]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_radix.c
Optimize vm_radix_lookup_ge() and vm_radix_lookup_le(). Specifically,
[FreeBSD/FreeBSD.git] / sys / vm / vm_radix.c
1 /*
2  * Copyright (c) 2013 EMC Corp.
3  * Copyright (c) 2011 Jeffrey Roberson <jeff@freebsd.org>
4  * Copyright (c) 2008 Mayur Shardul <mayur.shardul@gmail.com>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  */
29
30 /*
31  * Path-compressed radix trie implementation.
32  * The following code is not generalized into a general purpose library
33  * because there are way too many parameters embedded that should really
34  * be decided by the library consumers.  At the same time, consumers
35  * of this code must achieve highest possible performance.
36  *
37  * The implementation takes into account the following rationale:
38  * - Size of the nodes should be as small as possible but still big enough
39  *   to avoid a large maximum depth for the trie.  This is a balance
40  *   between the necessity to not wire too much physical memory for the nodes
41  *   and the necessity to avoid too much cache pollution during the trie
42  *   operations.
43  * - There is not a huge bias toward the number of lookup operations over
44  *   the number of insert and remove operations.  This basically implies
45  *   that optimizations supposedly helping one operation but hurting the
46  *   other might be carefully evaluated.
47  * - On average not many nodes are expected to be fully populated, hence
48  *   level compression may just complicate things.
49  */
50
51 #include <sys/cdefs.h>
52 __FBSDID("$FreeBSD$");
53
54 #include "opt_ddb.h"
55
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/kernel.h>
59 #include <sys/vmmeter.h>
60
61 #include <vm/uma.h>
62 #include <vm/vm.h>
63 #include <vm/vm_param.h>
64 #include <vm/vm_page.h>
65 #include <vm/vm_radix.h>
66
67 #ifdef DDB
68 #include <ddb/ddb.h>
69 #endif
70
71 /*
72  * These widths should allow the pointers to a node's children to fit within
73  * a single cache line.  The extra levels from a narrow width should not be
74  * a problem thanks to path compression.
75  */
76 #ifdef __LP64__
77 #define VM_RADIX_WIDTH  4
78 #else
79 #define VM_RADIX_WIDTH  3
80 #endif
81
82 #define VM_RADIX_COUNT  (1 << VM_RADIX_WIDTH)
83 #define VM_RADIX_MASK   (VM_RADIX_COUNT - 1)
84 #define VM_RADIX_LIMIT                                                  \
85         (howmany((sizeof(vm_pindex_t) * NBBY), VM_RADIX_WIDTH) - 1)
86
87 /* Flag bits stored in node pointers. */
88 #define VM_RADIX_ISLEAF 0x1
89 #define VM_RADIX_FLAGS  0x1
90 #define VM_RADIX_PAD    VM_RADIX_FLAGS
91
92 /* Returns one unit associated with specified level. */
93 #define VM_RADIX_UNITLEVEL(lev)                                         \
94         ((vm_pindex_t)1 << ((VM_RADIX_LIMIT - (lev)) * VM_RADIX_WIDTH))
95
96 struct vm_radix_node {
97         vm_pindex_t      rn_owner;                      /* Owner of record. */
98         uint16_t         rn_count;                      /* Valid children. */
99         uint16_t         rn_clev;                       /* Current level. */
100         void            *rn_child[VM_RADIX_COUNT];      /* Child nodes. */
101 };
102
103 static uma_zone_t vm_radix_node_zone;
104
105 /*
106  * Allocate a radix node.  Pre-allocation should ensure that the request
107  * will always be satisfied.
