]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_radix.c
Upgrade Unbound to 1.6.4. More to follow.
[FreeBSD/FreeBSD.git] / sys / vm / vm_radix.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2013 EMC Corp.
5  * Copyright (c) 2011 Jeffrey Roberson <jeff@freebsd.org>
6  * Copyright (c) 2008 Mayur Shardul <mayur.shardul@gmail.com>
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  */
31
32 /*
33  * Path-compressed radix trie implementation.
34  * The following code is not generalized into a general purpose library
35  * because there are way too many parameters embedded that should really
36  * be decided by the library consumers.  At the same time, consumers
37  * of this code must achieve highest possible performance.
38  *
39  * The implementation takes into account the following rationale:
40  * - Size of the nodes should be as small as possible but still big enough
41  *   to avoid a large maximum depth for the trie.  This is a balance
42  *   between the necessity to not wire too much physical memory for the nodes
43  *   and the necessity to avoid too much cache pollution during the trie
44  *   operations.
45  * - There is not a huge bias toward the number of lookup operations over
46  *   the number of insert and remove operations.  This basically implies
47  *   that optimizations supposedly helping one operation but hurting the
48  *   other might be carefully evaluated.
49  * - On average not many nodes are expected to be fully populated, hence
50  *   level compression may just complicate things.
51  */
52
53 #include <sys/cdefs.h>
54 __FBSDID("$FreeBSD$");
55
56 #include "opt_ddb.h"
57
58 #include <sys/param.h>
59 #include <sys/systm.h>
60 #include <sys/kernel.h>
61 #include <sys/vmmeter.h>
62
63 #include <vm/uma.h>
64 #include <vm/vm.h>
65 #include <vm/vm_param.h>
66 #include <vm/vm_page.h>
67 #include <vm/vm_radix.h>
68
69 #ifdef DDB
70 #include <ddb/ddb.h>
71 #endif
72
73 /*
74  * These widths should allow the pointers to a node's children to fit within
75  * a single cache line.  The extra levels from a narrow width should not be
76  * a problem thanks to path compression.
77  */
78 #ifdef __LP64__
79 #define VM_RADIX_WIDTH  4
80 #else
81 #define VM_RADIX_WIDTH  3
82 #endif
83
84 #define VM_RADIX_COUNT  (1 << VM_RADIX_WIDTH)
85 #define VM_RADIX_MASK   (VM_RADIX_COUNT - 1)
86 #define VM_RADIX_LIMIT                                                  \
87         (howmany(sizeof(vm_pindex_t) * NBBY, VM_RADIX_WIDTH) - 1)
88
89 /* Flag bits stored in node pointers. */
90 #define VM_RADIX_ISLEAF 0x1
91 #define VM_RADIX_FLAGS  0x1
92 #define VM_RADIX_PAD    VM_RADIX_FLAGS
93
94 /* Returns one unit associated with specified level. */
95 #define VM_RADIX_UNITLEVEL(lev)                                         \
96         ((vm_pindex_t)1 << ((lev) * VM_RADIX_WIDTH))
97
98 struct vm_radix_node {
99         vm_pindex_t      rn_owner;                      /* Owner of record. */
100         uint16_t         rn_count;                      /* Valid children. */
101         uint16_t         rn_clev;                       /* Current level. */
102         void            *rn_child[VM_RADIX_COUNT];      /* Child nodes. */
103 };
104
105 static uma_zone_t vm_radix_node_zone;
106
107 /*
108  * Allocate a radix node.
109  */
110 static __inline struct vm_radix_node *
111 vm_radix_node_get(vm_pindex_t owner, uint16_t count, uint16_t clevel)
112 {
113         struct vm_radix_node *rnode;
114
115         rnode = uma_zalloc(vm_radix_node_zone, M_NOWAIT | M_ZERO);
116         if (rnode == NULL)
117                 return (NULL);
118         rnode->rn_owner = owner;
119         rnode->rn_count = count;
120         rnode->rn_clev = clevel;
121         return (rnode);
122 }
123
124 /*
125  * Free radix node.
