]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_reserv.c
Merge from upstream at 4189ef5d from https://github.com/onetrueawk/awk.git
[FreeBSD/FreeBSD.git] / sys / vm / vm_reserv.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2002-2006 Rice University
5  * Copyright (c) 2007-2011 Alan L. Cox <alc@cs.rice.edu>
6  * All rights reserved.
7  *
8  * This software was developed for the FreeBSD Project by Alan L. Cox,
9  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
24  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
27  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
30  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 /*
35  *      Superpage reservation management module
36  *
37  * Any external functions defined by this module are only to be used by the
38  * virtual memory system.
39  */
40
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43
44 #include "opt_vm.h"
45
46 #include <sys/param.h>
47 #include <sys/kernel.h>
48 #include <sys/lock.h>
49 #include <sys/malloc.h>
50 #include <sys/mutex.h>
51 #include <sys/queue.h>
52 #include <sys/rwlock.h>
53 #include <sys/sbuf.h>
54 #include <sys/sysctl.h>
55 #include <sys/systm.h>
56 #include <sys/counter.h>
57 #include <sys/ktr.h>
58 #include <sys/vmmeter.h>
59 #include <sys/smp.h>
60
61 #include <vm/vm.h>
62 #include <vm/vm_param.h>
63 #include <vm/vm_object.h>
64 #include <vm/vm_page.h>
65 #include <vm/vm_pageout.h>
66 #include <vm/vm_phys.h>
67 #include <vm/vm_pagequeue.h>
68 #include <vm/vm_radix.h>
69 #include <vm/vm_reserv.h>
70
71 /*
72  * The reservation system supports the speculative allocation of large physical
73  * pages ("superpages").  Speculative allocation enables the fully automatic
74  * utilization of superpages by the virtual memory system.  In other words, no
75  * programmatic directives are required to use superpages.
76  */
77
78 #if VM_NRESERVLEVEL > 0
79
80 #ifndef VM_LEVEL_0_ORDER_MAX
81 #define VM_LEVEL_0_ORDER_MAX    VM_LEVEL_0_ORDER
82 #endif
83
84 /*
85  * The number of small pages that are contained in a level 0 reservation
86  */
87 #define VM_LEVEL_0_NPAGES       (1 << VM_LEVEL_0_ORDER)
88 #define VM_LEVEL_0_NPAGES_MAX   (1 << VM_LEVEL_0_ORDER_MAX)
89
90 /*
91  * The number of bits by which a physical address is shifted to obtain the
92  * reservation number
93  */
94 #define VM_LEVEL_0_SHIFT        (VM_LEVEL_0_ORDER + PAGE_SHIFT)
95
96 /*
97  * The size of a level 0 reservation in bytes
98  */
99 #define VM_LEVEL_0_SIZE         (1 << VM_LEVEL_0_SHIFT)
100
101 /*
102  * Computes the index of the small page underlying the given (object, pindex)
103  * within the reservation's array of small pages.
104  */
105 #define VM_RESERV_INDEX(object, pindex) \
106     (((object)->pg_color + (pindex)) & (VM_LEVEL_0_NPAGES - 1))
107
108 /*
109  * The size of a population map entry
110  */
111 typedef u_long          popmap_t;
112
113 /*
114  * The number of bits in a population map entry
115  */
116 #define NBPOPMAP        (NBBY * sizeof(popmap_t))
117
118 /*
119  * The number of population map entries in a reservation
120  */
121 #define NPOPMAP         howmany(VM_LEVEL_0_NPAGES, NBPOPMAP)
122 #define NPOPMAP_MAX     howmany(VM_LEVEL_0_NPAGES_MAX, NBPOPMAP)
123
124 /*
125  * Number of elapsed ticks before we update the LRU queue position.  Used
126  * to reduce contention and churn on the list.
127  */
128 #define PARTPOPSLOP     1
129
130 /*
131  * Clear a bit in the population map.
132  */
133 static __inline void
134 popmap_clear(popmap_t popmap[], int i)
135 {
136
137         popmap[i / NBPOPMAP] &= ~(1UL << (i % NBPOPMAP));
138 }
139
140 /*
141  * Set a bit in the population map.
142  */
143 static __inline void
144 popmap_set(popmap_t popmap[], int i)
145 {
146
147         popmap[i / NBPOPMAP] |= 1UL << (i % NBPOPMAP);
148 }
149
150 /*
151  * Is a bit in the population map clear?
152  */
153 static __inline boolean_t
154 popmap_is_clear(popmap_t popmap[], int i)
155 {
156
157         return ((popmap[i / NBPOPMAP] & (1UL << (i % NBPOPMAP))) == 0);
158 }
159
160 /*
161  * Is a bit in the population map set?
162  */
163 static __inline boolean_t
164 popmap_is_set(popmap_t popmap[], int i)
165 {
166
167         return ((popmap[i / NBPOPMAP] & (1UL << (i % NBPOPMAP))) != 0);
168 }
169
170 /*
171  * The reservation structure
172  *
173  * A reservation structure is constructed whenever a large physical page is
174  * speculatively allocated to an object.  The reservation provides the small
175  * physical pages for the range [pindex, pindex + VM_LEVEL_0_NPAGES) of offsets
176  * within that object.  The reservation's "popcnt" tracks the number of these
177  * small physical pages that are in use at any given time.  When and if the
178  * reservation is not fully utilized, it appears in the queue of partially
179  * populated reservations.  The reservation always appears on the containing
180  * object's list of reservations.
181  *
182  * A partially populated reservation can be broken and reclaimed at any time.
