]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_phys.c
Update to byacc 20140715 (only concerns regression tests being fixed)
[FreeBSD/FreeBSD.git] / sys / vm / vm_phys.c
1 /*-
2  * Copyright (c) 2002-2006 Rice University
3  * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
4  * All rights reserved.
5  *
6  * This software was developed for the FreeBSD Project by Alan L. Cox,
7  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
22  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
28  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31
32 /*
33  *      Physical memory system implementation
34  *
35  * Any external functions defined by this module are only to be used by the
36  * virtual memory system.
37  */
38
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41
42 #include "opt_ddb.h"
43 #include "opt_vm.h"
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/lock.h>
48 #include <sys/kernel.h>
49 #include <sys/malloc.h>
50 #include <sys/mutex.h>
51 #if MAXMEMDOM > 1
52 #include <sys/proc.h>
53 #endif
54 #include <sys/queue.h>
55 #include <sys/rwlock.h>
56 #include <sys/sbuf.h>
57 #include <sys/sysctl.h>
58 #include <sys/tree.h>
59 #include <sys/vmmeter.h>
60
61 #include <ddb/ddb.h>
62
63 #include <vm/vm.h>
64 #include <vm/vm_param.h>
65 #include <vm/vm_kern.h>
66 #include <vm/vm_object.h>
67 #include <vm/vm_page.h>
68 #include <vm/vm_phys.h>
69
70 _Static_assert(sizeof(long) * NBBY >= VM_PHYSSEG_MAX,
71     "Too many physsegs.");
72
73 struct mem_affinity *mem_affinity;
74
75 int vm_ndomains = 1;
76
77 struct vm_phys_seg vm_phys_segs[VM_PHYSSEG_MAX];
78 int vm_phys_nsegs;
79
80 struct vm_phys_fictitious_seg;
81 static int vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *,
82     struct vm_phys_fictitious_seg *);
83
84 RB_HEAD(fict_tree, vm_phys_fictitious_seg) vm_phys_fictitious_tree =
85     RB_INITIALIZER(_vm_phys_fictitious_tree);
86
87 struct vm_phys_fictitious_seg {
88         RB_ENTRY(vm_phys_fictitious_seg) node;
89         /* Memory region data */
90         vm_paddr_t      start;
91         vm_paddr_t      end;
92         vm_page_t       first_page;
93 };
94
95 RB_GENERATE_STATIC(fict_tree, vm_phys_fictitious_seg, node,
96     vm_phys_fictitious_cmp);
97
98 static struct rwlock vm_phys_fictitious_reg_lock;
99 MALLOC_DEFINE(M_FICT_PAGES, "vm_fictitious", "Fictitious VM pages");
100
101 static struct vm_freelist
102     vm_phys_free_queues[MAXMEMDOM][VM_NFREELIST][VM_NFREEPOOL][VM_NFREEORDER];
103
104 static int vm_nfreelists = VM_FREELIST_DEFAULT + 1;
105
106 static int cnt_prezero;
107 SYSCTL_INT(_vm_stats_misc, OID_AUTO, cnt_prezero, CTLFLAG_RD,
108     &cnt_prezero, 0, "The number of physical pages prezeroed at idle time");
109
110 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
111 SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD,
112     NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info");
113
114 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
115 SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD,
116     NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info");
117
118 SYSCTL_INT(_vm, OID_AUTO, ndomains, CTLFLAG_RD,
119     &vm_ndomains, 0, "Number of physical memory domains available.");
120
121 static vm_page_t vm_phys_alloc_domain_pages(int domain, int flind, int pool,
122     int order);
123 static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind,
124     int domain);
125 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind);
126 static int vm_phys_paddr_to_segind(vm_paddr_t pa);
127 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
128     int order);
129
130 /*
131  * Red-black tree helpers for vm fictitious range management.
