]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_phys.c
MFV: tcpdump 4.4.0.
[FreeBSD/FreeBSD.git] / sys / vm / vm_phys.c
1 /*-
2  * Copyright (c) 2002-2006 Rice University
3  * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
4  * All rights reserved.
5  *
6  * This software was developed for the FreeBSD Project by Alan L. Cox,
7  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
22  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
23  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
28  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31
32 /*
33  *      Physical memory system implementation
34  *
35  * Any external functions defined by this module are only to be used by the
36  * virtual memory system.
37  */
38
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41
42 #include "opt_ddb.h"
43 #include "opt_vm.h"
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/lock.h>
48 #include <sys/kernel.h>
49 #include <sys/malloc.h>
50 #include <sys/mutex.h>
51 #if MAXMEMDOM > 1
52 #include <sys/proc.h>
53 #endif
54 #include <sys/queue.h>
55 #include <sys/sbuf.h>
56 #include <sys/sysctl.h>
57 #include <sys/vmmeter.h>
58
59 #include <ddb/ddb.h>
60
61 #include <vm/vm.h>
62 #include <vm/vm_param.h>
63 #include <vm/vm_kern.h>
64 #include <vm/vm_object.h>
65 #include <vm/vm_page.h>
66 #include <vm/vm_phys.h>
67
68 struct vm_freelist {
69         struct pglist pl;
70         int lcnt;
71 };
72
73 struct vm_phys_seg {
74         vm_paddr_t      start;
75         vm_paddr_t      end;
76         vm_page_t       first_page;
77         int             domain;
78         struct vm_freelist (*free_queues)[VM_NFREEPOOL][VM_NFREEORDER];
79 };
80
81 struct mem_affinity *mem_affinity;
82
83 int vm_ndomains = 1;
84
85 static struct vm_phys_seg vm_phys_segs[VM_PHYSSEG_MAX];
86
87 static int vm_phys_nsegs;
88
89 #define VM_PHYS_FICTITIOUS_NSEGS        8
90 static struct vm_phys_fictitious_seg {
91         vm_paddr_t      start;
92         vm_paddr_t      end;
93         vm_page_t       first_page;
94 } vm_phys_fictitious_segs[VM_PHYS_FICTITIOUS_NSEGS];
95 static struct mtx vm_phys_fictitious_reg_mtx;
96 MALLOC_DEFINE(M_FICT_PAGES, "", "");
97
98 static struct vm_freelist
99     vm_phys_free_queues[MAXMEMDOM][VM_NFREELIST][VM_NFREEPOOL][VM_NFREEORDER];
100
101 static int vm_nfreelists = VM_FREELIST_DEFAULT + 1;
102
103 static int cnt_prezero;
104 SYSCTL_INT(_vm_stats_misc, OID_AUTO, cnt_prezero, CTLFLAG_RD,
105     &cnt_prezero, 0, "The number of physical pages prezeroed at idle time");
106
107 static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
108 SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD,
109     NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info");
110
111 static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
112 SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD,
113     NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info");
114
115 SYSCTL_INT(_vm, OID_AUTO, ndomains, CTLFLAG_RD,
116     &vm_ndomains, 0, "Number of physical memory domains available.");
117
118 static vm_page_t vm_phys_alloc_domain_pages(int domain, int flind, int pool,
119     int order);
120 static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind,
121     int domain);
122 static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind);
123 static int vm_phys_paddr_to_segind(vm_paddr_t pa);
124 static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
125     int order);
126
127 static __inline int
128 vm_rr_selectdomain(void)
129 {
130 #if MAXMEMDOM > 1
131         struct thread *td;
132
133         td = curthread;
134
135         td->td_dom_rr_idx++;
136         td->td_dom_rr_idx %= vm_ndomains;
137         return (td->td_dom_rr_idx);
138 #else
139         return (0);
140 #endif
141 }
142
143 /*
144  * Outputs the state of the physical memory allocator, specifically,
145  * the amount of physical memory in each free list.