183  *
184  * r - vm_reserv_lock
185  * d - vm_reserv_domain_lock
186  * o - vm_reserv_object_lock
187  * c - constant after boot
188  */
189 struct vm_reserv {
190         struct mtx      lock;                   /* reservation lock. */
191         TAILQ_ENTRY(vm_reserv) partpopq;        /* (d) per-domain queue. */
192         LIST_ENTRY(vm_reserv) objq;             /* (o, r) object queue */
193         vm_object_t     object;                 /* (o, r) containing object */
194         vm_pindex_t     pindex;                 /* (o, r) offset in object */
195         vm_page_t       pages;                  /* (c) first page  */
196         uint16_t        domain;                 /* (c) NUMA domain. */
197         uint16_t        popcnt;                 /* (r) # of pages in use */
198         int             lasttick;               /* (r) last pop update tick. */
199         char            inpartpopq;             /* (d) */
200         popmap_t        popmap[NPOPMAP_MAX];    /* (r) bit vector, used pages */
201 };
202
203 #define vm_reserv_lockptr(rv)           (&(rv)->lock)
204 #define vm_reserv_assert_locked(rv)                                     \
205             mtx_assert(vm_reserv_lockptr(rv), MA_OWNED)
206 #define vm_reserv_lock(rv)              mtx_lock(vm_reserv_lockptr(rv))
207 #define vm_reserv_trylock(rv)           mtx_trylock(vm_reserv_lockptr(rv))
208 #define vm_reserv_unlock(rv)            mtx_unlock(vm_reserv_lockptr(rv))
209
210 static struct mtx_padalign vm_reserv_domain_locks[MAXMEMDOM];
211
212 #define vm_reserv_domain_lockptr(d)     &vm_reserv_domain_locks[(d)]
213 #define vm_reserv_domain_lock(d)        mtx_lock(vm_reserv_domain_lockptr(d))
214 #define vm_reserv_domain_unlock(d)      mtx_unlock(vm_reserv_domain_lockptr(d))
215
216 /*
217  * The reservation array
218  *
219  * This array is analoguous in function to vm_page_array.  It differs in the
220  * respect that it may contain a greater number of useful reservation
221  * structures than there are (physical) superpages.  These "invalid"
222  * reservation structures exist to trade-off space for time in the
223  * implementation of vm_reserv_from_page().  Invalid reservation structures are
224  * distinguishable from "valid" reservation structures by inspecting the
225  * reservation's "pages" field.  Invalid reservation structures have a NULL
226  * "pages" field.
227  *
228  * vm_reserv_from_page() maps a small (physical) page to an element of this
229  * array by computing a physical reservation number from the page's physical
230  * address.  The physical reservation number is used as the array index.
231  *
232  * An "active" reservation is a valid reservation structure that has a non-NULL
233  * "object" field and a non-zero "popcnt" field.  In other words, every active
234  * reservation belongs to a particular object.  Moreover, every active
235  * reservation has an entry in the containing object's list of reservations.  
236  */
237 static vm_reserv_t vm_reserv_array;
238
239 /*
240  * The partially populated reservation queue
241  *
242  * This queue enables the fast recovery of an unused free small page from a
243  * partially populated reservation.  The reservation at the head of this queue
244  * is the least recently changed, partially populated reservation.
245  *
246  * Access to this queue is synchronized by the free page queue lock.
247  */
248 static TAILQ_HEAD(, vm_reserv) vm_rvq_partpop[MAXMEMDOM];
249
250 static SYSCTL_NODE(_vm, OID_AUTO, reserv, CTLFLAG_RD, 0, "Reservation Info");
251
252 static counter_u64_t vm_reserv_broken = EARLY_COUNTER;
253 SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, broken, CTLFLAG_RD,
254     &vm_reserv_broken, "Cumulative number of broken reservations");
255
256 static counter_u64_t vm_reserv_freed = EARLY_COUNTER;
257 SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, freed, CTLFLAG_RD,
258     &vm_reserv_freed, "Cumulative number of freed reservations");
259
260 static int sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS);
261
262 SYSCTL_PROC(_vm_reserv, OID_AUTO, fullpop, CTLTYPE_INT | CTLFLAG_RD, NULL, 0,
263     sysctl_vm_reserv_fullpop, "I", "Current number of full reservations");
264
265 static int sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS);
266
267 SYSCTL_OID(_vm_reserv, OID_AUTO, partpopq, CTLTYPE_STRING | CTLFLAG_RD, NULL, 0,
268     sysctl_vm_reserv_partpopq, "A", "Partially populated reservation queues");
269
270 static counter_u64_t vm_reserv_reclaimed = EARLY_COUNTER;
271 SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, reclaimed, CTLFLAG_RD,
272     &vm_reserv_reclaimed, "Cumulative number of reclaimed reservations");
273
274 /*
275  * The object lock pool is used to synchronize the rvq.  We can not use a
276  * pool mutex because it is required before malloc works.
277  *
278  * The "hash" function could be made faster without divide and modulo.
279  */
280 #define VM_RESERV_OBJ_LOCK_COUNT        MAXCPU
281
282 struct mtx_padalign vm_reserv_object_mtx[VM_RESERV_OBJ_LOCK_COUNT];
283
284 #define vm_reserv_object_lock_idx(object)                       \
285             (((uintptr_t)object / sizeof(*object)) % VM_RESERV_OBJ_LOCK_COUNT)
286 #define vm_reserv_object_lock_ptr(object)                       \
287             &vm_reserv_object_mtx[vm_reserv_object_lock_idx((object))]
288 #define vm_reserv_object_lock(object)                           \
289             mtx_lock(vm_reserv_object_lock_ptr((object)))
290 #define vm_reserv_object_unlock(object)                         \
291             mtx_unlock(vm_reserv_object_lock_ptr((object)))
292
293 static void             vm_reserv_break(vm_reserv_t rv);
294 static void             vm_reserv_depopulate(vm_reserv_t rv, int index);
295 static vm_reserv_t      vm_reserv_from_page(vm_page_t m);
296 static boolean_t        vm_reserv_has_pindex(vm_reserv_t rv,
297                             vm_pindex_t pindex);
298 static void             vm_reserv_populate(vm_reserv_t rv, int index);
299 static void             vm_reserv_reclaim(vm_reserv_t rv);
300
301 /*
302  * Returns the current number of full reservations.
303  *
304  * Since the number of full reservations is computed without acquiring the
305  * free page queue lock, the returned value may be inexact.
306  */
307 static int
308 sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS)
309 {
310         vm_paddr_t paddr;
311         struct vm_phys_seg *seg;
312         vm_reserv_t rv;
313         int fullpop, segind;
314
315         fullpop = 0;
316         for (segind = 0; segind < vm_phys_nsegs; segind++) {
317                 seg = &vm_phys_segs[segind];
318                 paddr = roundup2(seg->start, VM_LEVEL_0_SIZE);
319                 while (paddr + VM_LEVEL_0_SIZE <= seg->end) {
320                         rv = &vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT];
321                         fullpop += rv->popcnt == VM_LEVEL_0_NPAGES;
322                         paddr += VM_LEVEL_0_SIZE;
323                 }
324         }
325         return (sysctl_handle_int(oidp, &fullpop, 0, req));
326 }
327
328 /*
329  * Describes the current state of the partially populated reservation queue.
