]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_radix.c
Merge branch 'releng/11.3' into releng-CDN/11.3
[FreeBSD/FreeBSD.git] / sys / vm / vm_radix.c
1 /*
2  * Copyright (c) 2013 EMC Corp.
3  * Copyright (c) 2011 Jeffrey Roberson <jeff@freebsd.org>
4  * Copyright (c) 2008 Mayur Shardul <mayur.shardul@gmail.com>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  */
29
30 /*
31  * Path-compressed radix trie implementation.
32  * The following code is not generalized into a general purpose library
33  * because there are way too many parameters embedded that should really
34  * be decided by the library consumers.  At the same time, consumers
35  * of this code must achieve highest possible performance.
36  *
37  * The implementation takes into account the following rationale:
38  * - Size of the nodes should be as small as possible but still big enough
39  *   to avoid a large maximum depth for the trie.  This is a balance
40  *   between the necessity to not wire too much physical memory for the nodes
41  *   and the necessity to avoid too much cache pollution during the trie
42  *   operations.
43  * - There is not a huge bias toward the number of lookup operations over
44  *   the number of insert and remove operations.  This basically implies
45  *   that optimizations supposedly helping one operation but hurting the
46  *   other might be carefully evaluated.
47  * - On average not many nodes are expected to be fully populated, hence
48  *   level compression may just complicate things.
49  */
50
51 #include <sys/cdefs.h>
52 __FBSDID("$FreeBSD$");
53
54 #include "opt_ddb.h"
55
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/kernel.h>
59 #include <sys/vmmeter.h>
60
61 #include <vm/uma.h>
62 #include <vm/vm.h>
63 #include <vm/vm_param.h>
64 #include <vm/vm_page.h>
65 #include <vm/vm_radix.h>
66
67 #ifdef DDB
68 #include <ddb/ddb.h>
69 #endif
70
71 /*
72  * These widths should allow the pointers to a node's children to fit within
73  * a single cache line.  The extra levels from a narrow width should not be
74  * a problem thanks to path compression.
75  */
76 #ifdef __LP64__
77 #define VM_RADIX_WIDTH  4
78 #else
79 #define VM_RADIX_WIDTH  3
80 #endif
81
82 #define VM_RADIX_COUNT  (1 << VM_RADIX_WIDTH)
83 #define VM_RADIX_MASK   (VM_RADIX_COUNT - 1)
84 #define VM_RADIX_LIMIT                                                  \
85         (howmany(sizeof(vm_pindex_t) * NBBY, VM_RADIX_WIDTH) - 1)
86
87 /* Flag bits stored in node pointers. */
88 #define VM_RADIX_ISLEAF 0x1
89 #define VM_RADIX_FLAGS  0x1
90 #define VM_RADIX_PAD    VM_RADIX_FLAGS
91
92 /* Returns one unit associated with specified level. */
93 #define VM_RADIX_UNITLEVEL(lev)                                         \
94         ((vm_pindex_t)1 << ((lev) * VM_RADIX_WIDTH))
95
96 struct vm_radix_node {
97         vm_pindex_t      rn_owner;                      /* Owner of record. */
98         uint16_t         rn_count;                      /* Valid children. */
99         uint16_t         rn_clev;                       /* Current level. */
100         void            *rn_child[VM_RADIX_COUNT];      /* Child nodes. */
101 };
102
103 static uma_zone_t vm_radix_node_zone;
104
105 /*
106  * Allocate a radix node.
107  */
108 static __inline struct vm_radix_node *
109 vm_radix_node_get(vm_pindex_t owner, uint16_t count, uint16_t clevel)
110 {
111         struct vm_radix_node *rnode;
112
113         rnode = uma_zalloc(vm_radix_node_zone, M_NOWAIT | M_ZERO);
114         if (rnode == NULL)
115                 return (NULL);
116         rnode->rn_owner = owner;
117         rnode->rn_count = count;
118         rnode->rn_clev = clevel;
119         return (rnode);
120 }
121
122 /*
123  * Free radix node.
