]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_radix.c
MFV r251474:
[FreeBSD/FreeBSD.git] / sys / vm / vm_radix.c
1 /*
2  * Copyright (c) 2013 EMC Corp.
3  * Copyright (c) 2011 Jeffrey Roberson <jeff@freebsd.org>
4  * Copyright (c) 2008 Mayur Shardul <mayur.shardul@gmail.com>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  */
29
30 /*
31  * Path-compressed radix trie implementation.
32  * The following code is not generalized into a general purpose library
33  * because there are way too many parameters embedded that should really
34  * be decided by the library consumers.  At the same time, consumers
35  * of this code must achieve highest possible performance.
36  *
37  * The implementation takes into account the following rationale:
38  * - Size of the nodes should be as small as possible but still big enough
39  *   to avoid a large maximum depth for the trie.  This is a balance
40  *   between the necessity to not wire too much physical memory for the nodes
41  *   and the necessity to avoid too much cache pollution during the trie
42  *   operations.
43  * - There is not a huge bias toward the number of lookup operations over
44  *   the number of insert and remove operations.  This basically implies
45  *   that optimizations supposedly helping one operation but hurting the
46  *   other might be carefully evaluated.
47  * - On average not many nodes are expected to be fully populated, hence
48  *   level compression may just complicate things.
49  */
50
51 #include <sys/cdefs.h>
52 __FBSDID("$FreeBSD$");
53
54 #include "opt_ddb.h"
55
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/kernel.h>
59 #include <sys/vmmeter.h>
60
61 #include <vm/uma.h>
62 #include <vm/vm.h>
63 #include <vm/vm_param.h>
64 #include <vm/vm_page.h>
65 #include <vm/vm_radix.h>
66
67 #ifdef DDB
68 #include <ddb/ddb.h>
69 #endif
70
71 /*
72  * These widths should allow the pointers to a node's children to fit within
73  * a single cache line.  The extra levels from a narrow width should not be
74  * a problem thanks to path compression.
75  */
76 #ifdef __LP64__
77 #define VM_RADIX_WIDTH  4
78 #else
79 #define VM_RADIX_WIDTH  3
80 #endif
81
82 #define VM_RADIX_COUNT  (1 << VM_RADIX_WIDTH)
83 #define VM_RADIX_MASK   (VM_RADIX_COUNT - 1)
84 #define VM_RADIX_LIMIT                                                  \
85         (howmany((sizeof(vm_pindex_t) * NBBY), VM_RADIX_WIDTH) - 1)
86
87 /* Flag bits stored in node pointers. */
88 #define VM_RADIX_ISLEAF 0x1
89 #define VM_RADIX_FLAGS  0x1
90 #define VM_RADIX_PAD    VM_RADIX_FLAGS
91
92 /* Returns one unit associated with specified level. */
93 #define VM_RADIX_UNITLEVEL(lev)                                         \
94         ((vm_pindex_t)1 << ((lev) * VM_RADIX_WIDTH))
95
96 struct vm_radix_node {
97         vm_pindex_t      rn_owner;                      /* Owner of record. */
98         uint16_t         rn_count;                      /* Valid children. */
99         uint16_t         rn_clev;                       /* Current level. */
100         void            *rn_child[VM_RADIX_COUNT];      /* Child nodes. */
101 };
102
103 static uma_zone_t vm_radix_node_zone;
104
105 /*
106  * Allocate a radix node.  Pre-allocation should ensure that the request
107  * will always be satisfied.
108  */
109 static __inline struct vm_radix_node *
110 vm_radix_node_get(vm_pindex_t owner, uint16_t count, uint16_t clevel)
111 {
112         struct vm_radix_node *rnode;
113
114         rnode = uma_zalloc(vm_radix_node_zone, M_NOWAIT);
115
116         /*
117          * The required number of nodes should already be pre-allocated
118          * by vm_radix_prealloc().  However, UMA can hold a few nodes
119          * in per-CPU buckets, which will not be accessible by the
120          * current CPU.  Thus, the allocation could return NULL when
121          * the pre-allocated pool is close to exhaustion.  Anyway,
122          * in practice this should never occur because a new node
123          * is not always required for insert.  Thus, the pre-allocated
124          * pool should have some extra pages that prevent this from
125          * becoming a problem.
126          */
127         if (rnode == NULL)
128                 panic("%s: uma_zalloc() returned NULL for a new node",
129                     __func__);
130         rnode->rn_owner = owner;
131         rnode->rn_count = count;
132         rnode->rn_clev = clevel;
133         return (rnode);
134 }
135
136 /*
137  * Free radix node.