126  */
127 static __inline void
128 vm_radix_node_put(struct vm_radix_node *rnode)
129 {
130
131         uma_zfree(vm_radix_node_zone, rnode);
132 }
133
134 /*
135  * Return the position in the array for a given level.
136  */
137 static __inline int
138 vm_radix_slot(vm_pindex_t index, uint16_t level)
139 {
140
141         return ((index >> (level * VM_RADIX_WIDTH)) & VM_RADIX_MASK);
142 }
143
144 /* Trims the key after the specified level. */
145 static __inline vm_pindex_t
146 vm_radix_trimkey(vm_pindex_t index, uint16_t level)
147 {
148         vm_pindex_t ret;
149
150         ret = index;
151         if (level > 0) {
152                 ret >>= level * VM_RADIX_WIDTH;
153                 ret <<= level * VM_RADIX_WIDTH;
154         }
155         return (ret);
156 }
157
158 /*
159  * Get the root node for a radix tree.
160  */
161 static __inline struct vm_radix_node *
162 vm_radix_getroot(struct vm_radix *rtree)
163 {
164
165         return ((struct vm_radix_node *)rtree->rt_root);
166 }
167
168 /*
169  * Set the root node for a radix tree.
170  */
171 static __inline void
172 vm_radix_setroot(struct vm_radix *rtree, struct vm_radix_node *rnode)
173 {
174
175         rtree->rt_root = (uintptr_t)rnode;
176 }
177
178 /*
179  * Returns TRUE if the specified radix node is a leaf and FALSE otherwise.
180  */
181 static __inline boolean_t
182 vm_radix_isleaf(struct vm_radix_node *rnode)
183 {
184
185         return (((uintptr_t)rnode & VM_RADIX_ISLEAF) != 0);
186 }
187
188 /*
189  * Returns the associated page extracted from rnode.
190  */
191 static __inline vm_page_t
192 vm_radix_topage(struct vm_radix_node *rnode)
193 {
194
195         return ((vm_page_t)((uintptr_t)rnode & ~VM_RADIX_FLAGS));
196 }
197
198 /*
199  * Adds the page as a child of the provided node.
200  */
201 static __inline void
202 vm_radix_addpage(struct vm_radix_node *rnode, vm_pindex_t index, uint16_t clev,
203     vm_page_t page)
204 {
205         int slot;
206
207         slot = vm_radix_slot(index, clev);
208         rnode->rn_child[slot] = (void *)((uintptr_t)page | VM_RADIX_ISLEAF);
209 }
210
211 /*
212  * Returns the slot where two keys differ.
213  * It cannot accept 2 equal keys.
214  */
215 static __inline uint16_t
216 vm_radix_keydiff(vm_pindex_t index1, vm_pindex_t index2)
217 {
218         uint16_t clev;
219
220         KASSERT(index1 != index2, ("%s: passing the same key value %jx",
221             __func__, (uintmax_t)index1));
222
223         index1 ^= index2;
224         for (clev = VM_RADIX_LIMIT;; clev--)
225                 if (vm_radix_slot(index1, clev) != 0)
226                         return (clev);
227 }
228
229 /*
230  * Returns TRUE if it can be determined that key does not belong to the
231  * specified rnode.  Otherwise, returns FALSE.
232  */
233 static __inline boolean_t
234 vm_radix_keybarr(struct vm_radix_node *rnode, vm_pindex_t idx)
235 {
236
237         if (rnode->rn_clev < VM_RADIX_LIMIT) {
238                 idx = vm_radix_trimkey(idx, rnode->rn_clev + 1);
239                 return (idx != rnode->rn_owner);
240         }
241         return (FALSE);
242 }
243
244 /*
245  * Internal helper for vm_radix_reclaim_allnodes().
246  * This function is recursive.
