));
188
189         KASSERT(p2->end != 0,
190     ("Invalid range passed as second parameter to vm fictitious comparison"));
191
192         /* Searching to add a new range */
193         if (p1->end <= p2->start)
194                 return (-1);
195         if (p1->start >= p2->end)
196                 return (1);
197
198         panic("Trying to add overlapping vm fictitious ranges:\n"
199             "[%#jx:%#jx] and [%#jx:%#jx]", (uintmax_t)p1->start,
200             (uintmax_t)p1->end, (uintmax_t)p2->start, (uintmax_t)p2->end);
201 }
202
203 boolean_t
204 vm_phys_domain_intersects(long mask, vm_paddr_t low, vm_paddr_t high)
205 {
206         struct vm_phys_seg *s;
207         int idx;
208
209         while ((idx = ffsl(mask)) != 0) {
210                 idx--;  /* ffsl counts from 1 */
211                 mask &= ~(1UL << idx);
212                 s = &vm_phys_segs[idx];
213                 if (low < s->end && high > s->start)
214                         return (TRUE);
215         }
216         return (FALSE);
217 }
218
219 /*
220  * Outputs the state of the physical memory allocator, specifically,
221  * the amount of physical memory in each free list.
222  */
223 static int
224 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
225 {
226         struct sbuf sbuf;
227         struct vm_freelist *fl;
228         int dom, error, flind, oind, pind;
229
230         error = sysctl_wire_old_buffer(req, 0);
231         if (error != 0)
232                 return (error);
233         sbuf_new_for_sysctl(&sbuf, NULL, 128 * vm_ndomains, req);
234         for (dom = 0; dom < vm_ndomains; dom++) {
235                 sbuf_printf(&sbuf,"\nDOMAIN %d:\n", dom);
236                 for (flind = 0; flind < vm_nfreelists; flind++) {
237                         sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
238                             "\n  ORDER (SIZE)  |  NUMBER"
239                             "\n              ", flind);
240                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
241                                 sbuf_printf(&sbuf, "  |  POOL %d", pind);
242                         sbuf_printf(&sbuf, "\n--            ");
243                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
244                                 sbuf_printf(&sbuf, "-- --      ");
245                         sbuf_printf(&sbuf, "--\n");
246                         for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
247                                 sbuf_printf(&sbuf, "  %2d (%6dK)", oind,
248                                     1 << (PAGE_SHIFT - 10 + oind));
249                                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
250                                 fl = vm_phys_free_queues[dom][flind][pind];
251                                         sbuf_printf(&sbuf, "  |  %6d",
252                                             fl[oind].lcnt);
253                                 }
254                                 sbuf_printf(&sbuf, "\n");
255                         }
256                 }
257         }
258         error = sbuf_finish(&sbuf);
259         sbuf_delete(&sbuf);
260         return (error);
261 }
262
263 /*
264  * Outputs the set of physical memory segments.
265  */
266 static int
267 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
268 {
269         struct sbuf sbuf;
270         struct vm_phys_seg *seg;
271         int error, segind;
272
273         error = sysctl_wire_old_buffer(req, 0);
274         if (error != 0)
275                 return (error);
276         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
277         for (segind = 0; segind < vm_phys_nsegs; segind++) {
278                 sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
279                 seg = &vm_phys_segs[segind];
280                 sbuf_printf(&sbuf, "start:     %#jx\n",
281                     (uintmax_t)seg->start);
282                 sbuf_printf(&sbuf, "end:       %#jx\n",
283                     (uintmax_t)seg->end);
284                 sbuf_printf(&sbuf, "domain:    %d\n", seg->domain);
285                 sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
286         }
287         error = sbuf_finish(&sbuf);
288         sbuf_delete(&sbuf);
289         return (error);
290 }
291
292 /*
293  * Return affinity, or -1 if there's no affinity information.
294  */
295 int
296 vm_phys_mem_affinity(int f, int t)
297 {
298
299 #ifdef VM_NUMA_ALLOC
300         if (mem_locality == NULL)
301                 return (-1);
302         if (f >= vm_ndomains || t >= vm_ndomains)
303                 return (-1);
304         return (mem_locality[f * vm_ndomains + t]);
305 #else
306         return (-1);
307 #endif
308 }
309
310 #ifdef VM_NUMA_ALLOC
311 /*
312  * Outputs the VM locality table.