108  */
109 static __inline struct vm_radix_node *
110 vm_radix_node_get(vm_pindex_t owner, uint16_t count, uint16_t clevel)
111 {
112         struct vm_radix_node *rnode;
113
114         rnode = uma_zalloc(vm_radix_node_zone, M_NOWAIT);
115
116         /*
117          * The required number of nodes should already be pre-allocated
118          * by vm_radix_prealloc().  However, UMA can hold a few nodes
119          * in per-CPU buckets, which will not be accessible by the
120          * current CPU.  Thus, the allocation could return NULL when
121          * the pre-allocated pool is close to exhaustion.  Anyway,
122          * in practice this should never occur because a new node
123          * is not always required for insert.  Thus, the pre-allocated
124          * pool should have some extra pages that prevent this from
125          * becoming a problem.
126          */
127         if (rnode == NULL)
128                 panic("%s: uma_zalloc() returned NULL for a new node",
129                     __func__);
130         rnode->rn_owner = owner;
131         rnode->rn_count = count;
132         rnode->rn_clev = clevel;
133         return (rnode);
134 }
135
136 /*
137  * Free radix node.
138  */
139 static __inline void
140 vm_radix_node_put(struct vm_radix_node *rnode)
141 {
142
143         uma_zfree(vm_radix_node_zone, rnode);
144 }
145
146 /*
147  * Return the position in the array for a given level.
148  */
149 static __inline int
150 vm_radix_slot(vm_pindex_t index, uint16_t level)
151 {
152
153         return ((index >> ((VM_RADIX_LIMIT - level) * VM_RADIX_WIDTH)) &
154             VM_RADIX_MASK);
155 }
156
157 /* Trims the key after the specified level. */
158 static __inline vm_pindex_t
159 vm_radix_trimkey(vm_pindex_t index, uint16_t level)
160 {
161         vm_pindex_t ret;
162
163         ret = index;
164         if (level < VM_RADIX_LIMIT) {
165                 ret >>= (VM_RADIX_LIMIT - level) * VM_RADIX_WIDTH;
166                 ret <<= (VM_RADIX_LIMIT - level) * VM_RADIX_WIDTH;
167         }
168         return (ret);
169 }
170
171 /*
172  * Get the root node for a radix tree.
173  */
174 static __inline struct vm_radix_node *
175 vm_radix_getroot(struct vm_radix *rtree)
176 {
177
178         return ((struct vm_radix_node *)rtree->rt_root);
179 }
180
181 /*
182  * Set the root node for a radix tree.
183  */
184 static __inline void
185 vm_radix_setroot(struct vm_radix *rtree, struct vm_radix_node *rnode)
186 {
187
188         rtree->rt_root = (uintptr_t)rnode;
189 }
190
191 /*
192  * Returns TRUE if the specified radix node is a leaf and FALSE otherwise.
193  */
194 static __inline boolean_t
195 vm_radix_isleaf(struct vm_radix_node *rnode)
196 {
197
198         return (((uintptr_t)rnode & VM_RADIX_ISLEAF) != 0);
199 }
200
201 /*
202  * Returns the associated page extracted from rnode.
203  */
204 static __inline vm_page_t
205 vm_radix_topage(struct vm_radix_node *rnode)
206 {
207
208         return ((vm_page_t)((uintptr_t)rnode & ~VM_RADIX_FLAGS));
209 }
210
211 /*
212  * Adds the page as a child of the provided node.
213  */
214 static __inline void
215 vm_radix_addpage(struct vm_radix_node *rnode, vm_pindex_t index, uint16_t clev,
216     vm_page_t page)
217 {
218         int slot;
219
220         slot = vm_radix_slot(index, clev);
221         rnode->rn_child[slot] = (void *)((uintptr_t)page | VM_RADIX_ISLEAF);
222 }
223
224 /*
225  * Returns the slot where two keys differ.
226  * It cannot accept 2 equal keys.