247  */
248 static void
249 vm_radix_reclaim_allnodes_int(struct vm_radix_node *rnode)
250 {
251         int slot;
252
253         KASSERT(rnode->rn_count <= VM_RADIX_COUNT,
254             ("vm_radix_reclaim_allnodes_int: bad count in rnode %p", rnode));
255         for (slot = 0; rnode->rn_count != 0; slot++) {
256                 if (rnode->rn_child[slot] == NULL)
257                         continue;
258                 if (!vm_radix_isleaf(rnode->rn_child[slot]))
259                         vm_radix_reclaim_allnodes_int(rnode->rn_child[slot]);
260                 rnode->rn_child[slot] = NULL;
261                 rnode->rn_count--;
262         }
263         vm_radix_node_put(rnode);
264 }
265
266 #ifdef INVARIANTS
267 /*
268  * Radix node zone destructor.
269  */
270 static void
271 vm_radix_node_zone_dtor(void *mem, int size __unused, void *arg __unused)
272 {
273         struct vm_radix_node *rnode;
274         int slot;
275
276         rnode = mem;
277         KASSERT(rnode->rn_count == 0,
278             ("vm_radix_node_put: rnode %p has %d children", rnode,
279             rnode->rn_count));
280         for (slot = 0; slot < VM_RADIX_COUNT; slot++)
281                 KASSERT(rnode->rn_child[slot] == NULL,
282                     ("vm_radix_node_put: rnode %p has a child", rnode));
283 }
284 #endif
285
286 #ifndef UMA_MD_SMALL_ALLOC
287 void vm_radix_reserve_kva(void);
288 /*
289  * Reserve the KVA necessary to satisfy the node allocation.
290  * This is mandatory in architectures not supporting direct
291  * mapping as they will need otherwise to carve into the kernel maps for
292  * every node allocation, resulting into deadlocks for consumers already
293  * working with kernel maps.
294  */
295 void
296 vm_radix_reserve_kva(void)
297 {
298
299         /*
300          * Calculate the number of reserved nodes, discounting the pages that
301          * are needed to store them.
302          */
303         if (!uma_zone_reserve_kva(vm_radix_node_zone,
304             ((vm_paddr_t)vm_cnt.v_page_count * PAGE_SIZE) / (PAGE_SIZE +
305             sizeof(struct vm_radix_node))))
306                 panic("%s: unable to reserve KVA", __func__);
307 }
308 #endif
309
310 /*
311  * Initialize the UMA slab zone.
312  */
313 void
314 vm_radix_zinit(void)
315 {
316
317         vm_radix_node_zone = uma_zcreate("RADIX NODE",
318             sizeof(struct vm_radix_node), NULL,
319 #ifdef INVARIANTS
320             vm_radix_node_zone_dtor,
321 #else
322             NULL,
323 #endif
324             NULL, NULL, VM_RADIX_PAD, UMA_ZONE_VM);
325 }
326
327 /*
328  * Inserts the key-value pair into the trie.
329  * Panics if the key already exists.
330  */
331 int
332 vm_radix_insert(struct vm_radix *rtree, vm_page_t page)
333 {
334         vm_pindex_t index, newind;
335         void **parentp;
336         struct vm_radix_node *rnode, *tmp;
337         vm_page_t m;
338         int slot;
339         uint16_t clev;
340
341         index = page->pindex;
342
343         /*
344          * The owner of record for root is not really important because it
345          * will never be used.
346          */
347         rnode = vm_radix_getroot(rtree);
348         if (rnode == NULL) {
349                 rtree->rt_root = (uintptr_t)page | VM_RADIX_ISLEAF;
350                 return (0);
351         }
352         parentp = (void **)&rtree->rt_root;
353         for (;;) {
354                 if (vm_radix_isleaf(rnode)) {
355                         m = vm_radix_topage(rnode);
356                         if (m->pindex == index)
357                                 panic("%s: key %jx is already present",
358                                     __func__, (uintmax_t)index);
359                         clev = vm_radix_keydiff(m->pindex, index);
360                         tmp = vm_radix_node_get(vm_radix_trimkey(index,
361                             clev + 1), 2, clev);
362                         if (tmp == NULL)
363                                 return (ENOMEM);
364                         *parentp = tmp;
365                         vm_radix_addpage(tmp, index, clev, page);
366                         vm_radix_addpage(tmp, m->pindex, clev, m);
367                         return (0);
368                 } else if (vm_radix_keybarr(rnode, index))
369                         break;
370                 slot = vm_radix_slot(index, rnode->rn_clev);
371                 if (rnode->rn_child[slot] == NULL) {
372                         rnode->rn_count++;
373                         vm_radix_addpage(rnode, index, rnode->rn_clev, page);
374                         return (0);
375                 }
376                 parentp = &rnode->rn_child[slot];
377                 rnode = rnode->rn_child[slot];
378         }
379
380         /*
381          * A new node is needed because the right insertion level is reached.
