]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_phys.c
MFV r331400: 8484 Implement aggregate sum and use for arc counters
[FreeBSD/FreeBSD.git] / sys / vm / vm_phys.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2002-2006 Rice University
5  * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
6  * All rights reserved.
7  *
8  * This software was developed for the FreeBSD Project by Alan L. Cox,
9  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
24  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
27  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
30  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 /*
35  *      Physical memory system implementation
36  *
37  * Any external functions defined by this module are only to be used by the
38  * virtual memory system.
39  */
40
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43
44 #include "opt_ddb.h"
45 #include "opt_vm.h"
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/lock.h>
50 #include <sys/kernel.h>
51 #include <sys/malloc.h>
52 #include <sys/mutex.h>
53 #include <sys/proc.h>
54 #include <sys/queue.h>
55 #include <sys/rwlock.h>
56 #include <sys/sbuf.h>
57 #include <sys/sysctl.h>
58 #include <sys/tree.h>
59 #include <sys/vmmeter.h>
60 #include <sys/seq.h>
61
62 #include <ddb/ddb.h>
63
64 #include <vm/vm.h>
65 #include <vm/vm_param.h>
66 #include <vm/vm_kern.h>
67 #include <vm/vm_object.h>
68 #include <vm/vm_page.h>
69 #include <vm/vm_phys.h>
70 #include <vm/vm_pagequeue.h>
71
72 _Static_assert(sizeof(long) * NBBY >= VM_PHYSSEG_MAX,
73     "Too many physsegs.");
74
75 #ifdef NUMA
76 struct mem_affinity __read_mostly *mem_affinity;
77 int __read_mostly *mem_locality;
78 #endif
79
80 int __read_mostly vm_ndomains = 1;
81
82 struct vm_phys_seg __read_mostly vm_phys_segs[VM_PHYSSEG_MAX];
83 int __read_mostly vm_phys_nsegs;
84
85 struct vm_phys_fictitious_seg;
86 static int vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *,
87     struct vm_phys_fictitious_seg *);
88
89 RB_HEAD(fict_tree, vm_phys_fictitious_seg) vm_phys_fictitious_tree =
90     RB_INITIALIZER(_vm_phys_fictitious_tree);
91
92 struct vm_phys_fictitious_seg {
93         RB_ENTRY(vm_phys_fictitious_seg) node;
94         /* Memory region data */
95         vm_paddr_t      start;
96         vm_paddr_t      end;
97         vm_page_t       first_page;
98 };
99
100 RB_GENERATE_STATIC(fict_tree, vm_phys_fictitious_seg, node,
101     vm_phys_fictitious_cmp);
102
103 static struct rwlock_padalign vm_phys_fictitious_reg_lock;
104 MALLOC_DEFINE(M_FICT_PAGES, "vm_fictitious", "Fictitious VM pages");
105
106 static struct vm_freelist __aligned(CACHE_LINE_SIZE)
107     vm_phys_free_queues[MAXMEMDOM][VM_NFREELIST][VM_NFREEPOOL][VM_NFREEORDER];
108
109 static int __read_mostly vm_nfreelists;
110
111 /*
112  * Provides the mapping from VM_FREELIST_* to free list indices (flind).
113  */
114 static int __read_mostly vm_freelist_to_flind[VM_NFREELIST];
115
116 CTASSERT(VM_FREELIST_DEFAULT == 0);
117
118 #ifdef VM_FREELIST_ISADMA
119 #define VM_ISADMA_BOUNDARY      16777216
120 #endif
121 #ifdef VM_FREELIST_DMA32
122 #define VM_DMA32_BOUNDARY       ((vm_paddr_t)1 << 32)
123 #endif
124
125 /*
126  * Enforce the assumptions made by vm_phys_add_seg() and vm_phys_init() about
127  * the ordering of the free list boundaries.
128  */
129 #if defined(VM_ISADMA_BOUNDARY) && defined(VM_LOWMEM_BOUNDARY)
130 CTASSERT(VM_ISADMA_BOUNDARY < VM_LOWMEM_BOUNDARY);
131 #endif
132 #if defined(VM_LOWMEM_BOUNDARY) && defined(VM_DMA32_BOUNDARY)
133 CTASSERT(VM_LOWMEM_BOUNDARY < VM_DMA32_BOUNDARY);
134 #endif
135
136 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
137 SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD,
138     NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info");
139
140 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
141 SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD,
142     NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info");
143
144 #ifdef NUMA
145 static int sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS);
146 SYSCTL_OID(_vm, OID_AUTO, phys_locality, CTLTYPE_STRING | CTLFLAG_RD,
147     NULL, 0, sysctl_vm_phys_locality, "A", "Phys Locality Info");
148 #endif
149
150 SYSCTL_INT(_vm, OID_AUTO, ndomains, CTLFLAG_RD,
151     &vm_ndomains, 0, "Number of physical memory domains available.");
152
153 static vm_page_t vm_phys_alloc_seg_contig(struct vm_phys_seg *seg,
154     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
155     vm_paddr_t boundary);
156 static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain);
157 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end);
158 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
159     int order);
160
161 /*
162  * Red-black tree helpers for vm fictitious range management.
