]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_reserv.c
Add UPDATING entries and bump version.
[FreeBSD/FreeBSD.git] / sys / vm / vm_reserv.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2002-2006 Rice University
5  * Copyright (c) 2007-2011 Alan L. Cox <alc@cs.rice.edu>
6  * All rights reserved.
7  *
8  * This software was developed for the FreeBSD Project by Alan L. Cox,
9  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
24  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
27  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
30  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 /*
35  *      Superpage reservation management module
36  *
37  * Any external functions defined by this module are only to be used by the
38  * virtual memory system.
39  */
40
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43
44 #include "opt_vm.h"
45
46 #include <sys/param.h>
47 #include <sys/kernel.h>
48 #include <sys/lock.h>
49 #include <sys/malloc.h>
50 #include <sys/mutex.h>
51 #include <sys/queue.h>
52 #include <sys/rwlock.h>
53 #include <sys/sbuf.h>
54 #include <sys/sysctl.h>
55 #include <sys/systm.h>
56 #include <sys/counter.h>
57 #include <sys/ktr.h>
58 #include <sys/vmmeter.h>
59 #include <sys/smp.h>
60
61 #include <vm/vm.h>
62 #include <vm/vm_param.h>
63 #include <vm/vm_object.h>
64 #include <vm/vm_page.h>
65 #include <vm/vm_pageout.h>
66 #include <vm/vm_phys.h>
67 #include <vm/vm_pagequeue.h>
68 #include <vm/vm_radix.h>
69 #include <vm/vm_reserv.h>
70
71 /*
72  * The reservation system supports the speculative allocation of large physical
73  * pages ("superpages").  Speculative allocation enables the fully automatic
74  * utilization of superpages by the virtual memory system.  In other words, no
75  * programmatic directives are required to use superpages.
76  */
77
78 #if VM_NRESERVLEVEL > 0
79
80 #ifndef VM_LEVEL_0_ORDER_MAX
81 #define VM_LEVEL_0_ORDER_MAX    VM_LEVEL_0_ORDER
82 #endif
83
84 /*
85  * The number of small pages that are contained in a level 0 reservation
86  */
87 #define VM_LEVEL_0_NPAGES       (1 << VM_LEVEL_0_ORDER)
88 #define VM_LEVEL_0_NPAGES_MAX   (1 << VM_LEVEL_0_ORDER_MAX)
89
90 /*
91  * The number of bits by which a physical address is shifted to obtain the
92  * reservation number
93  */
94 #define VM_LEVEL_0_SHIFT        (VM_LEVEL_0_ORDER + PAGE_SHIFT)
95
96 /*
97  * The size of a level 0 reservation in bytes
98  */
99 #define VM_LEVEL_0_SIZE         (1 << VM_LEVEL_0_SHIFT)
100
101 /*
102  * Computes the index of the small page underlying the given (object, pindex)
103  * within the reservation's array of small pages.
104  */
105 #define VM_RESERV_INDEX(object, pindex) \
106     (((object)->pg_color + (pindex)) & (VM_LEVEL_0_NPAGES - 1))
107
108 /*
109  * The size of a population map entry
110  */
111 typedef u_long          popmap_t;
112
113 /*
114  * The number of bits in a population map entry
115  */
116 #define NBPOPMAP        (NBBY * sizeof(popmap_t))
117
118 /*
119  * The number of population map entries in a reservation
120  */
121 #define NPOPMAP         howmany(VM_LEVEL_0_NPAGES, NBPOPMAP)
122 #define NPOPMAP_MAX     howmany(VM_LEVEL_0_NPAGES_MAX, NBPOPMAP)
123
124 /*
125  * Number of elapsed ticks before we update the LRU queue position.  Used
126  * to reduce contention and churn on the list.
127  */
128 #define PARTPOPSLOP     1
129
130 /*
131  * Clear a bit in the population map.
132  */
133 static __inline void
134 popmap_clear(popmap_t popmap[], int i)
135 {
136
137         popmap[i / NBPOPMAP] &= ~(1UL << (i % NBPOPMAP));
138 }
139
140 /*
141  * Set a bit in the population map.
142  */
143 static __inline void
144 popmap_set(popmap_t popmap[], int i)
145 {
146
147         popmap[i / NBPOPMAP] |= 1UL << (i % NBPOPMAP);
148 }
149
150 /*
151  * Is a bit in the population map clear?
152  */
153 static __inline boolean_t
154 popmap_is_clear(popmap_t popmap[], int i)
155 {
156
157         return ((popmap[i / NBPOPMAP] & (1UL << (i % NBPOPMAP))) == 0);
158 }
159
160 /*
161  * Is a bit in the population map set?
162  */
163 static __inline boolean_t
164 popmap_is_set(popmap_t popmap[], int i)
165 {
166
167         return ((popmap[i / NBPOPMAP] & (1UL << (i % NBPOPMAP))) != 0);
168 }
169
170 /*
171  * The reservation structure
172  *
173  * A reservation structure is constructed whenever a large physical page is
174  * speculatively allocated to an object.  The reservation provides the small
175  * physical pages for the range [pindex, pindex + VM_LEVEL_0_NPAGES) of offsets
176  * within that object.  The reservation's "popcnt" tracks the number of these
177  * small physical pages that are in use at any given time.  When and if the
178  * reservation is not fully utilized, it appears in the queue of partially
179  * populated reservations.  The reservation always appears on the containing
180  * object's list of reservations.
181  *
182  * A partially populated reservation can be broken and reclaimed at any time.
183  *
184  * r - vm_reserv_lock
185  * d - vm_reserv_domain_lock
186  * o - vm_reserv_object_lock
187  * c - constant after boot
188  */
189 struct vm_reserv {
190         struct mtx      lock;                   /* reservation lock. */
191         TAILQ_ENTRY(vm_reserv) partpopq;        /* (d) per-domain queue. */
192         LIST_ENTRY(vm_reserv) objq;             /* (o, r) object queue */
193         vm_object_t     object;                 /* (o, r) containing object */
194         vm_pindex_t     pindex;                 /* (o, r) offset in object */
195         vm_page_t       pages;                  /* (c) first page  */
196         uint16_t        domain;                 /* (c) NUMA domain. */
197         uint16_t        popcnt;                 /* (r) # of pages in use */
198         int             lasttick;               /* (r) last pop update tick. */
199         char            inpartpopq;             /* (d) */
200         popmap_t        popmap[NPOPMAP_MAX];    /* (r) bit vector, used pages */
201 };
202
203 #define vm_reserv_lockptr(rv)           (&(rv)->lock)
204 #define vm_reserv_assert_locked(rv)                                     \
205             mtx_assert(vm_reserv_lockptr(rv), MA_OWNED)
206 #define vm_reserv_lock(rv)              mtx_lock(vm_reserv_lockptr(rv))
207 #define vm_reserv_trylock(rv)           mtx_trylock(vm_reserv_lockptr(rv))
208 #define vm_reserv_unlock(rv)            mtx_unlock(vm_reserv_lockptr(rv))
209
210 static struct mtx_padalign vm_reserv_domain_locks[MAXMEMDOM];
211
212 #define vm_reserv_domain_lockptr(d)     &vm_reserv_domain_locks[(d)]
213 #define vm_reserv_domain_lock(d)        mtx_lock(vm_reserv_domain_lockptr(d))
214 #define vm_reserv_domain_unlock(d)      mtx_unlock(vm_reserv_domain_lockptr(d))
215
216 /*
217  * The reservation array
218  *
219  * This array is analoguous in function to vm_page_array.  It differs in the
220  * respect that it may contain a greater number of useful reservation
221  * structures than there are (physical) superpages.  These "invalid"
222  * reservation structures exist to trade-off space for time in the
223  * implementation of vm_reserv_from_page().  Invalid reservation structures are
224  * distinguishable from "valid" reservation structures by inspecting the
225  * reservation's "pages" field.  Invalid reservation structures have a NULL
226  * "pages" field.