138  */
139 static __inline void
140 vm_radix_node_put(struct vm_radix_node *rnode)
141 {
142
143         uma_zfree(vm_radix_node_zone, rnode);
144 }
145
146 /*
147  * Return the position in the array for a given level.
148  */
149 static __inline int
150 vm_radix_slot(vm_pindex_t index, uint16_t level)
151 {
152
153         return ((index >> (level * VM_RADIX_WIDTH)) & VM_RADIX_MASK);
154 }
155
156 /* Trims the key after the specified level. */
157 static __inline vm_pindex_t
158 vm_radix_trimkey(vm_pindex_t index, uint16_t level)
159 {
160         vm_pindex_t ret;
161
162         ret = index;
163         if (level > 0) {
164                 ret >>= level * VM_RADIX_WIDTH;
165                 ret <<= level * VM_RADIX_WIDTH;
166         }
167         return (ret);
168 }
169
170 /*
171  * Get the root node for a radix tree.
172  */
173 static __inline struct vm_radix_node *
174 vm_radix_getroot(struct vm_radix *rtree)
175 {
176
177         return ((struct vm_radix_node *)rtree->rt_root);
178 }
179
180 /*
181  * Set the root node for a radix tree.
182  */
183 static __inline void
184 vm_radix_setroot(struct vm_radix *rtree, struct vm_radix_node *rnode)
185 {
186
187         rtree->rt_root = (uintptr_t)rnode;
188 }
189
190 /*
191  * Returns TRUE if the specified radix node is a leaf and FALSE otherwise.
192  */
193 static __inline boolean_t
194 vm_radix_isleaf(struct vm_radix_node *rnode)
195 {
196
197         return (((uintptr_t)rnode & VM_RADIX_ISLEAF) != 0);
198 }
199
200 /*
201  * Returns the associated page extracted from rnode.
202  */
203 static __inline vm_page_t
204 vm_radix_topage(struct vm_radix_node *rnode)
205 {
206
207         return ((vm_page_t)((uintptr_t)rnode & ~VM_RADIX_FLAGS));
208 }
209
210 /*
211  * Adds the page as a child of the provided node.
212  */
213 static __inline void
214 vm_radix_addpage(struct vm_radix_node *rnode, vm_pindex_t index, uint16_t clev,
215     vm_page_t page)
216 {
217         int slot;
218
219         slot = vm_radix_slot(index, clev);
220         rnode->rn_child[slot] = (void *)((uintptr_t)page | VM_RADIX_ISLEAF);
221 }
222
223 /*
224  * Returns the slot where two keys differ.
225  * It cannot accept 2 equal keys.
226  */
227 static __inline uint16_t
228 vm_radix_keydiff(vm_pindex_t index1, vm_pindex_t index2)
229 {
230         uint16_t clev;
231
232         KASSERT(index1 != index2, ("%s: passing the same key value %jx",
233             __func__, (uintmax_t)index1));
234
235         index1 ^= index2;
236         for (clev = VM_RADIX_LIMIT;; clev--)
237                 if (vm_radix_slot(index1, clev) != 0)
238                         return (clev);
239 }
240
241 /*
242  * Returns TRUE if it can be determined that key does not belong to the
243  * specified rnode.  Otherwise, returns FALSE.
244  */
245 static __inline boolean_t
246 vm_radix_keybarr(struct vm_radix_node *rnode, vm_pindex_t idx)
247 {
248
249         if (rnode->rn_clev < VM_RADIX_LIMIT) {
250                 idx = vm_radix_trimkey(idx, rnode->rn_clev + 1);
251                 return (idx != rnode->rn_owner);
252         }
253         return (FALSE);
254 }
255
256 /*
257  * Internal helper for vm_radix_reclaim_allnodes().
258  * This function is recursive.
259  */
260 static void
261 vm_radix_reclaim_allnodes_int(struct vm_radix_node *rnode)
262 {
263         int slot;
264
265         KASSERT(rnode->rn_count <= VM_RADIX_COUNT,
266             ("vm_radix_reclaim_allnodes_int: bad count in rnode %p", rnode));
267         for (slot = 0; rnode->rn_count != 0; slot++) {
268                 if (rnode->rn_child[slot] == NULL)
269                         continue;
270                 if (!vm_radix_isleaf(rnode->rn_child[slot]))
271                         vm_radix_reclaim_allnodes_int(rnode->rn_child[slot]);
272                 rnode->rn_child[slot] = NULL;
273                 rnode->rn_count--;
274         }
275         vm_radix_node_put(rnode);
276 }
277
278 #ifdef INVARIANTS
279 /*
280  * Radix node zone destructor.