313  */
314 static int
315 sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS)
316 {
317         struct sbuf sbuf;
318         int error, i, j;
319
320         error = sysctl_wire_old_buffer(req, 0);
321         if (error != 0)
322                 return (error);
323         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
324
325         sbuf_printf(&sbuf, "\n");
326
327         for (i = 0; i < vm_ndomains; i++) {
328                 sbuf_printf(&sbuf, "%d: ", i);
329                 for (j = 0; j < vm_ndomains; j++) {
330                         sbuf_printf(&sbuf, "%d ", vm_phys_mem_affinity(i, j));
331                 }
332                 sbuf_printf(&sbuf, "\n");
333         }
334         error = sbuf_finish(&sbuf);
335         sbuf_delete(&sbuf);
336         return (error);
337 }
338 #endif
339
340 static void
341 vm_freelist_add(struct vm_freelist *fl, vm_page_t m, int order, int tail)
342 {
343
344         m->order = order;
345         if (tail)
346                 TAILQ_INSERT_TAIL(&fl[order].pl, m, plinks.q);
347         else
348                 TAILQ_INSERT_HEAD(&fl[order].pl, m, plinks.q);
349         fl[order].lcnt++;
350 }
351
352 static void
353 vm_freelist_rem(struct vm_freelist *fl, vm_page_t m, int order)
354 {
355
356         TAILQ_REMOVE(&fl[order].pl, m, plinks.q);
357         fl[order].lcnt--;
358         m->order = VM_NFREEORDER;
359 }
360
361 /*
362  * Create a physical memory segment.
363  */
364 static void
365 _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain)
366 {
367         struct vm_phys_seg *seg;
368
369         KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
370             ("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
371         KASSERT(domain >= 0 && domain < vm_ndomains,
372             ("vm_phys_create_seg: invalid domain provided"));
373         seg = &vm_phys_segs[vm_phys_nsegs++];
374         while (seg > vm_phys_segs && (seg - 1)->start >= end) {
375                 *seg = *(seg - 1);
376                 seg--;
377         }
378         seg->start = start;
379         seg->end = end;
380         seg->domain = domain;
381 }
382
383 static void
384 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end)
385 {
386 #ifdef VM_NUMA_ALLOC
387         int i;
388
389         if (mem_affinity == NULL) {
390                 _vm_phys_create_seg(start, end, 0);
391                 return;
392         }
393
394         for (i = 0;; i++) {
395                 if (mem_affinity[i].end == 0)
396                         panic("Reached end of affinity info");
397                 if (mem_affinity[i].end <= start)
398                         continue;
399                 if (mem_affinity[i].start > start)
400                         panic("No affinity info for start %jx",
401                             (uintmax_t)start);
402                 if (mem_affinity[i].end >= end) {
403                         _vm_phys_create_seg(start, end,
404                             mem_affinity[i].domain);
405                         break;
406                 }
407                 _vm_phys_create_seg(start, mem_affinity[i].end,
408                     mem_affinity[i].domain);
409                 start = mem_affinity[i].end;
410         }
411 #else
412         _vm_phys_create_seg(start, end, 0);
413 #endif
414 }
415
416 /*
417  * Add a physical memory segment.
418  */
419 void
420 vm_phys_add_seg(vm_paddr_t start, vm_paddr_t end)
421 {
422         vm_paddr_t paddr;
423
424         KASSERT((start & PAGE_MASK) == 0,
425             ("vm_phys_define_seg: start is not page aligned"));
426         KASSERT((end & PAGE_MASK) == 0,
427             ("vm_phys_define_seg: end is not page aligned"));
428
429         /*
430          * Split the physical memory segment if it spans two or more free
431          * list boundaries.
432          */
433         paddr = start;
434 #ifdef  VM_FREELIST_ISADMA
435         if (paddr < VM_ISADMA_BOUNDARY && end > VM_ISADMA_BOUNDARY) {
436                 vm_phys_create_seg(paddr, VM_ISADMA_BOUNDARY);
437                 paddr = VM_ISADMA_BOUNDARY;
438         }
439 #endif
440 #ifdef  VM_FREELIST_LOWMEM
441         if (paddr < VM_LOWMEM_BOUNDARY && end > VM_LOWMEM_BOUNDARY) {
442                 vm_phys_create_seg(paddr, VM_LOWMEM_BOUNDARY);
443                 paddr = VM_LOWMEM_BOUNDARY;
444         }
445 #endif
446 #ifdef  VM_FREELIST_DMA32
447         if (paddr < VM_DMA32_BOUNDARY && end > VM_DMA32_BOUNDARY) {
448                 vm_phys_create_seg(paddr, VM_DMA32_BOUNDARY);
449                 paddr = VM_DMA32_BOUNDARY;
450         }
451 #endif
452         vm_phys_create_seg(paddr, end);
453 }
454
455 /*
456  * Initialize the physical memory allocator.
457  *
458  * Requires that vm_page_array is initialized!
459  */
460 void
461 vm_phys_init(void)
462 {
463         struct vm_freelist *fl;
464         struct vm_phys_seg *seg;
465         u_long npages;
466         int dom, flind, freelist, oind, pind, segind;
467
468         /*
469          * Compute the number of free lists, and generate the mapping from the
470          * manifest constants VM_FREELIST_* to the free list indices.