227  *
228  * vm_reserv_from_page() maps a small (physical) page to an element of this
229  * array by computing a physical reservation number from the page's physical
230  * address.  The physical reservation number is used as the array index.
231  *
232  * An "active" reservation is a valid reservation structure that has a non-NULL
233  * "object" field and a non-zero "popcnt" field.  In other words, every active
234  * reservation belongs to a particular object.  Moreover, every active
235  * reservation has an entry in the containing object's list of reservations.  
236  */
237 static vm_reserv_t vm_reserv_array;
238
239 /*
240  * The partially populated reservation queue
241  *
242  * This queue enables the fast recovery of an unused free small page from a
243  * partially populated reservation.  The reservation at the head of this queue
244  * is the least recently changed, partially populated reservation.
245  *
246  * Access to this queue is synchronized by the free page queue lock.
247  */
248 static TAILQ_HEAD(, vm_reserv) vm_rvq_partpop[MAXMEMDOM];
249
250 static SYSCTL_NODE(_vm, OID_AUTO, reserv, CTLFLAG_RD, 0, "Reservation Info");
251
252 static counter_u64_t vm_reserv_broken = EARLY_COUNTER;
253 SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, broken, CTLFLAG_RD,
254     &vm_reserv_broken, "Cumulative number of broken reservations");
255
256 static counter_u64_t vm_reserv_freed = EARLY_COUNTER;
257 SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, freed, CTLFLAG_RD,
258     &vm_reserv_freed, "Cumulative number of freed reservations");
259
260 static int sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS);
261
262 SYSCTL_PROC(_vm_reserv, OID_AUTO, fullpop, CTLTYPE_INT | CTLFLAG_RD, NULL, 0,
263     sysctl_vm_reserv_fullpop, "I", "Current number of full reservations");
264
265 static int sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS);
266
267 SYSCTL_OID(_vm_reserv, OID_AUTO, partpopq, CTLTYPE_STRING | CTLFLAG_RD, NULL, 0,
268     sysctl_vm_reserv_partpopq, "A", "Partially populated reservation queues");
269
270 static counter_u64_t vm_reserv_reclaimed = EARLY_COUNTER;
271 SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, reclaimed, CTLFLAG_RD,
272     &vm_reserv_reclaimed, "Cumulative number of reclaimed reservations");
273
274 /*
275  * The object lock pool is used to synchronize the rvq.  We can not use a
276  * pool mutex because it is required before malloc works.
277  *
278  * The "hash" function could be made faster without divide and modulo.
279  */
280 #define VM_RESERV_OBJ_LOCK_COUNT        MAXCPU
281
282 struct mtx_padalign vm_reserv_object_mtx[VM_RESERV_OBJ_LOCK_COUNT];
283
284 #define vm_reserv_object_lock_idx(object)                       \
285             (((uintptr_t)object / sizeof(*object)) % VM_RESERV_OBJ_LOCK_COUNT)
286 #define vm_reserv_object_lock_ptr(object)                       \
287             &vm_reserv_object_mtx[vm_reserv_object_lock_idx((object))]
288 #define vm_reserv_object_lock(object)                           \
289             mtx_lock(vm_reserv_object_lock_ptr((object)))
290 #define vm_reserv_object_unlock(object)                         \
291             mtx_unlock(vm_reserv_object_lock_ptr((object)))
292
293 static void             vm_reserv_break(vm_reserv_t rv);
294 static void             vm_reserv_depopulate(vm_reserv_t rv, int index);
295 static vm_reserv_t      vm_reserv_from_page(vm_page_t m);
296 static boolean_t        vm_reserv_has_pindex(vm_reserv_t rv,
297                             vm_pindex_t pindex);
298 static void             vm_reserv_populate(vm_reserv_t rv, int index);
299 static void             vm_reserv_reclaim(vm_reserv_t rv);
300
301 /*
302  * Returns the current number of full reservations.
303  *
304  * Since the number of full reservations is computed without acquiring the
305  * free page queue lock, the returned value may be inexact.
306  */
307 static int
308 sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS)
309 {
310         vm_paddr_t paddr;
311         struct vm_phys_seg *seg;
312         vm_reserv_t rv;
313         int fullpop, segind;
314
315         fullpop = 0;
316         for (segind = 0; segind < vm_phys_nsegs; segind++) {
317                 seg = &vm_phys_segs[segind];
318                 paddr = roundup2(seg->start, VM_LEVEL_0_SIZE);
319                 while (paddr + VM_LEVEL_0_SIZE > paddr && paddr +
320                     VM_LEVEL_0_SIZE <= seg->end) {
321                         rv = &vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT];
322                         fullpop += rv->popcnt == VM_LEVEL_0_NPAGES;
323                         paddr += VM_LEVEL_0_SIZE;
324                 }
325         }
326         return (sysctl_handle_int(oidp, &fullpop, 0, req));
327 }
328
329 /*
330  * Describes the current state of the partially populated reservation queue.
331  */
332 static int
333 sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS)
334 {
335         struct sbuf sbuf;
336         vm_reserv_t rv;
337         int counter, error, domain, level, unused_pages;
338
339         error = sysctl_wire_old_buffer(req, 0);
340         if (error != 0)
341                 return (error);
342         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
343         sbuf_printf(&sbuf, "\nDOMAIN    LEVEL     SIZE  NUMBER\n\n");
344         for (domain = 0; domain < vm_ndomains; domain++) {
345                 for (level = -1; level <= VM_NRESERVLEVEL - 2; level++) {
346                         counter = 0;
347                         unused_pages = 0;
348                         vm_reserv_domain_lock(domain);
349                         TAILQ_FOREACH(rv, &vm_rvq_partpop[domain], partpopq) {
350                                 counter++;
351                                 unused_pages += VM_LEVEL_0_NPAGES - rv->popcnt;
352                         }
353                         vm_reserv_domain_unlock(domain);
354                         sbuf_printf(&sbuf, "%6d, %7d, %6dK, %6d\n",
355                             domain, level,
356                             unused_pages * ((int)PAGE_SIZE / 1024), counter);
357                 }
358         }
359         error = sbuf_finish(&sbuf);
360         sbuf_delete(&sbuf);
361         return (error);
362 }
363
364 /*
365  * Remove a reservation from the object's objq.
366  */
367 static void
368 vm_reserv_remove(vm_reserv_t rv)
369 {
370         vm_object_t object;
371
372         vm_reserv_assert_locked(rv);
373         CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
374             __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
375         KASSERT(rv->object != NULL,
376             ("vm_reserv_remove: reserv %p is free", rv));
377         KASSERT(!rv->inpartpopq,
378             ("vm_reserv_remove: reserv %p's inpartpopq is TRUE", rv));
379         object = rv->object;
380         vm_reserv_object_lock(object);
381         LIST_REMOVE(rv, objq);
382         rv->object = NULL;
383         vm_reserv_object_unlock(object);
384 }
385
386 /*
387  * Insert a new reservation into the object's objq.