281  */
282 static void
283 vm_radix_node_zone_dtor(void *mem, int size __unused, void *arg __unused)
284 {
285         struct vm_radix_node *rnode;
286         int slot;
287
288         rnode = mem;
289         KASSERT(rnode->rn_count == 0,
290             ("vm_radix_node_put: rnode %p has %d children", rnode,
291             rnode->rn_count));
292         for (slot = 0; slot < VM_RADIX_COUNT; slot++)
293                 KASSERT(rnode->rn_child[slot] == NULL,
294                     ("vm_radix_node_put: rnode %p has a child", rnode));
295 }
296 #endif
297
298 /*
299  * Radix node zone initializer.
300  */
301 static int
302 vm_radix_node_zone_init(void *mem, int size __unused, int flags __unused)
303 {
304         struct vm_radix_node *rnode;
305
306         rnode = mem;
307         memset(rnode->rn_child, 0, sizeof(rnode->rn_child));
308         return (0);
309 }
310
311 /*
312  * Pre-allocate intermediate nodes from the UMA slab zone.
313  */
314 static void
315 vm_radix_prealloc(void *arg __unused)
316 {
317         int nodes;
318
319         /*
320          * Calculate the number of reserved nodes, discounting the pages that
321          * are needed to store them.
322          */
323         nodes = ((vm_paddr_t)cnt.v_page_count * PAGE_SIZE) / (PAGE_SIZE +
324             sizeof(struct vm_radix_node));
325         if (!uma_zone_reserve_kva(vm_radix_node_zone, nodes))
326                 panic("%s: unable to create new zone", __func__);
327         uma_prealloc(vm_radix_node_zone, nodes);
328 }
329 SYSINIT(vm_radix_prealloc, SI_SUB_KMEM, SI_ORDER_SECOND, vm_radix_prealloc,
330     NULL);
331
332 /*
333  * Initialize the UMA slab zone.
334  * Until vm_radix_prealloc() is called, the zone will be served by the
335  * UMA boot-time pre-allocated pool of pages.
336  */
337 void
338 vm_radix_init(void)
339 {
340
341         vm_radix_node_zone = uma_zcreate("RADIX NODE",
342             sizeof(struct vm_radix_node), NULL,
343 #ifdef INVARIANTS
344             vm_radix_node_zone_dtor,
345 #else
346             NULL,
347 #endif
348             vm_radix_node_zone_init, NULL, VM_RADIX_PAD, UMA_ZONE_VM |
349             UMA_ZONE_NOFREE);
350 }
351
352 /*
353  * Inserts the key-value pair into the trie.
354  * Panics if the key already exists.
355  */
356 void
357 vm_radix_insert(struct vm_radix *rtree, vm_page_t page)
358 {
359         vm_pindex_t index, newind;
360         void **parentp;
361         struct vm_radix_node *rnode, *tmp;
362         vm_page_t m;
363         int slot;
364         uint16_t clev;
365
366         index = page->pindex;
367
368         /*
369          * The owner of record for root is not really important because it
370          * will never be used.
371          */
372         rnode = vm_radix_getroot(rtree);
373         if (rnode == NULL) {
374                 rtree->rt_root = (uintptr_t)page | VM_RADIX_ISLEAF;
375                 return;
376         }
377         parentp = (void **)&rtree->rt_root;
378         for (;;) {
379                 if (vm_radix_isleaf(rnode)) {
380                         m = vm_radix_topage(rnode);
381                         if (m->pindex == index)
382                                 panic("%s: key %jx is already present",
383                                     __func__, (uintmax_t)index);
384                         clev = vm_radix_keydiff(m->pindex, index);
385                         tmp = vm_radix_node_get(vm_radix_trimkey(index,
386                             clev + 1), 2, clev);
387                         *parentp = tmp;
388                         vm_radix_addpage(tmp, index, clev, page);
389                         vm_radix_addpage(tmp, m->pindex, clev, m);
390                         return;
391                 } else if (vm_radix_keybarr(rnode, index))
392                         break;
393                 slot = vm_radix_slot(index, rnode->rn_clev);
394                 if (rnode->rn_child[slot] == NULL) {
395                         rnode->rn_count++;
396                         vm_radix_addpage(rnode, index, rnode->rn_clev, page);
397                         return;
398                 }
399                 parentp = &rnode->rn_child[slot];
400                 rnode = rnode->rn_child[slot];
401         }
402
403         /*
404          * A new node is needed because the right insertion level is reached.