471          *
472          * Initially, the entries of vm_freelist_to_flind[] are set to either
473          * 0 or 1 to indicate which free lists should be created.
474          */
475         npages = 0;
476         for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
477                 seg = &vm_phys_segs[segind];
478 #ifdef  VM_FREELIST_ISADMA
479                 if (seg->end <= VM_ISADMA_BOUNDARY)
480                         vm_freelist_to_flind[VM_FREELIST_ISADMA] = 1;
481                 else
482 #endif
483 #ifdef  VM_FREELIST_LOWMEM
484                 if (seg->end <= VM_LOWMEM_BOUNDARY)
485                         vm_freelist_to_flind[VM_FREELIST_LOWMEM] = 1;
486                 else
487 #endif
488 #ifdef  VM_FREELIST_DMA32
489                 if (
490 #ifdef  VM_DMA32_NPAGES_THRESHOLD
491                     /*
492                      * Create the DMA32 free list only if the amount of
493                      * physical memory above physical address 4G exceeds the
494                      * given threshold.
495                      */
496                     npages > VM_DMA32_NPAGES_THRESHOLD &&
497 #endif
498                     seg->end <= VM_DMA32_BOUNDARY)
499                         vm_freelist_to_flind[VM_FREELIST_DMA32] = 1;
500                 else
501 #endif
502                 {
503                         npages += atop(seg->end - seg->start);
504                         vm_freelist_to_flind[VM_FREELIST_DEFAULT] = 1;
505                 }
506         }
507         /* Change each entry into a running total of the free lists. */
508         for (freelist = 1; freelist < VM_NFREELIST; freelist++) {
509                 vm_freelist_to_flind[freelist] +=
510                     vm_freelist_to_flind[freelist - 1];
511         }
512         vm_nfreelists = vm_freelist_to_flind[VM_NFREELIST - 1];
513         KASSERT(vm_nfreelists > 0, ("vm_phys_init: no free lists"));
514         /* Change each entry into a free list index. */
515         for (freelist = 0; freelist < VM_NFREELIST; freelist++)
516                 vm_freelist_to_flind[freelist]--;
517
518         /*
519          * Initialize the first_page and free_queues fields of each physical
520          * memory segment.
521          */
522 #ifdef VM_PHYSSEG_SPARSE
523         npages = 0;
524 #endif
525         for (segind = 0; segind < vm_phys_nsegs; segind++) {
526                 seg = &vm_phys_segs[segind];
527 #ifdef VM_PHYSSEG_SPARSE
528                 seg->first_page = &vm_page_array[npages];
529                 npages += atop(seg->end - seg->start);
530 #else
531                 seg->first_page = PHYS_TO_VM_PAGE(seg->start);
532 #endif
533 #ifdef  VM_FREELIST_ISADMA
534                 if (seg->end <= VM_ISADMA_BOUNDARY) {
535                         flind = vm_freelist_to_flind[VM_FREELIST_ISADMA];
536                         KASSERT(flind >= 0,
537                             ("vm_phys_init: ISADMA flind < 0"));
538                 } else
539 #endif
540 #ifdef  VM_FREELIST_LOWMEM
541                 if (seg->end <= VM_LOWMEM_BOUNDARY) {
542                         flind = vm_freelist_to_flind[VM_FREELIST_LOWMEM];
543                         KASSERT(flind >= 0,
544                             ("vm_phys_init: LOWMEM flind < 0"));
545                 } else
546 #endif
547 #ifdef  VM_FREELIST_DMA32
548                 if (seg->end <= VM_DMA32_BOUNDARY) {
549                         flind = vm_freelist_to_flind[VM_FREELIST_DMA32];
550                         KASSERT(flind >= 0,
551                             ("vm_phys_init: DMA32 flind < 0"));
552                 } else
553 #endif
554                 {
555                         flind = vm_freelist_to_flind[VM_FREELIST_DEFAULT];
556                         KASSERT(flind >= 0,
557                             ("vm_phys_init: DEFAULT flind < 0"));
558                 }
559                 seg->free_queues = &vm_phys_free_queues[seg->domain][flind];
560         }
561
562         /*
563          * Initialize the free queues.
564          */
565         for (dom = 0; dom < vm_ndomains; dom++) {
566                 for (flind = 0; flind < vm_nfreelists; flind++) {
567                         for (pind = 0; pind < VM_NFREEPOOL; pind++) {
568                                 fl = vm_phys_free_queues[dom][flind][pind];
569                                 for (oind = 0; oind < VM_NFREEORDER; oind++)
570                                         TAILQ_INIT(&fl[oind].pl);
571                         }
572                 }
573         }
574
575         rw_init(&vm_phys_fictitious_reg_lock, "vmfctr");
576 }
577
578 /*
579  * Split a contiguous, power of two-sized set of physical pages.