163  */
164 static inline int
165 vm_phys_fictitious_in_range(struct vm_phys_fictitious_seg *p,
166     struct vm_phys_fictitious_seg *range)
167 {
168
169         KASSERT(range->start != 0 && range->end != 0,
170             ("Invalid range passed on search for vm_fictitious page"));
171         if (p->start >= range->end)
172                 return (1);
173         if (p->start < range->start)
174                 return (-1);
175
176         return (0);
177 }
178
179 static int
180 vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *p1,
181     struct vm_phys_fictitious_seg *p2)
182 {
183
184         /* Check if this is a search for a page */
185         if (p1->end == 0)
186                 return (vm_phys_fictitious_in_range(p1, p2));
187
188         KASSERT(p2->end != 0,
189     ("Invalid range passed as second parameter to vm fictitious comparison"));
190
191         /* Searching to add a new range */
192         if (p1->end <= p2->start)
193                 return (-1);
194         if (p1->start >= p2->end)
195                 return (1);
196
197         panic("Trying to add overlapping vm fictitious ranges:\n"
198             "[%#jx:%#jx] and [%#jx:%#jx]", (uintmax_t)p1->start,
199             (uintmax_t)p1->end, (uintmax_t)p2->start, (uintmax_t)p2->end);
200 }
201
202 int
203 vm_phys_domain_match(int prefer, vm_paddr_t low, vm_paddr_t high)
204 {
205 #ifdef NUMA
206         domainset_t mask;
207         int i;
208
209         if (vm_ndomains == 1 || mem_affinity == NULL)
210                 return (0);
211
212         DOMAINSET_ZERO(&mask);
213         /*
214          * Check for any memory that overlaps low, high.
215          */
216         for (i = 0; mem_affinity[i].end != 0; i++)
217                 if (mem_affinity[i].start <= high &&
218                     mem_affinity[i].end >= low)
219                         DOMAINSET_SET(mem_affinity[i].domain, &mask);
220         if (prefer != -1 && DOMAINSET_ISSET(prefer, &mask))
221                 return (prefer);
222         if (DOMAINSET_EMPTY(&mask))
223                 panic("vm_phys_domain_match:  Impossible constraint");
224         return (DOMAINSET_FFS(&mask) - 1);
225 #else
226         return (0);
227 #endif
228 }
229
230 /*
231  * Outputs the state of the physical memory allocator, specifically,
232  * the amount of physical memory in each free list.
233  */
234 static int
235 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
236 {
237         struct sbuf sbuf;
238         struct vm_freelist *fl;
239         int dom, error, flind, oind, pind;
240
241         error = sysctl_wire_old_buffer(req, 0);
242         if (error != 0)
243                 return (error);
244         sbuf_new_for_sysctl(&sbuf, NULL, 128 * vm_ndomains, req);
245         for (dom = 0; dom < vm_ndomains; dom++) {
246                 sbuf_printf(&sbuf,"\nDOMAIN %d:\n", dom);
247                 for (flind = 0; flind < vm_nfreelists; flind++) {
248                         sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
249                             "\n  ORDER (SIZE)  |  NUMBER"
250                             "\n              ", flind);
251                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
252                                 sbuf_printf(&sbuf, "  |  POOL %d", pind);
253                         sbuf_printf(&sbuf, "\n--            ");
254                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
255                                 sbuf_printf(&sbuf, "-- --      ");
256                         sbuf_printf(&sbuf, "--\n");
257                         for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
258                                 sbuf_printf(&sbuf, "  %2d (%6dK)", oind,
259                                     1 << (PAGE_SHIFT - 10 + oind));
260                                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
261                                 fl = vm_phys_free_queues[dom][flind][pind];
262                                         sbuf_printf(&sbuf, "  |  %6d",
263                                             fl[oind].lcnt);
264                                 }
265                                 sbuf_printf(&sbuf, "\n");
266                         }
267                 }
268         }
269         error = sbuf_finish(&sbuf);
270         sbuf_delete(&sbuf);
271         return (error);
272 }
273
274 /*
275  * Outputs the set of physical memory segments.
276  */
277 static int
278 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
279 {
280         struct sbuf sbuf;
281         struct vm_phys_seg *seg;
282         int error, segind;
283
284         error = sysctl_wire_old_buffer(req, 0);
285         if (error != 0)
286                 return (error);
287         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
288         for (segind = 0; segind < vm_phys_nsegs; segind++) {
289                 sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
290                 seg = &vm_phys_segs[segind];
291                 sbuf_printf(&sbuf, "start:     %#jx\n",
292                     (uintmax_t)seg->start);
293                 sbuf_printf(&sbuf, "end:       %#jx\n",
294                     (uintmax_t)seg->end);
295                 sbuf_printf(&sbuf, "domain:    %d\n", seg->domain);
296                 sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
297         }
298         error = sbuf_finish(&sbuf);
299         sbuf_delete(&sbuf);
300         return (error);
301 }
302
303 /*
304  * Return affinity, or -1 if there's no affinity information.
305  */
306 int
307 vm_phys_mem_affinity(int f, int t)
308 {
309
310 #ifdef NUMA
311         if (mem_locality == NULL)
312                 return (-1);
313         if (f >= vm_ndomains || t >= vm_ndomains)
314                 return (-1);
315         return (mem_locality[f * vm_ndomains + t]);
316 #else
317         return (-1);
318 #endif
319 }
320
321 #ifdef NUMA
322 /*
323  * Outputs the VM locality table.
324  */
325 static int
326 sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS)
327 {
328         struct sbuf sbuf;
329         int error, i, j;
330
331         error = sysctl_wire_old_buffer(req, 0);
332         if (error != 0)
333                 return (error);
334         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
335
336         sbuf_printf(&sbuf, "\n");
337
338         for (i = 0; i < vm_ndomains; i++) {
339                 sbuf_printf(&sbuf, "%d: ", i);
340                 for (j = 0; j < vm_ndomains; j++) {
341                         sbuf_printf(&sbuf, "%d ", vm_phys_mem_affinity(i, j));
342                 }
343                 sbuf_printf(&sbuf, "\n");
344         }
345         error = sbuf_finish(&sbuf);
346         sbuf_delete(&sbuf);
347         return (error);
348 }
349 #endif
350
351 static void
352 vm_freelist_add(struct vm_freelist *fl, vm_page_t m, int order, int tail)
353 {
354
355         m->order = order;
356         if (tail)
357                 TAILQ_INSERT_TAIL(&fl[order].pl, m, plinks.q);
358         else
359                 TAILQ_INSERT_HEAD(&fl[order].pl, m, plinks.q);
360         fl[order].lcnt++;
361 }
362
363 static void
364 vm_freelist_rem(struct vm_freelist *fl, vm_page_t m, int order)
365 {
366
367         TAILQ_REMOVE(&fl[order].pl, m, plinks.q);
368         fl[order].lcnt--;
369         m->order = VM_NFREEORDER;
370 }
371
372 /*
373  * Create a physical memory segment.