227  */
228 static __inline uint16_t
229 vm_radix_keydiff(vm_pindex_t index1, vm_pindex_t index2)
230 {
231         uint16_t clev;
232
233         KASSERT(index1 != index2, ("%s: passing the same key value %jx",
234             __func__, (uintmax_t)index1));
235
236         index1 ^= index2;
237         for (clev = 0; clev <= VM_RADIX_LIMIT ; clev++)
238                 if (vm_radix_slot(index1, clev))
239                         return (clev);
240         panic("%s: cannot reach this point", __func__);
241         return (0);
242 }
243
244 /*
245  * Returns TRUE if it can be determined that key does not belong to the
246  * specified rnode.  Otherwise, returns FALSE.
247  */
248 static __inline boolean_t
249 vm_radix_keybarr(struct vm_radix_node *rnode, vm_pindex_t idx)
250 {
251
252         if (rnode->rn_clev > 0) {
253                 idx = vm_radix_trimkey(idx, rnode->rn_clev - 1);
254                 return (idx != rnode->rn_owner);
255         }
256         return (FALSE);
257 }
258
259 /*
260  * Internal helper for vm_radix_reclaim_allnodes().
261  * This function is recursive.
262  */
263 static void
264 vm_radix_reclaim_allnodes_int(struct vm_radix_node *rnode)
265 {
266         int slot;
267
268         KASSERT(rnode->rn_count <= VM_RADIX_COUNT,
269             ("vm_radix_reclaim_allnodes_int: bad count in rnode %p", rnode));
270         for (slot = 0; rnode->rn_count != 0; slot++) {
271                 if (rnode->rn_child[slot] == NULL)
272                         continue;
273                 if (!vm_radix_isleaf(rnode->rn_child[slot]))
274                         vm_radix_reclaim_allnodes_int(rnode->rn_child[slot]);
275                 rnode->rn_child[slot] = NULL;
276                 rnode->rn_count--;
277         }
278         vm_radix_node_put(rnode);
279 }
280
281 #ifdef INVARIANTS
282 /*
283  * Radix node zone destructor.
284  */
285 static void
286 vm_radix_node_zone_dtor(void *mem, int size __unused, void *arg __unused)
287 {
288         struct vm_radix_node *rnode;
289         int slot;
290
291         rnode = mem;
292         KASSERT(rnode->rn_count == 0,
293             ("vm_radix_node_put: rnode %p has %d children", rnode,
294             rnode->rn_count));
295         for (slot = 0; slot < VM_RADIX_COUNT; slot++)
296                 KASSERT(rnode->rn_child[slot] == NULL,
297                     ("vm_radix_node_put: rnode %p has a child", rnode));
298 }
299 #endif
300
301 /*
302  * Radix node zone initializer.
303  */
304 static int
305 vm_radix_node_zone_init(void *mem, int size __unused, int flags __unused)
306 {
307         struct vm_radix_node *rnode;
308
309         rnode = mem;
310         memset(rnode->rn_child, 0, sizeof(rnode->rn_child));
311         return (0);
312 }
313
314 /*
315  * Pre-allocate intermediate nodes from the UMA slab zone.
316  */
317 static void
318 vm_radix_prealloc(void *arg __unused)
319 {
320         int nodes;
321
322         /*
323          * Calculate the number of reserved nodes, discounting the pages that
324          * are needed to store them.
325          */
326         nodes = ((vm_paddr_t)cnt.v_page_count * PAGE_SIZE) / (PAGE_SIZE +
327             sizeof(struct vm_radix_node));
328         if (!uma_zone_reserve_kva(vm_radix_node_zone, nodes))
329                 panic("%s: unable to create new zone", __func__);
330         uma_prealloc(vm_radix_node_zone, nodes);
331 }
332 SYSINIT(vm_radix_prealloc, SI_SUB_KMEM, SI_ORDER_SECOND, vm_radix_prealloc,
333     NULL);
334
335 /*
336  * Initialize the UMA slab zone.
337  * Until vm_radix_prealloc() is called, the zone will be served by the
338  * UMA boot-time pre-allocated pool of pages.