330  */
331 static int
332 sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS)
333 {
334         struct sbuf sbuf;
335         vm_reserv_t rv;
336         int counter, error, domain, level, unused_pages;
337
338         error = sysctl_wire_old_buffer(req, 0);
339         if (error != 0)
340                 return (error);
341         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
342         sbuf_printf(&sbuf, "\nDOMAIN    LEVEL     SIZE  NUMBER\n\n");
343         for (domain = 0; domain < vm_ndomains; domain++) {
344                 for (level = -1; level <= VM_NRESERVLEVEL - 2; level++) {
345                         counter = 0;
346                         unused_pages = 0;
347                         vm_reserv_domain_lock(domain);
348                         TAILQ_FOREACH(rv, &vm_rvq_partpop[domain], partpopq) {
349                                 counter++;
350                                 unused_pages += VM_LEVEL_0_NPAGES - rv->popcnt;
351                         }
352                         vm_reserv_domain_unlock(domain);
353                         sbuf_printf(&sbuf, "%6d, %7d, %6dK, %6d\n",
354                             domain, level,
355                             unused_pages * ((int)PAGE_SIZE / 1024), counter);
356                 }
357         }
358         error = sbuf_finish(&sbuf);
359         sbuf_delete(&sbuf);
360         return (error);
361 }
362
363 /*
364  * Remove a reservation from the object's objq.
365  */
366 static void
367 vm_reserv_remove(vm_reserv_t rv)
368 {
369         vm_object_t object;
370
371         vm_reserv_assert_locked(rv);
372         CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
373             __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
374         KASSERT(rv->object != NULL,
375             ("vm_reserv_remove: reserv %p is free", rv));
376         KASSERT(!rv->inpartpopq,
377             ("vm_reserv_remove: reserv %p's inpartpopq is TRUE", rv));
378         object = rv->object;
379         vm_reserv_object_lock(object);
380         LIST_REMOVE(rv, objq);
381         rv->object = NULL;
382         vm_reserv_object_unlock(object);
383 }
384
385 /*
386  * Insert a new reservation into the object's objq.
387  */
388 static void
389 vm_reserv_insert(vm_reserv_t rv, vm_object_t object, vm_pindex_t pindex)
390 {
391         int i;
392
393         vm_reserv_assert_locked(rv);
394         CTR6(KTR_VM,
395             "%s: rv %p(%p) object %p new %p popcnt %d",
396             __FUNCTION__, rv, rv->pages, rv->object, object,
397            rv->popcnt);
398         KASSERT(rv->object == NULL,
399             ("vm_reserv_insert: reserv %p isn't free", rv));
400         KASSERT(rv->popcnt == 0,
401             ("vm_reserv_insert: reserv %p's popcnt is corrupted", rv));
402         KASSERT(!rv->inpartpopq,
403             ("vm_reserv_insert: reserv %p's inpartpopq is TRUE", rv));
404         for (i = 0; i < NPOPMAP; i++)
405                 KASSERT(rv->popmap[i] == 0,
406                     ("vm_reserv_insert: reserv %p's popmap is corrupted", rv));
407         vm_reserv_object_lock(object);
408         rv->pindex = pindex;
409         rv->object = object;
410         rv->lasttick = ticks;
411         LIST_INSERT_HEAD(&object->rvq, rv, objq);
412         vm_reserv_object_unlock(object);
413 }
414
415 /*
416  * Reduces the given reservation's population count.  If the population count
417  * becomes zero, the reservation is destroyed.  Additionally, moves the
418  * reservation to the tail of the partially populated reservation queue if the
419  * population count is non-zero.
420  */
421 static void
422 vm_reserv_depopulate(vm_reserv_t rv, int index)
423 {
424         struct vm_domain *vmd;
425
426         vm_reserv_assert_locked(rv);
427         CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
428             __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
429         KASSERT(rv->object != NULL,
430             ("vm_reserv_depopulate: reserv %p is free", rv));
431         KASSERT(popmap_is_set(rv->popmap, index),
432             ("vm_reserv_depopulate: reserv %p's popmap[%d] is clear", rv,
433             index));
434         KASSERT(rv->popcnt > 0,
435             ("vm_reserv_depopulate: reserv %p's popcnt is corrupted", rv));
436         KASSERT(rv->domain < vm_ndomains,
437             ("vm_reserv_depopulate: reserv %p's domain is corrupted %d",
438             rv, rv->domain));
439         if (rv->popcnt == VM_LEVEL_0_NPAGES) {
440                 KASSERT(rv->pages->psind == 1,
441                     ("vm_reserv_depopulate: reserv %p is already demoted",
442                     rv));
443                 rv->pages->psind = 0;
444         }
445         popmap_clear(rv->popmap, index);
446         rv->popcnt--;
447         if ((unsigned)(ticks - rv->lasttick) >= PARTPOPSLOP ||
448             rv->popcnt == 0) {
449                 vm_reserv_domain_lock(rv->domain);
450                 if (rv->inpartpopq) {
451                         TAILQ_REMOVE(&vm_rvq_partpop[rv->domain], rv, partpopq);
452                         rv->inpartpopq = FALSE;
453                 }
454                 if (rv->popcnt != 0) {
455                         rv->inpartpopq = TRUE;
456                         TAILQ_INSERT_TAIL(&vm_rvq_partpop[rv->domain], rv, partpopq);
457                 }
458                 vm_reserv_domain_unlock(rv->domain);
459                 rv->lasttick = ticks;
460         }
461         vmd = VM_DOMAIN(rv->domain);
462         if (rv->popcnt == 0) {
463                 vm_reserv_remove(rv);
464                 vm_domain_free_lock(vmd);
465                 vm_phys_free_pages(rv->pages, VM_LEVEL_0_ORDER);
466                 vm_domain_free_unlock(vmd);
467                 counter_u64_add(vm_reserv_freed, 1);
468         }
469         vm_domain_freecnt_inc(vmd, 1);
470 }
471
472 /*
473  * Returns the reservation to which the given page might belong.
474  */
475 static __inline vm_reserv_t
476 vm_reserv_from_page(vm_page_t m)
477 {
478
479         return (&vm_reserv_array[VM_PAGE_TO_PHYS(m) >> VM_LEVEL_0_SHIFT]);
480 }
481
482 /*
483  * Returns an existing reservation or NULL and initialized successor pointer.