146  */
147 static int
148 sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
149 {
150         struct sbuf sbuf;
151         struct vm_freelist *fl;
152         int dom, error, flind, oind, pind;
153
154         error = sysctl_wire_old_buffer(req, 0);
155         if (error != 0)
156                 return (error);
157         sbuf_new_for_sysctl(&sbuf, NULL, 128 * vm_ndomains, req);
158         for (dom = 0; dom < vm_ndomains; dom++) {
159                 sbuf_printf(&sbuf,"DOMAIN: %d\n", dom);
160                 for (flind = 0; flind < vm_nfreelists; flind++) {
161                         sbuf_printf(&sbuf, "FREE LIST %d:\n"
162                             "\n  ORDER (SIZE)  |  NUMBER"
163                             "\n              ", flind);
164                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
165                                 sbuf_printf(&sbuf, "  |  POOL %d", pind);
166                         sbuf_printf(&sbuf, "\n--            ");
167                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
168                                 sbuf_printf(&sbuf, "-- --      ");
169                         sbuf_printf(&sbuf, "--\n");
170                         for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
171                                 sbuf_printf(&sbuf, "  %2d (%6dK)", oind,
172                                     1 << (PAGE_SHIFT - 10 + oind));
173                                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
174                                 fl = vm_phys_free_queues[dom][flind][pind];
175                                         sbuf_printf(&sbuf, "  |  %6.6d",
176                                             fl[oind].lcnt);
177                                 }
178                                 sbuf_printf(&sbuf, "\n");
179                         }
180                         sbuf_printf(&sbuf, "\n");
181                 }
182                 sbuf_printf(&sbuf, "\n");
183         }
184         error = sbuf_finish(&sbuf);
185         sbuf_delete(&sbuf);
186         return (error);
187 }
188
189 /*
190  * Outputs the set of physical memory segments.
191  */
192 static int
193 sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
194 {
195         struct sbuf sbuf;
196         struct vm_phys_seg *seg;
197         int error, segind;
198
199         error = sysctl_wire_old_buffer(req, 0);
200         if (error != 0)
201                 return (error);
202         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
203         for (segind = 0; segind < vm_phys_nsegs; segind++) {
204                 sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
205                 seg = &vm_phys_segs[segind];
206                 sbuf_printf(&sbuf, "start:     %#jx\n",
207                     (uintmax_t)seg->start);
208                 sbuf_printf(&sbuf, "end:       %#jx\n",
209                     (uintmax_t)seg->end);
210                 sbuf_printf(&sbuf, "domain:    %d\n", seg->domain);
211                 sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
212         }
213         error = sbuf_finish(&sbuf);
214         sbuf_delete(&sbuf);
215         return (error);
216 }
217
218 static void
219 vm_freelist_add(struct vm_freelist *fl, vm_page_t m, int order, int tail)
220 {
221
222         m->order = order;
223         if (tail)
224                 TAILQ_INSERT_TAIL(&fl[order].pl, m, pageq);
225         else
226                 TAILQ_INSERT_HEAD(&fl[order].pl, m, pageq);
227         fl[order].lcnt++;
228 }
229
230 static void
231 vm_freelist_rem(struct vm_freelist *fl, vm_page_t m, int order)
232 {
233
234         TAILQ_REMOVE(&fl[order].pl, m, pageq);
235         fl[order].lcnt--;
236         m->order = VM_NFREEORDER;
237 }
238
239 /*
240  * Create a physical memory segment.
241  */
242 static void
243 _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind, int domain)
244 {
245         struct vm_phys_seg *seg;
246 #ifdef VM_PHYSSEG_SPARSE
247         long pages;
248         int segind;
249
250         pages = 0;
251         for (segind = 0; segind < vm_phys_nsegs; segind++) {
252                 seg = &vm_phys_segs[segind];
253                 pages += atop(seg->end - seg->start);
254         }
255 #endif
256         KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
257             ("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
258         KASSERT(domain < vm_ndomains,
259             ("vm_phys_create_seg: invalid domain provided"));
260         seg = &vm_phys_segs[vm_phys_nsegs++];
261         seg->start = start;
262         seg->end = end;
263         seg->domain = domain;
264 #ifdef VM_PHYSSEG_SPARSE
265         seg->first_page = &vm_page_array[pages];
266 #else
267         seg->first_page = PHYS_TO_VM_PAGE(start);
268 #endif
269         seg->free_queues = &vm_phys_free_queues[domain][flind];
270 }
271
272 static void
273 vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind)
274 {
275         int i;
276
277         if (mem_affinity == NULL) {
278                 _vm_phys_create_seg(start, end, flind, 0);
279                 return;
280         }
281
282         for (i = 0;; i++) {
283                 if (mem_affinity[i].end == 0)
284                         panic("Reached end of affinity info");
285                 if (mem_affinity[i].end <= start)
286                         continue;
287                 if (mem_affinity[i].start > start)
288                         panic("No affinity info for start %jx",
289                             (uintmax_t)start);
290                 if (mem_affinity[i].end >= end) {
291                         _vm_phys_create_seg(start, end, flind,
292                             mem_affinity[i].domain);
293                         break;
294                 }
295                 _vm_phys_create_seg(start, mem_affinity[i].end, flind,
296                     mem_affinity[i].domain);
297                 start = mem_affinity[i].end;
298         }
299 }
300
301 /*
302  * Initialize the physical memory allocator.