339  */
340 void
341 vm_radix_init(void)
342 {
343
344         vm_radix_node_zone = uma_zcreate("RADIX NODE",
345             sizeof(struct vm_radix_node), NULL,
346 #ifdef INVARIANTS
347             vm_radix_node_zone_dtor,
348 #else
349             NULL,
350 #endif
351             vm_radix_node_zone_init, NULL, VM_RADIX_PAD, UMA_ZONE_VM |
352             UMA_ZONE_NOFREE);
353 }
354
355 /*
356  * Inserts the key-value pair into the trie.
357  * Panics if the key already exists.
358  */
359 void
360 vm_radix_insert(struct vm_radix *rtree, vm_page_t page)
361 {
362         vm_pindex_t index, newind;
363         void **parentp;
364         struct vm_radix_node *rnode, *tmp;
365         vm_page_t m;
366         int slot;
367         uint16_t clev;
368
369         index = page->pindex;
370
371         /*
372          * The owner of record for root is not really important because it
373          * will never be used.
374          */
375         rnode = vm_radix_getroot(rtree);
376         if (rnode == NULL) {
377                 rtree->rt_root = (uintptr_t)page | VM_RADIX_ISLEAF;
378                 return;
379         }
380         parentp = (void **)&rtree->rt_root;
381         for (;;) {
382                 if (vm_radix_isleaf(rnode)) {
383                         m = vm_radix_topage(rnode);
384                         if (m->pindex == index)
385                                 panic("%s: key %jx is already present",
386                                     __func__, (uintmax_t)index);
387                         clev = vm_radix_keydiff(m->pindex, index);
388                         tmp = vm_radix_node_get(vm_radix_trimkey(index,
389                             clev - 1), 2, clev);
390                         *parentp = tmp;
391                         vm_radix_addpage(tmp, index, clev, page);
392                         vm_radix_addpage(tmp, m->pindex, clev, m);
393                         return;
394                 } else if (vm_radix_keybarr(rnode, index))
395                         break;
396                 slot = vm_radix_slot(index, rnode->rn_clev);
397                 if (rnode->rn_child[slot] == NULL) {
398                         rnode->rn_count++;
399                         vm_radix_addpage(rnode, index, rnode->rn_clev, page);
400                         return;
401                 }
402                 parentp = &rnode->rn_child[slot];
403                 rnode = rnode->rn_child[slot];
404         }
405
406         /*
407          * A new node is needed because the right insertion level is reached.
408          * Setup the new intermediate node and add the 2 children: the
409          * new object and the older edge.
410          */
411         newind = rnode->rn_owner;
412         clev = vm_radix_keydiff(newind, index);
413         tmp = vm_radix_node_get(vm_radix_trimkey(index, clev - 1), 2,
414             clev);
415         *parentp = tmp;
416         vm_radix_addpage(tmp, index, clev, page);
417         slot = vm_radix_slot(newind, clev);
418         tmp->rn_child[slot] = rnode;
419 }
420
421 /*
422  * Returns the value stored at the index.  If the index is not present,
423  * NULL is returned.
424  */
425 vm_page_t
426 vm_radix_lookup(struct vm_radix *rtree, vm_pindex_t index)
427 {
428         struct vm_radix_node *rnode;
429         vm_page_t m;
430         int slot;
431
432         rnode = vm_radix_getroot(rtree);
433         while (rnode != NULL) {
434                 if (vm_radix_isleaf(rnode)) {
435                         m = vm_radix_topage(rnode);
436                         if (m->pindex == index)
437                                 return (m);
438                         else
439                                 break;
440                 } else if (vm_radix_keybarr(rnode, index))
441                         break;
442                 slot = vm_radix_slot(index, rnode->rn_clev);
443                 rnode = rnode->rn_child[slot];
444         }
445         return (NULL);
446 }
447
448 /*
449  * Look up the nearest entry at a position bigger than or equal to index.