484  */
485 static vm_reserv_t
486 vm_reserv_from_object(vm_object_t object, vm_pindex_t pindex,
487     vm_page_t mpred, vm_page_t *msuccp)
488 {
489         vm_reserv_t rv;
490         vm_page_t msucc;
491
492         msucc = NULL;
493         if (mpred != NULL) {
494                 KASSERT(mpred->object == object,
495                     ("vm_reserv_from_object: object doesn't contain mpred"));
496                 KASSERT(mpred->pindex < pindex,
497                     ("vm_reserv_from_object: mpred doesn't precede pindex"));
498                 rv = vm_reserv_from_page(mpred);
499                 if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
500                         goto found;
501                 msucc = TAILQ_NEXT(mpred, listq);
502         } else
503                 msucc = TAILQ_FIRST(&object->memq);
504         if (msucc != NULL) {
505                 KASSERT(msucc->pindex > pindex,
506                     ("vm_reserv_from_object: msucc doesn't succeed pindex"));
507                 rv = vm_reserv_from_page(msucc);
508                 if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
509                         goto found;
510         }
511         rv = NULL;
512
513 found:
514         *msuccp = msucc;
515
516         return (rv);
517 }
518
519 /*
520  * Returns TRUE if the given reservation contains the given page index and
521  * FALSE otherwise.
522  */
523 static __inline boolean_t
524 vm_reserv_has_pindex(vm_reserv_t rv, vm_pindex_t pindex)
525 {
526
527         return (((pindex - rv->pindex) & ~(VM_LEVEL_0_NPAGES - 1)) == 0);
528 }
529
530 /*
531  * Increases the given reservation's population count.  Moves the reservation
532  * to the tail of the partially populated reservation queue.
533  *
534  * The free page queue must be locked.
535  */
536 static void
537 vm_reserv_populate(vm_reserv_t rv, int index)
538 {
539
540         vm_reserv_assert_locked(rv);
541         CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
542             __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
543         KASSERT(rv->object != NULL,
544             ("vm_reserv_populate: reserv %p is free", rv));
545         KASSERT(popmap_is_clear(rv->popmap, index),
546             ("vm_reserv_populate: reserv %p's popmap[%d] is set", rv,
547             index));
548         KASSERT(rv->popcnt < VM_LEVEL_0_NPAGES,
549             ("vm_reserv_populate: reserv %p is already full", rv));
550         KASSERT(rv->pages->psind == 0,
551             ("vm_reserv_populate: reserv %p is already promoted", rv));
552         KASSERT(rv->domain < vm_ndomains,
553             ("vm_reserv_populate: reserv %p's domain is corrupted %d",
554             rv, rv->domain));
555         popmap_set(rv->popmap, index);
556         rv->popcnt++;
557         if ((unsigned)(ticks - rv->lasttick) < PARTPOPSLOP &&
558             rv->inpartpopq && rv->popcnt != VM_LEVEL_0_NPAGES)
559                 return;
560         rv->lasttick = ticks;
561         vm_reserv_domain_lock(rv->domain);
562         if (rv->inpartpopq) {
563                 TAILQ_REMOVE(&vm_rvq_partpop[rv->domain], rv, partpopq);
564                 rv->inpartpopq = FALSE;
565         }
566         if (rv->popcnt < VM_LEVEL_0_NPAGES) {
567                 rv->inpartpopq = TRUE;
568                 TAILQ_INSERT_TAIL(&vm_rvq_partpop[rv->domain], rv, partpopq);
569         } else {
570                 KASSERT(rv->pages->psind == 0,
571                     ("vm_reserv_populate: reserv %p is already promoted",
572                     rv));
573                 rv->pages->psind = 1;
574         }
575         vm_reserv_domain_unlock(rv->domain);
576 }
577
578 /*
579  * Attempts to allocate a contiguous set of physical pages from existing
580  * reservations.  See vm_reserv_alloc_contig() for a description of the
581  * function's parameters.
582  *
583  * The page "mpred" must immediately precede the offset "pindex" within the
584  * specified object.
585  *
586  * The object must be locked.
587  */
588 vm_page_t
589 vm_reserv_extend_contig(int req, vm_object_t object, vm_pindex_t pindex,
590     int domain, u_long npages, vm_paddr_t low, vm_paddr_t high,
591     u_long alignment, vm_paddr_t boundary, vm_page_t mpred)
592 {
593         struct vm_domain *vmd;
594         vm_paddr_t pa, size;
595         vm_page_t m, msucc;
596         vm_reserv_t rv;
597         int i, index;
598
599         VM_OBJECT_ASSERT_WLOCKED(object);
600         KASSERT(npages != 0, ("vm_reserv_alloc_contig: npages is 0"));
601
602         /*
603          * Is a reservation fundamentally impossible?
604          */
605         if (pindex < VM_RESERV_INDEX(object, pindex) ||
606             pindex + npages > object->size || object->resident_page_count == 0)
607                 return (NULL);
608
609         /*
610          * All reservations of a particular size have the same alignment.
611          * Assuming that the first page is allocated from a reservation, the
612          * least significant bits of its physical address can be determined
613          * from its offset from the beginning of the reservation and the size
614          * of the reservation.
615          *
616          * Could the specified index within a reservation of the smallest
617          * possible size satisfy the alignment and boundary requirements?
618          */
619         pa = VM_RESERV_INDEX(object, pindex) << PAGE_SHIFT;
620         if ((pa & (alignment - 1)) != 0)
621                 return (NULL);
622         size = npages << PAGE_SHIFT;
623         if (((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0)
624                 return (NULL);
625
626         /*
627          * Look for an existing reservation.
