]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_radix.c
Import tzdata 2018c
[FreeBSD/FreeBSD.git] / sys / vm / vm_radix.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2013 EMC Corp.
5  * Copyright (c) 2011 Jeffrey Roberson <jeff@freebsd.org>
6  * Copyright (c) 2008 Mayur Shardul <mayur.shardul@gmail.com>
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  */
31
32 /*
33  * Path-compressed radix trie implementation.
34  * The following code is not generalized into a general purpose library
35  * because there are way too many parameters embedded that should really
36  * be decided by the library consumers.  At the same time, consumers
37  * of this code must achieve highest possible performance.
38  *
39  * The implementation takes into account the following rationale:
40  * - Size of the nodes should be as small as possible but still big enough
41  *   to avoid a large maximum depth for the trie.  This is a balance
42  *   between the necessity to not wire too much physical memory for the nodes
43  *   and the necessity to avoid too much cache pollution during the trie
44  *   operations.
45  * - There is not a huge bias toward the number of lookup operations over
46  *   the number of insert and remove operations.  This basically implies
47  *   that optimizations supposedly helping one operation but hurting the
48  *   other might be carefully evaluated.
49  * - On average not many nodes are expected to be fully populated, hence
50  *   level compression may just complicate things.
51  */
52
53 #include <sys/cdefs.h>
54 __FBSDID("$FreeBSD$");
55
56 #include "opt_ddb.h"
57
58 #include <sys/param.h>
59 #include <sys/systm.h>
60 #include <sys/kernel.h>
61 #include <sys/vmmeter.h>
62
63 #include <vm/uma.h>
64 #include <vm/vm.h>
65 #include <vm/vm_param.h>
66 #include <vm/vm_page.h>
67 #include <vm/vm_radix.h>
68
69 #ifdef DDB
70 #include <ddb/ddb.h>
71 #endif
72
73 /*
74  * These widths should allow the pointers to a node's children to fit within
75  * a single cache line.  The extra levels from a narrow width should not be
76  * a problem thanks to path compression.
77  */
78 #ifdef __LP64__
79 #define VM_RADIX_WIDTH  4
80 #else
81 #define VM_RADIX_WIDTH  3
82 #endif
83
84 #define VM_RADIX_COUNT  (1 << VM_RADIX_WIDTH)
85 #define VM_RADIX_MASK   (VM_RADIX_COUNT - 1)
86 #define VM_RADIX_LIMIT                                                  \
87         (howmany(sizeof(vm_pindex_t) * NBBY, VM_RADIX_WIDTH) - 1)
88
89 /* Flag bits stored in node pointers. */
90 #define VM_RADIX_ISLEAF 0x1
91 #define VM_RADIX_FLAGS  0x1
92 #define VM_RADIX_PAD    VM_RADIX_FLAGS
93
94 /* Returns one unit associated with specified level. */
95 #define VM_RADIX_UNITLEVEL(lev)                                         \
96         ((vm_pindex_t)1 << ((lev) * VM_RADIX_WIDTH))
97
98 struct vm_radix_node {
99         vm_pindex_t      rn_owner;                      /* Owner of record. */
100         uint16_t         rn_count;                      /* Valid children. */
101         uint16_t         rn_clev;                       /* Current level. */
102         void            *rn_child[VM_RADIX_COUNT];      /* Child nodes. */
103 };
104
105 static uma_zone_t vm_radix_node_zone;
106
107 /*
108  * Allocate a radix node.
109  */
110 static __inline struct vm_radix_node *
111 vm_radix_node_get(vm_pindex_t owner, uint16_t count, uint16_t clevel)
112 {
113         struct vm_radix_node *rnode;
114
115         rnode = uma_zalloc(vm_radix_node_zone, M_NOWAIT | M_ZERO);
116         if (rnode == NULL)
117                 return (NULL);
118         rnode->rn_owner = owner;
119         rnode->rn_count = count;
120         rnode->rn_clev = clevel;
121         return (rnode);
122 }
123
124 /*
125  * Free radix node.