450  */
451 vm_page_t
452 vm_radix_lookup_ge(struct vm_radix *rtree, vm_pindex_t index)
453 {
454         struct vm_radix_node *stack[VM_RADIX_LIMIT];
455         vm_pindex_t inc;
456         vm_page_t m;
457         struct vm_radix_node *child, *rnode;
458 #ifdef INVARIANTS
459         int loops = 0;
460 #endif
461         int slot, tos;
462
463         rnode = vm_radix_getroot(rtree);
464         if (rnode == NULL)
465                 return (NULL);
466         else if (vm_radix_isleaf(rnode)) {
467                 m = vm_radix_topage(rnode);
468                 if (m->pindex >= index)
469                         return (m);
470                 else
471                         return (NULL);
472         }
473         tos = 0;
474         for (;;) {
475                 /*
476                  * If the keys differ before the current bisection node,
477                  * then the search key might rollback to the earliest
478                  * available bisection node or to the smallest key
479                  * in the current node (if the owner is bigger than the
480                  * search key).
481                  */
482                 if (vm_radix_keybarr(rnode, index)) {
483                         if (index > rnode->rn_owner) {
484 ascend:
485                                 KASSERT(++loops < 1000,
486                                     ("vm_radix_lookup_ge: too many loops"));
487
488                                 /*
489                                  * Pop nodes from the stack until either the
490                                  * stack is empty or a node that could have a
491                                  * matching descendant is found.
492                                  */
493                                 do {
494                                         if (tos == 0)
495                                                 return (NULL);
496                                         rnode = stack[--tos];
497                                 } while (vm_radix_slot(index,
498                                     rnode->rn_clev) == (VM_RADIX_COUNT - 1));
499
500                                 /*
501                                  * The following computation cannot overflow
502                                  * because index's slot at the current level
503                                  * is less than VM_RADIX_COUNT - 1.
504                                  */
505                                 index = vm_radix_trimkey(index,
506                                     rnode->rn_clev);
507                                 index += VM_RADIX_UNITLEVEL(rnode->rn_clev);
508                         } else
509                                 index = rnode->rn_owner;
510                         KASSERT(!vm_radix_keybarr(rnode, index),
511                             ("vm_radix_lookup_ge: keybarr failed"));
512                 }
513                 slot = vm_radix_slot(index, rnode->rn_clev);
514                 child = rnode->rn_child[slot];
515                 if (vm_radix_isleaf(child)) {
516                         m = vm_radix_topage(child);
517                         if (m->pindex >= index)
518                                 return (m);
519                 } else if (child != NULL)
520                         goto descend;
521
522                 /*
523                  * Look for an available edge or page within the current
524                  * bisection node.
525                  */
526                 if (slot < (VM_RADIX_COUNT - 1)) {
527                         inc = VM_RADIX_UNITLEVEL(rnode->rn_clev);
528                         index = vm_radix_trimkey(index, rnode->rn_clev);
529                         do {
530                                 index += inc;
531                                 slot++;
532                                 child = rnode->rn_child[slot];
533                                 if (vm_radix_isleaf(child)) {
534                                         m = vm_radix_topage(child);
535                                         if (m->pindex >= index)
536                                                 return (m);
537                                 } else if (child != NULL)
538                                         goto descend;
539                         } while (slot < (VM_RADIX_COUNT - 1));
540                 }
541                 KASSERT(child == NULL || vm_radix_isleaf(child),
542                     ("vm_radix_lookup_ge: child is radix node"));
543
544                 /*
545                  * If a page or edge bigger than the search slot is not found
546                  * in the current node, ascend to the next higher-level node.
547                  */
548                 goto ascend;
549 descend:
550                 KASSERT(rnode->rn_clev < VM_RADIX_LIMIT,
551                     ("vm_radix_lookup_ge: pushing leaf's parent"));
552                 KASSERT(tos < VM_RADIX_LIMIT,
553                     ("vm_radix_lookup_ge: stack overflow"));
554                 stack[tos++] = rnode;
555                 rnode = child;
556         }
557 }
558
559 /*
560  * Look up the nearest entry at a position less than or equal to index.