628          */
629         rv = vm_reserv_from_object(object, pindex, mpred, &msucc);
630         if (rv == NULL)
631                 return (NULL);
632         KASSERT(object != kernel_object || rv->domain == domain,
633             ("vm_reserv_extend_contig: Domain mismatch from reservation."));
634         index = VM_RESERV_INDEX(object, pindex);
635         /* Does the allocation fit within the reservation? */
636         if (index + npages > VM_LEVEL_0_NPAGES)
637                 return (NULL);
638         domain = rv->domain;
639         vmd = VM_DOMAIN(domain);
640         vm_reserv_lock(rv);
641         if (rv->object != object)
642                 goto out;
643         m = &rv->pages[index];
644         pa = VM_PAGE_TO_PHYS(m);
645         if (pa < low || pa + size > high || (pa & (alignment - 1)) != 0 ||
646             ((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0)
647                 goto out;
648         /* Handle vm_page_rename(m, new_object, ...). */
649         for (i = 0; i < npages; i++) {
650                 if (popmap_is_set(rv->popmap, index + i))
651                         goto out;
652         }
653         if (!vm_domain_allocate(vmd, req, npages))
654                 goto out;
655         for (i = 0; i < npages; i++)
656                 vm_reserv_populate(rv, index + i);
657         vm_reserv_unlock(rv);
658         return (m);
659
660 out:
661         vm_reserv_unlock(rv);
662         return (NULL);
663 }
664
665 /*
666  * Allocates a contiguous set of physical pages of the given size "npages"
667  * from newly created reservations.  All of the physical pages
668  * must be at or above the given physical address "low" and below the given
669  * physical address "high".  The given value "alignment" determines the
670  * alignment of the first physical page in the set.  If the given value
671  * "boundary" is non-zero, then the set of physical pages cannot cross any
672  * physical address boundary that is a multiple of that value.  Both
673  * "alignment" and "boundary" must be a power of two.
674  *
675  * Callers should first invoke vm_reserv_extend_contig() to attempt an
676  * allocation from existing reservations.
677  *
678  * The page "mpred" must immediately precede the offset "pindex" within the
679  * specified object.
680  *
681  * The object and free page queue must be locked.
682  */
683 vm_page_t
684 vm_reserv_alloc_contig(int req, vm_object_t object, vm_pindex_t pindex, int domain,
685     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
686     vm_paddr_t boundary, vm_page_t mpred)
687 {
688         struct vm_domain *vmd;
689         vm_paddr_t pa, size;
690         vm_page_t m, m_ret, msucc;
691         vm_pindex_t first, leftcap, rightcap;
692         vm_reserv_t rv;
693         u_long allocpages, maxpages, minpages;
694         int i, index, n;
695
696         VM_OBJECT_ASSERT_WLOCKED(object);
697         KASSERT(npages != 0, ("vm_reserv_alloc_contig: npages is 0"));
698
699         /*
700          * Is a reservation fundamentally impossible?
701          */
702         if (pindex < VM_RESERV_INDEX(object, pindex) ||
703             pindex + npages > object->size)
704                 return (NULL);
705
706         /*
707          * All reservations of a particular size have the same alignment.
708          * Assuming that the first page is allocated from a reservation, the
709          * least significant bits of its physical address can be determined
710          * from its offset from the beginning of the reservation and the size
711          * of the reservation.
712          *
713          * Could the specified index within a reservation of the smallest
714          * possible size satisfy the alignment and boundary requirements?
715          */
716         pa = VM_RESERV_INDEX(object, pindex) << PAGE_SHIFT;
717         if ((pa & (alignment - 1)) != 0)
718                 return (NULL);
719         size = npages << PAGE_SHIFT;
720         if (((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0)
721                 return (NULL);
722
723         /*
724          * Callers should've extended an existing reservation prior to
725          * calling this function.  If a reservation exists it is
726          * incompatible with the allocation.
727          */
728         rv = vm_reserv_from_object(object, pindex, mpred, &msucc);
729         if (rv != NULL)
730                 return (NULL);
731
732         /*
733          * Could at least one reservation fit between the first index to the
734          * left that can be used ("leftcap") and the first index to the right
735          * that cannot be used ("rightcap")?
736          *
737          * We must synchronize with the reserv object lock to protect the
738          * pindex/object of the resulting reservations against rename while
739          * we are inspecting.
740          */
741         first = pindex - VM_RESERV_INDEX(object, pindex);
742         minpages = VM_RESERV_INDEX(object, pindex) + npages;
743         maxpages = roundup2(minpages, VM_LEVEL_0_NPAGES);
744         allocpages = maxpages;
745         vm_reserv_object_lock(object);
746         if (mpred != NULL) {
747                 if ((rv = vm_reserv_from_page(mpred))->object != object)
748                         leftcap = mpred->pindex + 1;
749                 else
750                         leftcap = rv->pindex + VM_LEVEL_0_NPAGES;
751                 if (leftcap > first) {
752                         vm_reserv_object_unlock(object);
753                         return (NULL);
754                 }
755         }
756         if (msucc != NULL) {
757                 if ((rv = vm_reserv_from_page(msucc))->object != object)
758                         rightcap = msucc->pindex;
759                 else
760                         rightcap = rv->pindex;
761                 if (first + maxpages > rightcap) {
762                         if (maxpages == VM_LEVEL_0_NPAGES) {
763                                 vm_reserv_object_unlock(object);
764                                 return (NULL);
765                         }
766
767                         /*
768                          * At least one reservation will fit between "leftcap"
769                          * and "rightcap".  However, a reservation for the
770                          * last of the requested pages will not fit.  Reduce
771                          * the size of the upcoming allocation accordingly.
772                          */
773                         allocpages = minpages;
774                 }
775         }
776         vm_reserv_object_unlock(object);
777
778         /*
779          * Would the last new reservation extend past the end of the object?
780          */
781         if (first + maxpages > object->size) {
782                 /*
783                  * Don't allocate the last new reservation if the object is a
784                  * vnode or backed by another object that is a vnode. 
785                  */
786                 if (object->type == OBJT_VNODE ||
787                     (object->backing_object != NULL &&
788                     object->backing_object->type == OBJT_VNODE)) {
789                         if (maxpages == VM_LEVEL_0_NPAGES)
790                                 return (NULL);
791                         allocpages = minpages;
792                 }
793                 /* Speculate that the object may grow. */
794         }
795
796         /*
797          * Allocate the physical pages.  The alignment and boundary specified
798          * for this allocation may be different from the alignment and
799          * boundary specified for the requested pages.  For instance, the
800          * specified index may not be the first page within the first new
801          * reservation.
802          */
803         m = NULL;
804         vmd = VM_DOMAIN(domain);
805         if (vm_domain_allocate(vmd, req, npages)) {
806                 vm_domain_free_lock(vmd);
807                 m = vm_phys_alloc_contig(domain, allocpages, low, high,
808                     ulmax(alignment, VM_LEVEL_0_SIZE),
809                     boundary > VM_LEVEL_0_SIZE ? boundary : 0);
810                 vm_domain_free_unlock(vmd);
811                 if (m == NULL) {
812                         vm_domain_freecnt_inc(vmd, npages);
813                         return (NULL);
814                 }
815         } else
816                 return (NULL);
817         KASSERT(vm_phys_domain(m) == domain,
818             ("vm_reserv_alloc_contig: Page domain does not match requested."));
819
820         /*
821          * The allocated physical pages always begin at a reservation
822          * boundary, but they do not always end at a reservation boundary.