126  */
127 static __inline void
128 vm_radix_node_put(struct vm_radix_node *rnode)
129 {
130
131         uma_zfree(vm_radix_node_zone, rnode);
132 }
133
134 /*
135  * Return the position in the array for a given level.
136  */
137 static __inline int
138 vm_radix_slot(vm_pindex_t index, uint16_t level)
139 {
140
141         return ((index >> (level * VM_RADIX_WIDTH)) & VM_RADIX_MASK);
142 }
143
144 /* Trims the key after the specified level. */
145 static __inline vm_pindex_t
146 vm_radix_trimkey(vm_pindex_t index, uint16_t level)
147 {
148         vm_pindex_t ret;
149
150         ret = index;
151         if (level > 0) {
152                 ret >>= level * VM_RADIX_WIDTH;
153                 ret <<= level * VM_RADIX_WIDTH;
154         }
155         return (ret);
156 }
157
158 /*
159  * Get the root node for a radix tree.
160  */
161 static __inline struct vm_radix_node *
162 vm_radix_getroot(struct vm_radix *rtree)
163 {
164
165         return ((struct vm_radix_node *)rtree->rt_root);
166 }
167
168 /*
169  * Set the root node for a radix tree.
170  */
171 static __inline void
172 vm_radix_setroot(struct vm_radix *rtree, struct vm_radix_node *rnode)
173 {
174
175         rtree->rt_root = (uintptr_t)rnode;
176 }
177
178 /*
179  * Returns TRUE if the specified radix node is a leaf and FALSE otherwise.
180  */
181 static __inline boolean_t
182 vm_radix_isleaf(struct vm_radix_node *rnode)
183 {
184
185         return (((uintptr_t)rnode & VM_RADIX_ISLEAF) != 0);
186 }
187
188 /*
189  * Returns the associated page extracted from rnode.
190  */
191 static __inline vm_page_t
192 vm_radix_topage(struct vm_radix_node *rnode)
193 {
194
195         return ((vm_page_t)((uintptr_t)rnode & ~VM_RADIX_FLAGS));
196 }
197
198 /*
199  * Adds the page as a child of the provided node.
200  */
201 static __inline void
202 vm_radix_addpage(struct vm_radix_node *rnode, vm_pindex_t index, uint16_t clev,
203     vm_page_t page)
204 {
205         int slot;
206
207         slot = vm_radix_slot(index, clev);
208         rnode->rn_child[slot] = (void *)((uintptr_t)page | VM_RADIX_ISLEAF);
209 }
210
211 /*
212  * Returns the slot where two keys differ.
213  * It cannot accept 2 equal keys.
214  */
215 static __inline uint16_t
216 vm_radix_keydiff(vm_pindex_t index1, vm_pindex_t index2)
217 {
218         uint16_t clev;
219
220         KASSERT(index1 != index2, ("%s: passing the same key value %jx",
221             __func__, (uintmax_t)index1));
222
223         index1 ^= index2;
224         for (clev = VM_RADIX_LIMIT;; clev--)
225                 if (vm_radix_slot(index1, clev) != 0)
226                         return (clev);
227 }
228
229 /*
230  * Returns TRUE if it can be determined that key does not belong to the
231  * specified rnode.  Otherwise, returns FALSE.
232  */
233 static __inline boolean_t
234 vm_radix_keybarr(struct vm_radix_node *rnode, vm_pindex_t idx)
235 {
236
237         if (rnode->rn_clev < VM_RADIX_LIMIT) {
238                 idx = vm_radix_trimkey(idx, rnode->rn_clev + 1);
239                 return (idx != rnode->rn_owner);
240         }
241         return (FALSE);
242 }
243
244 /*
245  * Internal helper for vm_radix_reclaim_allnodes().
246  * This function is recursive.