132  */
133 static inline int
134 vm_phys_fictitious_in_range(struct vm_phys_fictitious_seg *p,
135     struct vm_phys_fictitious_seg *range)
136 {
137
138         KASSERT(range->start != 0 && range->end != 0,
139             ("Invalid range passed on search for vm_fictitious page"));
140         if (p->start >= range->end)
141                 return (1);
142         if (p->start < range->start)
143                 return (-1);
144
145         return (0);
146 }
147
148 static int
149 vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *p1,
150     struct vm_phys_fictitious_seg *p2)
151 {
152
153         /* Check if this is a search for a page */
154         if (p1->end == 0)
155                 return (vm_phys_fictitious_in_range(p1, p2));
156
157         KASSERT(p2->end != 0,
158     ("Invalid range passed as second parameter to vm fictitious comparison"));
159
160         /* Searching to add a new range */
161         if (p1->end <= p2->start)
162                 return (-1);
163         if (p1->start >= p2->end)
164                 return (1);
165
166         panic("Trying to add overlapping vm fictitious ranges:\n"
167             "[%#jx:%#jx] and [%#jx:%#jx]", (uintmax_t)p1->start,
168             (uintmax_t)p1->end, (uintmax_t)p2->start, (uintmax_t)p2->end);
169 }
170
171 static __inline int
172 vm_rr_selectdomain(void)
173 {
174 #if MAXMEMDOM > 1
175         struct thread *td;
176
177         td = curthread;
178
179         td->td_dom_rr_idx++;
180         td->td_dom_rr_idx %= vm_ndomains;
181         return (td->td_dom_rr_idx);
182 #else
183         return (0);
184 #endif
185 }
186
187 boolean_t
188 vm_phys_domain_intersects(long mask, vm_paddr_t low, vm_paddr_t high)
189 {
190         struct vm_phys_seg *s;
191         int idx;
192
193         while ((idx = ffsl(mask)) != 0) {
194                 idx--;  /* ffsl counts from 1 */
195                 mask &= ~(1UL << idx);
196                 s = &vm_phys_segs[idx];
197                 if (low < s->end && high > s->start)
198                         return (TRUE);
199         }
200         return (FALSE);
201 }
202
203 /*
204  * Outputs the state of the physical memory allocator, specifically,
205  * the amount of physical memory in each free list.
206  */
207 static int
208 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
209 {
210         struct sbuf sbuf;
211         struct vm_freelist *fl;
212         int dom, error, flind, oind, pind;
213
214         error = sysctl_wire_old_buffer(req, 0);
215         if (error != 0)
216                 return (error);
217         sbuf_new_for_sysctl(&sbuf, NULL, 128 * vm_ndomains, req);
218         for (dom = 0; dom < vm_ndomains; dom++) {
219                 sbuf_printf(&sbuf,"\nDOMAIN %d:\n", dom);
220                 for (flind = 0; flind < vm_nfreelists; flind++) {
221                         sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
222                             "\n  ORDER (SIZE)  |  NUMBER"
223                             "\n              ", flind);
224                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
225                                 sbuf_printf(&sbuf, "  |  POOL %d", pind);
226                         sbuf_printf(&sbuf, "\n--            ");
227                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
228                                 sbuf_printf(&sbuf, "-- --      ");
229                         sbuf_printf(&sbuf, "--\n");
230                         for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
231                                 sbuf_printf(&sbuf, "  %2d (%6dK)", oind,
232                                     1 << (PAGE_SHIFT - 10 + oind));
233                                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
234                                 fl = vm_phys_free_queues[dom][flind][pind];
235                                         sbuf_printf(&sbuf, "  |  %6d",
236                                             fl[oind].lcnt);
237                                 }
238                                 sbuf_printf(&sbuf, "\n");
239                         }
240                 }
241         }
242         error = sbuf_finish(&sbuf);
243         sbuf_delete(&sbuf);
244         return (error);
245 }
246
247 /*
248  * Outputs the set of physical memory segments.
249  */
250 static int
251 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
252 {
253         struct sbuf sbuf;
254         struct vm_phys_seg *seg;
255         int error, segind;
256
257         error = sysctl_wire_old_buffer(req, 0);
258         if (error != 0)
259                 return (error);
260         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
261         for (segind = 0; segind < vm_phys_nsegs; segind++) {
262                 sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
263                 seg = &vm_phys_segs[segind];
264                 sbuf_printf(&sbuf, "start:     %#jx\n",
265                     (uintmax_t)seg->start);
266                 sbuf_printf(&sbuf, "end:       %#jx\n",
267                     (uintmax_t)seg->end);
268                 sbuf_printf(&sbuf, "domain:    %d\n", seg->domain);
269                 sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
270         }
271         error = sbuf_finish(&sbuf);
272         sbuf_delete(&sbuf);
273         return (error);
274 }
275
276 static void
277 vm_freelist_add(struct vm_freelist *fl, vm_page_t m, int order, int tail)
278 {
279
280         m->order = order;
281         if (tail)
282                 TAILQ_INSERT_TAIL(&fl[order].pl, m, plinks.q);
283         else
284                 TAILQ_INSERT_HEAD(&fl[order].pl, m, plinks.q);
285         fl[order].lcnt++;
286 }
287
288 static void
289 vm_freelist_rem(struct vm_freelist *fl, vm_page_t m, int order)
290 {
291
292         TAILQ_REMOVE(&fl[order].pl, m, plinks.q);
293         fl[order].lcnt--;
294         m->order = VM_NFREEORDER;
295 }
296
297 /*
298  * Create a physical memory segment.