388  */
389 static void
390 vm_reserv_insert(vm_reserv_t rv, vm_object_t object, vm_pindex_t pindex)
391 {
392         int i;
393
394         vm_reserv_assert_locked(rv);
395         CTR6(KTR_VM,
396             "%s: rv %p(%p) object %p new %p popcnt %d",
397             __FUNCTION__, rv, rv->pages, rv->object, object,
398            rv->popcnt);
399         KASSERT(rv->object == NULL,
400             ("vm_reserv_insert: reserv %p isn't free", rv));
401         KASSERT(rv->popcnt == 0,
402             ("vm_reserv_insert: reserv %p's popcnt is corrupted", rv));
403         KASSERT(!rv->inpartpopq,
404             ("vm_reserv_insert: reserv %p's inpartpopq is TRUE", rv));
405         for (i = 0; i < NPOPMAP; i++)
406                 KASSERT(rv->popmap[i] == 0,
407                     ("vm_reserv_insert: reserv %p's popmap is corrupted", rv));
408         vm_reserv_object_lock(object);
409         rv->pindex = pindex;
410         rv->object = object;
411         rv->lasttick = ticks;
412         LIST_INSERT_HEAD(&object->rvq, rv, objq);
413         vm_reserv_object_unlock(object);
414 }
415
416 /*
417  * Reduces the given reservation's population count.  If the population count
418  * becomes zero, the reservation is destroyed.  Additionally, moves the
419  * reservation to the tail of the partially populated reservation queue if the
420  * population count is non-zero.
421  */
422 static void
423 vm_reserv_depopulate(vm_reserv_t rv, int index)
424 {
425         struct vm_domain *vmd;
426
427         vm_reserv_assert_locked(rv);
428         CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
429             __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
430         KASSERT(rv->object != NULL,
431             ("vm_reserv_depopulate: reserv %p is free", rv));
432         KASSERT(popmap_is_set(rv->popmap, index),
433             ("vm_reserv_depopulate: reserv %p's popmap[%d] is clear", rv,
434             index));
435         KASSERT(rv->popcnt > 0,
436             ("vm_reserv_depopulate: reserv %p's popcnt is corrupted", rv));
437         KASSERT(rv->domain < vm_ndomains,
438             ("vm_reserv_depopulate: reserv %p's domain is corrupted %d",
439             rv, rv->domain));
440         if (rv->popcnt == VM_LEVEL_0_NPAGES) {
441                 KASSERT(rv->pages->psind == 1,
442                     ("vm_reserv_depopulate: reserv %p is already demoted",
443                     rv));
444                 rv->pages->psind = 0;
445         }
446         popmap_clear(rv->popmap, index);
447         rv->popcnt--;
448         if ((unsigned)(ticks - rv->lasttick) >= PARTPOPSLOP ||
449             rv->popcnt == 0) {
450                 vm_reserv_domain_lock(rv->domain);
451                 if (rv->inpartpopq) {
452                         TAILQ_REMOVE(&vm_rvq_partpop[rv->domain], rv, partpopq);
453                         rv->inpartpopq = FALSE;
454                 }
455                 if (rv->popcnt != 0) {
456                         rv->inpartpopq = TRUE;
457                         TAILQ_INSERT_TAIL(&vm_rvq_partpop[rv->domain], rv, partpopq);
458                 }
459                 vm_reserv_domain_unlock(rv->domain);
460                 rv->lasttick = ticks;
461         }
462         vmd = VM_DOMAIN(rv->domain);
463         if (rv->popcnt == 0) {
464                 vm_reserv_remove(rv);
465                 vm_domain_free_lock(vmd);
466                 vm_phys_free_pages(rv->pages, VM_LEVEL_0_ORDER);
467                 vm_domain_free_unlock(vmd);
468                 counter_u64_add(vm_reserv_freed, 1);
469         }
470         vm_domain_freecnt_inc(vmd, 1);
471 }
472
473 /*
474  * Returns the reservation to which the given page might belong.
475  */
476 static __inline vm_reserv_t
477 vm_reserv_from_page(vm_page_t m)
478 {
479
480         return (&vm_reserv_array[VM_PAGE_TO_PHYS(m) >> VM_LEVEL_0_SHIFT]);
481 }
482
483 /*
484  * Returns an existing reservation or NULL and initialized successor pointer.
485  */
486 static vm_reserv_t
487 vm_reserv_from_object(vm_object_t object, vm_pindex_t pindex,
488     vm_page_t mpred, vm_page_t *msuccp)
489 {
490         vm_reserv_t rv;
491         vm_page_t msucc;
492
493         msucc = NULL;
494         if (mpred != NULL) {
495                 KASSERT(mpred->object == object,
496                     ("vm_reserv_from_object: object doesn't contain mpred"));
497                 KASSERT(mpred->pindex < pindex,
498                     ("vm_reserv_from_object: mpred doesn't precede pindex"));
499                 rv = vm_reserv_from_page(mpred);
500                 if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
501                         goto found;
502                 msucc = TAILQ_NEXT(mpred, listq);
503         } else
504                 msucc = TAILQ_FIRST(&object->memq);
505         if (msucc != NULL) {
506                 KASSERT(msucc->pindex > pindex,
507                     ("vm_reserv_from_object: msucc doesn't succeed pindex"));
508                 rv = vm_reserv_from_page(msucc);
509                 if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
510                         goto found;
511         }
512         rv = NULL;
513
514 found:
515         *msuccp = msucc;
516
517         return (rv);
518 }
519
520 /*
521  * Returns TRUE if the given reservation contains the given page index and
522  * FALSE otherwise.
523  */
524 static __inline boolean_t
525 vm_reserv_has_pindex(vm_reserv_t rv, vm_pindex_t pindex)
526 {
527
528         return (((pindex - rv->pindex) & ~(VM_LEVEL_0_NPAGES - 1)) == 0);
529 }
530
531 /*
532  * Increases the given reservation's population count.  Moves the reservation
533  * to the tail of the partially populated reservation queue.
534  *
535  * The free page queue must be locked.
536  */
537 static void
538 vm_reserv_populate(vm_reserv_t rv, int index)
539 {
540
541         vm_reserv_assert_locked(rv);
542         CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
543             __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
544         KASSERT(rv->object != NULL,
545             ("vm_reserv_populate: reserv %p is free", rv));
546         KASSERT(popmap_is_clear(rv->popmap, index),
547             ("vm_reserv_populate: reserv %p's popmap[%d] is set", rv,
548             index));
549         KASSERT(rv->popcnt < VM_LEVEL_0_NPAGES,
550             ("vm_reserv_populate: reserv %p is already full", rv));
551         KASSERT(rv->pages->psind == 0,
552             ("vm_reserv_populate: reserv %p is already promoted", rv));
553         KASSERT(rv->domain < vm_ndomains,
554             ("vm_reserv_populate: reserv %p's domain is corrupted %d",
555             rv, rv->domain));
556         popmap_set(rv->popmap, index);
557         rv->popcnt++;
558         if ((unsigned)(ticks - rv->lasttick) < PARTPOPSLOP &&
559             rv->inpartpopq && rv->popcnt != VM_LEVEL_0_NPAGES)
560                 return;
561         rv->lasttick = ticks;
562         vm_reserv_domain_lock(rv->domain);
563         if (rv->inpartpopq) {
564                 TAILQ_REMOVE(&vm_rvq_partpop[rv->domain], rv, partpopq);
565                 rv->inpartpopq = FALSE;
566         }
567         if (rv->popcnt < VM_LEVEL_0_NPAGES) {
568                 rv->inpartpopq = TRUE;
569                 TAILQ_INSERT_TAIL(&vm_rvq_partpop[rv->domain], rv, partpopq);
570         } else {
571                 KASSERT(rv->pages->psind == 0,
572                     ("vm_reserv_populate: reserv %p is already promoted",
573                     rv));
574                 rv->pages->psind = 1;
575         }
576         vm_reserv_domain_unlock(rv->domain);
577 }
578
579 /*
580  * Attempts to allocate a contiguous set of physical pages from existing
581  * reservations.  See vm_reserv_alloc_contig() for a description of the
582  * function's parameters.