124  */
125 static __inline void
126 vm_radix_node_put(struct vm_radix_node *rnode)
127 {
128
129         uma_zfree(vm_radix_node_zone, rnode);
130 }
131
132 /*
133  * Return the position in the array for a given level.
134  */
135 static __inline int
136 vm_radix_slot(vm_pindex_t index, uint16_t level)
137 {
138
139         return ((index >> (level * VM_RADIX_WIDTH)) & VM_RADIX_MASK);
140 }
141
142 /* Trims the key after the specified level. */
143 static __inline vm_pindex_t
144 vm_radix_trimkey(vm_pindex_t index, uint16_t level)
145 {
146         vm_pindex_t ret;
147
148         ret = index;
149         if (level > 0) {
150                 ret >>= level * VM_RADIX_WIDTH;
151                 ret <<= level * VM_RADIX_WIDTH;
152         }
153         return (ret);
154 }
155
156 /*
157  * Get the root node for a radix tree.
158  */
159 static __inline struct vm_radix_node *
160 vm_radix_getroot(struct vm_radix *rtree)
161 {
162
163         return ((struct vm_radix_node *)rtree->rt_root);
164 }
165
166 /*
167  * Set the root node for a radix tree.
168  */
169 static __inline void
170 vm_radix_setroot(struct vm_radix *rtree, struct vm_radix_node *rnode)
171 {
172
173         rtree->rt_root = (uintptr_t)rnode;
174 }
175
176 /*
177  * Returns TRUE if the specified radix node is a leaf and FALSE otherwise.
178  */
179 static __inline boolean_t
180 vm_radix_isleaf(struct vm_radix_node *rnode)
181 {
182
183         return (((uintptr_t)rnode & VM_RADIX_ISLEAF) != 0);
184 }
185
186 /*
187  * Returns the associated page extracted from rnode.
188  */
189 static __inline vm_page_t
190 vm_radix_topage(struct vm_radix_node *rnode)
191 {
192
193         return ((vm_page_t)((uintptr_t)rnode & ~VM_RADIX_FLAGS));
194 }
195
196 /*
197  * Adds the page as a child of the provided node.
198  */
199 static __inline void
200 vm_radix_addpage(struct vm_radix_node *rnode, vm_pindex_t index, uint16_t clev,
201     vm_page_t page)
202 {
203         int slot;
204
205         slot = vm_radix_slot(index, clev);
206         rnode->rn_child[slot] = (void *)((uintptr_t)page | VM_RADIX_ISLEAF);
207 }
208
209 /*
210  * Returns the slot where two keys differ.
211  * It cannot accept 2 equal keys.
212  */
213 static __inline uint16_t
214 vm_radix_keydiff(vm_pindex_t index1, vm_pindex_t index2)
215 {
216         uint16_t clev;
217
218         KASSERT(index1 != index2, ("%s: passing the same key value %jx",
219             __func__, (uintmax_t)index1));
220
221         index1 ^= index2;
222         for (clev = VM_RADIX_LIMIT;; clev--)
223                 if (vm_radix_slot(index1, clev) != 0)
224                         return (clev);
225 }
226
227 /*
228  * Returns TRUE if it can be determined that key does not belong to the
229  * specified rnode.  Otherwise, returns FALSE.
230  */
231 static __inline boolean_t
232 vm_radix_keybarr(struct vm_radix_node *rnode, vm_pindex_t idx)
233 {
234
235         if (rnode->rn_clev < VM_RADIX_LIMIT) {
236                 idx = vm_radix_trimkey(idx, rnode->rn_clev + 1);
237                 return (idx != rnode->rn_owner);
238         }
239         return (FALSE);
240 }
241
242 /*
243  * Internal helper for vm_radix_reclaim_allnodes().
244  * This function is recursive.