299  */
300 static void
301 _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind, int domain)
302 {
303         struct vm_phys_seg *seg;
304 #ifdef VM_PHYSSEG_SPARSE
305         long pages;
306         int segind;
307
308         pages = 0;
309         for (segind = 0; segind < vm_phys_nsegs; segind++) {
310                 seg = &vm_phys_segs[segind];
311                 pages += atop(seg->end - seg->start);
312         }
313 #endif
314         KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
315             ("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
316         KASSERT(domain < vm_ndomains,
317             ("vm_phys_create_seg: invalid domain provided"));
318         seg = &vm_phys_segs[vm_phys_nsegs++];
319         seg->start = start;
320         seg->end = end;
321         seg->domain = domain;
322 #ifdef VM_PHYSSEG_SPARSE
323         seg->first_page = &vm_page_array[pages];
324 #else
325         seg->first_page = PHYS_TO_VM_PAGE(start);
326 #endif
327         seg->free_queues = &vm_phys_free_queues[domain][flind];
328 }
329
330 static void
331 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind)
332 {
333         int i;
334
335         if (mem_affinity == NULL) {
336                 _vm_phys_create_seg(start, end, flind, 0);
337                 return;
338         }
339
340         for (i = 0;; i++) {
341                 if (mem_affinity[i].end == 0)
342                         panic("Reached end of affinity info");
343                 if (mem_affinity[i].end <= start)
344                         continue;
345                 if (mem_affinity[i].start > start)
346                         panic("No affinity info for start %jx",
347                             (uintmax_t)start);
348                 if (mem_affinity[i].end >= end) {
349                         _vm_phys_create_seg(start, end, flind,
350                             mem_affinity[i].domain);
351                         break;
352                 }
353                 _vm_phys_create_seg(start, mem_affinity[i].end, flind,
354                     mem_affinity[i].domain);
355                 start = mem_affinity[i].end;
356         }
357 }
358
359 /*
360  * Initialize the physical memory allocator.
361  */
362 void
363 vm_phys_init(void)
364 {
365         struct vm_freelist *fl;
366         int dom, flind, i, oind, pind;
367
368         for (i = 0; phys_avail[i + 1] != 0; i += 2) {
369 #ifdef  VM_FREELIST_ISADMA
370                 if (phys_avail[i] < 16777216) {
371                         if (phys_avail[i + 1] > 16777216) {
372                                 vm_phys_create_seg(phys_avail[i], 16777216,
373                                     VM_FREELIST_ISADMA);
374                                 vm_phys_create_seg(16777216, phys_avail[i + 1],
375                                     VM_FREELIST_DEFAULT);
376                         } else {
377                                 vm_phys_create_seg(phys_avail[i],
378                                     phys_avail[i + 1], VM_FREELIST_ISADMA);
379                         }
380                         if (VM_FREELIST_ISADMA >= vm_nfreelists)
381                                 vm_nfreelists = VM_FREELIST_ISADMA + 1;
382                 } else
383 #endif
384 #ifdef  VM_FREELIST_HIGHMEM
385                 if (phys_avail[i + 1] > VM_HIGHMEM_ADDRESS) {
386                         if (phys_avail[i] < VM_HIGHMEM_ADDRESS) {
387                                 vm_phys_create_seg(phys_avail[i],
388                                     VM_HIGHMEM_ADDRESS, VM_FREELIST_DEFAULT);
389                                 vm_phys_create_seg(VM_HIGHMEM_ADDRESS,
390                                     phys_avail[i + 1], VM_FREELIST_HIGHMEM);
391                         } else {
392                                 vm_phys_create_seg(phys_avail[i],
393                                     phys_avail[i + 1], VM_FREELIST_HIGHMEM);
394                         }
395                         if (VM_FREELIST_HIGHMEM >= vm_nfreelists)
396                                 vm_nfreelists = VM_FREELIST_HIGHMEM + 1;
397                 } else
398 #endif
399                 vm_phys_create_seg(phys_avail[i], phys_avail[i + 1],
400                     VM_FREELIST_DEFAULT);
401         }
402         for (dom = 0; dom < vm_ndomains; dom++) {
403                 for (flind = 0; flind < vm_nfreelists; flind++) {
404                         for (pind = 0; pind < VM_NFREEPOOL; pind++) {
405                                 fl = vm_phys_free_queues[dom][flind][pind];
406                                 for (oind = 0; oind < VM_NFREEORDER; oind++)
407                                         TAILQ_INIT(&fl[oind].pl);
408                         }
409                 }
410         }
411         rw_init(&vm_phys_fictitious_reg_lock, "vmfctr");
412 }
413
414 /*
415  * Split a contiguous, power of two-sized set of physical pages.