583  *
584  * The page "mpred" must immediately precede the offset "pindex" within the
585  * specified object.
586  *
587  * The object must be locked.
588  */
589 vm_page_t
590 vm_reserv_extend_contig(int req, vm_object_t object, vm_pindex_t pindex,
591     int domain, u_long npages, vm_paddr_t low, vm_paddr_t high,
592     u_long alignment, vm_paddr_t boundary, vm_page_t mpred)
593 {
594         struct vm_domain *vmd;
595         vm_paddr_t pa, size;
596         vm_page_t m, msucc;
597         vm_reserv_t rv;
598         int i, index;
599
600         VM_OBJECT_ASSERT_WLOCKED(object);
601         KASSERT(npages != 0, ("vm_reserv_alloc_contig: npages is 0"));
602
603         /*
604          * Is a reservation fundamentally impossible?
605          */
606         if (pindex < VM_RESERV_INDEX(object, pindex) ||
607             pindex + npages > object->size || object->resident_page_count == 0)
608                 return (NULL);
609
610         /*
611          * All reservations of a particular size have the same alignment.
612          * Assuming that the first page is allocated from a reservation, the
613          * least significant bits of its physical address can be determined
614          * from its offset from the beginning of the reservation and the size
615          * of the reservation.
616          *
617          * Could the specified index within a reservation of the smallest
618          * possible size satisfy the alignment and boundary requirements?
619          */
620         pa = VM_RESERV_INDEX(object, pindex) << PAGE_SHIFT;
621         if ((pa & (alignment - 1)) != 0)
622                 return (NULL);
623         size = npages << PAGE_SHIFT;
624         if (((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0)
625                 return (NULL);
626
627         /*
628          * Look for an existing reservation.
629          */
630         rv = vm_reserv_from_object(object, pindex, mpred, &msucc);
631         if (rv == NULL)
632                 return (NULL);
633         KASSERT(object != kernel_object || rv->domain == domain,
634             ("vm_reserv_extend_contig: Domain mismatch from reservation."));
635         index = VM_RESERV_INDEX(object, pindex);
636         /* Does the allocation fit within the reservation? */
637         if (index + npages > VM_LEVEL_0_NPAGES)
638                 return (NULL);
639         domain = rv->domain;
640         vmd = VM_DOMAIN(domain);
641         vm_reserv_lock(rv);
642         if (rv->object != object)
643                 goto out;
644         m = &rv->pages[index];
645         pa = VM_PAGE_TO_PHYS(m);
646         if (pa < low || pa + size > high || (pa & (alignment - 1)) != 0 ||
647             ((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0)
648                 goto out;
649         /* Handle vm_page_rename(m, new_object, ...). */
650         for (i = 0; i < npages; i++) {
651                 if (popmap_is_set(rv->popmap, index + i))
652                         goto out;
653         }
654         if (!vm_domain_allocate(vmd, req, npages))
655                 goto out;
656         for (i = 0; i < npages; i++)
657                 vm_reserv_populate(rv, index + i);
658         vm_reserv_unlock(rv);
659         return (m);
660
661 out:
662         vm_reserv_unlock(rv);
663         return (NULL);
664 }
665
666 /*
667  * Allocates a contiguous set of physical pages of the given size "npages"
668  * from newly created reservations.  All of the physical pages
669  * must be at or above the given physical address "low" and below the given
670  * physical address "high".  The given value "alignment" determines the
671  * alignment of the first physical page in the set.  If the given value
672  * "boundary" is non-zero, then the set of physical pages cannot cross any
673  * physical address boundary that is a multiple of that value.  Both
674  * "alignment" and "boundary" must be a power of two.
675  *
676  * Callers should first invoke vm_reserv_extend_contig() to attempt an
677  * allocation from existing reservations.
678  *
679  * The page "mpred" must immediately precede the offset "pindex" within the
680  * specified object.
681  *
682  * The object and free page queue must be locked.
683  */
684 vm_page_t
685 vm_reserv_alloc_contig(int req, vm_object_t object, vm_pindex_t pindex, int domain,
686     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
687     vm_paddr_t boundary, vm_page_t mpred)
688 {
689         struct vm_domain *vmd;
690         vm_paddr_t pa, size;
691         vm_page_t m, m_ret, msucc;
692         vm_pindex_t first, leftcap, rightcap;
693         vm_reserv_t rv;
694         u_long allocpages, maxpages, minpages;
695         int i, index, n;
696
697         VM_OBJECT_ASSERT_WLOCKED(object);
698         KASSERT(npages != 0, ("vm_reserv_alloc_contig: npages is 0"));
699
700         /*
701          * Is a reservation fundamentally impossible?
702          */
703         if (pindex < VM_RESERV_INDEX(object, pindex) ||
704             pindex + npages > object->size)
705                 return (NULL);
706
707         /*
708          * All reservations of a particular size have the same alignment.
709          * Assuming that the first page is allocated from a reservation, the
710          * least significant bits of its physical address can be determined
711          * from its offset from the beginning of the reservation and the size
712          * of the reservation.
713          *
714          * Could the specified index within a reservation of the smallest
715          * possible size satisfy the alignment and boundary requirements?
716          */
717         pa = VM_RESERV_INDEX(object, pindex) << PAGE_SHIFT;
718         if ((pa & (alignment - 1)) != 0)
719                 return (NULL);
720         size = npages << PAGE_SHIFT;
721         if (((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0)
722                 return (NULL);
723
724         /*
725          * Callers should've extended an existing reservation prior to
726          * calling this function.  If a reservation exists it is
727          * incompatible with the allocation.
728          */
729         rv = vm_reserv_from_object(object, pindex, mpred, &msucc);
730         if (rv != NULL)
731                 return (NULL);
732
733         /*
734          * Could at least one reservation fit between the first index to the
735          * left that can be used ("leftcap") and the first index to the right
736          * that cannot be used ("rightcap")?
737          *
738          * We must synchronize with the reserv object lock to protect the
739          * pindex/object of the resulting reservations against rename while
740          * we are inspecting.