245  */
246 static void
247 vm_radix_reclaim_allnodes_int(struct vm_radix_node *rnode)
248 {
249         int slot;
250
251         KASSERT(rnode->rn_count <= VM_RADIX_COUNT,
252             ("vm_radix_reclaim_allnodes_int: bad count in rnode %p", rnode));
253         for (slot = 0; rnode->rn_count != 0; slot++) {
254                 if (rnode->rn_child[slot] == NULL)
255                         continue;
256                 if (!vm_radix_isleaf(rnode->rn_child[slot]))
257                         vm_radix_reclaim_allnodes_int(rnode->rn_child[slot]);
258                 rnode->rn_child[slot] = NULL;
259                 rnode->rn_count--;
260         }
261         vm_radix_node_put(rnode);
262 }
263
264 #ifdef INVARIANTS
265 /*
266  * Radix node zone destructor.
267  */
268 static void
269 vm_radix_node_zone_dtor(void *mem, int size __unused, void *arg __unused)
270 {
271         struct vm_radix_node *rnode;
272         int slot;
273
274         rnode = mem;
275         KASSERT(rnode->rn_count == 0,
276             ("vm_radix_node_put: rnode %p has %d children", rnode,
277             rnode->rn_count));
278         for (slot = 0; slot < VM_RADIX_COUNT; slot++)
279                 KASSERT(rnode->rn_child[slot] == NULL,
280                     ("vm_radix_node_put: rnode %p has a child", rnode));
281 }
282 #endif
283
284 #ifndef UMA_MD_SMALL_ALLOC
285 /*
286  * Reserve the KVA necessary to satisfy the node allocation.
287  * This is mandatory in architectures not supporting direct
288  * mapping as they will need otherwise to carve into the kernel maps for
289  * every node allocation, resulting into deadlocks for consumers already
290  * working with kernel maps.
291  */
292 static void
293 vm_radix_reserve_kva(void *arg __unused)
294 {
295
296         /*
297          * Calculate the number of reserved nodes, discounting the pages that
298          * are needed to store them.
299          */
300         if (!uma_zone_reserve_kva(vm_radix_node_zone,
301             ((vm_paddr_t)vm_cnt.v_page_count * PAGE_SIZE) / (PAGE_SIZE +
302             sizeof(struct vm_radix_node))))
303                 panic("%s: unable to reserve KVA", __func__);
304 }
305 SYSINIT(vm_radix_reserve_kva, SI_SUB_KMEM, SI_ORDER_THIRD,
306     vm_radix_reserve_kva, NULL);
307 #endif
308
309 /*
310  * Initialize the UMA slab zone.
311  */
312 void
313 vm_radix_zinit(void)
314 {
315
316         vm_radix_node_zone = uma_zcreate("RADIX NODE",
317             sizeof(struct vm_radix_node), NULL,
318 #ifdef INVARIANTS
319             vm_radix_node_zone_dtor,
320 #else
321             NULL,
322 #endif
323             NULL, NULL, VM_RADIX_PAD, UMA_ZONE_VM);
324 }
325
326 /*
327  * Inserts the key-value pair into the trie.
328  * Panics if the key already exists.
329  */
330 int
331 vm_radix_insert(struct vm_radix *rtree, vm_page_t page)
332 {
333         vm_pindex_t index, newind;
334         void **parentp;
335         struct vm_radix_node *rnode, *tmp;
336         vm_page_t m;
337         int slot;
338         uint16_t clev;
339
340         index = page->pindex;
341
342         /*
343          * The owner of record for root is not really important because it
344          * will never be used.
345          */
346         rnode = vm_radix_getroot(rtree);
347         if (rnode == NULL) {
348                 rtree->rt_root = (uintptr_t)page | VM_RADIX_ISLEAF;
349                 return (0);
350         }
351         parentp = (void **)&rtree->rt_root;
352         for (;;) {
353                 if (vm_radix_isleaf(rnode)) {
354                         m = vm_radix_topage(rnode);
355                         if (m->pindex == index)
356                                 panic("%s: key %jx is already present",
357                                     __func__, (uintmax_t)index);
358                         clev = vm_radix_keydiff(m->pindex, index);
359                         tmp = vm_radix_node_get(vm_radix_trimkey(index,
360                             clev + 1), 2, clev);
361                         if (tmp == NULL)
362                                 return (ENOMEM);
363                         *parentp = tmp;
364                         vm_radix_addpage(tmp, index, clev, page);
365                         vm_radix_addpage(tmp, m->pindex, clev, m);
366                         return (0);
367                 } else if (vm_radix_keybarr(rnode, index))
368                         break;
369                 slot = vm_radix_slot(index, rnode->rn_clev);
370                 if (rnode->rn_child[slot] == NULL) {
371                         rnode->rn_count++;
372                         vm_radix_addpage(rnode, index, rnode->rn_clev, page);
373                         return (0);
374                 }
375                 parentp = &rnode->rn_child[slot];
376                 rnode = rnode->rn_child[slot];
377         }
378
379         /*
380          * A new node is needed because the right insertion level is reached.