416  */
417 static __inline void
418 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order)
419 {
420         vm_page_t m_buddy;
421
422         while (oind > order) {
423                 oind--;
424                 m_buddy = &m[1 << oind];
425                 KASSERT(m_buddy->order == VM_NFREEORDER,
426                     ("vm_phys_split_pages: page %p has unexpected order %d",
427                     m_buddy, m_buddy->order));
428                 vm_freelist_add(fl, m_buddy, oind, 0);
429         }
430 }
431
432 /*
433  * Initialize a physical page and add it to the free lists.
434  */
435 void
436 vm_phys_add_page(vm_paddr_t pa)
437 {
438         vm_page_t m;
439         struct vm_domain *vmd;
440
441         vm_cnt.v_page_count++;
442         m = vm_phys_paddr_to_vm_page(pa);
443         m->phys_addr = pa;
444         m->queue = PQ_NONE;
445         m->segind = vm_phys_paddr_to_segind(pa);
446         vmd = vm_phys_domain(m);
447         vmd->vmd_page_count++;
448         vmd->vmd_segs |= 1UL << m->segind;
449         KASSERT(m->order == VM_NFREEORDER,
450             ("vm_phys_add_page: page %p has unexpected order %d",
451             m, m->order));
452         m->pool = VM_FREEPOOL_DEFAULT;
453         pmap_page_init(m);
454         mtx_lock(&vm_page_queue_free_mtx);
455         vm_phys_freecnt_adj(m, 1);
456         vm_phys_free_pages(m, 0);
457         mtx_unlock(&vm_page_queue_free_mtx);
458 }
459
460 /*
461  * Allocate a contiguous, power of two-sized set of physical pages
462  * from the free lists.
463  *
464  * The free page queues must be locked.
465  */
466 vm_page_t
467 vm_phys_alloc_pages(int pool, int order)
468 {
469         vm_page_t m;
470         int dom, domain, flind;
471
472         KASSERT(pool < VM_NFREEPOOL,
473             ("vm_phys_alloc_pages: pool %d is out of range", pool));
474         KASSERT(order < VM_NFREEORDER,
475             ("vm_phys_alloc_pages: order %d is out of range", order));
476
477         for (dom = 0; dom < vm_ndomains; dom++) {
478                 domain = vm_rr_selectdomain();
479                 for (flind = 0; flind < vm_nfreelists; flind++) {
480                         m = vm_phys_alloc_domain_pages(domain, flind, pool,
481                             order);
482                         if (m != NULL)
483                                 return (m);
484                 }
485         }
486         return (NULL);
487 }
488
489 /*
490  * Find and dequeue a free page on the given free list, with the 
491  * specified pool and order
492  */
493 vm_page_t
494 vm_phys_alloc_freelist_pages(int flind, int pool, int order)
495 {
496         vm_page_t m;
497         int dom, domain;
498
499         KASSERT(flind < VM_NFREELIST,
500             ("vm_phys_alloc_freelist_pages: freelist %d is out of range", flind));
501         KASSERT(pool < VM_NFREEPOOL,
502             ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool));
503         KASSERT(order < VM_NFREEORDER,
504             ("vm_phys_alloc_freelist_pages: order %d is out of range", order));
505
506         for (dom = 0; dom < vm_ndomains; dom++) {
507                 domain = vm_rr_selectdomain();
508                 m = vm_phys_alloc_domain_pages(domain, flind, pool, order);
509                 if (m != NULL)
510                         return (m);
511         }
512         return (NULL);
513 }
514
515 static vm_page_t
516 vm_phys_alloc_domain_pages(int domain, int flind, int pool, int order)
517 {       
518         struct vm_freelist *fl;
519         struct vm_freelist *alt;
520         int oind, pind;
521         vm_page_t m;
522
523         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
524         fl = &vm_phys_free_queues[domain][flind][pool][0];
525         for (oind = order; oind < VM_NFREEORDER; oind++) {
526                 m = TAILQ_FIRST(&fl[oind].pl);
527                 if (m != NULL) {
528                         vm_freelist_rem(fl, m, oind);
529                         vm_phys_split_pages(m, oind, fl, order);
530                         return (m);
531                 }
532         }
533
534         /*
535          * The given pool was empty.  Find the largest
536          * contiguous, power-of-two-sized set of pages in any
537          * pool.  Transfer these pages to the given pool, and
538          * use them to satisfy the allocation.