741          */
742         first = pindex - VM_RESERV_INDEX(object, pindex);
743         minpages = VM_RESERV_INDEX(object, pindex) + npages;
744         maxpages = roundup2(minpages, VM_LEVEL_0_NPAGES);
745         allocpages = maxpages;
746         vm_reserv_object_lock(object);
747         if (mpred != NULL) {
748                 if ((rv = vm_reserv_from_page(mpred))->object != object)
749                         leftcap = mpred->pindex + 1;
750                 else
751                         leftcap = rv->pindex + VM_LEVEL_0_NPAGES;
752                 if (leftcap > first) {
753                         vm_reserv_object_unlock(object);
754                         return (NULL);
755                 }
756         }
757         if (msucc != NULL) {
758                 if ((rv = vm_reserv_from_page(msucc))->object != object)
759                         rightcap = msucc->pindex;
760                 else
761                         rightcap = rv->pindex;
762                 if (first + maxpages > rightcap) {
763                         if (maxpages == VM_LEVEL_0_NPAGES) {
764                                 vm_reserv_object_unlock(object);
765                                 return (NULL);
766                         }
767
768                         /*
769                          * At least one reservation will fit between "leftcap"
770                          * and "rightcap".  However, a reservation for the
771                          * last of the requested pages will not fit.  Reduce
772                          * the size of the upcoming allocation accordingly.
773                          */
774                         allocpages = minpages;
775                 }
776         }
777         vm_reserv_object_unlock(object);
778
779         /*
780          * Would the last new reservation extend past the end of the object?
781          */
782         if (first + maxpages > object->size) {
783                 /*
784                  * Don't allocate the last new reservation if the object is a
785                  * vnode or backed by another object that is a vnode. 
786                  */
787                 if (object->type == OBJT_VNODE ||
788                     (object->backing_object != NULL &&
789                     object->backing_object->type == OBJT_VNODE)) {
790                         if (maxpages == VM_LEVEL_0_NPAGES)
791                                 return (NULL);
792                         allocpages = minpages;
793                 }
794                 /* Speculate that the object may grow. */
795         }
796
797         /*
798          * Allocate the physical pages.  The alignment and boundary specified
799          * for this allocation may be different from the alignment and
800          * boundary specified for the requested pages.  For instance, the
801          * specified index may not be the first page within the first new
802          * reservation.
803          */
804         m = NULL;
805         vmd = VM_DOMAIN(domain);
806         if (vm_domain_allocate(vmd, req, npages)) {
807                 vm_domain_free_lock(vmd);
808                 m = vm_phys_alloc_contig(domain, allocpages, low, high,
809                     ulmax(alignment, VM_LEVEL_0_SIZE),
810                     boundary > VM_LEVEL_0_SIZE ? boundary : 0);
811                 vm_domain_free_unlock(vmd);
812                 if (m == NULL) {
813                         vm_domain_freecnt_inc(vmd, npages);
814                         return (NULL);
815                 }
816         } else
817                 return (NULL);
818         KASSERT(vm_phys_domain(m) == domain,
819             ("vm_reserv_alloc_contig: Page domain does not match requested."));
820
821         /*
822          * The allocated physical pages always begin at a reservation
823          * boundary, but they do not always end at a reservation boundary.
824          * Initialize every reservation that is completely covered by the
825          * allocated physical pages.
826          */
827         m_ret = NULL;
828         index = VM_RESERV_INDEX(object, pindex);
829         do {
830                 rv = vm_reserv_from_page(m);
831                 KASSERT(rv->pages == m,
832                     ("vm_reserv_alloc_contig: reserv %p's pages is corrupted",
833                     rv));
834                 vm_reserv_lock(rv);
835                 vm_reserv_insert(rv, object, first);
836                 n = ulmin(VM_LEVEL_0_NPAGES - index, npages);
837                 for (i = 0; i < n; i++)
838                         vm_reserv_populate(rv, index + i);
839                 npages -= n;
840                 if (m_ret == NULL) {
841                         m_ret = &rv->pages[index];
842                         index = 0;
843                 }
844                 vm_reserv_unlock(rv);
845                 m += VM_LEVEL_0_NPAGES;
846                 first += VM_LEVEL_0_NPAGES;
847                 allocpages -= VM_LEVEL_0_NPAGES;
848         } while (allocpages >= VM_LEVEL_0_NPAGES);
849         return (m_ret);
850 }
851
852 /*
853  * Attempts to extend an existing reservation and allocate the page to the
854  * object.
855  *
856  * The page "mpred" must immediately precede the offset "pindex" within the
857  * specified object.
858  *
859  * The object must be locked.
860  */
861 vm_page_t
862 vm_reserv_extend(int req, vm_object_t object, vm_pindex_t pindex, int domain,
863     vm_page_t mpred)
864 {
865         struct vm_domain *vmd;
866         vm_page_t m, msucc;
867         vm_reserv_t rv;
868         int index;
869
870         VM_OBJECT_ASSERT_WLOCKED(object);
871
872         /*
873          * Could a reservation currently exist?
874          */
875         if (pindex < VM_RESERV_INDEX(object, pindex) ||
876             pindex >= object->size || object->resident_page_count == 0)
877                 return (NULL);
878
879         /*
880          * Look for an existing reservation.
881          */
882         rv = vm_reserv_from_object(object, pindex, mpred, &msucc);
883         if (rv == NULL)
884                 return (NULL);
885
886         KASSERT(object != kernel_object || rv->domain == domain,
887             ("vm_reserv_extend: Domain mismatch from reservation."));
888         domain = rv->domain;
889         vmd = VM_DOMAIN(domain);
890         index = VM_RESERV_INDEX(object, pindex);
891         m = &rv->pages[index];
892         vm_reserv_lock(rv);
893         /* Handle reclaim race. */
894         if (rv->object != object ||
895             /* Handle vm_page_rename(m, new_object, ...). */
896             popmap_is_set(rv->popmap, index)) {
897                 m = NULL;
898                 goto out;
899         }
900         if (vm_domain_allocate(vmd, req, 1) == 0)
901                 m = NULL;
902         else
903                 vm_reserv_populate(rv, index);
904 out:
905         vm_reserv_unlock(rv);
906
907         return (m);
908 }
909
910 /*
911  * Attempts to allocate a new reservation for the object, and allocates a
912  * page from that reservation.  Callers should first invoke vm_reserv_extend()
913  * to attempt an allocation from an existing reservation.
914  *
915  * The page "mpred" must immediately precede the offset "pindex" within the
916  * specified object.
917  *
918  * The object and free page queue must be locked.
919  */
920 vm_page_t
921 vm_reserv_alloc_page(int req, vm_object_t object, vm_pindex_t pindex, int domain,
922     vm_page_t mpred)
923 {
924         struct vm_domain *vmd;
925         vm_page_t m, msucc;
926         vm_pindex_t first, leftcap, rightcap;
927         vm_reserv_t rv;
928         int index;
929
930         VM_OBJECT_ASSERT_WLOCKED(object);
931
932         /*
933          * Is a reservation fundamentally impossible?
934          */
935         if (pindex < VM_RESERV_INDEX(object, pindex) ||
936             pindex >= object->size)
937                 return (NULL);
938
939         /*
940          * Callers should've extended an existing reservation prior to
941          * calling this function.  If a reservation exists it is
942          * incompatible with the allocation.
943          */
944         rv = vm_reserv_from_object(object, pindex, mpred, &msucc);
945         if (rv != NULL)
946                 return (NULL);
947
948         /*
949          * Could a reservation fit between the first index to the left that
950          * can be used and the first index to the right that cannot be used?