561  */
562 vm_page_t
563 vm_radix_lookup_le(struct vm_radix *rtree, vm_pindex_t index)
564 {
565         struct vm_radix_node *stack[VM_RADIX_LIMIT];
566         vm_pindex_t inc;
567         vm_page_t m;
568         struct vm_radix_node *child, *rnode;
569 #ifdef INVARIANTS
570         int loops = 0;
571 #endif
572         int slot, tos;
573
574         rnode = vm_radix_getroot(rtree);
575         if (rnode == NULL)
576                 return (NULL);
577         else if (vm_radix_isleaf(rnode)) {
578                 m = vm_radix_topage(rnode);
579                 if (m->pindex <= index)
580                         return (m);
581                 else
582                         return (NULL);
583         }
584         tos = 0;
585         for (;;) {
586                 /*
587                  * If the keys differ before the current bisection node,
588                  * then the search key might rollback to the earliest
589                  * available bisection node or to the largest key
590                  * in the current node (if the owner is smaller than the
591                  * search key).
592                  */
593                 if (vm_radix_keybarr(rnode, index)) {
594                         if (index > rnode->rn_owner) {
595                                 index = rnode->rn_owner + VM_RADIX_COUNT *
596                                     VM_RADIX_UNITLEVEL(rnode->rn_clev);
597                         } else {
598 ascend:
599                                 KASSERT(++loops < 1000,
600                                     ("vm_radix_lookup_le: too many loops"));
601
602                                 /*
603                                  * Pop nodes from the stack until either the
604                                  * stack is empty or a node that could have a
605                                  * matching descendant is found.
606                                  */
607                                 do {
608                                         if (tos == 0)
609                                                 return (NULL);
610                                         rnode = stack[--tos];
611                                 } while (vm_radix_slot(index,
612                                     rnode->rn_clev) == 0);
613
614                                 /*
615                                  * The following computation cannot overflow
616                                  * because index's slot at the current level
617                                  * is greater than 0.
618                                  */
619                                 index = vm_radix_trimkey(index,
620                                     rnode->rn_clev);
621                         }
622                         index--;
623                         KASSERT(!vm_radix_keybarr(rnode, index),
624                             ("vm_radix_lookup_le: keybarr failed"));
625                 }
626                 slot = vm_radix_slot(index, rnode->rn_clev);
627                 child = rnode->rn_child[slot];
628                 if (vm_radix_isleaf(child)) {
629                         m = vm_radix_topage(child);
630                         if (m->pindex <= index)
631                                 return (m);
632                 } else if (child != NULL)
633                         goto descend;
634
635                 /*
636                  * Look for an available edge or page within the current
637                  * bisection node.
638                  */
639                 if (slot > 0) {
640                         inc = VM_RADIX_UNITLEVEL(rnode->rn_clev);
641                         index |= inc - 1;
642                         do {
643                                 index -= inc;
644                                 slot--;
645                                 child = rnode->rn_child[slot];
646                                 if (vm_radix_isleaf(child)) {
647                                         m = vm_radix_topage(child);
648                                         if (m->pindex <= index)
649                                                 return (m);
650                                 } else if (child != NULL)
651                                         goto descend;
652                         } while (slot > 0);
653                 }
654                 KASSERT(child == NULL || vm_radix_isleaf(child),
655                     ("vm_radix_lookup_le: child is radix node"));
656
657                 /*
658                  * If a page or edge smaller than the search slot is not found
659                  * in the current node, ascend to the next higher-level node.
660                  */
661                 goto ascend;
662 descend:
663                 KASSERT(rnode->rn_clev < VM_RADIX_LIMIT,
664                     ("vm_radix_lookup_le: pushing leaf's parent"));
665                 KASSERT(tos < VM_RADIX_LIMIT,
666                     ("vm_radix_lookup_le: stack overflow"));
667                 stack[tos++] = rnode;
668                 rnode = child;
669         }
670 }
671
672 /*
673  * Remove the specified index from the tree.