539          */
540         for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
541                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
542                         alt = &vm_phys_free_queues[domain][flind][pind][0];
543                         m = TAILQ_FIRST(&alt[oind].pl);
544                         if (m != NULL) {
545                                 vm_freelist_rem(alt, m, oind);
546                                 vm_phys_set_pool(pool, m, oind);
547                                 vm_phys_split_pages(m, oind, fl, order);
548                                 return (m);
549                         }
550                 }
551         }
552         return (NULL);
553 }
554
555 /*
556  * Find the vm_page corresponding to the given physical address.
557  */
558 vm_page_t
559 vm_phys_paddr_to_vm_page(vm_paddr_t pa)
560 {
561         struct vm_phys_seg *seg;
562         int segind;
563
564         for (segind = 0; segind < vm_phys_nsegs; segind++) {
565                 seg = &vm_phys_segs[segind];
566                 if (pa >= seg->start && pa < seg->end)
567                         return (&seg->first_page[atop(pa - seg->start)]);
568         }
569         return (NULL);
570 }
571
572 vm_page_t
573 vm_phys_fictitious_to_vm_page(vm_paddr_t pa)
574 {
575         struct vm_phys_fictitious_seg tmp, *seg;
576         vm_page_t m;
577
578         m = NULL;
579         tmp.start = pa;
580         tmp.end = 0;
581
582         rw_rlock(&vm_phys_fictitious_reg_lock);
583         seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
584         rw_runlock(&vm_phys_fictitious_reg_lock);
585         if (seg == NULL)
586                 return (NULL);
587
588         m = &seg->first_page[atop(pa - seg->start)];
589         KASSERT((m->flags & PG_FICTITIOUS) != 0, ("%p not fictitious", m));
590
591         return (m);
592 }
593
594 int
595 vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end,
596     vm_memattr_t memattr)
597 {
598         struct vm_phys_fictitious_seg *seg;
599         vm_page_t fp;
600         long i, page_count;
601 #ifdef VM_PHYSSEG_DENSE
602         long pi;
603 #endif
604
605         page_count = (end - start) / PAGE_SIZE;
606
607 #ifdef VM_PHYSSEG_DENSE
608         pi = atop(start);
609         if (pi >= first_page && pi < vm_page_array_size + first_page) {
610                 if (atop(end) >= vm_page_array_size + first_page)
611                         return (EINVAL);
612                 fp = &vm_page_array[pi - first_page];
613         } else
614 #endif
615         {
616                 fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES,
617                     M_WAITOK | M_ZERO);
618         }
619         for (i = 0; i < page_count; i++) {
620                 vm_page_initfake(&fp[i], start + PAGE_SIZE * i, memattr);
621                 fp[i].oflags &= ~VPO_UNMANAGED;
622                 fp[i].busy_lock = VPB_UNBUSIED;
623         }
624
625         seg = malloc(sizeof(*seg), M_FICT_PAGES, M_WAITOK | M_ZERO);
626         seg->start = start;
627         seg->end = end;
628         seg->first_page = fp;
629
630         rw_wlock(&vm_phys_fictitious_reg_lock);
631         RB_INSERT(fict_tree, &vm_phys_fictitious_tree, seg);
632         rw_wunlock(&vm_phys_fictitious_reg_lock);
633
634         return (0);
635 }
636
637 void
638 vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end)
639 {
640         struct vm_phys_fictitious_seg *seg, tmp;
641 #ifdef VM_PHYSSEG_DENSE
642         long pi;
643 #endif
644
645 #ifdef VM_PHYSSEG_DENSE
646         pi = atop(start);
647 #endif
648         tmp.start = start;
649         tmp.end = 0;
650
651         rw_wlock(&vm_phys_fictitious_reg_lock);
652         seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
653         if (seg->start != start || seg->end != end) {
654                 rw_wunlock(&vm_phys_fictitious_reg_lock);
655                 panic(
656                     "Unregistering not registered fictitious range [%#jx:%#jx]",
657                     (uintmax_t)start, (uintmax_t)end);
658         }
659         RB_REMOVE(fict_tree, &vm_phys_fictitious_tree, seg);
660         rw_wunlock(&vm_phys_fictitious_reg_lock);
661 #ifdef VM_PHYSSEG_DENSE
662         if (pi < first_page || atop(end) >= vm_page_array_size)
663 #endif
664                 free(seg->first_page, M_FICT_PAGES);
665         free(seg, M_FICT_PAGES);
666 }
667
668 /*
669  * Find the segment containing the given physical address.