580  */
581 static __inline void
582 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order)
583 {
584         vm_page_t m_buddy;
585
586         while (oind > order) {
587                 oind--;
588                 m_buddy = &m[1 << oind];
589                 KASSERT(m_buddy->order == VM_NFREEORDER,
590                     ("vm_phys_split_pages: page %p has unexpected order %d",
591                     m_buddy, m_buddy->order));
592                 vm_freelist_add(fl, m_buddy, oind, 0);
593         }
594 }
595
596 /*
597  * Allocate a contiguous, power of two-sized set of physical pages
598  * from the free lists.
599  *
600  * The free page queues must be locked.
601  */
602 vm_page_t
603 vm_phys_alloc_pages(int domain, int pool, int order)
604 {
605         vm_page_t m;
606         int flind;
607
608         for (flind = 0; flind < vm_nfreelists; flind++) {
609                 m = vm_phys_alloc_freelist_pages(domain, flind, pool, order);
610                 if (m != NULL)
611                         return (m);
612         }
613         return (NULL);
614 }
615
616 /*
617  * Allocate a contiguous, power of two-sized set of physical pages from the
618  * specified free list.  The free list must be specified using one of the
619  * manifest constants VM_FREELIST_*.
620  *
621  * The free page queues must be locked.
622  */
623 vm_page_t
624 vm_phys_alloc_freelist_pages(int domain, int flind, int pool, int order)
625 {
626         struct vm_freelist *alt, *fl;
627         vm_page_t m;
628         int oind, pind;
629
630         KASSERT(domain >= 0 && domain < vm_ndomains,
631             ("vm_phys_alloc_freelist_pages: domain %d is out of range",
632             domain));
633         KASSERT(flind < VM_NFREELIST,
634             ("vm_phys_alloc_freelist_pages: freelist %d is out of range",
635             flind));
636         KASSERT(pool < VM_NFREEPOOL,
637             ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool));
638         KASSERT(order < VM_NFREEORDER,
639             ("vm_phys_alloc_freelist_pages: order %d is out of range", order));
640
641         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
642         fl = &vm_phys_free_queues[domain][flind][pool][0];
643         for (oind = order; oind < VM_NFREEORDER; oind++) {
644                 m = TAILQ_FIRST(&fl[oind].pl);
645                 if (m != NULL) {
646                         vm_freelist_rem(fl, m, oind);
647                         vm_phys_split_pages(m, oind, fl, order);
648                         return (m);
649                 }
650         }
651
652         /*
653          * The given pool was empty.  Find the largest
654          * contiguous, power-of-two-sized set of pages in any
655          * pool.  Transfer these pages to the given pool, and
656          * use them to satisfy the allocation.
657          */
658         for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
659                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
660                         alt = &vm_phys_free_queues[domain][flind][pind][0];
661                         m = TAILQ_FIRST(&alt[oind].pl);
662                         if (m != NULL) {
663                                 vm_freelist_rem(alt, m, oind);
664                                 vm_phys_set_pool(pool, m, oind);
665                                 vm_phys_split_pages(m, oind, fl, order);
666                                 return (m);
667                         }
668                 }
669         }
670         return (NULL);
671 }
672
673 /*
674  * Find the vm_page corresponding to the given physical address.
675  */
676 vm_page_t
677 vm_phys_paddr_to_vm_page(vm_paddr_t pa)
678 {
679         struct vm_phys_seg *seg;
680         int segind;
681
682         for (segind = 0; segind < vm_phys_nsegs; segind++) {
683                 seg = &vm_phys_segs[segind];
684                 if (pa >= seg->start && pa < seg->end)
685                         return (&seg->first_page[atop(pa - seg->start)]);
686         }
687         return (NULL);
688 }
689
690 vm_page_t
691 vm_phys_fictitious_to_vm_page(vm_paddr_t pa)
692 {
693         struct vm_phys_fictitious_seg tmp, *seg;
694         vm_page_t m;
695
696         m = NULL;
697         tmp.start = pa;
698         tmp.end = 0;
699
700         rw_rlock(&vm_phys_fictitious_reg_lock);
701         seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
702         rw_runlock(&vm_phys_fictitious_reg_lock);
703         if (seg == NULL)
704                 return (NULL);
705
706         m = &seg->first_page[atop(pa - seg->start)];
707         KASSERT((m->flags & PG_FICTITIOUS) != 0, ("%p not fictitious", m));
708
709         return (m);
710 }
711
712 static inline void
713 vm_phys_fictitious_init_range(vm_page_t range, vm_paddr_t start,
714     long page_count, vm_memattr_t memattr)
715 {
716         long i;
717
718         bzero(range, page_count * sizeof(*range));
719         for (i = 0; i < page_count; i++) {
720                 vm_page_initfake(&range[i], start + PAGE_SIZE * i, memattr);
721                 range[i].oflags &= ~VPO_UNMANAGED;
722                 range[i].busy_lock = VPB_UNBUSIED;
723         }
724 }
725
726 int
727 vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end,
728     vm_memattr_t memattr)
729 {
730         struct vm_phys_fictitious_seg *seg;
731         vm_page_t fp;
732         long page_count;
733 #ifdef VM_PHYSSEG_DENSE
734         long pi, pe;
735         long dpage_count;
736 #endif
737
738         KASSERT(start < end,
739             ("Start of segment isn't less than end (start: %jx end: %jx)",
740             (uintmax_t)start, (uintmax_t)end));
741
742         page_count = (end - start) / PAGE_SIZE;
743
744 #ifdef VM_PHYSSEG_DENSE
745         pi = atop(start);
746         pe = atop(end);
747         if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
748                 fp = &vm_page_array[pi - first_page];
749                 if ((pe - first_page) > vm_page_array_size) {
750                         /*
751                          * We have a segment that starts inside
752                          * of vm_page_array, but ends outside of it.