381          * Setup the new intermediate node and add the 2 children: the
382          * new object and the older edge.
383          */
384         newind = rnode->rn_owner;
385         clev = vm_radix_keydiff(newind, index);
386         tmp = vm_radix_node_get(vm_radix_trimkey(index, clev + 1), 2, clev);
387         if (tmp == NULL)
388                 return (ENOMEM);
389         *parentp = tmp;
390         vm_radix_addpage(tmp, index, clev, page);
391         slot = vm_radix_slot(newind, clev);
392         tmp->rn_child[slot] = rnode;
393         return (0);
394 }
395
396 /*
397  * Returns TRUE if the specified radix tree contains a single leaf and FALSE
398  * otherwise.
399  */
400 boolean_t
401 vm_radix_is_singleton(struct vm_radix *rtree)
402 {
403         struct vm_radix_node *rnode;
404
405         rnode = vm_radix_getroot(rtree);
406         if (rnode == NULL)
407                 return (FALSE);
408         return (vm_radix_isleaf(rnode));
409 }
410
411 /*
412  * Returns the value stored at the index.  If the index is not present,
413  * NULL is returned.
414  */
415 vm_page_t
416 vm_radix_lookup(struct vm_radix *rtree, vm_pindex_t index)
417 {
418         struct vm_radix_node *rnode;
419         vm_page_t m;
420         int slot;
421
422         rnode = vm_radix_getroot(rtree);
423         while (rnode != NULL) {
424                 if (vm_radix_isleaf(rnode)) {
425                         m = vm_radix_topage(rnode);
426                         if (m->pindex == index)
427                                 return (m);
428                         else
429                                 break;
430                 } else if (vm_radix_keybarr(rnode, index))
431                         break;
432                 slot = vm_radix_slot(index, rnode->rn_clev);
433                 rnode = rnode->rn_child[slot];
434         }
435         return (NULL);
436 }
437
438 /*
439  * Look up the nearest entry at a position bigger than or equal to index.
440  */
441 vm_page_t
442 vm_radix_lookup_ge(struct vm_radix *rtree, vm_pindex_t index)
443 {
444         struct vm_radix_node *stack[VM_RADIX_LIMIT];
445         vm_pindex_t inc;
446         vm_page_t m;
447         struct vm_radix_node *child, *rnode;
448 #ifdef INVARIANTS
449         int loops = 0;
450 #endif
451         int slot, tos;
452
453         rnode = vm_radix_getroot(rtree);
454         if (rnode == NULL)
455                 return (NULL);
456         else if (vm_radix_isleaf(rnode)) {
457                 m = vm_radix_topage(rnode);
458                 if (m->pindex >= index)
459                         return (m);
460                 else
461                         return (NULL);
462         }
463         tos = 0;
464         for (;;) {
465                 /*
466                  * If the keys differ before the current bisection node,
467                  * then the search key might rollback to the earliest
468                  * available bisection node or to the smallest key
469                  * in the current node (if the owner is bigger than the
470                  * search key).
471                  */
472                 if (vm_radix_keybarr(rnode, index)) {
473                         if (index > rnode->rn_owner) {
474 ascend:
475                                 KASSERT(++loops < 1000,
476                                     ("vm_radix_lookup_ge: too many loops"));
477
478                                 /*
479                                  * Pop nodes from the stack until either the
480                                  * stack is empty or a node that could have a
481                                  * matching descendant is found.