670  */
671 static int
672 vm_phys_paddr_to_segind(vm_paddr_t pa)
673 {
674         struct vm_phys_seg *seg;
675         int segind;
676
677         for (segind = 0; segind < vm_phys_nsegs; segind++) {
678                 seg = &vm_phys_segs[segind];
679                 if (pa >= seg->start && pa < seg->end)
680                         return (segind);
681         }
682         panic("vm_phys_paddr_to_segind: paddr %#jx is not in any segment" ,
683             (uintmax_t)pa);
684 }
685
686 /*
687  * Free a contiguous, power of two-sized set of physical pages.
688  *
689  * The free page queues must be locked.
690  */
691 void
692 vm_phys_free_pages(vm_page_t m, int order)
693 {
694         struct vm_freelist *fl;
695         struct vm_phys_seg *seg;
696         vm_paddr_t pa;
697         vm_page_t m_buddy;
698
699         KASSERT(m->order == VM_NFREEORDER,
700             ("vm_phys_free_pages: page %p has unexpected order %d",
701             m, m->order));
702         KASSERT(m->pool < VM_NFREEPOOL,
703             ("vm_phys_free_pages: page %p has unexpected pool %d",
704             m, m->pool));
705         KASSERT(order < VM_NFREEORDER,
706             ("vm_phys_free_pages: order %d is out of range", order));
707         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
708         seg = &vm_phys_segs[m->segind];
709         if (order < VM_NFREEORDER - 1) {
710                 pa = VM_PAGE_TO_PHYS(m);
711                 do {
712                         pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order));
713                         if (pa < seg->start || pa >= seg->end)
714                                 break;
715                         m_buddy = &seg->first_page[atop(pa - seg->start)];
716                         if (m_buddy->order != order)
717                                 break;
718                         fl = (*seg->free_queues)[m_buddy->pool];
719                         vm_freelist_rem(fl, m_buddy, order);
720                         if (m_buddy->pool != m->pool)
721                                 vm_phys_set_pool(m->pool, m_buddy, order);
722                         order++;
723                         pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1);
724                         m = &seg->first_page[atop(pa - seg->start)];
725                 } while (order < VM_NFREEORDER - 1);
726         }
727         fl = (*seg->free_queues)[m->pool];
728         vm_freelist_add(fl, m, order, 1);
729 }
730
731 /*
732  * Free a contiguous, arbitrarily sized set of physical pages.
733  *
734  * The free page queues must be locked.
735  */
736 void
737 vm_phys_free_contig(vm_page_t m, u_long npages)
738 {
739         u_int n;
740         int order;
741
742         /*
743          * Avoid unnecessary coalescing by freeing the pages in the largest
744          * possible power-of-two-sized subsets.
745          */
746         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
747         for (;; npages -= n) {
748                 /*
749                  * Unsigned "min" is used here so that "order" is assigned
750                  * "VM_NFREEORDER - 1" when "m"'s physical address is zero
751                  * or the low-order bits of its physical address are zero
752                  * because the size of a physical address exceeds the size of
753                  * a long.
754                  */
755                 order = min(ffsl(VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) - 1,
756                     VM_NFREEORDER - 1);
757                 n = 1 << order;
758                 if (npages < n)
759                         break;
760                 vm_phys_free_pages(m, order);
761                 m += n;
762         }
763         /* The residual "npages" is less than "1 << (VM_NFREEORDER - 1)". */
764         for (; npages > 0; npages -= n) {
765                 order = flsl(npages) - 1;
766                 n = 1 << order;
767                 vm_phys_free_pages(m, order);
768                 m += n;
769         }
770 }
771
772 /*
773  * Set the pool for a contiguous, power of two-sized set of physical pages. 
774  */
775 void
776 vm_phys_set_pool(int pool, vm_page_t m, int order)
777 {
778         vm_page_t m_tmp;
779
780         for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
781                 m_tmp->pool = pool;
782 }
783
784 /*
785  * Search for the given physical page "m" in the free lists.  If the search
786  * succeeds, remove "m" from the free lists and return TRUE.  Otherwise, return
787  * FALSE, indicating that "m" is not in the free lists.
788  *
789  * The free page queues must be locked.
790  */
791 boolean_t
792 vm_phys_unfree_page(vm_page_t m)
793 {
794         struct vm_freelist *fl;
795         struct vm_phys_seg *seg;
796         vm_paddr_t pa, pa_half;
797         vm_page_t m_set, m_tmp;
798         int order;
799
800         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
801
802         /*
803          * First, find the contiguous, power of two-sized set of free
804          * physical pages containing the given physical page "m" and
805          * assign it to "m_set".