382          * Setup the new intermediate node and add the 2 children: the
383          * new object and the older edge.
384          */
385         newind = rnode->rn_owner;
386         clev = vm_radix_keydiff(newind, index);
387         tmp = vm_radix_node_get(vm_radix_trimkey(index, clev + 1), 2, clev);
388         if (tmp == NULL)
389                 return (ENOMEM);
390         *parentp = tmp;
391         vm_radix_addpage(tmp, index, clev, page);
392         slot = vm_radix_slot(newind, clev);
393         tmp->rn_child[slot] = rnode;
394         return (0);
395 }
396
397 /*
398  * Returns TRUE if the specified radix tree contains a single leaf and FALSE
399  * otherwise.
400  */
401 boolean_t
402 vm_radix_is_singleton(struct vm_radix *rtree)
403 {
404         struct vm_radix_node *rnode;
405
406         rnode = vm_radix_getroot(rtree);
407         if (rnode == NULL)
408                 return (FALSE);
409         return (vm_radix_isleaf(rnode));
410 }
411
412 /*
413  * Returns the value stored at the index.  If the index is not present,
414  * NULL is returned.
415  */
416 vm_page_t
417 vm_radix_lookup(struct vm_radix *rtree, vm_pindex_t index)
418 {
419         struct vm_radix_node *rnode;
420         vm_page_t m;
421         int slot;
422
423         rnode = vm_radix_getroot(rtree);
424         while (rnode != NULL) {
425                 if (vm_radix_isleaf(rnode)) {
426                         m = vm_radix_topage(rnode);
427                         if (m->pindex == index)
428                                 return (m);
429                         else
430                                 break;
431                 } else if (vm_radix_keybarr(rnode, index))
432                         break;
433                 slot = vm_radix_slot(index, rnode->rn_clev);
434                 rnode = rnode->rn_child[slot];
435         }
436         return (NULL);
437 }
438
439 /*
440  * Look up the nearest entry at a position bigger than or equal to index.
441  */
442 vm_page_t
443 vm_radix_lookup_ge(struct vm_radix *rtree, vm_pindex_t index)
444 {
445         struct vm_radix_node *stack[VM_RADIX_LIMIT];
446         vm_pindex_t inc;
447         vm_page_t m;
448         struct vm_radix_node *child, *rnode;
449 #ifdef INVARIANTS
450         int loops = 0;
451 #endif
452         int slot, tos;
453
454         rnode = vm_radix_getroot(rtree);
455         if (rnode == NULL)
456                 return (NULL);
457         else if (vm_radix_isleaf(rnode)) {
458                 m = vm_radix_topage(rnode);
459                 if (m->pindex >= index)
460                         return (m);
461                 else
462                         return (NULL);
463         }
464         tos = 0;
465         for (;;) {
466                 /*
467                  * If the keys differ before the current bisection node,
468                  * then the search key might rollback to the earliest
469                  * available bisection node or to the smallest key
470                  * in the current node (if the owner is bigger than the
471                  * search key).
472                  */
473                 if (vm_radix_keybarr(rnode, index)) {
474                         if (index > rnode->rn_owner) {
475 ascend:
476                                 KASSERT(++loops < 1000,
477                                     ("vm_radix_lookup_ge: too many loops"));
478
479                                 /*
480                                  * Pop nodes from the stack until either the
481                                  * stack is empty or a node that could have a
482                                  * matching descendant is found.