303  */
304 void
305 vm_phys_init(void)
306 {
307         struct vm_freelist *fl;
308         int dom, flind, i, oind, pind;
309
310         for (i = 0; phys_avail[i + 1] != 0; i += 2) {
311 #ifdef  VM_FREELIST_ISADMA
312                 if (phys_avail[i] < 16777216) {
313                         if (phys_avail[i + 1] > 16777216) {
314                                 vm_phys_create_seg(phys_avail[i], 16777216,
315                                     VM_FREELIST_ISADMA);
316                                 vm_phys_create_seg(16777216, phys_avail[i + 1],
317                                     VM_FREELIST_DEFAULT);
318                         } else {
319                                 vm_phys_create_seg(phys_avail[i],
320                                     phys_avail[i + 1], VM_FREELIST_ISADMA);
321                         }
322                         if (VM_FREELIST_ISADMA >= vm_nfreelists)
323                                 vm_nfreelists = VM_FREELIST_ISADMA + 1;
324                 } else
325 #endif
326 #ifdef  VM_FREELIST_HIGHMEM
327                 if (phys_avail[i + 1] > VM_HIGHMEM_ADDRESS) {
328                         if (phys_avail[i] < VM_HIGHMEM_ADDRESS) {
329                                 vm_phys_create_seg(phys_avail[i],
330                                     VM_HIGHMEM_ADDRESS, VM_FREELIST_DEFAULT);
331                                 vm_phys_create_seg(VM_HIGHMEM_ADDRESS,
332                                     phys_avail[i + 1], VM_FREELIST_HIGHMEM);
333                         } else {
334                                 vm_phys_create_seg(phys_avail[i],
335                                     phys_avail[i + 1], VM_FREELIST_HIGHMEM);
336                         }
337                         if (VM_FREELIST_HIGHMEM >= vm_nfreelists)
338                                 vm_nfreelists = VM_FREELIST_HIGHMEM + 1;
339                 } else
340 #endif
341                 vm_phys_create_seg(phys_avail[i], phys_avail[i + 1],
342                     VM_FREELIST_DEFAULT);
343         }
344         for (dom = 0; dom < vm_ndomains; dom++) {
345                 for (flind = 0; flind < vm_nfreelists; flind++) {
346                         for (pind = 0; pind < VM_NFREEPOOL; pind++) {
347                                 fl = vm_phys_free_queues[dom][flind][pind];
348                                 for (oind = 0; oind < VM_NFREEORDER; oind++)
349                                         TAILQ_INIT(&fl[oind].pl);
350                         }
351                 }
352         }
353         mtx_init(&vm_phys_fictitious_reg_mtx, "vmfctr", NULL, MTX_DEF);
354 }
355
356 /*
357  * Split a contiguous, power of two-sized set of physical pages.
358  */
359 static __inline void
360 vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order)
361 {
362         vm_page_t m_buddy;
363
364         while (oind > order) {
365                 oind--;
366                 m_buddy = &m[1 << oind];
367                 KASSERT(m_buddy->order == VM_NFREEORDER,
368                     ("vm_phys_split_pages: page %p has unexpected order %d",
369                     m_buddy, m_buddy->order));
370                 vm_freelist_add(fl, m_buddy, oind, 0);
371         }
372 }
373
374 /*
375  * Initialize a physical page and add it to the free lists.