374  */
375 static void
376 _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain)
377 {
378         struct vm_phys_seg *seg;
379
380         KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
381             ("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
382         KASSERT(domain >= 0 && domain < vm_ndomains,
383             ("vm_phys_create_seg: invalid domain provided"));
384         seg = &vm_phys_segs[vm_phys_nsegs++];
385         while (seg > vm_phys_segs && (seg - 1)->start >= end) {
386                 *seg = *(seg - 1);
387                 seg--;
388         }
389         seg->start = start;
390         seg->end = end;
391         seg->domain = domain;
392 }
393
394 static void
395 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end)
396 {
397 #ifdef NUMA
398         int i;
399
400         if (mem_affinity == NULL) {
401                 _vm_phys_create_seg(start, end, 0);
402                 return;
403         }
404
405         for (i = 0;; i++) {
406                 if (mem_affinity[i].end == 0)
407                         panic("Reached end of affinity info");
408                 if (mem_affinity[i].end <= start)
409                         continue;
410                 if (mem_affinity[i].start > start)
411                         panic("No affinity info for start %jx",
412                             (uintmax_t)start);
413                 if (mem_affinity[i].end >= end) {
414                         _vm_phys_create_seg(start, end,
415                             mem_affinity[i].domain);
416                         break;
417                 }
418                 _vm_phys_create_seg(start, mem_affinity[i].end,
419                     mem_affinity[i].domain);
420                 start = mem_affinity[i].end;
421         }
422 #else
423         _vm_phys_create_seg(start, end, 0);
424 #endif
425 }
426
427 /*
428  * Add a physical memory segment.
429  */
430 void
431 vm_phys_add_seg(vm_paddr_t start, vm_paddr_t end)
432 {
433         vm_paddr_t paddr;
434
435         KASSERT((start & PAGE_MASK) == 0,
436             ("vm_phys_define_seg: start is not page aligned"));
437         KASSERT((end & PAGE_MASK) == 0,
438             ("vm_phys_define_seg: end is not page aligned"));
439
440         /*
441          * Split the physical memory segment if it spans two or more free
442          * list boundaries.
443          */
444         paddr = start;
445 #ifdef  VM_FREELIST_ISADMA
446         if (paddr < VM_ISADMA_BOUNDARY && end > VM_ISADMA_BOUNDARY) {
447                 vm_phys_create_seg(paddr, VM_ISADMA_BOUNDARY);
448                 paddr = VM_ISADMA_BOUNDARY;
449         }
450 #endif
451 #ifdef  VM_FREELIST_LOWMEM
452         if (paddr < VM_LOWMEM_BOUNDARY && end > VM_LOWMEM_BOUNDARY) {
453                 vm_phys_create_seg(paddr, VM_LOWMEM_BOUNDARY);
454                 paddr = VM_LOWMEM_BOUNDARY;
455         }
456 #endif
457 #ifdef  VM_FREELIST_DMA32
458         if (paddr < VM_DMA32_BOUNDARY && end > VM_DMA32_BOUNDARY) {
459                 vm_phys_create_seg(paddr, VM_DMA32_BOUNDARY);
460                 paddr = VM_DMA32_BOUNDARY;
461         }
462 #endif
463         vm_phys_create_seg(paddr, end);
464 }
465
466 /*
467  * Initialize the physical memory allocator.
468  *
469  * Requires that vm_page_array is initialized!
470  */
471 void
472 vm_phys_init(void)
473 {
474         struct vm_freelist *fl;
475         struct vm_phys_seg *seg;
476         u_long npages;
477         int dom, flind, freelist, oind, pind, segind;
478
479         /*
480          * Compute the number of free lists, and generate the mapping from the
481          * manifest constants VM_FREELIST_* to the free list indices.
482          *
483          * Initially, the entries of vm_freelist_to_flind[] are set to either
484          * 0 or 1 to indicate which free lists should be created.
485          */
486         npages = 0;
487         for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
488                 seg = &vm_phys_segs[segind];
489 #ifdef  VM_FREELIST_ISADMA
490                 if (seg->end <= VM_ISADMA_BOUNDARY)
491                         vm_freelist_to_flind[VM_FREELIST_ISADMA] = 1;
492                 else
493 #endif
494 #ifdef  VM_FREELIST_LOWMEM
495                 if (seg->end <= VM_LOWMEM_BOUNDARY)
496                         vm_freelist_to_flind[VM_FREELIST_LOWMEM] = 1;
497                 else
498 #endif
499 #ifdef  VM_FREELIST_DMA32
500                 if (
501 #ifdef  VM_DMA32_NPAGES_THRESHOLD
502                     /*
503                      * Create the DMA32 free list only if the amount of
504                      * physical memory above physical address 4G exceeds the
505                      * given threshold.