483                                  */
484                                 do {
485                                         if (tos == 0)
486                                                 return (NULL);
487                                         rnode = stack[--tos];
488                                 } while (vm_radix_slot(index,
489                                     rnode->rn_clev) == (VM_RADIX_COUNT - 1));
490
491                                 /*
492                                  * The following computation cannot overflow
493                                  * because index's slot at the current level
494                                  * is less than VM_RADIX_COUNT - 1.
495                                  */
496                                 index = vm_radix_trimkey(index,
497                                     rnode->rn_clev);
498                                 index += VM_RADIX_UNITLEVEL(rnode->rn_clev);
499                         } else
500                                 index = rnode->rn_owner;
501                         KASSERT(!vm_radix_keybarr(rnode, index),
502                             ("vm_radix_lookup_ge: keybarr failed"));
503                 }
504                 slot = vm_radix_slot(index, rnode->rn_clev);
505                 child = rnode->rn_child[slot];
506                 if (vm_radix_isleaf(child)) {
507                         m = vm_radix_topage(child);
508                         if (m->pindex >= index)
509                                 return (m);
510                 } else if (child != NULL)
511                         goto descend;
512
513                 /*
514                  * Look for an available edge or page within the current
515                  * bisection node.
516                  */
517                 if (slot < (VM_RADIX_COUNT - 1)) {
518                         inc = VM_RADIX_UNITLEVEL(rnode->rn_clev);
519                         index = vm_radix_trimkey(index, rnode->rn_clev);
520                         do {
521                                 index += inc;
522                                 slot++;
523                                 child = rnode->rn_child[slot];
524                                 if (vm_radix_isleaf(child)) {
525                                         m = vm_radix_topage(child);
526                                         if (m->pindex >= index)
527                                                 return (m);
528                                 } else if (child != NULL)
529                                         goto descend;
530                         } while (slot < (VM_RADIX_COUNT - 1));
531                 }
532                 KASSERT(child == NULL || vm_radix_isleaf(child),
533                     ("vm_radix_lookup_ge: child is radix node"));
534
535                 /*
536                  * If a page or edge bigger than the search slot is not found
537                  * in the current node, ascend to the next higher-level node.
538                  */
539                 goto ascend;
540 descend:
541                 KASSERT(rnode->rn_clev > 0,
542                     ("vm_radix_lookup_ge: pushing leaf's parent"));
543                 KASSERT(tos < VM_RADIX_LIMIT,
544                     ("vm_radix_lookup_ge: stack overflow"));
545                 stack[tos++] = rnode;
546                 rnode = child;
547         }
548 }
549
550 /*
551  * Look up the nearest entry at a position less than or equal to index.
552  */
553 vm_page_t
554 vm_radix_lookup_le(struct vm_radix *rtree, vm_pindex_t index)
555 {
556         struct vm_radix_node *stack[VM_RADIX_LIMIT];
557         vm_pindex_t inc;
558         vm_page_t m;
559         struct vm_radix_node *child, *rnode;
560 #ifdef INVARIANTS
561         int loops = 0;
562 #endif
563         int slot, tos;
564
565         rnode = vm_radix_getroot(rtree);
566         if (rnode == NULL)
567                 return (NULL);
568         else if (vm_radix_isleaf(rnode)) {
569                 m = vm_radix_topage(rnode);
570                 if (m->pindex <= index)
571                         return (m);
572                 else
573                         return (NULL);
574         }
575         tos = 0;
576         for (;;) {
577                 /*
578                  * If the keys differ before the current bisection node,
579                  * then the search key might rollback to the earliest
580                  * available bisection node or to the largest key
581                  * in the current node (if the owner is smaller than the
582                  * search key).
583                  */
584                 if (vm_radix_keybarr(rnode, index)) {
585                         if (index > rnode->rn_owner) {
586                                 index = rnode->rn_owner + VM_RADIX_COUNT *
587                                     VM_RADIX_UNITLEVEL(rnode->rn_clev);
588                         } else {
589 ascend:
590                                 KASSERT(++loops < 1000,
591                                     ("vm_radix_lookup_le: too many loops"));
592
593                                 /*
594                                  * Pop nodes from the stack until either the
595                                  * stack is empty or a node that could have a
596                                  * matching descendant is found.