376  */
377 void
378 vm_phys_add_page(vm_paddr_t pa)
379 {
380         vm_page_t m;
381
382         cnt.v_page_count++;
383         m = vm_phys_paddr_to_vm_page(pa);
384         m->phys_addr = pa;
385         m->queue = PQ_NONE;
386         m->segind = vm_phys_paddr_to_segind(pa);
387         m->flags = PG_FREE;
388         KASSERT(m->order == VM_NFREEORDER,
389             ("vm_phys_add_page: page %p has unexpected order %d",
390             m, m->order));
391         m->pool = VM_FREEPOOL_DEFAULT;
392         pmap_page_init(m);
393         mtx_lock(&vm_page_queue_free_mtx);
394         cnt.v_free_count++;
395         vm_phys_free_pages(m, 0);
396         mtx_unlock(&vm_page_queue_free_mtx);
397 }
398
399 /*
400  * Allocate a contiguous, power of two-sized set of physical pages
401  * from the free lists.
402  *
403  * The free page queues must be locked.
404  */
405 vm_page_t
406 vm_phys_alloc_pages(int pool, int order)
407 {
408         vm_page_t m;
409         int dom, domain, flind;
410
411         KASSERT(pool < VM_NFREEPOOL,
412             ("vm_phys_alloc_pages: pool %d is out of range", pool));
413         KASSERT(order < VM_NFREEORDER,
414             ("vm_phys_alloc_pages: order %d is out of range", order));
415
416         for (dom = 0; dom < vm_ndomains; dom++) {
417                 domain = vm_rr_selectdomain();
418                 for (flind = 0; flind < vm_nfreelists; flind++) {
419                         m = vm_phys_alloc_domain_pages(domain, flind, pool,
420                             order);
421                         if (m != NULL)
422                                 return (m);
423                 }
424         }
425         return (NULL);
426 }
427
428 /*
429  * Find and dequeue a free page on the given free list, with the 
430  * specified pool and order
431  */
432 vm_page_t
433 vm_phys_alloc_freelist_pages(int flind, int pool, int order)
434 {
435         vm_page_t m;
436         int dom, domain;
437
438         KASSERT(flind < VM_NFREELIST,
439             ("vm_phys_alloc_freelist_pages: freelist %d is out of range", flind));
440         KASSERT(pool < VM_NFREEPOOL,
441             ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool));
442         KASSERT(order < VM_NFREEORDER,
443             ("vm_phys_alloc_freelist_pages: order %d is out of range", order));
444
445         for (dom = 0; dom < vm_ndomains; dom++) {
446                 domain = vm_rr_selectdomain();
447                 m = vm_phys_alloc_domain_pages(domain, flind, pool, order);
448                 if (m != NULL)
449                         return (m);
450         }
451         return (NULL);
452 }
453
454 static vm_page_t
455 vm_phys_alloc_domain_pages(int domain, int flind, int pool, int order)
456 {       
457         struct vm_freelist *fl;
458         struct vm_freelist *alt;
459         int oind, pind;
460         vm_page_t m;
461
462         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
463         fl = &vm_phys_free_queues[domain][flind][pool][0];
464         for (oind = order; oind < VM_NFREEORDER; oind++) {
465                 m = TAILQ_FIRST(&fl[oind].pl);
466                 if (m != NULL) {
467                         vm_freelist_rem(fl, m, oind);
468                         vm_phys_split_pages(m, oind, fl, order);
469                         return (m);
470                 }
471         }
472
473         /*
474          * The given pool was empty.  Find the largest
475          * contiguous, power-of-two-sized set of pages in any
476          * pool.  Transfer these pages to the given pool, and
477          * use them to satisfy the allocation.
478          */
479         for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
480                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
481                         alt = &vm_phys_free_queues[domain][flind][pind][0];
482                         m = TAILQ_FIRST(&alt[oind].pl);
483                         if (m != NULL) {
484                                 vm_freelist_rem(alt, m, oind);
485                                 vm_phys_set_pool(pool, m, oind);
486                                 vm_phys_split_pages(m, oind, fl, order);
487                                 return (m);
488                         }
489                 }
490         }
491         return (NULL);
492 }
493
494 /*
495  * Find the vm_page corresponding to the given physical address.