405          * Setup the new intermediate node and add the 2 children: the
406          * new object and the older edge.
407          */
408         newind = rnode->rn_owner;
409         clev = vm_radix_keydiff(newind, index);
410         tmp = vm_radix_node_get(vm_radix_trimkey(index, clev + 1), 2,
411             clev);
412         *parentp = tmp;
413         vm_radix_addpage(tmp, index, clev, page);
414         slot = vm_radix_slot(newind, clev);
415         tmp->rn_child[slot] = rnode;
416 }
417
418 /*
419  * Returns the value stored at the index.  If the index is not present,
420  * NULL is returned.
421  */
422 vm_page_t
423 vm_radix_lookup(struct vm_radix *rtree, vm_pindex_t index)
424 {
425         struct vm_radix_node *rnode;
426         vm_page_t m;
427         int slot;
428
429         rnode = vm_radix_getroot(rtree);
430         while (rnode != NULL) {
431                 if (vm_radix_isleaf(rnode)) {
432                         m = vm_radix_topage(rnode);
433                         if (m->pindex == index)
434                                 return (m);
435                         else
436                                 break;
437                 } else if (vm_radix_keybarr(rnode, index))
438                         break;
439                 slot = vm_radix_slot(index, rnode->rn_clev);
440                 rnode = rnode->rn_child[slot];
441         }
442         return (NULL);
443 }
444
445 /*
446  * Look up the nearest entry at a position bigger than or equal to index.
447  */
448 vm_page_t
449 vm_radix_lookup_ge(struct vm_radix *rtree, vm_pindex_t index)
450 {
451         struct vm_radix_node *stack[VM_RADIX_LIMIT];
452         vm_pindex_t inc;
453         vm_page_t m;
454         struct vm_radix_node *child, *rnode;
455 #ifdef INVARIANTS
456         int loops = 0;
457 #endif
458         int slot, tos;
459
460         rnode = vm_radix_getroot(rtree);
461         if (rnode == NULL)
462                 return (NULL);
463         else if (vm_radix_isleaf(rnode)) {
464                 m = vm_radix_topage(rnode);
465                 if (m->pindex >= index)
466                         return (m);
467                 else
468                         return (NULL);
469         }
470         tos = 0;
471         for (;;) {
472                 /*
473                  * If the keys differ before the current bisection node,
474                  * then the search key might rollback to the earliest
475                  * available bisection node or to the smallest key
476                  * in the current node (if the owner is bigger than the
477                  * search key).
478                  */
479                 if (vm_radix_keybarr(rnode, index)) {
480                         if (index > rnode->rn_owner) {
481 ascend:
482                                 KASSERT(++loops < 1000,
483                                     ("vm_radix_lookup_ge: too many loops"));
484
485                                 /*
486                                  * Pop nodes from the stack until either the
487                                  * stack is empty or a node that could have a
488                                  * matching descendant is found.
489                                  */
490                                 do {
491                                         if (tos == 0)
492                                                 return (NULL);
493                                         rnode = stack[--tos];
494                                 } while (vm_radix_slot(index,
495                                     rnode->rn_clev) == (VM_RADIX_COUNT - 1));
496
497                                 /*
498                                  * The following computation cannot overflow
499                                  * because index's slot at the current level
500                                  * is less than VM_RADIX_COUNT - 1.
501                                  */
502                                 index = vm_radix_trimkey(index,
503                                     rnode->rn_clev);
504                                 index += VM_RADIX_UNITLEVEL(rnode->rn_clev);
505                         } else
506                                 index = rnode->rn_owner;
507                         KASSERT(!vm_radix_keybarr(rnode, index),
508                             ("vm_radix_lookup_ge: keybarr failed"));
509                 }
510                 slot = vm_radix_slot(index, rnode->rn_clev);
511                 child = rnode->rn_child[slot];
512                 if (vm_radix_isleaf(child)) {
513                         m = vm_radix_topage(child);
514                         if (m->pindex >= index)
515                                 return (m);
516                 } else if (child != NULL)
517                         goto descend;
518
519                 /*
520                  * Look for an available edge or page within the current
521                  * bisection node.