506                      */
507                     npages > VM_DMA32_NPAGES_THRESHOLD &&
508 #endif
509                     seg->end <= VM_DMA32_BOUNDARY)
510                         vm_freelist_to_flind[VM_FREELIST_DMA32] = 1;
511                 else
512 #endif
513                 {
514                         npages += atop(seg->end - seg->start);
515                         vm_freelist_to_flind[VM_FREELIST_DEFAULT] = 1;
516                 }
517         }
518         /* Change each entry into a running total of the free lists. */
519         for (freelist = 1; freelist < VM_NFREELIST; freelist++) {
520                 vm_freelist_to_flind[freelist] +=
521                     vm_freelist_to_flind[freelist - 1];
522         }
523         vm_nfreelists = vm_freelist_to_flind[VM_NFREELIST - 1];
524         KASSERT(vm_nfreelists > 0, ("vm_phys_init: no free lists"));
525         /* Change each entry into a free list index. */
526         for (freelist = 0; freelist < VM_NFREELIST; freelist++)
527                 vm_freelist_to_flind[freelist]--;
528
529         /*
530          * Initialize the first_page and free_queues fields of each physical
531          * memory segment.
532          */
533 #ifdef VM_PHYSSEG_SPARSE
534         npages = 0;
535 #endif
536         for (segind = 0; segind < vm_phys_nsegs; segind++) {
537                 seg = &vm_phys_segs[segind];
538 #ifdef VM_PHYSSEG_SPARSE
539                 seg->first_page = &vm_page_array[npages];
540                 npages += atop(seg->end - seg->start);
541 #else
542                 seg->first_page = PHYS_TO_VM_PAGE(seg->start);
543 #endif
544 #ifdef  VM_FREELIST_ISADMA
545                 if (seg->end <= VM_ISADMA_BOUNDARY) {
546                         flind = vm_freelist_to_flind[VM_FREELIST_ISADMA];
547                         KASSERT(flind >= 0,
548                             ("vm_phys_init: ISADMA flind < 0"));
549                 } else
550 #endif
551 #ifdef  VM_FREELIST_LOWMEM
552                 if (seg->end <= VM_LOWMEM_BOUNDARY) {
553                         flind = vm_freelist_to_flind[VM_FREELIST_LOWMEM];
554                         KASSERT(flind >= 0,
555                             ("vm_phys_init: LOWMEM flind < 0"));
556                 } else
557 #endif
558 #ifdef  VM_FREELIST_DMA32
559                 if (seg->end <= VM_DMA32_BOUNDARY) {
560                         flind = vm_freelist_to_flind[VM_FREELIST_DMA32];
561                         KASSERT(flind >= 0,
562                             ("vm_phys_init: DMA32 flind < 0"));
563                 } else
564 #endif
565                 {
566                         flind = vm_freelist_to_flind[VM_FREELIST_DEFAULT];
567                         KASSERT(flind >= 0,
568                             ("vm_phys_init: DEFAULT flind < 0"));
569                 }
570                 seg->free_queues = &vm_phys_free_queues[seg->domain][flind];
571         }
572
573         /*
574          * Initialize the free queues.
575          */
576         for (dom = 0; dom < vm_ndomains; dom++) {
577                 for (flind = 0; flind < vm_nfreelists; flind++) {
578                         for (pind = 0; pind < VM_NFREEPOOL; pind++) {
579                                 fl = vm_phys_free_queues[dom][flind][pind];
580                                 for (oind = 0; oind < VM_NFREEORDER; oind++)
581                                         TAILQ_INIT(&fl[oind].pl);
582                         }
583                 }
584         }
585
586         rw_init(&vm_phys_fictitious_reg_lock, "vmfctr");
587 }
588
589 /*
590  * Split a contiguous, power of two-sized set of physical pages.
591  */
592 static __inline void
593 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order)
594 {
595         vm_page_t m_buddy;
596
597         while (oind > order) {
598                 oind--;
599                 m_buddy = &m[1 << oind];
600                 KASSERT(m_buddy->order == VM_NFREEORDER,
601                     ("vm_phys_split_pages: page %p has unexpected order %d",
602                     m_buddy, m_buddy->order));
603                 vm_freelist_add(fl, m_buddy, oind, 0);
604         }
605 }
606
607 /*
608  * Allocate a contiguous, power of two-sized set of physical pages
609  * from the free lists.
610  *
611  * The free page queues must be locked.
612  */
613 vm_page_t
614 vm_phys_alloc_pages(int domain, int pool, int order)
615 {
616         vm_page_t m;
617         int freelist;
618
619         for (freelist = 0; freelist < VM_NFREELIST; freelist++) {
620                 m = vm_phys_alloc_freelist_pages(domain, freelist, pool, order);
621                 if (m != NULL)
622                         return (m);
623         }
624         return (NULL);
625 }
626
627 /*
628  * Allocate a contiguous, power of two-sized set of physical pages from the
629  * specified free list.  The free list must be specified using one of the
630  * manifest constants VM_FREELIST_*.
631  *
632  * The free page queues must be locked.
633  */
634 vm_page_t
635 vm_phys_alloc_freelist_pages(int domain, int freelist, int pool, int order)
636 {
637         struct vm_freelist *alt, *fl;
638         vm_page_t m;
639         int oind, pind, flind;
640
641         KASSERT(domain >= 0 && domain < vm_ndomains,
642             ("vm_phys_alloc_freelist_pages: domain %d is out of range",
643             domain));
644         KASSERT(freelist < VM_NFREELIST,
645             ("vm_phys_alloc_freelist_pages: freelist %d is out of range",
646             freelist));
647         KASSERT(pool < VM_NFREEPOOL,
648             ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool));
649         KASSERT(order < VM_NFREEORDER,
650             ("vm_phys_alloc_freelist_pages: order %d is out of range", order));
651
652         flind = vm_freelist_to_flind[freelist];
653         /* Check if freelist is present */
654         if (flind < 0)
655                 return (NULL);
656
657         vm_domain_free_assert_locked(VM_DOMAIN(domain));
658         fl = &vm_phys_free_queues[domain][flind][pool][0];
659         for (oind = order; oind < VM_NFREEORDER; oind++) {
660                 m = TAILQ_FIRST(&fl[oind].pl);
661                 if (m != NULL) {
662                         vm_freelist_rem(fl, m, oind);
663                         vm_phys_split_pages(m, oind, fl, order);
664                         return (m);
665                 }
666         }
667
668         /*
669          * The given pool was empty.  Find the largest
670          * contiguous, power-of-two-sized set of pages in any
671          * pool.  Transfer these pages to the given pool, and
672          * use them to satisfy the allocation.