247  */
248 static void
249 vm_radix_reclaim_allnodes_int(struct vm_radix_node *rnode)
250 {
251         int slot;
252
253         KASSERT(rnode->rn_count <= VM_RADIX_COUNT,
254             ("vm_radix_reclaim_allnodes_int: bad count in rnode %p", rnode));
255         for (slot = 0; rnode->rn_count != 0; slot++) {
256                 if (rnode->rn_child[slot] == NULL)
257                         continue;
258                 if (!vm_radix_isleaf(rnode->rn_child[slot]))
259                         vm_radix_reclaim_allnodes_int(rnode->rn_child[slot]);
260                 rnode->rn_child[slot] = NULL;
261                 rnode->rn_count--;
262         }
263         vm_radix_node_put(rnode);
264 }
265
266 #ifdef INVARIANTS
267 /*
268  * Radix node zone destructor.
269  */
270 static void
271 vm_radix_node_zone_dtor(void *mem, int size __unused, void *arg __unused)
272 {
273         struct vm_radix_node *rnode;
274         int slot;
275
276         rnode = mem;
277         KASSERT(rnode->rn_count == 0,
278             ("vm_radix_node_put: rnode %p has %d children", rnode,
279             rnode->rn_count));
280         for (slot = 0; slot < VM_RADIX_COUNT; slot++)
281                 KASSERT(rnode->rn_child[slot] == NULL,
282                     ("vm_radix_node_put: rnode %p has a child", rnode));
283 }
284 #endif
285
286 #ifndef UMA_MD_SMALL_ALLOC
287 /*
288  * Reserve the KVA necessary to satisfy the node allocation.
289  * This is mandatory in architectures not supporting direct
290  * mapping as they will need otherwise to carve into the kernel maps for
291  * every node allocation, resulting into deadlocks for consumers already
292  * working with kernel maps.
293  */
294 static void
295 vm_radix_reserve_kva(void *arg __unused)
296 {
297
298         /*
299          * Calculate the number of reserved nodes, discounting the pages that
300          * are needed to store them.
301          */
302         if (!uma_zone_reserve_kva(vm_radix_node_zone,
303             ((vm_paddr_t)vm_cnt.v_page_count * PAGE_SIZE) / (PAGE_SIZE +
304             sizeof(struct vm_radix_node))))
305                 panic("%s: unable to reserve KVA", __func__);
306 }
307 SYSINIT(vm_radix_reserve_kva, SI_SUB_KMEM, SI_ORDER_THIRD,
308     vm_radix_reserve_kva, NULL);
309 #endif
310
311 /*
312  * Initialize the UMA slab zone.
313  */
314 void
315 vm_radix_zinit(void)
316 {
317
318         vm_radix_node_zone = uma_zcreate("RADIX NODE",
319             sizeof(struct vm_radix_node), NULL,
320 #ifdef INVARIANTS
321             vm_radix_node_zone_dtor,
322 #else
323             NULL,
324 #endif
325             NULL, NULL, VM_RADIX_PAD, UMA_ZONE_VM);
326 }
327
328 /*
329  * Inserts the key-value pair into the trie.
330  * Panics if the key already exists.
331  */
332 int
333 vm_radix_insert(struct vm_radix *rtree, vm_page_t page)
334 {
335         vm_pindex_t index, newind;
336         void **parentp;
337         struct vm_radix_node *rnode, *tmp;
338         vm_page_t m;
339         int slot;
340         uint16_t clev;
341
342         index = page->pindex;
343
344         /*
345          * The owner of record for root is not really important because it
346          * will never be used.
347          */
348         rnode = vm_radix_getroot(rtree);
349         if (rnode == NULL) {
350                 rtree->rt_root = (uintptr_t)page | VM_RADIX_ISLEAF;
351                 return (0);
352         }
353         parentp = (void **)&rtree->rt_root;
354         for (;;) {
355                 if (vm_radix_isleaf(rnode)) {
356                         m = vm_radix_topage(rnode);
357                         if (m->pindex == index)
358                                 panic("%s: key %jx is already present",
359                                     __func__, (uintmax_t)index);
360                         clev = vm_radix_keydiff(m->pindex, index);
361                         tmp = vm_radix_node_get(vm_radix_trimkey(index,
362                             clev + 1), 2, clev);
363                         if (tmp == NULL)
364                                 return (ENOMEM);
365                         *parentp = tmp;
366                         vm_radix_addpage(tmp, index, clev, page);
367                         vm_radix_addpage(tmp, m->pindex, clev, m);
368                         return (0);
369                 } else if (vm_radix_keybarr(rnode, index))
370                         break;
371                 slot = vm_radix_slot(index, rnode->rn_clev);
372                 if (rnode->rn_child[slot] == NULL) {
373                         rnode->rn_count++;
374                         vm_radix_addpage(rnode, index, rnode->rn_clev, page);
375                         return (0);
376                 }
377                 parentp = &rnode->rn_child[slot];
378                 rnode = rnode->rn_child[slot];
379         }
380
381         /*
382          * A new node is needed because the right insertion level is reached.