753                          *
754                          * Use vm_page_array pages for those that are
755                          * inside of the vm_page_array range, and
756                          * allocate the remaining ones.
757                          */
758                         dpage_count = vm_page_array_size - (pi - first_page);
759                         vm_phys_fictitious_init_range(fp, start, dpage_count,
760                             memattr);
761                         page_count -= dpage_count;
762                         start += ptoa(dpage_count);
763                         goto alloc;
764                 }
765                 /*
766                  * We can allocate the full range from vm_page_array,
767                  * so there's no need to register the range in the tree.
768                  */
769                 vm_phys_fictitious_init_range(fp, start, page_count, memattr);
770                 return (0);
771         } else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
772                 /*
773                  * We have a segment that ends inside of vm_page_array,
774                  * but starts outside of it.
775                  */
776                 fp = &vm_page_array[0];
777                 dpage_count = pe - first_page;
778                 vm_phys_fictitious_init_range(fp, ptoa(first_page), dpage_count,
779                     memattr);
780                 end -= ptoa(dpage_count);
781                 page_count -= dpage_count;
782                 goto alloc;
783         } else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
784                 /*
785                  * Trying to register a fictitious range that expands before
786                  * and after vm_page_array.
787                  */
788                 return (EINVAL);
789         } else {
790 alloc:
791 #endif
792                 fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES,
793                     M_WAITOK);
794 #ifdef VM_PHYSSEG_DENSE
795         }
796 #endif
797         vm_phys_fictitious_init_range(fp, start, page_count, memattr);
798
799         seg = malloc(sizeof(*seg), M_FICT_PAGES, M_WAITOK | M_ZERO);
800         seg->start = start;
801         seg->end = end;
802         seg->first_page = fp;
803
804         rw_wlock(&vm_phys_fictitious_reg_lock);
805         RB_INSERT(fict_tree, &vm_phys_fictitious_tree, seg);
806         rw_wunlock(&vm_phys_fictitious_reg_lock);
807
808         return (0);
809 }
810
811 void
812 vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end)
813 {
814         struct vm_phys_fictitious_seg *seg, tmp;
815 #ifdef VM_PHYSSEG_DENSE
816         long pi, pe;
817 #endif
818
819         KASSERT(start < end,
820             ("Start of segment isn't less than end (start: %jx end: %jx)",
821             (uintmax_t)start, (uintmax_t)end));
822
823 #ifdef VM_PHYSSEG_DENSE
824         pi = atop(start);
825         pe = atop(end);
826         if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
827                 if ((pe - first_page) <= vm_page_array_size) {
828                         /*
829                          * This segment was allocated using vm_page_array
830                          * only, there's nothing to do since those pages
831                          * were never added to the tree.
832                          */
833                         return;
834                 }
835                 /*
836                  * We have a segment that starts inside
837                  * of vm_page_array, but ends outside of it.
838                  *
839                  * Calculate how many pages were added to the
840                  * tree and free them.
841                  */
842                 start = ptoa(first_page + vm_page_array_size);
843         } else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
844                 /*
845                  * We have a segment that ends inside of vm_page_array,
846                  * but starts outside of it.
847                  */
848                 end = ptoa(first_page);
849         } else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
850                 /* Since it's not possible to register such a range, panic. */
851                 panic(
852                     "Unregistering not registered fictitious range [%#jx:%#jx]",
853                     (uintmax_t)start, (uintmax_t)end);
854         }
855 #endif
856         tmp.start = start;
857         tmp.end = 0;
858
859         rw_wlock(&vm_phys_fictitious_reg_lock);
860         seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
861         if (seg->start != start || seg->end != end) {
862                 rw_wunlock(&vm_phys_fictitious_reg_lock);
863                 panic(
864                     "Unregistering not registered fictitious range [%#jx:%#jx]",
865                     (uintmax_t)start, (uintmax_t)end);
866         }
867         RB_REMOVE(fict_tree, &vm_phys_fictitious_tree, seg);
868         rw_wunlock(&vm_phys_fictitious_reg_lock);
869         free(seg->first_page, M_FICT_PAGES);
870         free(seg, M_FICT_PAGES);
871 }
872
873 /*
874  * Free a contiguous, power of two-sized set of physical pages.