522                  */
523                 if (slot < (VM_RADIX_COUNT - 1)) {
524                         inc = VM_RADIX_UNITLEVEL(rnode->rn_clev);
525                         index = vm_radix_trimkey(index, rnode->rn_clev);
526                         do {
527                                 index += inc;
528                                 slot++;
529                                 child = rnode->rn_child[slot];
530                                 if (vm_radix_isleaf(child)) {
531                                         m = vm_radix_topage(child);
532                                         if (m->pindex >= index)
533                                                 return (m);
534                                 } else if (child != NULL)
535                                         goto descend;
536                         } while (slot < (VM_RADIX_COUNT - 1));
537                 }
538                 KASSERT(child == NULL || vm_radix_isleaf(child),
539                     ("vm_radix_lookup_ge: child is radix node"));
540
541                 /*
542                  * If a page or edge bigger than the search slot is not found
543                  * in the current node, ascend to the next higher-level node.
544                  */
545                 goto ascend;
546 descend:
547                 KASSERT(rnode->rn_clev > 0,
548                     ("vm_radix_lookup_ge: pushing leaf's parent"));
549                 KASSERT(tos < VM_RADIX_LIMIT,
550                     ("vm_radix_lookup_ge: stack overflow"));
551                 stack[tos++] = rnode;
552                 rnode = child;
553         }
554 }
555
556 /*
557  * Look up the nearest entry at a position less than or equal to index.
558  */
559 vm_page_t
560 vm_radix_lookup_le(struct vm_radix *rtree, vm_pindex_t index)
561 {
562         struct vm_radix_node *stack[VM_RADIX_LIMIT];
563         vm_pindex_t inc;
564         vm_page_t m;
565         struct vm_radix_node *child, *rnode;
566 #ifdef INVARIANTS
567         int loops = 0;
568 #endif
569         int slot, tos;
570
571         rnode = vm_radix_getroot(rtree);
572         if (rnode == NULL)
573                 return (NULL);
574         else if (vm_radix_isleaf(rnode)) {
575                 m = vm_radix_topage(rnode);
576                 if (m->pindex <= index)
577                         return (m);
578                 else
579                         return (NULL);
580         }
581         tos = 0;
582         for (;;) {
583                 /*
584                  * If the keys differ before the current bisection node,
585                  * then the search key might rollback to the earliest
586                  * available bisection node or to the largest key
587                  * in the current node (if the owner is smaller than the
588                  * search key).
589                  */
590                 if (vm_radix_keybarr(rnode, index)) {
591                         if (index > rnode->rn_owner) {
592                                 index = rnode->rn_owner + VM_RADIX_COUNT *
593                                     VM_RADIX_UNITLEVEL(rnode->rn_clev);
594                         } else {
595 ascend:
596                                 KASSERT(++loops < 1000,
597                                     ("vm_radix_lookup_le: too many loops"));
598
599                                 /*
600                                  * Pop nodes from the stack until either the
601                                  * stack is empty or a node that could have a
602                                  * matching descendant is found.
603                                  */
604                                 do {
605                                         if (tos == 0)
606                                                 return (NULL);
607                                         rnode = stack[--tos];
608                                 } while (vm_radix_slot(index,
609                                     rnode->rn_clev) == 0);
610
611                                 /*
612                                  * The following computation cannot overflow
613                                  * because index's slot at the current level
614                                  * is greater than 0.
615                                  */
616                                 index = vm_radix_trimkey(index,
617                                     rnode->rn_clev);
618                         }
619                         index--;
620                         KASSERT(!vm_radix_keybarr(rnode, index),
621                             ("vm_radix_lookup_le: keybarr failed"));
622                 }
623                 slot = vm_radix_slot(index, rnode->rn_clev);
624                 child = rnode->rn_child[slot];
625                 if (vm_radix_isleaf(child)) {
626                         m = vm_radix_topage(child);
627                         if (m->pindex <= index)
628                                 return (m);
629                 } else if (child != NULL)
630                         goto descend;
631
632                 /*
633                  * Look for an available edge or page within the current
634                  * bisection node.
635                  */
636                 if (slot > 0) {
637                         inc = VM_RADIX_UNITLEVEL(rnode->rn_clev);
638                         index |= inc - 1;
639                         do {
640                                 index -= inc;
641                                 slot--;
642                                 child = rnode->rn_child[slot];
643                                 if (vm_radix_isleaf(child)) {
644                                         m = vm_radix_topage(child);
645                                         if (m->pindex <= index)
646                                                 return (m);
647                                 } else if (child != NULL)
648                                         goto descend;
649                         } while (slot > 0);
650                 }
651                 KASSERT(child == NULL || vm_radix_isleaf(child),
652                     ("vm_radix_lookup_le: child is radix node"));
653
654                 /*
655                  * If a page or edge smaller than the search slot is not found
656                  * in the current node, ascend to the next higher-level node.