383          * Setup the new intermediate node and add the 2 children: the
384          * new object and the older edge.
385          */
386         newind = rnode->rn_owner;
387         clev = vm_radix_keydiff(newind, index);
388         tmp = vm_radix_node_get(vm_radix_trimkey(index, clev + 1), 2, clev);
389         if (tmp == NULL)
390                 return (ENOMEM);
391         *parentp = tmp;
392         vm_radix_addpage(tmp, index, clev, page);
393         slot = vm_radix_slot(newind, clev);
394         tmp->rn_child[slot] = rnode;
395         return (0);
396 }
397
398 /*
399  * Returns TRUE if the specified radix tree contains a single leaf and FALSE
400  * otherwise.
401  */
402 boolean_t
403 vm_radix_is_singleton(struct vm_radix *rtree)
404 {
405         struct vm_radix_node *rnode;
406
407         rnode = vm_radix_getroot(rtree);
408         if (rnode == NULL)
409                 return (FALSE);
410         return (vm_radix_isleaf(rnode));
411 }
412
413 /*
414  * Returns the value stored at the index.  If the index is not present,
415  * NULL is returned.
416  */
417 vm_page_t
418 vm_radix_lookup(struct vm_radix *rtree, vm_pindex_t index)
419 {
420         struct vm_radix_node *rnode;
421         vm_page_t m;
422         int slot;
423
424         rnode = vm_radix_getroot(rtree);
425         while (rnode != NULL) {
426                 if (vm_radix_isleaf(rnode)) {
427                         m = vm_radix_topage(rnode);
428                         if (m->pindex == index)
429                                 return (m);
430                         else
431                                 break;
432                 } else if (vm_radix_keybarr(rnode, index))
433                         break;
434                 slot = vm_radix_slot(index, rnode->rn_clev);
435                 rnode = rnode->rn_child[slot];
436         }
437         return (NULL);
438 }
439
440 /*
441  * Look up the nearest entry at a position bigger than or equal to index.
442  */
443 vm_page_t
444 vm_radix_lookup_ge(struct vm_radix *rtree, vm_pindex_t index)
445 {
446         struct vm_radix_node *stack[VM_RADIX_LIMIT];
447         vm_pindex_t inc;
448         vm_page_t m;
449         struct vm_radix_node *child, *rnode;
450 #ifdef INVARIANTS
451         int loops = 0;
452 #endif
453         int slot, tos;
454
455         rnode = vm_radix_getroot(rtree);
456         if (rnode == NULL)
457                 return (NULL);
458         else if (vm_radix_isleaf(rnode)) {
459                 m = vm_radix_topage(rnode);
460                 if (m->pindex >= index)
461                         return (m);
462                 else
463                         return (NULL);
464         }
465         tos = 0;
466         for (;;) {
467                 /*
468                  * If the keys differ before the current bisection node,
469                  * then the search key might rollback to the earliest
470                  * available bisection node or to the smallest key
471                  * in the current node (if the owner is bigger than the
472                  * search key).
473                  */
474                 if (vm_radix_keybarr(rnode, index)) {
475                         if (index > rnode->rn_owner) {
476 ascend:
477                                 KASSERT(++loops < 1000,
478                                     ("vm_radix_lookup_ge: too many loops"));
479
480                                 /*
481                                  * Pop nodes from the stack until either the
482                                  * stack is empty or a node that could have a
483                                  * matching descendant is found.