875  *
876  * The free page queues must be locked.
877  */
878 void
879 vm_phys_free_pages(vm_page_t m, int order)
880 {
881         struct vm_freelist *fl;
882         struct vm_phys_seg *seg;
883         vm_paddr_t pa;
884         vm_page_t m_buddy;
885
886         KASSERT(m->order == VM_NFREEORDER,
887             ("vm_phys_free_pages: page %p has unexpected order %d",
888             m, m->order));
889         KASSERT(m->pool < VM_NFREEPOOL,
890             ("vm_phys_free_pages: page %p has unexpected pool %d",
891             m, m->pool));
892         KASSERT(order < VM_NFREEORDER,
893             ("vm_phys_free_pages: order %d is out of range", order));
894         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
895         seg = &vm_phys_segs[m->segind];
896         if (order < VM_NFREEORDER - 1) {
897                 pa = VM_PAGE_TO_PHYS(m);
898                 do {
899                         pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order));
900                         if (pa < seg->start || pa >= seg->end)
901                                 break;
902                         m_buddy = &seg->first_page[atop(pa - seg->start)];
903                         if (m_buddy->order != order)
904                                 break;
905                         fl = (*seg->free_queues)[m_buddy->pool];
906                         vm_freelist_rem(fl, m_buddy, order);
907                         if (m_buddy->pool != m->pool)
908                                 vm_phys_set_pool(m->pool, m_buddy, order);
909                         order++;
910                         pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1);
911                         m = &seg->first_page[atop(pa - seg->start)];
912                 } while (order < VM_NFREEORDER - 1);
913         }
914         fl = (*seg->free_queues)[m->pool];
915         vm_freelist_add(fl, m, order, 1);
916 }
917
918 /*
919  * Free a contiguous, arbitrarily sized set of physical pages.
920  *
921  * The free page queues must be locked.
922  */
923 void
924 vm_phys_free_contig(vm_page_t m, u_long npages)
925 {
926         u_int n;
927         int order;
928
929         /*
930          * Avoid unnecessary coalescing by freeing the pages in the largest
931          * possible power-of-two-sized subsets.
932          */
933         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
934         for (;; npages -= n) {
935                 /*
936                  * Unsigned "min" is used here so that "order" is assigned
937                  * "VM_NFREEORDER - 1" when "m"'s physical address is zero
938                  * or the low-order bits of its physical address are zero
939                  * because the size of a physical address exceeds the size of
940                  * a long.
941                  */
942                 order = min(ffsl(VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) - 1,
943                     VM_NFREEORDER - 1);
944                 n = 1 << order;
945                 if (npages < n)
946                         break;
947                 vm_phys_free_pages(m, order);
948                 m += n;
949         }
950         /* The residual "npages" is less than "1 << (VM_NFREEORDER - 1)". */
951         for (; npages > 0; npages -= n) {
952                 order = flsl(npages) - 1;
953                 n = 1 << order;
954                 vm_phys_free_pages(m, order);
955                 m += n;
956         }
957 }
958
959 /*
960  * Scan physical memory between the specified addresses "low" and "high" for a
961  * run of contiguous physical pages that satisfy the specified conditions, and
962  * return the lowest page in the run.  The specified "alignment" determines
963  * the alignment of the lowest physical page in the run.  If the specified
964  * "boundary" is non-zero, then the run of physical pages cannot span a
965  * physical address that is a multiple of "boundary".
966  *
967  * "npages" must be greater than zero.  Both "alignment" and "boundary" must
968  * be a power of two.
969  */
970 vm_page_t
971 vm_phys_scan_contig(u_long npages, vm_paddr_t low, vm_paddr_t high,
972     u_long alignment, vm_paddr_t boundary, int options)
973 {
974         vm_paddr_t pa_end;
975         vm_page_t m_end, m_run, m_start;
976         struct vm_phys_seg *seg;
977         int segind;
978
979         KASSERT(npages > 0, ("npages is 0"));
980         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
981         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
982         if (low >= high)
983                 return (NULL);
984         for (segind = 0; segind < vm_phys_nsegs; segind++) {
985                 seg = &vm_phys_segs[segind];
986                 if (seg->start >= high)
987                         break;
988                 if (low >= seg->end)
989                         continue;
990                 if (low <= seg->start)
991                         m_start = seg->first_page;
992                 else
993                         m_start = &seg->first_page[atop(low - seg->start)];
994                 if (high < seg->end)
995                         pa_end = high;
996                 else
997                         pa_end = seg->end;
998                 if (pa_end - VM_PAGE_TO_PHYS(m_start) < ptoa(npages))
999                         continue;
1000                 m_end = &seg->first_page[atop(pa_end - seg->start)];
1001                 m_run = vm_page_scan_contig(npages, m_start, m_end,
1002                     alignment, boundary, options);
1003                 if (m_run != NULL)
1004                         return (m_run);
1005         }
1006         return (NULL);
1007 }
1008
1009 /*
1010  * Set the pool for a contiguous, power of two-sized set of physical pages. 