657                  */
658                 goto ascend;
659 descend:
660                 KASSERT(rnode->rn_clev > 0,
661                     ("vm_radix_lookup_le: pushing leaf's parent"));
662                 KASSERT(tos < VM_RADIX_LIMIT,
663                     ("vm_radix_lookup_le: stack overflow"));
664                 stack[tos++] = rnode;
665                 rnode = child;
666         }
667 }
668
669 /*
670  * Remove the specified index from the tree.
671  * Panics if the key is not present.
672  */
673 void
674 vm_radix_remove(struct vm_radix *rtree, vm_pindex_t index)
675 {
676         struct vm_radix_node *rnode, *parent;
677         vm_page_t m;
678         int i, slot;
679
680         rnode = vm_radix_getroot(rtree);
681         if (vm_radix_isleaf(rnode)) {
682                 m = vm_radix_topage(rnode);
683                 if (m->pindex != index)
684                         panic("%s: invalid key found", __func__);
685                 vm_radix_setroot(rtree, NULL);
686                 return;
687         }
688         parent = NULL;
689         for (;;) {
690                 if (rnode == NULL)
691                         panic("vm_radix_remove: impossible to locate the key");
692                 slot = vm_radix_slot(index, rnode->rn_clev);
693                 if (vm_radix_isleaf(rnode->rn_child[slot])) {
694                         m = vm_radix_topage(rnode->rn_child[slot]);
695                         if (m->pindex != index)
696                                 panic("%s: invalid key found", __func__);
697                         rnode->rn_child[slot] = NULL;
698                         rnode->rn_count--;
699                         if (rnode->rn_count > 1)
700                                 break;
701                         for (i = 0; i < VM_RADIX_COUNT; i++)
702                                 if (rnode->rn_child[i] != NULL)
703                                         break;
704                         KASSERT(i != VM_RADIX_COUNT,
705                             ("%s: invalid node configuration", __func__));
706                         if (parent == NULL)
707                                 vm_radix_setroot(rtree, rnode->rn_child[i]);
708                         else {
709                                 slot = vm_radix_slot(index, parent->rn_clev);
710                                 KASSERT(parent->rn_child[slot] == rnode,
711                                     ("%s: invalid child value", __func__));
712                                 parent->rn_child[slot] = rnode->rn_child[i];
713                         }
714                         rnode->rn_count--;
715                         rnode->rn_child[i] = NULL;
716                         vm_radix_node_put(rnode);
717                         break;
718                 }
719                 parent = rnode;
720                 rnode = rnode->rn_child[slot];
721         }
722 }
723
724 /*
725  * Remove and free all the nodes from the radix tree.
726  * This function is recursive but there is a tight control on it as the
727  * maximum depth of the tree is fixed.
728  */
729 void
730 vm_radix_reclaim_allnodes(struct vm_radix *rtree)
731 {
732         struct vm_radix_node *root;
733
734         root = vm_radix_getroot(rtree);
735         if (root == NULL)
736                 return;
737         vm_radix_setroot(rtree, NULL);
738         if (!vm_radix_isleaf(root))
739                 vm_radix_reclaim_allnodes_int(root);
740 }
741
742 #ifdef DDB
743 /*
744  * Show details about the given radix node.
745  */
746 DB_SHOW_COMMAND(radixnode, db_show_radixnode)
747 {
748         struct vm_radix_node *rnode;
749         int i;
750
751         if (!have_addr)
752                 return;
753         rnode = (struct vm_radix_node *)addr;
754         db_printf("radixnode %p, owner %jx, children count %u, level %u:\n",
755             (void *)rnode, (uintmax_t)rnode->rn_owner, rnode->rn_count,
756             rnode->rn_clev);
757         for (i = 0; i < VM_RADIX_COUNT; i++)
758                 if (rnode->rn_child[i] != NULL)
759                         db_printf("slot: %d, val: %p, page: %p, clev: %d\n",
760                             i, (void *)rnode->rn_child[i],
761                             vm_radix_isleaf(rnode->rn_child[i]) ?
762                             vm_radix_topage(rnode->rn_child[i]) : NULL,
763                             rnode->rn_clev);
764 }
765 #endif /* DDB */