482                                  */
483                                 do {
484                                         if (tos == 0)
485                                                 return (NULL);
486                                         rnode = stack[--tos];
487                                 } while (vm_radix_slot(index,
488                                     rnode->rn_clev) == (VM_RADIX_COUNT - 1));
489
490                                 /*
491                                  * The following computation cannot overflow
492                                  * because index's slot at the current level
493                                  * is less than VM_RADIX_COUNT - 1.
494                                  */
495                                 index = vm_radix_trimkey(index,
496                                     rnode->rn_clev);
497                                 index += VM_RADIX_UNITLEVEL(rnode->rn_clev);
498                         } else
499                                 index = rnode->rn_owner;
500                         KASSERT(!vm_radix_keybarr(rnode, index),
501                             ("vm_radix_lookup_ge: keybarr failed"));
502                 }
503                 slot = vm_radix_slot(index, rnode->rn_clev);
504                 child = rnode->rn_child[slot];
505                 if (vm_radix_isleaf(child)) {
506                         m = vm_radix_topage(child);
507                         if (m->pindex >= index)
508                                 return (m);
509                 } else if (child != NULL)
510                         goto descend;
511
512                 /*
513                  * Look for an available edge or page within the current
514                  * bisection node.
515                  */
516                 if (slot < (VM_RADIX_COUNT - 1)) {
517                         inc = VM_RADIX_UNITLEVEL(rnode->rn_clev);
518                         index = vm_radix_trimkey(index, rnode->rn_clev);
519                         do {
520                                 index += inc;
521                                 slot++;
522                                 child = rnode->rn_child[slot];
523                                 if (vm_radix_isleaf(child)) {
524                                         m = vm_radix_topage(child);
525                                         if (m->pindex >= index)
526                                                 return (m);
527                                 } else if (child != NULL)
528                                         goto descend;
529                         } while (slot < (VM_RADIX_COUNT - 1));
530                 }
531                 KASSERT(child == NULL || vm_radix_isleaf(child),
532                     ("vm_radix_lookup_ge: child is radix node"));
533
534                 /*
535                  * If a page or edge bigger than the search slot is not found
536                  * in the current node, ascend to the next higher-level node.
537                  */
538                 goto ascend;
539 descend:
540                 KASSERT(rnode->rn_clev > 0,
541                     ("vm_radix_lookup_ge: pushing leaf's parent"));
542                 KASSERT(tos < VM_RADIX_LIMIT,
543                     ("vm_radix_lookup_ge: stack overflow"));
544                 stack[tos++] = rnode;
545                 rnode = child;
546         }
547 }
548
549 /*
550  * Look up the nearest entry at a position less than or equal to index.
551  */
552 vm_page_t
553 vm_radix_lookup_le(struct vm_radix *rtree, vm_pindex_t index)
554 {
555         struct vm_radix_node *stack[VM_RADIX_LIMIT];
556         vm_pindex_t inc;
557         vm_page_t m;
558         struct vm_radix_node *child, *rnode;
559 #ifdef INVARIANTS
560         int loops = 0;
561 #endif
562         int slot, tos;
563
564         rnode = vm_radix_getroot(rtree);
565         if (rnode == NULL)
566                 return (NULL);
567         else if (vm_radix_isleaf(rnode)) {
568                 m = vm_radix_topage(rnode);
569                 if (m->pindex <= index)
570                         return (m);
571                 else
572                         return (NULL);
573         }
574         tos = 0;
575         for (;;) {
576                 /*
577                  * If the keys differ before the current bisection node,
578                  * then the search key might rollback to the earliest
579                  * available bisection node or to the largest key
580                  * in the current node (if the owner is smaller than the
581                  * search key).
582                  */
583                 if (vm_radix_keybarr(rnode, index)) {
584                         if (index > rnode->rn_owner) {
585                                 index = rnode->rn_owner + VM_RADIX_COUNT *
586                                     VM_RADIX_UNITLEVEL(rnode->rn_clev);
587                         } else {
588 ascend:
589                                 KASSERT(++loops < 1000,
590                                     ("vm_radix_lookup_le: too many loops"));
591
592                                 /*
593                                  * Pop nodes from the stack until either the
594                                  * stack is empty or a node that could have a
595                                  * matching descendant is found.