1011  */
1012 void
1013 vm_phys_set_pool(int pool, vm_page_t m, int order)
1014 {
1015         vm_page_t m_tmp;
1016
1017         for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
1018                 m_tmp->pool = pool;
1019 }
1020
1021 /*
1022  * Search for the given physical page "m" in the free lists.  If the search
1023  * succeeds, remove "m" from the free lists and return TRUE.  Otherwise, return
1024  * FALSE, indicating that "m" is not in the free lists.
1025  *
1026  * The free page queues must be locked.
1027  */
1028 boolean_t
1029 vm_phys_unfree_page(vm_page_t m)
1030 {
1031         struct vm_freelist *fl;
1032         struct vm_phys_seg *seg;
1033         vm_paddr_t pa, pa_half;
1034         vm_page_t m_set, m_tmp;
1035         int order;
1036
1037         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1038
1039         /*
1040          * First, find the contiguous, power of two-sized set of free
1041          * physical pages containing the given physical page "m" and
1042          * assign it to "m_set".
1043          */
1044         seg = &vm_phys_segs[m->segind];
1045         for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
1046             order < VM_NFREEORDER - 1; ) {
1047                 order++;
1048                 pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
1049                 if (pa >= seg->start)
1050                         m_set = &seg->first_page[atop(pa - seg->start)];
1051                 else
1052                         return (FALSE);
1053         }
1054         if (m_set->order < order)
1055                 return (FALSE);
1056         if (m_set->order == VM_NFREEORDER)
1057                 return (FALSE);
1058         KASSERT(m_set->order < VM_NFREEORDER,
1059             ("vm_phys_unfree_page: page %p has unexpected order %d",
1060             m_set, m_set->order));
1061
1062         /*
1063          * Next, remove "m_set" from the free lists.  Finally, extract
1064          * "m" from "m_set" using an iterative algorithm: While "m_set"
1065          * is larger than a page, shrink "m_set" by returning the half
1066          * of "m_set" that does not contain "m" to the free lists.
1067          */
1068         fl = (*seg->free_queues)[m_set->pool];
1069         order = m_set->order;
1070         vm_freelist_rem(fl, m_set, order);
1071         while (order > 0) {
1072                 order--;
1073                 pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
1074                 if (m->phys_addr < pa_half)
1075                         m_tmp = &seg->first_page[atop(pa_half - seg->start)];
1076                 else {
1077                         m_tmp = m_set;
1078                         m_set = &seg->first_page[atop(pa_half - seg->start)];
1079                 }
1080                 vm_freelist_add(fl, m_tmp, order, 0);
1081         }
1082         KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
1083         return (TRUE);
1084 }
1085
1086 /*
1087  * Allocate a contiguous set of physical pages of the given size
1088  * "npages" from the free lists.  All of the physical pages must be at
1089  * or above the given physical address "low" and below the given
1090  * physical address "high".  The given value "alignment" determines the
1091  * alignment of the first physical page in the set.  If the given value
1092  * "boundary" is non-zero, then the set of physical pages cannot cross
1093  * any physical address boundary that is a multiple of that value.  Both
1094  * "alignment" and "boundary" must be a power of two.
1095  */
1096 vm_page_t
1097 vm_phys_alloc_contig(int domain, u_long npages, vm_paddr_t low, vm_paddr_t high,
1098     u_long alignment, vm_paddr_t boundary)
1099 {
1100         vm_paddr_t pa_end, pa_start;
1101         vm_page_t m_run;
1102         struct vm_phys_seg *seg;
1103         int segind;
1104
1105         KASSERT(npages > 0, ("npages is 0"));
1106         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1107         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1108         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1109         if (low >= high)
1110                 return (NULL);
1111         m_run = NULL;
1112         for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
1113                 seg = &vm_phys_segs[segind];
1114                 if (seg->start >= high || seg->domain != domain)
1115                         continue;
1116                 if (low >= seg->end)
1117                         break;
1118                 if (low <= seg->start)
1119                         pa_start = seg->start;
1120                 else
1121                         pa_start = low;
1122                 if (high < seg->end)
1123                         pa_end = high;
1124                 else
1125                         pa_end = seg->end;
1126                 if (pa_end - pa_start < ptoa(npages))
1127                         continue;
1128                 m_run = vm_phys_alloc_seg_contig(seg, npages, low, high,
1129                     alignment, boundary);
1130                 if (m_run != NULL)
1131                         break;
1132         }
1133         return (m_run);
1134 }
1135
1136 /*
1137  * Allocate a run of contiguous physical pages from the free list for the
1138  * specified segment.