673          */
674         for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
675                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
676                         alt = &vm_phys_free_queues[domain][flind][pind][0];
677                         m = TAILQ_FIRST(&alt[oind].pl);
678                         if (m != NULL) {
679                                 vm_freelist_rem(alt, m, oind);
680                                 vm_phys_set_pool(pool, m, oind);
681                                 vm_phys_split_pages(m, oind, fl, order);
682                                 return (m);
683                         }
684                 }
685         }
686         return (NULL);
687 }
688
689 /*
690  * Find the vm_page corresponding to the given physical address.
691  */
692 vm_page_t
693 vm_phys_paddr_to_vm_page(vm_paddr_t pa)
694 {
695         struct vm_phys_seg *seg;
696         int segind;
697
698         for (segind = 0; segind < vm_phys_nsegs; segind++) {
699                 seg = &vm_phys_segs[segind];
700                 if (pa >= seg->start && pa < seg->end)
701                         return (&seg->first_page[atop(pa - seg->start)]);
702         }
703         return (NULL);
704 }
705
706 vm_page_t
707 vm_phys_fictitious_to_vm_page(vm_paddr_t pa)
708 {
709         struct vm_phys_fictitious_seg tmp, *seg;
710         vm_page_t m;
711
712         m = NULL;
713         tmp.start = pa;
714         tmp.end = 0;
715
716         rw_rlock(&vm_phys_fictitious_reg_lock);
717         seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
718         rw_runlock(&vm_phys_fictitious_reg_lock);
719         if (seg == NULL)
720                 return (NULL);
721
722         m = &seg->first_page[atop(pa - seg->start)];
723         KASSERT((m->flags & PG_FICTITIOUS) != 0, ("%p not fictitious", m));
724
725         return (m);
726 }
727
728 static inline void
729 vm_phys_fictitious_init_range(vm_page_t range, vm_paddr_t start,
730     long page_count, vm_memattr_t memattr)
731 {
732         long i;
733
734         bzero(range, page_count * sizeof(*range));
735         for (i = 0; i < page_count; i++) {
736                 vm_page_initfake(&range[i], start + PAGE_SIZE * i, memattr);
737                 range[i].oflags &= ~VPO_UNMANAGED;
738                 range[i].busy_lock = VPB_UNBUSIED;
739         }
740 }
741
742 int
743 vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end,
744     vm_memattr_t memattr)
745 {
746         struct vm_phys_fictitious_seg *seg;
747         vm_page_t fp;
748         long page_count;
749 #ifdef VM_PHYSSEG_DENSE
750         long pi, pe;
751         long dpage_count;
752 #endif
753
754         KASSERT(start < end,
755             ("Start of segment isn't less than end (start: %jx end: %jx)",
756             (uintmax_t)start, (uintmax_t)end));
757
758         page_count = (end - start) / PAGE_SIZE;
759
760 #ifdef VM_PHYSSEG_DENSE
761         pi = atop(start);
762         pe = atop(end);
763         if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
764                 fp = &vm_page_array[pi - first_page];
765                 if ((pe - first_page) > vm_page_array_size) {
766                         /*
767                          * We have a segment that starts inside
768                          * of vm_page_array, but ends outside of it.
769                          *
770                          * Use vm_page_array pages for those that are
771                          * inside of the vm_page_array range, and
772                          * allocate the remaining ones.
773                          */
774                         dpage_count = vm_page_array_size - (pi - first_page);
775                         vm_phys_fictitious_init_range(fp, start, dpage_count,
776                             memattr);
777                         page_count -= dpage_count;
778                         start += ptoa(dpage_count);
779                         goto alloc;
780                 }
781                 /*
782                  * We can allocate the full range from vm_page_array,
783                  * so there's no need to register the range in the tree.
784                  */
785                 vm_phys_fictitious_init_range(fp, start, page_count, memattr);
786                 return (0);
787         } else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
788                 /*
789                  * We have a segment that ends inside of vm_page_array,
790                  * but starts outside of it.
791                  */
792                 fp = &vm_page_array[0];
793                 dpage_count = pe - first_page;
794                 vm_phys_fictitious_init_range(fp, ptoa(first_page), dpage_count,
795                     memattr);
796                 end -= ptoa(dpage_count);
797                 page_count -= dpage_count;
798                 goto alloc;
799         } else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
800                 /*
801                  * Trying to register a fictitious range that expands before
802                  * and after vm_page_array.