496  */
497 vm_page_t
498 vm_phys_paddr_to_vm_page(vm_paddr_t pa)
499 {
500         struct vm_phys_seg *seg;
501         int segind;
502
503         for (segind = 0; segind < vm_phys_nsegs; segind++) {
504                 seg = &vm_phys_segs[segind];
505                 if (pa >= seg->start && pa < seg->end)
506                         return (&seg->first_page[atop(pa - seg->start)]);
507         }
508         return (NULL);
509 }
510
511 vm_page_t
512 vm_phys_fictitious_to_vm_page(vm_paddr_t pa)
513 {
514         struct vm_phys_fictitious_seg *seg;
515         vm_page_t m;
516         int segind;
517
518         m = NULL;
519         for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) {
520                 seg = &vm_phys_fictitious_segs[segind];
521                 if (pa >= seg->start && pa < seg->end) {
522                         m = &seg->first_page[atop(pa - seg->start)];
523                         KASSERT((m->flags & PG_FICTITIOUS) != 0,
524                             ("%p not fictitious", m));
525                         break;
526                 }
527         }
528         return (m);
529 }
530
531 int
532 vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end,
533     vm_memattr_t memattr)
534 {
535         struct vm_phys_fictitious_seg *seg;
536         vm_page_t fp;
537         long i, page_count;
538         int segind;
539 #ifdef VM_PHYSSEG_DENSE
540         long pi;
541         boolean_t malloced;
542 #endif
543
544         page_count = (end - start) / PAGE_SIZE;
545
546 #ifdef VM_PHYSSEG_DENSE
547         pi = atop(start);
548         if (pi >= first_page && atop(end) < vm_page_array_size) {
549                 fp = &vm_page_array[pi - first_page];
550                 malloced = FALSE;
551         } else
552 #endif
553         {
554                 fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES,
555                     M_WAITOK | M_ZERO);
556 #ifdef VM_PHYSSEG_DENSE
557                 malloced = TRUE;
558 #endif
559         }
560         for (i = 0; i < page_count; i++) {
561                 vm_page_initfake(&fp[i], start + PAGE_SIZE * i, memattr);
562                 pmap_page_init(&fp[i]);
563                 fp[i].oflags &= ~(VPO_BUSY | VPO_UNMANAGED);
564         }
565         mtx_lock(&vm_phys_fictitious_reg_mtx);
566         for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) {
567                 seg = &vm_phys_fictitious_segs[segind];
568                 if (seg->start == 0 && seg->end == 0) {
569                         seg->start = start;
570                         seg->end = end;
571                         seg->first_page = fp;
572                         mtx_unlock(&vm_phys_fictitious_reg_mtx);
573                         return (0);
574                 }
575         }
576         mtx_unlock(&vm_phys_fictitious_reg_mtx);
577 #ifdef VM_PHYSSEG_DENSE
578         if (malloced)
579 #endif
580                 free(fp, M_FICT_PAGES);
581         return (EBUSY);
582 }
583
584 void
585 vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end)
586 {
587         struct vm_phys_fictitious_seg *seg;
588         vm_page_t fp;
589         int segind;
590 #ifdef VM_PHYSSEG_DENSE
591         long pi;
592 #endif
593
594 #ifdef VM_PHYSSEG_DENSE
595         pi = atop(start);
596 #endif
597
598         mtx_lock(&vm_phys_fictitious_reg_mtx);
599         for (segind = 0; segind < VM_PHYS_FICTITIOUS_NSEGS; segind++) {
600                 seg = &vm_phys_fictitious_segs[segind];
601                 if (seg->start == start && seg->end == end) {
602                         seg->start = seg->end = 0;
603                         fp = seg->first_page;
604                         seg->first_page = NULL;
605                         mtx_unlock(&vm_phys_fictitious_reg_mtx);
606 #ifdef VM_PHYSSEG_DENSE
607                         if (pi < first_page || atop(end) >= vm_page_array_size)
608 #endif
609                                 free(fp, M_FICT_PAGES);
610                         return;
611                 }
612         }
613         mtx_unlock(&vm_phys_fictitious_reg_mtx);
614         KASSERT(0, ("Unregistering not registered fictitious range"));
615 }
616
617 /*
618  * Find the segment containing the given physical address.
619  */
620 static int
621 vm_phys_paddr_to_segind(vm_paddr_t pa)
622 {
623         struct vm_phys_seg *seg;
624         int segind;
625
626         for (segind = 0; segind < vm_phys_nsegs; segind++) {
627                 seg = &vm_phys_segs[segind];
628                 if (pa >= seg->start && pa < seg->end)
629                         return (segind);
630         }
631         panic("vm_phys_paddr_to_segind: paddr %#jx is not in any segment" ,
632             (uintmax_t)pa);
633 }
634
635 /*
636  * Free a contiguous, power of two-sized set of physical pages.
637  *
638  * The free page queues must be locked.