1139  */
1140 static vm_page_t
1141 vm_phys_alloc_seg_contig(struct vm_phys_seg *seg, u_long npages,
1142     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
1143 {
1144         struct vm_freelist *fl;
1145         vm_paddr_t pa, pa_end, size;
1146         vm_page_t m, m_ret;
1147         u_long npages_end;
1148         int oind, order, pind;
1149
1150         KASSERT(npages > 0, ("npages is 0"));
1151         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1152         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1153         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
1154         /* Compute the queue that is the best fit for npages. */
1155         for (order = 0; (1 << order) < npages; order++);
1156         /* Search for a run satisfying the specified conditions. */
1157         size = npages << PAGE_SHIFT;
1158         for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER;
1159             oind++) {
1160                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1161                         fl = (*seg->free_queues)[pind];
1162                         TAILQ_FOREACH(m_ret, &fl[oind].pl, plinks.q) {
1163                                 /*
1164                                  * Is the size of this allocation request
1165                                  * larger than the largest block size?
1166                                  */
1167                                 if (order >= VM_NFREEORDER) {
1168                                         /*
1169                                          * Determine if a sufficient number of
1170                                          * subsequent blocks to satisfy the
1171                                          * allocation request are free.
1172                                          */
1173                                         pa = VM_PAGE_TO_PHYS(m_ret);
1174                                         pa_end = pa + size;
1175                                         for (;;) {
1176                                                 pa += 1 << (PAGE_SHIFT +
1177                                                     VM_NFREEORDER - 1);
1178                                                 if (pa >= pa_end ||
1179                                                     pa < seg->start ||
1180                                                     pa >= seg->end)
1181                                                         break;
1182                                                 m = &seg->first_page[atop(pa -
1183                                                     seg->start)];
1184                                                 if (m->order != VM_NFREEORDER -
1185                                                     1)
1186                                                         break;
1187                                         }
1188                                         /* If not, go to the next block. */
1189                                         if (pa < pa_end)
1190                                                 continue;
1191                                 }
1192
1193                                 /*
1194                                  * Determine if the blocks are within the
1195                                  * given range, satisfy the given alignment,
1196                                  * and do not cross the given boundary.
1197                                  */
1198                                 pa = VM_PAGE_TO_PHYS(m_ret);
1199                                 pa_end = pa + size;
1200                                 if (pa >= low && pa_end <= high &&
1201                                     (pa & (alignment - 1)) == 0 &&
1202                                     rounddown2(pa ^ (pa_end - 1), boundary) == 0)
1203                                         goto done;
1204                         }
1205                 }
1206         }
1207         return (NULL);
1208 done:
1209         for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) {
1210                 fl = (*seg->free_queues)[m->pool];
1211                 vm_freelist_rem(fl, m, m->order);
1212         }
1213         if (m_ret->pool != VM_FREEPOOL_DEFAULT)
1214                 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m_ret, oind);
1215         fl = (*seg->free_queues)[m_ret->pool];
1216         vm_phys_split_pages(m_ret, oind, fl, order);
1217         /* Return excess pages to the free lists. */
1218         npages_end = roundup2(npages, 1 << imin(oind, order));
1219         if (npages < npages_end)
1220                 vm_phys_free_contig(&m_ret[npages], npages_end - npages);
1221         return (m_ret);
1222 }
1223
1224 #ifdef DDB
1225 /*
1226  * Show the number of physical pages in each of the free lists.
1227  */
1228 DB_SHOW_COMMAND(freepages, db_show_freepages)
1229 {
1230         struct vm_freelist *fl;
1231         int flind, oind, pind, dom;
1232
1233         for (dom = 0; dom < vm_ndomains; dom++) {
1234                 db_printf("DOMAIN: %d\n", dom);
1235                 for (flind = 0; flind < vm_nfreelists; flind++) {
1236                         db_printf("FREE LIST %d:\n"
1237                             "\n  ORDER (SIZE)  |  NUMBER"
1238                             "\n              ", flind);
1239                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
1240                                 db_printf("  |  POOL %d", pind);
1241                         db_printf("\n--            ");
1242                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
1243                                 db_printf("-- --      ");
1244                         db_printf("--\n");
1245                         for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
1246                                 db_printf("  %2.2d (%6.6dK)", oind,
1247                                     1 << (PAGE_SHIFT - 10 + oind));
1248                                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1249                                 fl = vm_phys_free_queues[dom][flind][pind];
1250                                         db_printf("  |  %6.6d", fl[oind].lcnt);
1251                                 }
1252                                 db_printf("\n");
1253                         }
1254                         db_printf("\n");
1255                 }
1256                 db_printf("\n");
1257         }
1258 }
1259 #endif