596                                  */
597                                 do {
598                                         if (tos == 0)
599                                                 return (NULL);
600                                         rnode = stack[--tos];
601                                 } while (vm_radix_slot(index,
602                                     rnode->rn_clev) == 0);
603
604                                 /*
605                                  * The following computation cannot overflow
606                                  * because index's slot at the current level
607                                  * is greater than 0.
608                                  */
609                                 index = vm_radix_trimkey(index,
610                                     rnode->rn_clev);
611                         }
612                         index--;
613                         KASSERT(!vm_radix_keybarr(rnode, index),
614                             ("vm_radix_lookup_le: keybarr failed"));
615                 }
616                 slot = vm_radix_slot(index, rnode->rn_clev);
617                 child = rnode->rn_child[slot];
618                 if (vm_radix_isleaf(child)) {
619                         m = vm_radix_topage(child);
620                         if (m->pindex <= index)
621                                 return (m);
622                 } else if (child != NULL)
623                         goto descend;
624
625                 /*
626                  * Look for an available edge or page within the current
627                  * bisection node.
628                  */
629                 if (slot > 0) {
630                         inc = VM_RADIX_UNITLEVEL(rnode->rn_clev);
631                         index |= inc - 1;
632                         do {
633                                 index -= inc;
634                                 slot--;
635                                 child = rnode->rn_child[slot];
636                                 if (vm_radix_isleaf(child)) {
637                                         m = vm_radix_topage(child);
638                                         if (m->pindex <= index)
639                                                 return (m);
640                                 } else if (child != NULL)
641                                         goto descend;
642                         } while (slot > 0);
643                 }
644                 KASSERT(child == NULL || vm_radix_isleaf(child),
645                     ("vm_radix_lookup_le: child is radix node"));
646
647                 /*
648                  * If a page or edge smaller than the search slot is not found
649                  * in the current node, ascend to the next higher-level node.
650                  */
651                 goto ascend;
652 descend:
653                 KASSERT(rnode->rn_clev > 0,
654                     ("vm_radix_lookup_le: pushing leaf's parent"));
655                 KASSERT(tos < VM_RADIX_LIMIT,
656                     ("vm_radix_lookup_le: stack overflow"));
657                 stack[tos++] = rnode;
658                 rnode = child;
659         }
660 }
661
662 /*
663  * Remove the specified index from the trie, and return the value stored at
664  * that index.  If the index is not present, return NULL.
665  */
666 vm_page_t
667 vm_radix_remove(struct vm_radix *rtree, vm_pindex_t index)
668 {
669         struct vm_radix_node *rnode, *parent;
670         vm_page_t m;
671         int i, slot;
672
673         rnode = vm_radix_getroot(rtree);
674         if (vm_radix_isleaf(rnode)) {
675                 m = vm_radix_topage(rnode);
676                 if (m->pindex != index)
677                         return (NULL);
678                 vm_radix_setroot(rtree, NULL);
679                 return (m);
680         }
681         parent = NULL;
682         for (;;) {
683                 if (rnode == NULL)
684                         return (NULL);
685                 slot = vm_radix_slot(index, rnode->rn_clev);
686                 if (vm_radix_isleaf(rnode->rn_child[slot])) {
687                         m = vm_radix_topage(rnode->rn_child[slot]);
688                         if (m->pindex != index)
689                                 return (NULL);
690                         rnode->rn_child[slot] = NULL;
691                         rnode->rn_count--;
692                         if (rnode->rn_count > 1)
693                                 return (m);
694                         for (i = 0; i < VM_RADIX_COUNT; i++)
695                                 if (rnode->rn_child[i] != NULL)
696                                         break;
697                         KASSERT(i != VM_RADIX_COUNT,
698                             ("%s: invalid node configuration", __func__));
699                         if (parent == NULL)
700                                 vm_radix_setroot(rtree, rnode->rn_child[i]);
701                         else {
702                                 slot = vm_radix_slot(index, parent->rn_clev);
703                                 KASSERT(parent->rn_child[slot] == rnode,
704                                     ("%s: invalid child value", __func__));
705                                 parent->rn_child[slot] = rnode->rn_child[i];
706                         }
707                         rnode->rn_count--;
708                         rnode->rn_child[i] = NULL;
709                         vm_radix_node_put(rnode);
710                         return (m);
711                 }
712                 parent = rnode;
713                 rnode = rnode->rn_child[slot];
714         }
715 }
716
717 /*
718  * Remove and free all the nodes from the radix tree.