803                  */
804                 return (EINVAL);
805         } else {
806 alloc:
807 #endif
808                 fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES,
809                     M_WAITOK);
810 #ifdef VM_PHYSSEG_DENSE
811         }
812 #endif
813         vm_phys_fictitious_init_range(fp, start, page_count, memattr);
814
815         seg = malloc(sizeof(*seg), M_FICT_PAGES, M_WAITOK | M_ZERO);
816         seg->start = start;
817         seg->end = end;
818         seg->first_page = fp;
819
820         rw_wlock(&vm_phys_fictitious_reg_lock);
821         RB_INSERT(fict_tree, &vm_phys_fictitious_tree, seg);
822         rw_wunlock(&vm_phys_fictitious_reg_lock);
823
824         return (0);
825 }
826
827 void
828 vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end)
829 {
830         struct vm_phys_fictitious_seg *seg, tmp;
831 #ifdef VM_PHYSSEG_DENSE
832         long pi, pe;
833 #endif
834
835         KASSERT(start < end,
836             ("Start of segment isn't less than end (start: %jx end: %jx)",
837             (uintmax_t)start, (uintmax_t)end));
838
839 #ifdef VM_PHYSSEG_DENSE
840         pi = atop(start);
841         pe = atop(end);
842         if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
843                 if ((pe - first_page) <= vm_page_array_size) {
844                         /*
845                          * This segment was allocated using vm_page_array
846                          * only, there's nothing to do since those pages
847                          * were never added to the tree.
848                          */
849                         return;
850                 }
851                 /*
852                  * We have a segment that starts inside
853                  * of vm_page_array, but ends outside of it.
854                  *
855                  * Calculate how many pages were added to the
856                  * tree and free them.
857                  */
858                 start = ptoa(first_page + vm_page_array_size);
859         } else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
860                 /*
861                  * We have a segment that ends inside of vm_page_array,
862                  * but starts outside of it.
863                  */
864                 end = ptoa(first_page);
865         } else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
866                 /* Since it's not possible to register such a range, panic. */
867                 panic(
868                     "Unregistering not registered fictitious range [%#jx:%#jx]",
869                     (uintmax_t)start, (uintmax_t)end);
870         }
871 #endif
872         tmp.start = start;
873         tmp.end = 0;
874
875         rw_wlock(&vm_phys_fictitious_reg_lock);
876         seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
877         if (seg->start != start || seg->end != end) {
878                 rw_wunlock(&vm_phys_fictitious_reg_lock);
879                 panic(
880                     "Unregistering not registered fictitious range [%#jx:%#jx]",
881                     (uintmax_t)start, (uintmax_t)end);
882         }
883         RB_REMOVE(fict_tree, &vm_phys_fictitious_tree, seg);
884         rw_wunlock(&vm_phys_fictitious_reg_lock);
885         free(seg->first_page, M_FICT_PAGES);
886         free(seg, M_FICT_PAGES);
887 }
888
889 /*
890  * Free a contiguous, power of two-sized set of physical pages.
891  *
892  * The free page queues must be locked.
893  */
894 void
895 vm_phys_free_pages(vm_page_t m, int order)
896 {
897         struct vm_freelist *fl;
898         struct vm_phys_seg *seg;
899         vm_paddr_t pa;
900         vm_page_t m_buddy;
901
902         KASSERT(m->order == VM_NFREEORDER,
903             ("vm_phys_free_pages: page %p has unexpected order %d",
904             m, m->order));
905         KASSERT(m->pool < VM_NFREEPOOL,
906             ("vm_phys_free_pages: page %p has unexpected pool %d",
907             m, m->pool));
908         KASSERT(order < VM_NFREEORDER,
909             ("vm_phys_free_pages: order %d is out of range", order));
910         seg = &vm_phys_segs[m->segind];
911         vm_domain_free_assert_locked(VM_DOMAIN(seg->domain));
912         if (order < VM_NFREEORDER - 1) {
913                 pa = VM_PAGE_TO_PHYS(m);
914                 do {
915                         pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order));
916                         if (pa < seg->start || pa >= seg->end)
917                                 break;
918                         m_buddy = &seg->first_page[atop(pa - seg->start)];
919                         if (m_buddy->order != order)
920                                 break;
921                         fl = (*seg->free_queues)[m_buddy->pool];
922                         vm_freelist_rem(fl, m_buddy, order);
923                         if (m_buddy->pool != m->pool)
924                                 vm_phys_set_pool(m->pool, m_buddy, order);
925                         order++;
926                         pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1);
927                         m = &seg->first_page[atop(pa - seg->start)];
928                 } while (order < VM_NFREEORDER - 1);
929         }
930         fl = (*seg->free_queues)[m->pool];
931         vm_freelist_add(fl, m, order, 1);
932 }
933
934 /*
935  * Free a contiguous, arbitrarily sized set of physical pages.
936  *
937  * The free page queues must be locked.
938  */
939 void
940 vm_phys_free_contig(vm_page_t m, u_long npages)
941 {
942         u_int n;
943         int order;
944
945         /*
946          * Avoid unnecessary coalescing by freeing the pages in the largest
947          * possible power-of-two-sized subsets.
948          */
949         vm_domain_free_assert_locked(vm_pagequeue_domain(m));
950         for (;; npages -= n) {
951                 /*
952                  * Unsigned "min" is used here so that "order" is assigned
953                  * "VM_NFREEORDER - 1" when "m"'s physical address is zero
954                  * or the low-order bits of its physical address are zero
955                  * because the size of a physical address exceeds the size of
956                  * a long.
957                  */
958                 order = min(ffsl(VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) - 1,
959                     VM_NFREEORDER - 1);
960                 n = 1 << order;
961                 if (npages < n)
962                         break;
963                 vm_phys_free_pages(m, order);
964                 m += n;
965         }
966         /* The residual "npages" is less than "1 << (VM_NFREEORDER - 1)". */
967         for (; npages > 0; npages -= n) {
968                 order = flsl(npages) - 1;
969                 n = 1 << order;
970                 vm_phys_free_pages(m, order);
971                 m += n;
972         }
973 }
974
975 /*
976  * Scan physical memory between the specified addresses "low" and "high" for a
977  * run of contiguous physical pages that satisfy the specified conditions, and
978  * return the lowest page in the run.  The specified "alignment" determines
979  * the alignment of the lowest physical page in the run.  If the specified
980  * "boundary" is non-zero, then the run of physical pages cannot span a
981  * physical address that is a multiple of "boundary".