639  */
640 void
641 vm_phys_free_pages(vm_page_t m, int order)
642 {
643         struct vm_freelist *fl;
644         struct vm_phys_seg *seg;
645         vm_paddr_t pa;
646         vm_page_t m_buddy;
647
648         KASSERT(m->order == VM_NFREEORDER,
649             ("vm_phys_free_pages: page %p has unexpected order %d",
650             m, m->order));
651         KASSERT(m->pool < VM_NFREEPOOL,
652             ("vm_phys_free_pages: page %p has unexpected pool %d",
653             m, m->pool));
654         KASSERT(order < VM_NFREEORDER,
655             ("vm_phys_free_pages: order %d is out of range", order));
656         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
657         seg = &vm_phys_segs[m->segind];
658         if (order < VM_NFREEORDER - 1) {
659                 pa = VM_PAGE_TO_PHYS(m);
660                 do {
661                         pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order));
662                         if (pa < seg->start || pa >= seg->end)
663                                 break;
664                         m_buddy = &seg->first_page[atop(pa - seg->start)];
665                         if (m_buddy->order != order)
666                                 break;
667                         fl = (*seg->free_queues)[m_buddy->pool];
668                         vm_freelist_rem(fl, m_buddy, order);
669                         if (m_buddy->pool != m->pool)
670                                 vm_phys_set_pool(m->pool, m_buddy, order);
671                         order++;
672                         pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1);
673                         m = &seg->first_page[atop(pa - seg->start)];
674                 } while (order < VM_NFREEORDER - 1);
675         }
676         fl = (*seg->free_queues)[m->pool];
677         vm_freelist_add(fl, m, order, 1);
678 }
679
680 /*
681  * Free a contiguous, arbitrarily sized set of physical pages.
682  *
683  * The free page queues must be locked.
684  */
685 void
686 vm_phys_free_contig(vm_page_t m, u_long npages)
687 {
688         u_int n;
689         int order;
690
691         /*
692          * Avoid unnecessary coalescing by freeing the pages in the largest
693          * possible power-of-two-sized subsets.
694          */
695         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
696         for (;; npages -= n) {
697                 /*
698                  * Unsigned "min" is used here so that "order" is assigned
699                  * "VM_NFREEORDER - 1" when "m"'s physical address is zero
700                  * or the low-order bits of its physical address are zero
701                  * because the size of a physical address exceeds the size of
702                  * a long.
703                  */
704                 order = min(ffsl(VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) - 1,
705                     VM_NFREEORDER - 1);
706                 n = 1 << order;
707                 if (npages < n)
708                         break;
709                 vm_phys_free_pages(m, order);
710                 m += n;
711         }
712         /* The residual "npages" is less than "1 << (VM_NFREEORDER - 1)". */
713         for (; npages > 0; npages -= n) {
714                 order = flsl(npages) - 1;
715                 n = 1 << order;
716                 vm_phys_free_pages(m, order);
717                 m += n;
718         }
719 }
720
721 /*
722  * Set the pool for a contiguous, power of two-sized set of physical pages. 
723  */
724 void
725 vm_phys_set_pool(int pool, vm_page_t m, int order)
726 {
727         vm_page_t m_tmp;
728
729         for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
730                 m_tmp->pool = pool;
731 }
732
733 /*
734  * Search for the given physical page "m" in the free lists.  If the search
735  * succeeds, remove "m" from the free lists and return TRUE.  Otherwise, return
736  * FALSE, indicating that "m" is not in the free lists.
737  *
738  * The free page queues must be locked.
739  */
740 boolean_t
741 vm_phys_unfree_page(vm_page_t m)
742 {
743         struct vm_freelist *fl;
744         struct vm_phys_seg *seg;
745         vm_paddr_t pa, pa_half;
746         vm_page_t m_set, m_tmp;
747         int order;
748
749         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
750
751         /*
752          * First, find the contiguous, power of two-sized set of free
753          * physical pages containing the given physical page "m" and
754          * assign it to "m_set".
755          */
756         seg = &vm_phys_segs[m->segind];
757         for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
758             order < VM_NFREEORDER - 1; ) {
759                 order++;
760                 pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
761                 if (pa >= seg->start)
762                         m_set = &seg->first_page[atop(pa - seg->start)];
763                 else
764                         return (FALSE);
765         }
766         if (m_set->order < order)
767                 return (FALSE);
768         if (m_set->order == VM_NFREEORDER)
769                 return (FALSE);
770         KASSERT(m_set->order < VM_NFREEORDER,
771             ("vm_phys_unfree_page: page %p has unexpected order %d",
772             m_set, m_set->order));
773
774         /*
775          * Next, remove "m_set" from the free lists.  Finally, extract
776          * "m" from "m_set" using an iterative algorithm: While "m_set"
777          * is larger than a page, shrink "m_set" by returning the half
778          * of "m_set" that does not contain "m" to the free lists.