951          *
952          * We must synchronize with the reserv object lock to protect the
953          * pindex/object of the resulting reservations against rename while
954          * we are inspecting.
955          */
956         first = pindex - VM_RESERV_INDEX(object, pindex);
957         vm_reserv_object_lock(object);
958         if (mpred != NULL) {
959                 if ((rv = vm_reserv_from_page(mpred))->object != object)
960                         leftcap = mpred->pindex + 1;
961                 else
962                         leftcap = rv->pindex + VM_LEVEL_0_NPAGES;
963                 if (leftcap > first) {
964                         vm_reserv_object_unlock(object);
965                         return (NULL);
966                 }
967         }
968         if (msucc != NULL) {
969                 if ((rv = vm_reserv_from_page(msucc))->object != object)
970                         rightcap = msucc->pindex;
971                 else
972                         rightcap = rv->pindex;
973                 if (first + VM_LEVEL_0_NPAGES > rightcap) {
974                         vm_reserv_object_unlock(object);
975                         return (NULL);
976                 }
977         }
978         vm_reserv_object_unlock(object);
979
980         /*
981          * Would a new reservation extend past the end of the object? 
982          */
983         if (first + VM_LEVEL_0_NPAGES > object->size) {
984                 /*
985                  * Don't allocate a new reservation if the object is a vnode or
986                  * backed by another object that is a vnode. 
987                  */
988                 if (object->type == OBJT_VNODE ||
989                     (object->backing_object != NULL &&
990                     object->backing_object->type == OBJT_VNODE))
991                         return (NULL);
992                 /* Speculate that the object may grow. */
993         }
994
995         /*
996          * Allocate and populate the new reservation.
997          */
998         m = NULL;
999         vmd = VM_DOMAIN(domain);
1000         if (vm_domain_allocate(vmd, req, 1)) {
1001                 vm_domain_free_lock(vmd);
1002                 m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT,
1003                     VM_LEVEL_0_ORDER);
1004                 vm_domain_free_unlock(vmd);
1005                 if (m == NULL) {
1006                         vm_domain_freecnt_inc(vmd, 1);
1007                         return (NULL);
1008                 }
1009         } else
1010                 return (NULL);
1011         rv = vm_reserv_from_page(m);
1012         vm_reserv_lock(rv);
1013         KASSERT(rv->pages == m,
1014             ("vm_reserv_alloc_page: reserv %p's pages is corrupted", rv));
1015         vm_reserv_insert(rv, object, first);
1016         index = VM_RESERV_INDEX(object, pindex);
1017         vm_reserv_populate(rv, index);
1018         vm_reserv_unlock(rv);
1019
1020         return (&rv->pages[index]);
1021 }
1022
1023 /*
1024  * Breaks the given reservation.  All free pages in the reservation
1025  * are returned to the physical memory allocator.  The reservation's
1026  * population count and map are reset to their initial state.
1027  *
1028  * The given reservation must not be in the partially populated reservation
1029  * queue.  The free page queue lock must be held.
1030  */
1031 static void
1032 vm_reserv_break(vm_reserv_t rv)
1033 {
1034         int begin_zeroes, hi, i, lo;
1035
1036         vm_reserv_assert_locked(rv);
1037         CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
1038             __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
1039         vm_reserv_remove(rv);
1040         rv->pages->psind = 0;
1041         i = hi = 0;
1042         do {
1043                 /* Find the next 0 bit.  Any previous 0 bits are < "hi". */
1044                 lo = ffsl(~(((1UL << hi) - 1) | rv->popmap[i]));
1045                 if (lo == 0) {
1046                         /* Redundantly clears bits < "hi". */
1047                         rv->popmap[i] = 0;
1048                         rv->popcnt -= NBPOPMAP - hi;
1049                         while (++i < NPOPMAP) {
1050                                 lo = ffsl(~rv->popmap[i]);
1051                                 if (lo == 0) {
1052                                         rv->popmap[i] = 0;
1053                                         rv->popcnt -= NBPOPMAP;
1054                                 } else
1055                                         break;
1056                         }
1057                         if (i == NPOPMAP)
1058                                 break;
1059                         hi = 0;
1060                 }
1061                 KASSERT(lo > 0, ("vm_reserv_break: lo is %d", lo));
1062                 /* Convert from ffsl() to ordinary bit numbering. */
1063                 lo--;
1064                 if (lo > 0) {
1065                         /* Redundantly clears bits < "hi". */
1066                         rv->popmap[i] &= ~((1UL << lo) - 1);
1067                         rv->popcnt -= lo - hi;
1068                 }
1069                 begin_zeroes = NBPOPMAP * i + lo;
1070                 /* Find the next 1 bit. */
1071                 do
1072                         hi = ffsl(rv->popmap[i]);
1073                 while (hi == 0 && ++i < NPOPMAP);
1074                 if (i != NPOPMAP)
1075                         /* Convert from ffsl() to ordinary bit numbering. */
1076                         hi--;
1077                 vm_domain_free_lock(VM_DOMAIN(rv->domain));
1078                 vm_phys_free_contig(&rv->pages[begin_zeroes], NBPOPMAP * i +
1079                     hi - begin_zeroes);
1080                 vm_domain_free_unlock(VM_DOMAIN(rv->domain));
1081         } while (i < NPOPMAP);
1082         KASSERT(rv->popcnt == 0,
1083             ("vm_reserv_break: reserv %p's popcnt is corrupted", rv));
1084         counter_u64_add(vm_reserv_broken, 1);
1085 }
1086
1087 /*
1088  * Breaks all reservations belonging to the given object.
1089  */
1090 void
1091 vm_reserv_break_all(vm_object_t object)
1092 {
1093         vm_reserv_t rv;
1094
1095         /*
1096          * This access of object->rvq is unsynchronized so that the
1097          * object rvq lock can nest after the domain_free lock.  We
1098          * must check for races in the results.  However, the object
1099          * lock prevents new additions, so we are guaranteed that when
1100          * it returns NULL the object is properly empty.
1101          */
1102         while ((rv = LIST_FIRST(&object->rvq)) != NULL) {
1103                 vm_reserv_lock(rv);
1104                 /* Reclaim race. */
1105                 if (rv->object != object) {
1106                         vm_reserv_unlock(rv);
1107                         continue;
1108                 }
1109                 vm_reserv_domain_lock(rv->domain);
1110                 if (rv->inpartpopq) {
1111                         TAILQ_REMOVE(&vm_rvq_partpop[rv->domain], rv, partpopq);
1112                         rv->inpartpopq = FALSE;
1113                 }
1114                 vm_reserv_domain_unlock(rv->domain);
1115                 vm_reserv_break(rv);
1116                 vm_reserv_unlock(rv);
1117         }
1118 }
1119
1120 /*
1121  * Frees the given page if it belongs to a reservation.  Returns TRUE if the
1122  * page is freed and FALSE otherwise.
1123  *
1124  * The free page queue lock must be held.
1125  */
1126 boolean_t
1127 vm_reserv_free_page(vm_page_t m)
1128 {
1129         vm_reserv_t rv;
1130         boolean_t ret;
1131
1132         rv = vm_reserv_from_page(m);
1133         if (rv->object == NULL)
1134                 return (FALSE);
1135         vm_reserv_lock(rv);
1136         /* Re-validate after lock. */
1137         if (rv->object != NULL) {
1138                 vm_reserv_depopulate(rv, m - rv->pages);
1139                 ret = TRUE;
1140         } else
1141                 ret = FALSE;
1142         vm_reserv_unlock(rv);
1143
1144         return (ret);
1145 }
1146
1147 /*
1148  * Initializes the reservation management system.  Specifically, initializes
1149  * the reservation array.