982  *
983  * "npages" must be greater than zero.  Both "alignment" and "boundary" must
984  * be a power of two.
985  */
986 vm_page_t
987 vm_phys_scan_contig(int domain, u_long npages, vm_paddr_t low, vm_paddr_t high,
988     u_long alignment, vm_paddr_t boundary, int options)
989 {
990         vm_paddr_t pa_end;
991         vm_page_t m_end, m_run, m_start;
992         struct vm_phys_seg *seg;
993         int segind;
994
995         KASSERT(npages > 0, ("npages is 0"));
996         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
997         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
998         if (low >= high)
999                 return (NULL);
1000         for (segind = 0; segind < vm_phys_nsegs; segind++) {
1001                 seg = &vm_phys_segs[segind];
1002                 if (seg->domain != domain)
1003                         continue;
1004                 if (seg->start >= high)
1005                         break;
1006                 if (low >= seg->end)
1007                         continue;
1008                 if (low <= seg->start)
1009                         m_start = seg->first_page;
1010                 else
1011                         m_start = &seg->first_page[atop(low - seg->start)];
1012                 if (high < seg->end)
1013                         pa_end = high;
1014                 else
1015                         pa_end = seg->end;
1016                 if (pa_end - VM_PAGE_TO_PHYS(m_start) < ptoa(npages))
1017                         continue;
1018                 m_end = &seg->first_page[atop(pa_end - seg->start)];
1019                 m_run = vm_page_scan_contig(npages, m_start, m_end,
1020                     alignment, boundary, options);
1021                 if (m_run != NULL)
1022                         return (m_run);
1023         }
1024         return (NULL);
1025 }
1026
1027 /*
1028  * Set the pool for a contiguous, power of two-sized set of physical pages. 
1029  */
1030 void
1031 vm_phys_set_pool(int pool, vm_page_t m, int order)
1032 {
1033         vm_page_t m_tmp;
1034
1035         for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
1036                 m_tmp->pool = pool;
1037 }
1038
1039 /*
1040  * Search for the given physical page "m" in the free lists.  If the search
1041  * succeeds, remove "m" from the free lists and return TRUE.  Otherwise, return
1042  * FALSE, indicating that "m" is not in the free lists.
1043  *
1044  * The free page queues must be locked.
1045  */
1046 boolean_t
1047 vm_phys_unfree_page(vm_page_t m)
1048 {
1049         struct vm_freelist *fl;
1050         struct vm_phys_seg *seg;
1051         vm_paddr_t pa, pa_half;
1052         vm_page_t m_set, m_tmp;
1053         int order;
1054
1055         /*
1056          * First, find the contiguous, power of two-sized set of free
1057          * physical pages containing the given physical page "m" and
1058          * assign it to "m_set".
1059          */
1060         seg = &vm_phys_segs[m->segind];
1061         vm_domain_free_assert_locked(VM_DOMAIN(seg->domain));
1062         for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
1063             order < VM_NFREEORDER - 1; ) {
1064                 order++;
1065                 pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
1066                 if (pa >= seg->start)
1067                         m_set = &seg->first_page[atop(pa - seg->start)];
1068                 else
1069                         return (FALSE);
1070         }
1071         if (m_set->order < order)
1072                 return (FALSE);
1073         if (m_set->order == VM_NFREEORDER)
1074                 return (FALSE);
1075         KASSERT(m_set->order < VM_NFREEORDER,
1076             ("vm_phys_unfree_page: page %p has unexpected order %d",
1077             m_set, m_set->order));
1078
1079         /*
1080          * Next, remove "m_set" from the free lists.  Finally, extract
1081          * "m" from "m_set" using an iterative algorithm: While "m_set"
1082          * is larger than a page, shrink "m_set" by returning the half
1083          * of "m_set" that does not contain "m" to the free lists.
1084          */
1085         fl = (*seg->free_queues)[m_set->pool];
1086         order = m_set->order;
1087         vm_freelist_rem(fl, m_set, order);
1088         while (order > 0) {
1089                 order--;
1090                 pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
1091                 if (m->phys_addr < pa_half)
1092                         m_tmp = &seg->first_page[atop(pa_half - seg->start)];
1093                 else {
1094                         m_tmp = m_set;
1095                         m_set = &seg->first_page[atop(pa_half - seg->start)];
1096                 }
1097                 vm_freelist_add(fl, m_tmp, order, 0);
1098         }
1099         KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
1100         return (TRUE);
1101 }
1102
1103 /*
1104  * Allocate a contiguous set of physical pages of the given size
1105  * "npages" from the free lists.  All of the physical pages must be at
1106  * or above the given physical address "low" and below the given
1107  * physical address "high".  The given value "alignment" determines the
1108  * alignment of the first physical page in the set.  If the given value
1109  * "boundary" is non-zero, then the set of physical pages cannot cross
1110  * any physical address boundary that is a multiple of that value.  Both
1111  * "alignment" and "boundary" must be a power of two.