719  * This function is recursive but there is a tight control on it as the
720  * maximum depth of the tree is fixed.
721  */
722 void
723 vm_radix_reclaim_allnodes(struct vm_radix *rtree)
724 {
725         struct vm_radix_node *root;
726
727         root = vm_radix_getroot(rtree);
728         if (root == NULL)
729                 return;
730         vm_radix_setroot(rtree, NULL);
731         if (!vm_radix_isleaf(root))
732                 vm_radix_reclaim_allnodes_int(root);
733 }
734
735 /*
736  * Replace an existing page in the trie with another one.
737  * Panics if there is not an old page in the trie at the new page's index.
738  */
739 vm_page_t
740 vm_radix_replace(struct vm_radix *rtree, vm_page_t newpage)
741 {
742         struct vm_radix_node *rnode;
743         vm_page_t m;
744         vm_pindex_t index;
745         int slot;
746
747         index = newpage->pindex;
748         rnode = vm_radix_getroot(rtree);
749         if (rnode == NULL)
750                 panic("%s: replacing page on an empty trie", __func__);
751         if (vm_radix_isleaf(rnode)) {
752                 m = vm_radix_topage(rnode);
753                 if (m->pindex != index)
754                         panic("%s: original replacing root key not found",
755                             __func__);
756                 rtree->rt_root = (uintptr_t)newpage | VM_RADIX_ISLEAF;
757                 return (m);
758         }
759         for (;;) {
760                 slot = vm_radix_slot(index, rnode->rn_clev);
761                 if (vm_radix_isleaf(rnode->rn_child[slot])) {
762                         m = vm_radix_topage(rnode->rn_child[slot]);
763                         if (m->pindex == index) {
764                                 rnode->rn_child[slot] =
765                                     (void *)((uintptr_t)newpage |
766                                     VM_RADIX_ISLEAF);
767                                 return (m);
768                         } else
769                                 break;
770                 } else if (rnode->rn_child[slot] == NULL ||
771                     vm_radix_keybarr(rnode->rn_child[slot], index))
772                         break;
773                 rnode = rnode->rn_child[slot];
774         }
775         panic("%s: original replacing page not found", __func__);
776 }
777
778 void
779 vm_radix_wait(void)
780 {
781         uma_zwait(vm_radix_node_zone);
782 }
783
784 #ifdef DDB
785 /*
786  * Show details about the given radix node.
787  */
788 DB_SHOW_COMMAND(radixnode, db_show_radixnode)
789 {
790         struct vm_radix_node *rnode;
791         int i;
792
793         if (!have_addr)
794                 return;
795         rnode = (struct vm_radix_node *)addr;
796         db_printf("radixnode %p, owner %jx, children count %u, level %u:\n",
797             (void *)rnode, (uintmax_t)rnode->rn_owner, rnode->rn_count,
798             rnode->rn_clev);
799         for (i = 0; i < VM_RADIX_COUNT; i++)
800                 if (rnode->rn_child[i] != NULL)
801                         db_printf("slot: %d, val: %p, page: %p, clev: %d\n",
802                             i, (void *)rnode->rn_child[i],
803                             vm_radix_isleaf(rnode->rn_child[i]) ?
804                             vm_radix_topage(rnode->rn_child[i]) : NULL,
805                             rnode->rn_clev);
806 }
807 #endif /* DDB */