484                                  */
485                                 do {
486                                         if (tos == 0)
487                                                 return (NULL);
488                                         rnode = stack[--tos];
489                                 } while (vm_radix_slot(index,
490                                     rnode->rn_clev) == (VM_RADIX_COUNT - 1));
491
492                                 /*
493                                  * The following computation cannot overflow
494                                  * because index's slot at the current level
495                                  * is less than VM_RADIX_COUNT - 1.
496                                  */
497                                 index = vm_radix_trimkey(index,
498                                     rnode->rn_clev);
499                                 index += VM_RADIX_UNITLEVEL(rnode->rn_clev);
500                         } else
501                                 index = rnode->rn_owner;
502                         KASSERT(!vm_radix_keybarr(rnode, index),
503                             ("vm_radix_lookup_ge: keybarr failed"));
504                 }
505                 slot = vm_radix_slot(index, rnode->rn_clev);
506                 child = rnode->rn_child[slot];
507                 if (vm_radix_isleaf(child)) {
508                         m = vm_radix_topage(child);
509                         if (m->pindex >= index)
510                                 return (m);
511                 } else if (child != NULL)
512                         goto descend;
513
514                 /*
515                  * Look for an available edge or page within the current
516                  * bisection node.
517                  */
518                 if (slot < (VM_RADIX_COUNT - 1)) {
519                         inc = VM_RADIX_UNITLEVEL(rnode->rn_clev);
520                         index = vm_radix_trimkey(index, rnode->rn_clev);
521                         do {
522                                 index += inc;
523                                 slot++;
524                                 child = rnode->rn_child[slot];
525                                 if (vm_radix_isleaf(child)) {
526                                         m = vm_radix_topage(child);
527                                         if (m->pindex >= index)
528                                                 return (m);
529                                 } else if (child != NULL)
530                                         goto descend;
531                         } while (slot < (VM_RADIX_COUNT - 1));
532                 }
533                 KASSERT(child == NULL || vm_radix_isleaf(child),
534                     ("vm_radix_lookup_ge: child is radix node"));
535
536                 /*
537                  * If a page or edge bigger than the search slot is not found
538                  * in the current node, ascend to the next higher-level node.
539                  */
540                 goto ascend;
541 descend:
542                 KASSERT(rnode->rn_clev > 0,
543                     ("vm_radix_lookup_ge: pushing leaf's parent"));
544                 KASSERT(tos < VM_RADIX_LIMIT,
545                     ("vm_radix_lookup_ge: stack overflow"));
546                 stack[tos++] = rnode;
547                 rnode = child;
548         }
549 }
550
551 /*
552  * Look up the nearest entry at a position less than or equal to index.
553  */
554 vm_page_t
555 vm_radix_lookup_le(struct vm_radix *rtree, vm_pindex_t index)
556 {
557         struct vm_radix_node *stack[VM_RADIX_LIMIT];
558         vm_pindex_t inc;
559         vm_page_t m;
560         struct vm_radix_node *child, *rnode;
561 #ifdef INVARIANTS
562         int loops = 0;
563 #endif
564         int slot, tos;
565
566         rnode = vm_radix_getroot(rtree);
567         if (rnode == NULL)
568                 return (NULL);
569         else if (vm_radix_isleaf(rnode)) {
570                 m = vm_radix_topage(rnode);
571                 if (m->pindex <= index)
572                         return (m);
573                 else
574                         return (NULL);
575         }
576         tos = 0;
577         for (;;) {
578                 /*
579                  * If the keys differ before the current bisection node,
580                  * then the search key might rollback to the earliest
581                  * available bisection node or to the largest key
582                  * in the current node (if the owner is smaller than the
583                  * search key).
584                  */
585                 if (vm_radix_keybarr(rnode, index)) {
586                         if (index > rnode->rn_owner) {
587                                 index = rnode->rn_owner + VM_RADIX_COUNT *
588                                     VM_RADIX_UNITLEVEL(rnode->rn_clev);
589                         } else {
590 ascend:
591                                 KASSERT(++loops < 1000,
592                                     ("vm_radix_lookup_le: too many loops"));
593
594                                 /*
595                                  * Pop nodes from the stack until either the
596                                  * stack is empty or a node that could have a
597                                  * matching descendant is found.