1112  */
1113 vm_page_t
1114 vm_phys_alloc_contig(int domain, u_long npages, vm_paddr_t low, vm_paddr_t high,
1115     u_long alignment, vm_paddr_t boundary)
1116 {
1117         vm_paddr_t pa_end, pa_start;
1118         vm_page_t m_run;
1119         struct vm_phys_seg *seg;
1120         int segind;
1121
1122         KASSERT(npages > 0, ("npages is 0"));
1123         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1124         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1125         vm_domain_free_assert_locked(VM_DOMAIN(domain));
1126         if (low >= high)
1127                 return (NULL);
1128         m_run = NULL;
1129         for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
1130                 seg = &vm_phys_segs[segind];
1131                 if (seg->start >= high || seg->domain != domain)
1132                         continue;
1133                 if (low >= seg->end)
1134                         break;
1135                 if (low <= seg->start)
1136                         pa_start = seg->start;
1137                 else
1138                         pa_start = low;
1139                 if (high < seg->end)
1140                         pa_end = high;
1141                 else
1142                         pa_end = seg->end;
1143                 if (pa_end - pa_start < ptoa(npages))
1144                         continue;
1145                 m_run = vm_phys_alloc_seg_contig(seg, npages, low, high,
1146                     alignment, boundary);
1147                 if (m_run != NULL)
1148                         break;
1149         }
1150         return (m_run);
1151 }
1152
1153 /*
1154  * Allocate a run of contiguous physical pages from the free list for the
1155  * specified segment.
1156  */
1157 static vm_page_t
1158 vm_phys_alloc_seg_contig(struct vm_phys_seg *seg, u_long npages,
1159     vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
1160 {
1161         struct vm_freelist *fl;
1162         vm_paddr_t pa, pa_end, size;
1163         vm_page_t m, m_ret;
1164         u_long npages_end;
1165         int oind, order, pind;
1166
1167         KASSERT(npages > 0, ("npages is 0"));
1168         KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
1169         KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
1170         vm_domain_free_assert_locked(VM_DOMAIN(seg->domain));
1171         /* Compute the queue that is the best fit for npages. */
1172         for (order = 0; (1 << order) < npages; order++);
1173         /* Search for a run satisfying the specified conditions. */
1174         size = npages << PAGE_SHIFT;
1175         for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER;
1176             oind++) {
1177                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1178                         fl = (*seg->free_queues)[pind];
1179                         TAILQ_FOREACH(m_ret, &fl[oind].pl, plinks.q) {
1180                                 /*
1181                                  * Is the size of this allocation request
1182                                  * larger than the largest block size?
1183                                  */
1184                                 if (order >= VM_NFREEORDER) {
1185                                         /*
1186                                          * Determine if a sufficient number of
1187                                          * subsequent blocks to satisfy the
1188                                          * allocation request are free.
1189                                          */
1190                                         pa = VM_PAGE_TO_PHYS(m_ret);
1191                                         pa_end = pa + size;
1192                                         if (pa_end < pa)
1193                                                 continue;
1194                                         for (;;) {
1195                                                 pa += 1 << (PAGE_SHIFT +
1196                                                     VM_NFREEORDER - 1);
1197                                                 if (pa >= pa_end ||
1198                                                     pa < seg->start ||
1199                                                     pa >= seg->end)
1200                                                         break;
1201                                                 m = &seg->first_page[atop(pa -
1202                                                     seg->start)];
1203                                                 if (m->order != VM_NFREEORDER -
1204                                                     1)
1205                                                         break;
1206                                         }
1207                                         /* If not, go to the next block. */
1208                                         if (pa < pa_end)
1209                                                 continue;
1210                                 }
1211
1212                                 /*
1213                                  * Determine if the blocks are within the
1214                                  * given range, satisfy the given alignment,
1215                                  * and do not cross the given boundary.
1216                                  */
1217                                 pa = VM_PAGE_TO_PHYS(m_ret);
1218                                 pa_end = pa + size;
1219                                 if (pa >= low && pa_end <= high &&
1220                                     (pa & (alignment - 1)) == 0 &&
1221                                     rounddown2(pa ^ (pa_end - 1), boundary) == 0)
1222                                         goto done;
1223                         }
1224                 }
1225         }
1226         return (NULL);
1227 done:
1228         for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) {
1229                 fl = (*seg->free_queues)[m->pool];
1230                 vm_freelist_rem(fl, m, m->order);
1231         }
1232         if (m_ret->pool != VM_FREEPOOL_DEFAULT)
1233                 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m_ret, oind);
1234         fl = (*seg->free_queues)[m_ret->pool];
1235         vm_phys_split_pages(m_ret, oind, fl, order);
1236         /* Return excess pages to the free lists. */
1237         npages_end = roundup2(npages, 1 << imin(oind, order));
1238         if (npages < npages_end)
1239                 vm_phys_free_contig(&m_ret[npages], npages_end - npages);
1240         return (m_ret);
1241 }
1242
1243 #ifdef DDB
1244 /*
1245  * Show the number of physical pages in each of the free lists.
1246  */
1247 DB_SHOW_COMMAND(freepages, db_show_freepages)
1248 {
1249         struct vm_freelist *fl;
1250         int flind, oind, pind, dom;
1251
1252         for (dom = 0; dom < vm_ndomains; dom++) {
1253                 db_printf("DOMAIN: %d\n", dom);
1254                 for (flind = 0; flind < vm_nfreelists; flind++) {
1255                         db_printf("FREE LIST %d:\n"
1256                             "\n  ORDER (SIZE)  |  NUMBER"
1257                             "\n              ", flind);
1258                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
1259                                 db_printf("  |  POOL %d", pind);
1260                         db_printf("\n--            ");
1261                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
1262                                 db_printf("-- --      ");
1263                         db_printf("--\n");
1264                         for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
1265                                 db_printf("  %2.2d (%6.6dK)", oind,
1266                                     1 << (PAGE_SHIFT - 10 + oind));
1267                                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1268                                 fl = vm_phys_free_queues[dom][flind][pind];
1269                                         db_printf("  |  %6.6d", fl[oind].lcnt);
1270                                 }
1271                                 db_printf("\n");
1272                         }
1273                         db_printf("\n");
1274                 }
1275                 db_printf("\n");
1276         }
1277 }
1278 #endif