806          */
807         seg = &vm_phys_segs[m->segind];
808         for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
809             order < VM_NFREEORDER - 1; ) {
810                 order++;
811                 pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
812                 if (pa >= seg->start)
813                         m_set = &seg->first_page[atop(pa - seg->start)];
814                 else
815                         return (FALSE);
816         }
817         if (m_set->order < order)
818                 return (FALSE);
819         if (m_set->order == VM_NFREEORDER)
820                 return (FALSE);
821         KASSERT(m_set->order < VM_NFREEORDER,
822             ("vm_phys_unfree_page: page %p has unexpected order %d",
823             m_set, m_set->order));
824
825         /*
826          * Next, remove "m_set" from the free lists.  Finally, extract
827          * "m" from "m_set" using an iterative algorithm: While "m_set"
828          * is larger than a page, shrink "m_set" by returning the half
829          * of "m_set" that does not contain "m" to the free lists.
830          */
831         fl = (*seg->free_queues)[m_set->pool];
832         order = m_set->order;
833         vm_freelist_rem(fl, m_set, order);
834         while (order > 0) {
835                 order--;
836                 pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
837                 if (m->phys_addr < pa_half)
838                         m_tmp = &seg->first_page[atop(pa_half - seg->start)];
839                 else {
840                         m_tmp = m_set;
841                         m_set = &seg->first_page[atop(pa_half - seg->start)];
842                 }
843                 vm_freelist_add(fl, m_tmp, order, 0);
844         }
845         KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
846         return (TRUE);
847 }
848
849 /*
850  * Try to zero one physical page.  Used by an idle priority thread.
851  */
852 boolean_t
853 vm_phys_zero_pages_idle(void)
854 {
855         static struct vm_freelist *fl;
856         static int flind, oind, pind;
857         vm_page_t m, m_tmp;
858         int domain;
859
860         domain = vm_rr_selectdomain();
861         fl = vm_phys_free_queues[domain][0][0];
862         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
863         for (;;) {
864                 TAILQ_FOREACH_REVERSE(m, &fl[oind].pl, pglist, plinks.q) {
865                         for (m_tmp = m; m_tmp < &m[1 << oind]; m_tmp++) {
866                                 if ((m_tmp->flags & (PG_CACHED | PG_ZERO)) == 0) {
867                                         vm_phys_unfree_page(m_tmp);
868                                         vm_phys_freecnt_adj(m, -1);
869                                         mtx_unlock(&vm_page_queue_free_mtx);
870                                         pmap_zero_page_idle(m_tmp);
871                                         m_tmp->flags |= PG_ZERO;
872                                         mtx_lock(&vm_page_queue_free_mtx);
873                                         vm_phys_freecnt_adj(m, 1);
874                                         vm_phys_free_pages(m_tmp, 0);
875                                         vm_page_zero_count++;
876                                         cnt_prezero++;
877                                         return (TRUE);
878                                 }
879                         }
880                 }
881                 oind++;
882                 if (oind == VM_NFREEORDER) {
883                         oind = 0;
884                         pind++;
885                         if (pind == VM_NFREEPOOL) {
886                                 pind = 0;
887                                 flind++;
888                                 if (flind == vm_nfreelists)
889                                         flind = 0;
890                         }
891                         fl = vm_phys_free_queues[domain][flind][pind];
892                 }
893         }
894 }
895
896 /*
897  * Allocate a contiguous set of physical pages of the given size
898  * "npages" from the free lists.  All of the physical pages must be at
899  * or above the given physical address "low" and below the given
900  * physical address "high".  The given value "alignment" determines the
901  * alignment of the first physical page in the set.  If the given value
902  * "boundary" is non-zero, then the set of physical pages cannot cross
903  * any physical address boundary that is a multiple of that value.  Both
904  * "alignment" and "boundary" must be a power of two.
905  */
906 vm_page_t
907 vm_phys_alloc_contig(u_long npages, vm_paddr_t low, vm_paddr_t high,
908     u_long alignment, vm_paddr_t boundary)
909 {
910         struct vm_freelist *fl;
911         struct vm_phys_seg *seg;
912         vm_paddr_t pa, pa_last, size;
913         vm_page_t m, m_ret;
914         u_long npages_end;
915         int dom, domain, flind, oind, order, pind;
916
917         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
918         size = npages << PAGE_SHIFT;
919         KASSERT(size != 0,
920             ("vm_phys_alloc_contig: size must not be 0"));
921         KASSERT((alignment & (alignment - 1)) == 0,
922             ("vm_phys_alloc_contig: alignment must be a power of 2"));
923         KASSERT((boundary & (boundary - 1)) == 0,
924             ("vm_phys_alloc_contig: boundary must be a power of 2"));
925         /* Compute the queue that is the best fit for npages. */
926         for (order = 0; (1 << order) < npages; order++);
927         dom = 0;
928 restartdom:
929         domain = vm_rr_selectdomain();
930         for (flind = 0; flind < vm_nfreelists; flind++) {
931                 for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER; oind++) {
932                         for (pind = 0; pind < VM_NFREEPOOL; pind++) {
933                                 fl = &vm_phys_free_queues[domain][flind][pind][0];
934                                 TAILQ_FOREACH(m_ret, &fl[oind].pl, plinks.q) {
935                                         /*
936                                          * A free list may contain physical pages
937                                          * from one or more segments.