779          */
780         fl = (*seg->free_queues)[m_set->pool];
781         order = m_set->order;
782         vm_freelist_rem(fl, m_set, order);
783         while (order > 0) {
784                 order--;
785                 pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
786                 if (m->phys_addr < pa_half)
787                         m_tmp = &seg->first_page[atop(pa_half - seg->start)];
788                 else {
789                         m_tmp = m_set;
790                         m_set = &seg->first_page[atop(pa_half - seg->start)];
791                 }
792                 vm_freelist_add(fl, m_tmp, order, 0);
793         }
794         KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
795         return (TRUE);
796 }
797
798 /*
799  * Try to zero one physical page.  Used by an idle priority thread.
800  */
801 boolean_t
802 vm_phys_zero_pages_idle(void)
803 {
804         static struct vm_freelist *fl;
805         static int flind, oind, pind;
806         vm_page_t m, m_tmp;
807         int domain;
808
809         domain = vm_rr_selectdomain();
810         fl = vm_phys_free_queues[domain][0][0];
811         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
812         for (;;) {
813                 TAILQ_FOREACH_REVERSE(m, &fl[oind].pl, pglist, pageq) {
814                         for (m_tmp = m; m_tmp < &m[1 << oind]; m_tmp++) {
815                                 if ((m_tmp->flags & (PG_CACHED | PG_ZERO)) == 0) {
816                                         vm_phys_unfree_page(m_tmp);
817                                         cnt.v_free_count--;
818                                         mtx_unlock(&vm_page_queue_free_mtx);
819                                         pmap_zero_page_idle(m_tmp);
820                                         m_tmp->flags |= PG_ZERO;
821                                         mtx_lock(&vm_page_queue_free_mtx);
822                                         cnt.v_free_count++;
823                                         vm_phys_free_pages(m_tmp, 0);
824                                         vm_page_zero_count++;
825                                         cnt_prezero++;
826                                         return (TRUE);
827                                 }
828                         }
829                 }
830                 oind++;
831                 if (oind == VM_NFREEORDER) {
832                         oind = 0;
833                         pind++;
834                         if (pind == VM_NFREEPOOL) {
835                                 pind = 0;
836                                 flind++;
837                                 if (flind == vm_nfreelists)
838                                         flind = 0;
839                         }
840                         fl = vm_phys_free_queues[domain][flind][pind];
841                 }
842         }
843 }
844
845 /*
846  * Allocate a contiguous set of physical pages of the given size
847  * "npages" from the free lists.  All of the physical pages must be at
848  * or above the given physical address "low" and below the given
849  * physical address "high".  The given value "alignment" determines the
850  * alignment of the first physical page in the set.  If the given value
851  * "boundary" is non-zero, then the set of physical pages cannot cross
852  * any physical address boundary that is a multiple of that value.  Both
853  * "alignment" and "boundary" must be a power of two.
854  */
855 vm_page_t
856 vm_phys_alloc_contig(u_long npages, vm_paddr_t low, vm_paddr_t high,
857     u_long alignment, vm_paddr_t boundary)
858 {
859         struct vm_freelist *fl;
860         struct vm_phys_seg *seg;
861         vm_paddr_t pa, pa_last, size;
862         vm_page_t m, m_ret;
863         u_long npages_end;
864         int dom, domain, flind, oind, order, pind;
865
866         mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
867         size = npages << PAGE_SHIFT;
868         KASSERT(size != 0,
869             ("vm_phys_alloc_contig: size must not be 0"));
870         KASSERT((alignment & (alignment - 1)) == 0,
871             ("vm_phys_alloc_contig: alignment must be a power of 2"));
872         KASSERT((boundary & (boundary - 1)) == 0,
873             ("vm_phys_alloc_contig: boundary must be a power of 2"));
874         /* Compute the queue that is the best fit for npages. */
875         for (order = 0; (1 << order) < npages; order++);
876         dom = 0;
877 restartdom:
878         domain = vm_rr_selectdomain();
879         for (flind = 0; flind < vm_nfreelists; flind++) {
880                 for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER; oind++) {
881                         for (pind = 0; pind < VM_NFREEPOOL; pind++) {
882                                 fl = &vm_phys_free_queues[domain][flind][pind][0];
883                                 TAILQ_FOREACH(m_ret, &fl[oind].pl, pageq) {
884                                         /*
885                                          * A free list may contain physical pages
886                                          * from one or more segments.