597                                  */
598                                 do {
599                                         if (tos == 0)
600                                                 return (NULL);
601                                         rnode = stack[--tos];
602                                 } while (vm_radix_slot(index,
603                                     rnode->rn_clev) == 0);
604
605                                 /*
606                                  * The following computation cannot overflow
607                                  * because index's slot at the current level
608                                  * is greater than 0.
609                                  */
610                                 index = vm_radix_trimkey(index,
611                                     rnode->rn_clev);
612                         }
613                         index--;
614                         KASSERT(!vm_radix_keybarr(rnode, index),
615                             ("vm_radix_lookup_le: keybarr failed"));
616                 }
617                 slot = vm_radix_slot(index, rnode->rn_clev);
618                 child = rnode->rn_child[slot];
619                 if (vm_radix_isleaf(child)) {
620                         m = vm_radix_topage(child);
621                         if (m->pindex <= index)
622                                 return (m);
623                 } else if (child != NULL)
624                         goto descend;
625
626                 /*
627                  * Look for an available edge or page within the current
628                  * bisection node.
629                  */
630                 if (slot > 0) {
631                         inc = VM_RADIX_UNITLEVEL(rnode->rn_clev);
632                         index |= inc - 1;
633                         do {
634                                 index -= inc;
635                                 slot--;
636                                 child = rnode->rn_child[slot];
637                                 if (vm_radix_isleaf(child)) {
638                                         m = vm_radix_topage(child);
639                                         if (m->pindex <= index)
640                                                 return (m);
641                                 } else if (child != NULL)
642                                         goto descend;
643                         } while (slot > 0);
644                 }
645                 KASSERT(child == NULL || vm_radix_isleaf(child),
646                     ("vm_radix_lookup_le: child is radix node"));
647
648                 /*
649                  * If a page or edge smaller than the search slot is not found
650                  * in the current node, ascend to the next higher-level node.
651                  */
652                 goto ascend;
653 descend:
654                 KASSERT(rnode->rn_clev > 0,
655                     ("vm_radix_lookup_le: pushing leaf's parent"));
656                 KASSERT(tos < VM_RADIX_LIMIT,
657                     ("vm_radix_lookup_le: stack overflow"));
658                 stack[tos++] = rnode;
659                 rnode = child;
660         }
661 }
662
663 /*
664  * Remove the specified index from the trie, and return the value stored at
665  * that index.  If the index is not present, return NULL.
666  */
667 vm_page_t
668 vm_radix_remove(struct vm_radix *rtree, vm_pindex_t index)
669 {
670         struct vm_radix_node *rnode, *parent;
671         vm_page_t m;
672         int i, slot;
673
674         rnode = vm_radix_getroot(rtree);
675         if (vm_radix_isleaf(rnode)) {
676                 m = vm_radix_topage(rnode);
677                 if (m->pindex != index)
678                         return (NULL);
679                 vm_radix_setroot(rtree, NULL);
680                 return (m);
681         }
682         parent = NULL;
683         for (;;) {
684                 if (rnode == NULL)
685                         return (NULL);
686                 slot = vm_radix_slot(index, rnode->rn_clev);
687                 if (vm_radix_isleaf(rnode->rn_child[slot])) {
688                         m = vm_radix_topage(rnode->rn_child[slot]);
689                         if (m->pindex != index)
690                                 return (NULL);
691                         rnode->rn_child[slot] = NULL;
692                         rnode->rn_count--;
693                         if (rnode->rn_count > 1)
694                                 return (m);
695                         for (i = 0; i < VM_RADIX_COUNT; i++)
696                                 if (rnode->rn_child[i] != NULL)
697                                         break;
698                         KASSERT(i != VM_RADIX_COUNT,
699                             ("%s: invalid node configuration", __func__));
700                         if (parent == NULL)
701                                 vm_radix_setroot(rtree, rnode->rn_child[i]);
702                         else {
703                                 slot = vm_radix_slot(index, parent->rn_clev);
704                                 KASSERT(parent->rn_child[slot] == rnode,
705                                     ("%s: invalid child value", __func__));
706                                 parent->rn_child[slot] = rnode->rn_child[i];
707                         }
708                         rnode->rn_count--;
709                         rnode->rn_child[i] = NULL;
710                         vm_radix_node_put(rnode);
711                         return (m);
712                 }
713                 parent = rnode;
714                 rnode = rnode->rn_child[slot];
715         }
716 }
717
718 /*
719  * Remove and free all the nodes from the radix tree.