938                                          */
939                                         seg = &vm_phys_segs[m_ret->segind];
940                                         if (seg->start > high ||
941                                             low >= seg->end)
942                                                 continue;
943
944                                         /*
945                                          * Is the size of this allocation request
946                                          * larger than the largest block size?
947                                          */
948                                         if (order >= VM_NFREEORDER) {
949                                                 /*
950                                                  * Determine if a sufficient number
951                                                  * of subsequent blocks to satisfy
952                                                  * the allocation request are free.
953                                                  */
954                                                 pa = VM_PAGE_TO_PHYS(m_ret);
955                                                 pa_last = pa + size;
956                                                 for (;;) {
957                                                         pa += 1 << (PAGE_SHIFT + VM_NFREEORDER - 1);
958                                                         if (pa >= pa_last)
959                                                                 break;
960                                                         if (pa < seg->start ||
961                                                             pa >= seg->end)
962                                                                 break;
963                                                         m = &seg->first_page[atop(pa - seg->start)];
964                                                         if (m->order != VM_NFREEORDER - 1)
965                                                                 break;
966                                                 }
967                                                 /* If not, continue to the next block. */
968                                                 if (pa < pa_last)
969                                                         continue;
970                                         }
971
972                                         /*
973                                          * Determine if the blocks are within the given range,
974                                          * satisfy the given alignment, and do not cross the
975                                          * given boundary.
976                                          */
977                                         pa = VM_PAGE_TO_PHYS(m_ret);
978                                         if (pa >= low &&
979                                             pa + size <= high &&
980                                             (pa & (alignment - 1)) == 0 &&
981                                             ((pa ^ (pa + size - 1)) & ~(boundary - 1)) == 0)
982                                                 goto done;
983                                 }
984                         }
985                 }
986         }
987         if (++dom < vm_ndomains)
988                 goto restartdom;
989         return (NULL);
990 done:
991         for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) {
992                 fl = (*seg->free_queues)[m->pool];
993                 vm_freelist_rem(fl, m, m->order);
994         }
995         if (m_ret->pool != VM_FREEPOOL_DEFAULT)
996                 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m_ret, oind);
997         fl = (*seg->free_queues)[m_ret->pool];
998         vm_phys_split_pages(m_ret, oind, fl, order);
999         /* Return excess pages to the free lists. */
1000         npages_end = roundup2(npages, 1 << imin(oind, order));
1001         if (npages < npages_end)
1002                 vm_phys_free_contig(&m_ret[npages], npages_end - npages);
1003         return (m_ret);
1004 }
1005
1006 #ifdef DDB
1007 /*
1008  * Show the number of physical pages in each of the free lists.
1009  */
1010 DB_SHOW_COMMAND(freepages, db_show_freepages)
1011 {
1012         struct vm_freelist *fl;
1013         int flind, oind, pind, dom;
1014
1015         for (dom = 0; dom < vm_ndomains; dom++) {
1016                 db_printf("DOMAIN: %d\n", dom);
1017                 for (flind = 0; flind < vm_nfreelists; flind++) {
1018                         db_printf("FREE LIST %d:\n"
1019                             "\n  ORDER (SIZE)  |  NUMBER"
1020                             "\n              ", flind);
1021                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
1022                                 db_printf("  |  POOL %d", pind);
1023                         db_printf("\n--            ");
1024                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
1025                                 db_printf("-- --      ");
1026                         db_printf("--\n");
1027                         for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
1028                                 db_printf("  %2.2d (%6.6dK)", oind,
1029                                     1 << (PAGE_SHIFT - 10 + oind));
1030                                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
1031                                 fl = vm_phys_free_queues[dom][flind][pind];
1032                                         db_printf("  |  %6.6d", fl[oind].lcnt);
1033                                 }
1034                                 db_printf("\n");
1035                         }
1036                         db_printf("\n");
1037                 }
1038                 db_printf("\n");
1039         }
1040 }
1041 #endif