598                                  */
599                                 do {
600                                         if (tos == 0)
601                                                 return (NULL);
602                                         rnode = stack[--tos];
603                                 } while (vm_radix_slot(index,
604                                     rnode->rn_clev) == 0);
605
606                                 /*
607                                  * The following computation cannot overflow
608                                  * because index's slot at the current level
609                                  * is greater than 0.
610                                  */
611                                 index = vm_radix_trimkey(index,
612                                     rnode->rn_clev);
613                         }
614                         index--;
615                         KASSERT(!vm_radix_keybarr(rnode, index),
616                             ("vm_radix_lookup_le: keybarr failed"));
617                 }
618                 slot = vm_radix_slot(index, rnode->rn_clev);
619                 child = rnode->rn_child[slot];
620                 if (vm_radix_isleaf(child)) {
621                         m = vm_radix_topage(child);
622                         if (m->pindex <= index)
623                                 return (m);
624                 } else if (child != NULL)
625                         goto descend;
626
627                 /*
628                  * Look for an available edge or page within the current
629                  * bisection node.
630                  */
631                 if (slot > 0) {
632                         inc = VM_RADIX_UNITLEVEL(rnode->rn_clev);
633                         index |= inc - 1;
634                         do {
635                                 index -= inc;
636                                 slot--;
637                                 child = rnode->rn_child[slot];
638                                 if (vm_radix_isleaf(child)) {
639                                         m = vm_radix_topage(child);
640                                         if (m->pindex <= index)
641                                                 return (m);
642                                 } else if (child != NULL)
643                                         goto descend;
644                         } while (slot > 0);
645                 }
646                 KASSERT(child == NULL || vm_radix_isleaf(child),
647                     ("vm_radix_lookup_le: child is radix node"));
648
649                 /*
650                  * If a page or edge smaller than the search slot is not found
651                  * in the current node, ascend to the next higher-level node.
652                  */
653                 goto ascend;
654 descend:
655                 KASSERT(rnode->rn_clev > 0,
656                     ("vm_radix_lookup_le: pushing leaf's parent"));
657                 KASSERT(tos < VM_RADIX_LIMIT,
658                     ("vm_radix_lookup_le: stack overflow"));
659                 stack[tos++] = rnode;
660                 rnode = child;
661         }
662 }
663
664 /*
665  * Remove the specified index from the trie, and return the value stored at
666  * that index.  If the index is not present, return NULL.
667  */
668 vm_page_t
669 vm_radix_remove(struct vm_radix *rtree, vm_pindex_t index)
670 {
671         struct vm_radix_node *rnode, *parent;
672         vm_page_t m;
673         int i, slot;
674
675         rnode = vm_radix_getroot(rtree);
676         if (vm_radix_isleaf(rnode)) {
677                 m = vm_radix_topage(rnode);
678                 if (m->pindex != index)
679                         return (NULL);
680                 vm_radix_setroot(rtree, NULL);
681                 return (m);
682         }
683         parent = NULL;
684         for (;;) {
685                 if (rnode == NULL)
686                         return (NULL);
687                 slot = vm_radix_slot(index, rnode->rn_clev);
688                 if (vm_radix_isleaf(rnode->rn_child[slot])) {
689                         m = vm_radix_topage(rnode->rn_child[slot]);
690                         if (m->pindex != index)
691                                 return (NULL);
692                         rnode->rn_child[slot] = NULL;
693                         rnode->rn_count--;
694                         if (rnode->rn_count > 1)
695                                 return (m);
696                         for (i = 0; i < VM_RADIX_COUNT; i++)
697                                 if (rnode->rn_child[i] != NULL)
698                                         break;
699                         KASSERT(i != VM_RADIX_COUNT,
700                             ("%s: invalid node configuration", __func__));
701                         if (parent == NULL)
702                                 vm_radix_setroot(rtree, rnode->rn_child[i]);
703                         else {
704                                 slot = vm_radix_slot(index, parent->rn_clev);
705                                 KASSERT(parent->rn_child[slot] == rnode,
706                                     ("%s: invalid child value", __func__));
707                                 parent->rn_child[slot] = rnode->rn_child[i];
708                         }
709                         rnode->rn_count--;
710                         rnode->rn_child[i] = NULL;
711                         vm_radix_node_put(rnode);
712                         return (m);
713                 }
714                 parent = rnode;
715                 rnode = rnode->rn_child[slot];
716         }
717 }
718
719 /*
720  * Remove and free all the nodes from the radix tree.