674  * Panics if the key is not present.
675  */
676 void
677 vm_radix_remove(struct vm_radix *rtree, vm_pindex_t index)
678 {
679         struct vm_radix_node *rnode, *parent;
680         vm_page_t m;
681         int i, slot;
682
683         rnode = vm_radix_getroot(rtree);
684         if (vm_radix_isleaf(rnode)) {
685                 m = vm_radix_topage(rnode);
686                 if (m->pindex != index)
687                         panic("%s: invalid key found", __func__);
688                 vm_radix_setroot(rtree, NULL);
689                 return;
690         }
691         parent = NULL;
692         for (;;) {
693                 if (rnode == NULL)
694                         panic("vm_radix_remove: impossible to locate the key");
695                 slot = vm_radix_slot(index, rnode->rn_clev);
696                 if (vm_radix_isleaf(rnode->rn_child[slot])) {
697                         m = vm_radix_topage(rnode->rn_child[slot]);
698                         if (m->pindex != index)
699                                 panic("%s: invalid key found", __func__);
700                         rnode->rn_child[slot] = NULL;
701                         rnode->rn_count--;
702                         if (rnode->rn_count > 1)
703                                 break;
704                         for (i = 0; i < VM_RADIX_COUNT; i++)
705                                 if (rnode->rn_child[i] != NULL)
706                                         break;
707                         KASSERT(i != VM_RADIX_COUNT,
708                             ("%s: invalid node configuration", __func__));
709                         if (parent == NULL)
710                                 vm_radix_setroot(rtree, rnode->rn_child[i]);
711                         else {
712                                 slot = vm_radix_slot(index, parent->rn_clev);
713                                 KASSERT(parent->rn_child[slot] == rnode,
714                                     ("%s: invalid child value", __func__));
715                                 parent->rn_child[slot] = rnode->rn_child[i];
716                         }
717                         rnode->rn_count--;
718                         rnode->rn_child[i] = NULL;
719                         vm_radix_node_put(rnode);
720                         break;
721                 }
722                 parent = rnode;
723                 rnode = rnode->rn_child[slot];
724         }
725 }
726
727 /*
728  * Remove and free all the nodes from the radix tree.
729  * This function is recursive but there is a tight control on it as the
730  * maximum depth of the tree is fixed.
731  */
732 void
733 vm_radix_reclaim_allnodes(struct vm_radix *rtree)
734 {
735         struct vm_radix_node *root;
736
737         root = vm_radix_getroot(rtree);
738         if (root == NULL)
739                 return;
740         vm_radix_setroot(rtree, NULL);
741         if (!vm_radix_isleaf(root))
742                 vm_radix_reclaim_allnodes_int(root);
743 }
744
745 #ifdef DDB
746 /*
747  * Show details about the given radix node.
748  */
749 DB_SHOW_COMMAND(radixnode, db_show_radixnode)
750 {
751         struct vm_radix_node *rnode;
752         int i;
753
754         if (!have_addr)
755                 return;
756         rnode = (struct vm_radix_node *)addr;
757         db_printf("radixnode %p, owner %jx, children count %u, level %u:\n",
758             (void *)rnode, (uintmax_t)rnode->rn_owner, rnode->rn_count,
759             rnode->rn_clev);
760         for (i = 0; i < VM_RADIX_COUNT; i++)
761                 if (rnode->rn_child[i] != NULL)
762                         db_printf("slot: %d, val: %p, page: %p, clev: %d\n",
763                             i, (void *)rnode->rn_child[i],
764                             vm_radix_isleaf(rnode->rn_child[i]) ?
765                             vm_radix_topage(rnode->rn_child[i]) : NULL,
766                             rnode->rn_clev);
767 }
768 #endif /* DDB */