823          * Initialize every reservation that is completely covered by the
824          * allocated physical pages.
825          */
826         m_ret = NULL;
827         index = VM_RESERV_INDEX(object, pindex);
828         do {
829                 rv = vm_reserv_from_page(m);
830                 KASSERT(rv->pages == m,
831                     ("vm_reserv_alloc_contig: reserv %p's pages is corrupted",
832                     rv));
833                 vm_reserv_lock(rv);
834                 vm_reserv_insert(rv, object, first);
835                 n = ulmin(VM_LEVEL_0_NPAGES - index, npages);
836                 for (i = 0; i < n; i++)
837                         vm_reserv_populate(rv, index + i);
838                 npages -= n;
839                 if (m_ret == NULL) {
840                         m_ret = &rv->pages[index];
841                         index = 0;
842                 }
843                 vm_reserv_unlock(rv);
844                 m += VM_LEVEL_0_NPAGES;
845                 first += VM_LEVEL_0_NPAGES;
846                 allocpages -= VM_LEVEL_0_NPAGES;
847         } while (allocpages >= VM_LEVEL_0_NPAGES);
848         return (m_ret);
849 }
850
851 /*
852  * Attempts to extend an existing reservation and allocate the page to the
853  * object.
854  *
855  * The page "mpred" must immediately precede the offset "pindex" within the
856  * specified object.
857  *
858  * The object must be locked.
859  */
860 vm_page_t
861 vm_reserv_extend(int req, vm_object_t object, vm_pindex_t pindex, int domain,
862     vm_page_t mpred)
863 {
864         struct vm_domain *vmd;
865         vm_page_t m, msucc;
866         vm_reserv_t rv;
867         int index;
868
869         VM_OBJECT_ASSERT_WLOCKED(object);
870
871         /*
872          * Could a reservation currently exist?
873          */
874         if (pindex < VM_RESERV_INDEX(object, pindex) ||
875             pindex >= object->size || object->resident_page_count == 0)
876                 return (NULL);
877
878         /*
879          * Look for an existing reservation.
880          */
881         rv = vm_reserv_from_object(object, pindex, mpred, &msucc);
882         if (rv == NULL)
883                 return (NULL);
884
885         KASSERT(object != kernel_object || rv->domain == domain,
886             ("vm_reserv_extend: Domain mismatch from reservation."));
887         domain = rv->domain;
888         vmd = VM_DOMAIN(domain);
889         index = VM_RESERV_INDEX(object, pindex);
890         m = &rv->pages[index];
891         vm_reserv_lock(rv);
892         /* Handle reclaim race. */
893         if (rv->object != object ||
894             /* Handle vm_page_rename(m, new_object, ...). */
895             popmap_is_set(rv->popmap, index)) {
896                 m = NULL;
897                 goto out;
898         }
899         if (vm_domain_allocate(vmd, req, 1) == 0)
900                 m = NULL;
901         else
902                 vm_reserv_populate(rv, index);
903 out:
904         vm_reserv_unlock(rv);
905
906         return (m);
907 }
908
909 /*
910  * Attempts to allocate a new reservation for the object, and allocates a
911  * page from that reservation.  Callers should first invoke vm_reserv_extend()
912  * to attempt an allocation from an existing reservation.
913  *
914  * The page "mpred" must immediately precede the offset "pindex" within the
915  * specified object.
916  *
917  * The object and free page queue must be locked.
918  */
919 vm_page_t
920 vm_reserv_alloc_page(int req, vm_object_t object, vm_pindex_t pindex, int domain,
921     vm_page_t mpred)
922 {
923         struct vm_domain *vmd;
924         vm_page_t m, msucc;
925         vm_pindex_t first, leftcap, rightcap;
926         vm_reserv_t rv;
927         int index;
928
929         VM_OBJECT_ASSERT_WLOCKED(object);
930
931         /*
932          * Is a reservation fundamentally impossible?
933          */
934         if (pindex < VM_RESERV_INDEX(object, pindex) ||
935             pindex >= object->size)
936                 return (NULL);
937
938         /*
939          * Callers should've extended an existing reservation prior to
940          * calling this function.  If a reservation exists it is
941          * incompatible with the allocation.
942          */
943         rv = vm_reserv_from_object(object, pindex, mpred, &msucc);
944         if (rv != NULL)
945                 return (NULL);
946
947         /*
948          * Could a reservation fit between the first index to the left that
949          * can be used and the first index to the right that cannot be used?
950          *
951          * We must synchronize with the reserv object lock to protect the
952          * pindex/object of the resulting reservations against rename while
953          * we are inspecting.
954          */
955         first = pindex - VM_RESERV_INDEX(object, pindex);
956         vm_reserv_object_lock(object);
957         if (mpred != NULL) {
958                 if ((rv = vm_reserv_from_page(mpred))->object != object)
959                         leftcap = mpred->pindex + 1;
960                 else
961                         leftcap = rv->pindex + VM_LEVEL_0_NPAGES;
962                 if (leftcap > first) {
963                         vm_reserv_object_unlock(object);
964                         return (NULL);
965                 }
966         }
967         if (msucc != NULL) {
968                 if ((rv = vm_reserv_from_page(msucc))->object != object)
969                         rightcap = msucc->pindex;
970                 else
971                         rightcap = rv->pindex;
972                 if (first + VM_LEVEL_0_NPAGES > rightcap) {
973                         vm_reserv_object_unlock(object);
974                         return (NULL);
975                 }
976         }
977         vm_reserv_object_unlock(object);
978
979         /*
980          * Would a new reservation extend past the end of the object? 
981          */
982         if (first + VM_LEVEL_0_NPAGES > object->size) {
983                 /*
984                  * Don't allocate a new reservation if the object is a vnode or
985                  * backed by another object that is a vnode. 
986                  */
987                 if (object->type == OBJT_VNODE ||
988                     (object->backing_object != NULL &&
989                     object->backing_object->type == OBJT_VNODE))
990                         return (NULL);
991                 /* Speculate that the object may grow. */
992         }
993
994         /*
995          * Allocate and populate the new reservation.