721  * This function is recursive but there is a tight control on it as the
722  * maximum depth of the tree is fixed.
723  */
724 void
725 vm_radix_reclaim_allnodes(struct vm_radix *rtree)
726 {
727         struct vm_radix_node *root;
728
729         root = vm_radix_getroot(rtree);
730         if (root == NULL)
731                 return;
732         vm_radix_setroot(rtree, NULL);
733         if (!vm_radix_isleaf(root))
734                 vm_radix_reclaim_allnodes_int(root);
735 }
736
737 /*
738  * Replace an existing page in the trie with another one.
739  * Panics if there is not an old page in the trie at the new page's index.
740  */
741 vm_page_t
742 vm_radix_replace(struct vm_radix *rtree, vm_page_t newpage)
743 {
744         struct vm_radix_node *rnode;
745         vm_page_t m;
746         vm_pindex_t index;
747         int slot;
748
749         index = newpage->pindex;
750         rnode = vm_radix_getroot(rtree);
751         if (rnode == NULL)
752                 panic("%s: replacing page on an empty trie", __func__);
753         if (vm_radix_isleaf(rnode)) {
754                 m = vm_radix_topage(rnode);
755                 if (m->pindex != index)
756                         panic("%s: original replacing root key not found",
757                             __func__);
758                 rtree->rt_root = (uintptr_t)newpage | VM_RADIX_ISLEAF;
759                 return (m);
760         }
761         for (;;) {
762                 slot = vm_radix_slot(index, rnode->rn_clev);
763                 if (vm_radix_isleaf(rnode->rn_child[slot])) {
764                         m = vm_radix_topage(rnode->rn_child[slot]);
765                         if (m->pindex == index) {
766                                 rnode->rn_child[slot] =
767                                     (void *)((uintptr_t)newpage |
768                                     VM_RADIX_ISLEAF);
769                                 return (m);
770                         } else
771                                 break;
772                 } else if (rnode->rn_child[slot] == NULL ||
773                     vm_radix_keybarr(rnode->rn_child[slot], index))
774                         break;
775                 rnode = rnode->rn_child[slot];
776         }
777         panic("%s: original replacing page not found", __func__);
778 }
779
780 void
781 vm_radix_wait(void)
782 {
783         uma_zwait(vm_radix_node_zone);
784 }
785
786 #ifdef DDB
787 /*
788  * Show details about the given radix node.
789  */
790 DB_SHOW_COMMAND(radixnode, db_show_radixnode)
791 {
792         struct vm_radix_node *rnode;
793         int i;
794
795         if (!have_addr)
796                 return;
797         rnode = (struct vm_radix_node *)addr;
798         db_printf("radixnode %p, owner %jx, children count %u, level %u:\n",
799             (void *)rnode, (uintmax_t)rnode->rn_owner, rnode->rn_count,
800             rnode->rn_clev);
801         for (i = 0; i < VM_RADIX_COUNT; i++)
802                 if (rnode->rn_child[i] != NULL)
803                         db_printf("slot: %d, val: %p, page: %p, clev: %d\n",
804                             i, (void *)rnode->rn_child[i],
805                             vm_radix_isleaf(rnode->rn_child[i]) ?
806                             vm_radix_topage(rnode->rn_child[i]) : NULL,
807                             rnode->rn_clev);
808 }
809 #endif /* DDB */