887                                          */
888                                         seg = &vm_phys_segs[m_ret->segind];
889                                         if (seg->start > high ||
890                                             low >= seg->end)
891                                                 continue;
892
893                                         /*
894                                          * Is the size of this allocation request
895                                          * larger than the largest block size?
896                                          */
897                                         if (order >= VM_NFREEORDER) {
898                                                 /*
899                                                  * Determine if a sufficient number
900                                                  * of subsequent blocks to satisfy
901                                                  * the allocation request are free.
902                                                  */
903                                                 pa = VM_PAGE_TO_PHYS(m_ret);
904                                                 pa_last = pa + size;
905                                                 for (;;) {
906                                                         pa += 1 << (PAGE_SHIFT + VM_NFREEORDER - 1);
907                                                         if (pa >= pa_last)
908                                                                 break;
909                                                         if (pa < seg->start ||
910                                                             pa >= seg->end)
911                                                                 break;
912                                                         m = &seg->first_page[atop(pa - seg->start)];
913                                                         if (m->order != VM_NFREEORDER - 1)
914                                                                 break;
915                                                 }
916                                                 /* If not, continue to the next block. */
917                                                 if (pa < pa_last)
918                                                         continue;
919                                         }
920
921                                         /*
922                                          * Determine if the blocks are within the given range,
923                                          * satisfy the given alignment, and do not cross the
924                                          * given boundary.
925                                          */
926                                         pa = VM_PAGE_TO_PHYS(m_ret);
927                                         if (pa >= low &&
928                                             pa + size <= high &&
929                                             (pa & (alignment - 1)) == 0 &&
930                                             ((pa ^ (pa + size - 1)) & ~(boundary - 1)) == 0)
931                                                 goto done;
932                                 }
933                         }
934                 }
935         }
936         if (++dom < vm_ndomains)
937                 goto restartdom;
938         return (NULL);
939 done:
940         for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) {
941                 fl = (*seg->free_queues)[m->pool];
942                 vm_freelist_rem(fl, m, m->order);
943         }
944         if (m_ret->pool != VM_FREEPOOL_DEFAULT)
945                 vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m_ret, oind);
946         fl = (*seg->free_queues)[m_ret->pool];
947         vm_phys_split_pages(m_ret, oind, fl, order);
948         /* Return excess pages to the free lists. */
949         npages_end = roundup2(npages, 1 << imin(oind, order));
950         if (npages < npages_end)
951                 vm_phys_free_contig(&m_ret[npages], npages_end - npages);
952         return (m_ret);
953 }
954
955 #ifdef DDB
956 /*
957  * Show the number of physical pages in each of the free lists.
958  */
959 DB_SHOW_COMMAND(freepages, db_show_freepages)
960 {
961         struct vm_freelist *fl;
962         int flind, oind, pind, dom;
963
964         for (dom = 0; dom < vm_ndomains; dom++) {
965                 db_printf("DOMAIN: %d\n", dom);
966                 for (flind = 0; flind < vm_nfreelists; flind++) {
967                         db_printf("FREE LIST %d:\n"
968                             "\n  ORDER (SIZE)  |  NUMBER"
969                             "\n              ", flind);
970                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
971                                 db_printf("  |  POOL %d", pind);
972                         db_printf("\n--            ");
973                         for (pind = 0; pind < VM_NFREEPOOL; pind++)
974                                 db_printf("-- --      ");
975                         db_printf("--\n");
976                         for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
977                                 db_printf("  %2.2d (%6.6dK)", oind,
978                                     1 << (PAGE_SHIFT - 10 + oind));
979                                 for (pind = 0; pind < VM_NFREEPOOL; pind++) {
980                                 fl = vm_phys_free_queues[dom][flind][pind];
981                                         db_printf("  |  %6.6d", fl[oind].lcnt);
982                                 }
983                                 db_printf("\n");
984                         }
985                         db_printf("\n");
986                 }
987                 db_printf("\n");
988         }
989 }
990 #endif