996          */
997         m = NULL;
998         vmd = VM_DOMAIN(domain);
999         if (vm_domain_allocate(vmd, req, 1)) {
1000                 vm_domain_free_lock(vmd);
1001                 m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT,
1002                     VM_LEVEL_0_ORDER);
1003                 vm_domain_free_unlock(vmd);
1004                 if (m == NULL) {
1005                         vm_domain_freecnt_inc(vmd, 1);
1006                         return (NULL);
1007                 }
1008         } else
1009                 return (NULL);
1010         rv = vm_reserv_from_page(m);
1011         vm_reserv_lock(rv);
1012         KASSERT(rv->pages == m,
1013             ("vm_reserv_alloc_page: reserv %p's pages is corrupted", rv));
1014         vm_reserv_insert(rv, object, first);
1015         index = VM_RESERV_INDEX(object, pindex);
1016         vm_reserv_populate(rv, index);
1017         vm_reserv_unlock(rv);
1018
1019         return (&rv->pages[index]);
1020 }
1021
1022 /*
1023  * Breaks the given reservation.  All free pages in the reservation
1024  * are returned to the physical memory allocator.  The reservation's
1025  * population count and map are reset to their initial state.
1026  *
1027  * The given reservation must not be in the partially populated reservation
1028  * queue.  The free page queue lock must be held.
1029  */
1030 static void
1031 vm_reserv_break(vm_reserv_t rv)
1032 {
1033         u_long changes;
1034         int bitpos, hi, i, lo;
1035
1036         vm_reserv_assert_locked(rv);
1037         CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
1038             __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
1039         vm_reserv_remove(rv);
1040         rv->pages->psind = 0;
1041         hi = lo = -1;
1042         for (i = 0; i <= NPOPMAP; i++) {
1043                 /*
1044                  * "changes" is a bitmask that marks where a new sequence of
1045                  * 0s or 1s begins in popmap[i], with last bit in popmap[i-1]
1046                  * considered to be 1 if and only if lo == hi.  The bits of
1047                  * popmap[-1] and popmap[NPOPMAP] are considered all 1s.
1048                  */
1049                 if (i == NPOPMAP)
1050                         changes = lo != hi;
1051                 else {
1052                         changes = rv->popmap[i];
1053                         changes ^= (changes << 1) | (lo == hi);
1054                         rv->popmap[i] = 0;
1055                 }
1056                 while (changes != 0) {
1057                         /*
1058                          * If the next change marked begins a run of 0s, set
1059                          * lo to mark that position.  Otherwise set hi and
1060                          * free pages from lo up to hi.
1061                          */
1062                         bitpos = ffsl(changes) - 1;
1063                         changes ^= 1UL << bitpos;
1064                         if (lo == hi)
1065                                 lo = NBPOPMAP * i + bitpos;
1066                         else {
1067                                 hi = NBPOPMAP * i + bitpos;
1068                                 vm_domain_free_lock(VM_DOMAIN(rv->domain));
1069                                 vm_phys_enqueue_contig(&rv->pages[lo], hi - lo);
1070                                 vm_domain_free_unlock(VM_DOMAIN(rv->domain));
1071                                 lo = hi;
1072                         }
1073                 }
1074         }
1075         rv->popcnt = 0;
1076         counter_u64_add(vm_reserv_broken, 1);
1077 }
1078
1079 /*
1080  * Breaks all reservations belonging to the given object.
1081  */
1082 void
1083 vm_reserv_break_all(vm_object_t object)
1084 {
1085         vm_reserv_t rv;
1086
1087         /*
1088          * This access of object->rvq is unsynchronized so that the
1089          * object rvq lock can nest after the domain_free lock.  We
1090          * must check for races in the results.  However, the object
1091          * lock prevents new additions, so we are guaranteed that when
1092          * it returns NULL the object is properly empty.
1093          */
1094         while ((rv = LIST_FIRST(&object->rvq)) != NULL) {
1095                 vm_reserv_lock(rv);
1096                 /* Reclaim race. */
1097                 if (rv->object != object) {
1098                         vm_reserv_unlock(rv);
1099                         continue;
1100                 }
1101                 vm_reserv_domain_lock(rv->domain);
1102                 if (rv->inpartpopq) {
1103                         TAILQ_REMOVE(&vm_rvq_partpop[rv->domain], rv, partpopq);
1104                         rv->inpartpopq = FALSE;
1105                 }
1106                 vm_reserv_domain_unlock(rv->domain);
1107                 vm_reserv_break(rv);
1108                 vm_reserv_unlock(rv);
1109         }
1110 }
1111
1112 /*
1113  * Frees the given page if it belongs to a reservation.  Returns TRUE if the
1114  * page is freed and FALSE otherwise.
1115  *
1116  * The free page queue lock must be held.
1117  */
1118 boolean_t
1119 vm_reserv_free_page(vm_page_t m)
1120 {
1121         vm_reserv_t rv;
1122         boolean_t ret;
1123
1124         rv = vm_reserv_from_page(m);
1125         if (rv->object == NULL)
1126                 return (FALSE);
1127         vm_reserv_lock(rv);
1128         /* Re-validate after lock. */
1129         if (rv->object != NULL) {
1130                 vm_reserv_depopulate(rv, m - rv->pages);
1131                 ret = TRUE;
1132         } else
1133                 ret = FALSE;
1134         vm_reserv_unlock(rv);
1135
1136         return (ret);
1137 }
1138
1139 /*
1140  * Initializes the reservation management system.  Specifically, initializes
1141  * the reservation array.
1142  *
1143  * Requires that vm_page_array and first_page are initialized!
1144  */
1145 void
1146 vm_reserv_init(void)
1147 {
1148         vm_paddr_t paddr;
1149         struct vm_phys_seg *seg;
1150         struct vm_reserv *rv;
1151         int i, segind;
1152
1153         /*
1154          * Initialize the reservation array.  Specifically, initialize the
1155          * "pages" field for every element that has an underlying superpage.