1150  *
1151  * Requires that vm_page_array and first_page are initialized!
1152  */
1153 void
1154 vm_reserv_init(void)
1155 {
1156         vm_paddr_t paddr;
1157         struct vm_phys_seg *seg;
1158         struct vm_reserv *rv;
1159         int i, segind;
1160
1161         /*
1162          * Initialize the reservation array.  Specifically, initialize the
1163          * "pages" field for every element that has an underlying superpage.
1164          */
1165         for (segind = 0; segind < vm_phys_nsegs; segind++) {
1166                 seg = &vm_phys_segs[segind];
1167                 paddr = roundup2(seg->start, VM_LEVEL_0_SIZE);
1168                 while (paddr + VM_LEVEL_0_SIZE > paddr && paddr +
1169                     VM_LEVEL_0_SIZE <= seg->end) {
1170                         rv = &vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT];
1171                         rv->pages = PHYS_TO_VM_PAGE(paddr);
1172                         rv->domain = seg->domain;
1173                         mtx_init(&rv->lock, "vm reserv", NULL, MTX_DEF);
1174                         paddr += VM_LEVEL_0_SIZE;
1175                 }
1176         }
1177         for (i = 0; i < MAXMEMDOM; i++) {
1178                 mtx_init(&vm_reserv_domain_locks[i], "VM reserv domain", NULL,
1179                     MTX_DEF);
1180                 TAILQ_INIT(&vm_rvq_partpop[i]);
1181         }
1182
1183         for (i = 0; i < VM_RESERV_OBJ_LOCK_COUNT; i++)
1184                 mtx_init(&vm_reserv_object_mtx[i], "resv obj lock", NULL,
1185                     MTX_DEF);
1186 }
1187
1188 /*
1189  * Returns true if the given page belongs to a reservation and that page is
1190  * free.  Otherwise, returns false.
1191  */
1192 bool
1193 vm_reserv_is_page_free(vm_page_t m)
1194 {
1195         vm_reserv_t rv;
1196
1197         rv = vm_reserv_from_page(m);
1198         if (rv->object == NULL)
1199                 return (false);
1200         return (popmap_is_clear(rv->popmap, m - rv->pages));
1201 }
1202
1203 /*
1204  * If the given page belongs to a reservation, returns the level of that
1205  * reservation.  Otherwise, returns -1.
1206  */
1207 int
1208 vm_reserv_level(vm_page_t m)
1209 {
1210         vm_reserv_t rv;
1211
1212         rv = vm_reserv_from_page(m);
1213         return (rv->object != NULL ? 0 : -1);
1214 }
1215
1216 /*
1217  * Returns a reservation level if the given page belongs to a fully populated
1218  * reservation and -1 otherwise.
1219  */
1220 int
1221 vm_reserv_level_iffullpop(vm_page_t m)
1222 {
1223         vm_reserv_t rv;
1224
1225         rv = vm_reserv_from_page(m);
1226         return (rv->popcnt == VM_LEVEL_0_NPAGES ? 0 : -1);
1227 }
1228
1229 /*
1230  * Breaks the given partially populated reservation, releasing its free pages
1231  * to the physical memory allocator.
1232  *
1233  * The free page queue lock must be held.
1234  */
1235 static void
1236 vm_reserv_reclaim(vm_reserv_t rv)
1237 {
1238
1239         vm_reserv_assert_locked(rv);
1240         CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
1241             __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
1242         vm_reserv_domain_lock(rv->domain);
1243         KASSERT(rv->inpartpopq,
1244             ("vm_reserv_reclaim: reserv %p's inpartpopq is FALSE", rv));
1245         KASSERT(rv->domain < vm_ndomains,
1246             ("vm_reserv_reclaim: reserv %p's domain is corrupted %d",
1247             rv, rv->domain));
1248         TAILQ_REMOVE(&vm_rvq_partpop[rv->domain], rv, partpopq);
1249         rv->inpartpopq = FALSE;
1250         vm_reserv_domain_unlock(rv->domain);
1251         vm_reserv_break(rv);
1252         counter_u64_add(vm_reserv_reclaimed, 1);
1253 }
1254
1255 /*
1256  * Breaks the reservation at the head of the partially populated reservation
1257  * queue, releasing its free pages to the physical memory allocator.  Returns
1258  * TRUE if a reservation is broken and FALSE otherwise.
1259  *
1260  * The free page queue lock must be held.
1261  */
1262 boolean_t
1263 vm_reserv_reclaim_inactive(int domain)
1264 {
1265         vm_reserv_t rv;
1266
1267         while ((rv = TAILQ_FIRST(&vm_rvq_partpop[domain])) != NULL) {
1268                 vm_reserv_lock(rv);
1269                 if (rv != TAILQ_FIRST(&vm_rvq_partpop[domain])) {
1270                         vm_reserv_unlock(rv);
1271                         continue;
1272                 }
1273                 vm_reserv_reclaim(rv);
1274                 vm_reserv_unlock(rv);
1275                 return (TRUE);
1276         }
1277         return (FALSE);
1278 }
1279
1280 /*
1281  * Searches the partially populated reservation queue for the least recently
1282  * changed reservation with free pages that satisfy the given request for
1283  * contiguous physical memory.  If a satisfactory reservation is found, it is
1284  * broken.  Returns TRUE if a reservation is broken and FALSE otherwise.
1285  *
1286  * The free page queue lock must be held.
1287  */
1288 boolean_t
1289 vm_reserv_reclaim_contig(int domain, u_long npages, vm_paddr_t low,
1290     vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
1291 {
1292         vm_paddr_t pa, size;
1293         vm_reserv_t rv, rvn;
1294         int hi, i, lo, low_index, next_free;
1295
1296         if (npages > VM_LEVEL_0_NPAGES - 1)
1297                 return (FALSE);
1298         size = npages << PAGE_SHIFT;
1299         vm_reserv_domain_lock(domain);
1300 again:
1301         for (rv = TAILQ_FIRST(&vm_rvq_partpop[domain]); rv != NULL; rv = rvn) {
1302                 rvn = TAILQ_NEXT(rv, partpopq);
1303                 pa = VM_PAGE_TO_PHYS(&rv->pages[VM_LEVEL_0_NPAGES - 1]);
1304                 if (pa + PAGE_SIZE - size < low) {
1305                         /* This entire reservation is too low; go to next. */
1306                         continue;
1307                 }
1308                 pa = VM_PAGE_TO_PHYS(&rv->pages[0]);
1309                 if (pa + size > high) {
1310                         /* This entire reservation is too high; go to next. */
1311                         continue;
1312                 }
1313                 if (vm_reserv_trylock(rv) == 0) {
1314                         vm_reserv_domain_unlock(domain);
1315                         vm_reserv_lock(rv);
1316                         if (!rv->inpartpopq) {
1317                                 vm_reserv_domain_lock(domain);
1318                                 if (!rvn->inpartpopq)
1319                                         goto again;
1320                                 continue;
1321                         }
1322                 } else
1323                         vm_reserv_domain_unlock(domain);
1324                 if (pa < low) {
1325                         /* Start the search for free pages at "low". */
1326                         low_index = (low + PAGE_MASK - pa) >> PAGE_SHIFT;
1327                         i = low_index / NBPOPMAP;
1328                         hi = low_index % NBPOPMAP;
1329                 } else
1330                         i = hi = 0;
1331                 do {
1332                         /* Find the next free page. */
1333                         lo = ffsl(~(((1UL << hi) - 1) | rv->popmap[i]));
1334                         while (lo == 0 && ++i < NPOPMAP)
1335                                 lo = ffsl(~rv->popmap[i]);
1336                         if (i == NPOPMAP)
1337                                 break;
1338                         /* Convert from ffsl() to ordinary bit numbering. */
1339                         lo--;
1340                         next_free = NBPOPMAP * i + lo;
1341                         pa = VM_PAGE_TO_PHYS(&rv->pages[next_free]);
1342                         KASSERT(pa >= low,
1343                             ("vm_reserv_reclaim_contig: pa is too low"));
1344                         if (pa + size > high) {
1345                                 /* The rest of this reservation is too high. */
1346                                 break;
1347                         } else if ((pa & (alignment - 1)) != 0 ||
1348                             ((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0) {
1349                                 /*
1350                                  * The current page doesn't meet the alignment
1351                                  * and/or boundary requirements.  Continue
1352                                  * searching this reservation until the rest
1353                                  * of its free pages are either excluded or
1354                                  * exhausted.