720  * This function is recursive but there is a tight control on it as the
721  * maximum depth of the tree is fixed.
722  */
723 void
724 vm_radix_reclaim_allnodes(struct vm_radix *rtree)
725 {
726         struct vm_radix_node *root;
727
728         root = vm_radix_getroot(rtree);
729         if (root == NULL)
730                 return;
731         vm_radix_setroot(rtree, NULL);
732         if (!vm_radix_isleaf(root))
733                 vm_radix_reclaim_allnodes_int(root);
734 }
735
736 /*
737  * Replace an existing page in the trie with another one.
738  * Panics if there is not an old page in the trie at the new page's index.
739  */
740 vm_page_t
741 vm_radix_replace(struct vm_radix *rtree, vm_page_t newpage)
742 {
743         struct vm_radix_node *rnode;
744         vm_page_t m;
745         vm_pindex_t index;
746         int slot;
747
748         index = newpage->pindex;
749         rnode = vm_radix_getroot(rtree);
750         if (rnode == NULL)
751                 panic("%s: replacing page on an empty trie", __func__);
752         if (vm_radix_isleaf(rnode)) {
753                 m = vm_radix_topage(rnode);
754                 if (m->pindex != index)
755                         panic("%s: original replacing root key not found",
756                             __func__);
757                 rtree->rt_root = (uintptr_t)newpage | VM_RADIX_ISLEAF;
758                 return (m);
759         }
760         for (;;) {
761                 slot = vm_radix_slot(index, rnode->rn_clev);
762                 if (vm_radix_isleaf(rnode->rn_child[slot])) {
763                         m = vm_radix_topage(rnode->rn_child[slot]);
764                         if (m->pindex == index) {
765                                 rnode->rn_child[slot] =
766                                     (void *)((uintptr_t)newpage |
767                                     VM_RADIX_ISLEAF);
768                                 return (m);
769                         } else
770                                 break;
771                 } else if (rnode->rn_child[slot] == NULL ||
772                     vm_radix_keybarr(rnode->rn_child[slot], index))
773                         break;
774                 rnode = rnode->rn_child[slot];
775         }
776         panic("%s: original replacing page not found", __func__);
777 }
778
779 void
780 vm_radix_wait(void)
781 {
782         uma_zwait(vm_radix_node_zone);
783 }
784
785 #ifdef DDB
786 /*
787  * Show details about the given radix node.
788  */
789 DB_SHOW_COMMAND(radixnode, db_show_radixnode)
790 {
791         struct vm_radix_node *rnode;
792         int i;
793
794         if (!have_addr)
795                 return;
796         rnode = (struct vm_radix_node *)addr;
797         db_printf("radixnode %p, owner %jx, children count %u, level %u:\n",
798             (void *)rnode, (uintmax_t)rnode->rn_owner, rnode->rn_count,
799             rnode->rn_clev);
800         for (i = 0; i < VM_RADIX_COUNT; i++)
801                 if (rnode->rn_child[i] != NULL)
802                         db_printf("slot: %d, val: %p, page: %p, clev: %d\n",
803                             i, (void *)rnode->rn_child[i],
804                             vm_radix_isleaf(rnode->rn_child[i]) ?
805                             vm_radix_topage(rnode->rn_child[i]) : NULL,
806                             rnode->rn_clev);
807 }
808 #endif /* DDB */