1355                                  */
1356                                 hi = lo + 1;
1357                                 if (hi >= NBPOPMAP) {
1358                                         hi = 0;
1359                                         i++;
1360                                 }
1361                                 continue;
1362                         }
1363                         /* Find the next used page. */
1364                         hi = ffsl(rv->popmap[i] & ~((1UL << lo) - 1));
1365                         while (hi == 0 && ++i < NPOPMAP) {
1366                                 if ((NBPOPMAP * i - next_free) * PAGE_SIZE >=
1367                                     size) {
1368                                         vm_reserv_reclaim(rv);
1369                                         vm_reserv_unlock(rv);
1370                                         return (TRUE);
1371                                 }
1372                                 hi = ffsl(rv->popmap[i]);
1373                         }
1374                         /* Convert from ffsl() to ordinary bit numbering. */
1375                         if (i != NPOPMAP)
1376                                 hi--;
1377                         if ((NBPOPMAP * i + hi - next_free) * PAGE_SIZE >=
1378                             size) {
1379                                 vm_reserv_reclaim(rv);
1380                                 vm_reserv_unlock(rv);
1381                                 return (TRUE);
1382                         }
1383                 } while (i < NPOPMAP);
1384                 vm_reserv_unlock(rv);
1385                 vm_reserv_domain_lock(domain);
1386                 if (rvn != NULL && !rvn->inpartpopq)
1387                         goto again;
1388         }
1389         vm_reserv_domain_unlock(domain);
1390         return (FALSE);
1391 }
1392
1393 /*
1394  * Transfers the reservation underlying the given page to a new object.
1395  *
1396  * The object must be locked.
1397  */
1398 void
1399 vm_reserv_rename(vm_page_t m, vm_object_t new_object, vm_object_t old_object,
1400     vm_pindex_t old_object_offset)
1401 {
1402         vm_reserv_t rv;
1403
1404         VM_OBJECT_ASSERT_WLOCKED(new_object);
1405         rv = vm_reserv_from_page(m);
1406         if (rv->object == old_object) {
1407                 vm_reserv_lock(rv);
1408                 CTR6(KTR_VM,
1409                     "%s: rv %p object %p new %p popcnt %d inpartpop %d",
1410                     __FUNCTION__, rv, rv->object, new_object, rv->popcnt,
1411                     rv->inpartpopq);
1412                 if (rv->object == old_object) {
1413                         vm_reserv_object_lock(old_object);
1414                         rv->object = NULL;
1415                         LIST_REMOVE(rv, objq);
1416                         vm_reserv_object_unlock(old_object);
1417                         vm_reserv_object_lock(new_object);
1418                         rv->object = new_object;
1419                         rv->pindex -= old_object_offset;
1420                         LIST_INSERT_HEAD(&new_object->rvq, rv, objq);
1421                         vm_reserv_object_unlock(new_object);
1422                 }
1423                 vm_reserv_unlock(rv);
1424         }
1425 }
1426
1427 /*
1428  * Returns the size (in bytes) of a reservation of the specified level.
1429  */
1430 int
1431 vm_reserv_size(int level)
1432 {
1433
1434         switch (level) {
1435         case 0:
1436                 return (VM_LEVEL_0_SIZE);
1437         case -1:
1438                 return (PAGE_SIZE);
1439         default:
1440                 return (0);
1441         }
1442 }
1443
1444 /*
1445  * Allocates the virtual and physical memory required by the reservation
1446  * management system's data structures, in particular, the reservation array.
1447  */
1448 vm_paddr_t
1449 vm_reserv_startup(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t high_water)
1450 {
1451         vm_paddr_t new_end;
1452         size_t size;
1453
1454         /*
1455          * Calculate the size (in bytes) of the reservation array.  Round up
1456          * from "high_water" because every small page is mapped to an element
1457          * in the reservation array based on its physical address.  Thus, the
1458          * number of elements in the reservation array can be greater than the
1459          * number of superpages. 
1460          */
1461         size = howmany(high_water, VM_LEVEL_0_SIZE) * sizeof(struct vm_reserv);
1462
1463         /*
1464          * Allocate and map the physical memory for the reservation array.  The
1465          * next available virtual address is returned by reference.
1466          */
1467         new_end = end - round_page(size);
1468         vm_reserv_array = (void *)(uintptr_t)pmap_map(vaddr, new_end, end,
1469             VM_PROT_READ | VM_PROT_WRITE);
1470         bzero(vm_reserv_array, size);
1471
1472         /*
1473          * Return the next available physical address.
1474          */
1475         return (new_end);
1476 }
1477
1478 /*
1479  * Initializes the reservation management system.  Specifically, initializes
1480  * the reservation counters.
1481  */
1482 static void
1483 vm_reserv_counter_init(void *unused)
1484 {
1485
1486         vm_reserv_freed = counter_u64_alloc(M_WAITOK); 
1487         vm_reserv_broken = counter_u64_alloc(M_WAITOK); 
1488         vm_reserv_reclaimed = counter_u64_alloc(M_WAITOK); 
1489 }
1490 SYSINIT(vm_reserv_counter_init, SI_SUB_CPU, SI_ORDER_ANY,
1491     vm_reserv_counter_init, NULL);
1492
1493 /*
1494  * Returns the superpage containing the given page.
1495  */
1496 vm_page_t
1497 vm_reserv_to_superpage(vm_page_t m)
1498 {
1499         vm_reserv_t rv;
1500
1501         VM_OBJECT_ASSERT_LOCKED(m->object);
1502         rv = vm_reserv_from_page(m);
1503         if (rv->object == m->object && rv->popcnt == VM_LEVEL_0_NPAGES)
1504                 m = rv->pages;
1505         else
1506                 m = NULL;
1507
1508         return (m);
1509 }
1510
1511 #endif  /* VM_NRESERVLEVEL > 0 */