1156          */
1157         for (segind = 0; segind < vm_phys_nsegs; segind++) {
1158                 seg = &vm_phys_segs[segind];
1159                 paddr = roundup2(seg->start, VM_LEVEL_0_SIZE);
1160                 while (paddr + VM_LEVEL_0_SIZE <= seg->end) {
1161                         rv = &vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT];
1162                         rv->pages = PHYS_TO_VM_PAGE(paddr);
1163                         rv->domain = seg->domain;
1164                         mtx_init(&rv->lock, "vm reserv", NULL, MTX_DEF);
1165                         paddr += VM_LEVEL_0_SIZE;
1166                 }
1167         }
1168         for (i = 0; i < MAXMEMDOM; i++) {
1169                 mtx_init(&vm_reserv_domain_locks[i], "VM reserv domain", NULL,
1170                     MTX_DEF);
1171                 TAILQ_INIT(&vm_rvq_partpop[i]);
1172         }
1173
1174         for (i = 0; i < VM_RESERV_OBJ_LOCK_COUNT; i++)
1175                 mtx_init(&vm_reserv_object_mtx[i], "resv obj lock", NULL,
1176                     MTX_DEF);
1177 }
1178
1179 /*
1180  * Returns true if the given page belongs to a reservation and that page is
1181  * free.  Otherwise, returns false.
1182  */
1183 bool
1184 vm_reserv_is_page_free(vm_page_t m)
1185 {
1186         vm_reserv_t rv;
1187
1188         rv = vm_reserv_from_page(m);
1189         if (rv->object == NULL)
1190                 return (false);
1191         return (popmap_is_clear(rv->popmap, m - rv->pages));
1192 }
1193
1194 /*
1195  * If the given page belongs to a reservation, returns the level of that
1196  * reservation.  Otherwise, returns -1.
1197  */
1198 int
1199 vm_reserv_level(vm_page_t m)
1200 {
1201         vm_reserv_t rv;
1202
1203         rv = vm_reserv_from_page(m);
1204         return (rv->object != NULL ? 0 : -1);
1205 }
1206
1207 /*
1208  * Returns a reservation level if the given page belongs to a fully populated
1209  * reservation and -1 otherwise.
1210  */
1211 int
1212 vm_reserv_level_iffullpop(vm_page_t m)
1213 {
1214         vm_reserv_t rv;
1215
1216         rv = vm_reserv_from_page(m);
1217         return (rv->popcnt == VM_LEVEL_0_NPAGES ? 0 : -1);
1218 }
1219
1220 /*
1221  * Breaks the given partially populated reservation, releasing its free pages
1222  * to the physical memory allocator.
1223  *
1224  * The free page queue lock must be held.
1225  */
1226 static void
1227 vm_reserv_reclaim(vm_reserv_t rv)
1228 {
1229
1230         vm_reserv_assert_locked(rv);
1231         CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
1232             __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
1233         vm_reserv_domain_lock(rv->domain);
1234         KASSERT(rv->inpartpopq,
1235             ("vm_reserv_reclaim: reserv %p's inpartpopq is FALSE", rv));
1236         KASSERT(rv->domain < vm_ndomains,
1237             ("vm_reserv_reclaim: reserv %p's domain is corrupted %d",
1238             rv, rv->domain));
1239         TAILQ_REMOVE(&vm_rvq_partpop[rv->domain], rv, partpopq);
1240         rv->inpartpopq = FALSE;
1241         vm_reserv_domain_unlock(rv->domain);
1242         vm_reserv_break(rv);
1243         counter_u64_add(vm_reserv_reclaimed, 1);
1244 }
1245
1246 /*
1247  * Breaks the reservation at the head of the partially populated reservation
1248  * queue, releasing its free pages to the physical memory allocator.  Returns
1249  * TRUE if a reservation is broken and FALSE otherwise.
1250  *
1251  * The free page queue lock must be held.
1252  */
1253 boolean_t
1254 vm_reserv_reclaim_inactive(int domain)
1255 {
1256         vm_reserv_t rv;
1257
1258         while ((rv = TAILQ_FIRST(&vm_rvq_partpop[domain])) != NULL) {
1259                 vm_reserv_lock(rv);
1260                 if (rv != TAILQ_FIRST(&vm_rvq_partpop[domain])) {
1261                         vm_reserv_unlock(rv);
1262                         continue;
1263                 }
1264                 vm_reserv_reclaim(rv);
1265                 vm_reserv_unlock(rv);
1266                 return (TRUE);
1267         }
1268         return (FALSE);
1269 }
1270
1271 /*
1272  * Searches the partially populated reservation queue for the least recently
1273  * changed reservation with free pages that satisfy the given request for
1274  * contiguous physical memory.  If a satisfactory reservation is found, it is
1275  * broken.  Returns TRUE if a reservation is broken and FALSE otherwise.
1276  *
1277  * The free page queue lock must be held.
1278  */
1279 boolean_t
1280 vm_reserv_reclaim_contig(int domain, u_long npages, vm_paddr_t low,
1281     vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
1282 {
1283         vm_paddr_t pa, size;
1284         vm_reserv_t rv, rvn;
1285         int hi, i, lo, low_index, next_free;
1286
1287         if (npages > VM_LEVEL_0_NPAGES - 1)
1288                 return (FALSE);
1289         size = npages << PAGE_SHIFT;
1290         vm_reserv_domain_lock(domain);
1291 again:
1292         for (rv = TAILQ_FIRST(&vm_rvq_partpop[domain]); rv != NULL; rv = rvn) {
1293                 rvn = TAILQ_NEXT(rv, partpopq);
1294                 pa = VM_PAGE_TO_PHYS(&rv->pages[VM_LEVEL_0_NPAGES - 1]);
1295                 if (pa + PAGE_SIZE - size < low) {
1296                         /* This entire reservation is too low; go to next. */
1297                         continue;
1298                 }
1299                 pa = VM_PAGE_TO_PHYS(&rv->pages[0]);
1300                 if (pa + size > high) {
1301                         /* This entire reservation is too high; go to next. */
1302                         continue;
1303                 }
1304                 if (vm_reserv_trylock(rv) == 0) {
1305                         vm_reserv_domain_unlock(domain);
1306                         vm_reserv_lock(rv);
1307                         if (!rv->inpartpopq) {
1308                                 vm_reserv_domain_lock(domain);
1309                                 if (!rvn->inpartpopq)
1310                                         goto again;
1311                                 continue;
1312                         }
1313                 } else
1314                         vm_reserv_domain_unlock(domain);
1315                 if (pa < low) {
1316                         /* Start the search for free pages at "low". */
1317                         low_index = (low + PAGE_MASK - pa) >> PAGE_SHIFT;
1318                         i = low_index / NBPOPMAP;
1319                         hi = low_index % NBPOPMAP;
1320                 } else
1321                         i = hi = 0;
1322                 do {
1323                         /* Find the next free page. */
1324                         lo = ffsl(~(((1UL << hi) - 1) | rv->popmap[i]));
1325                         while (lo == 0 && ++i < NPOPMAP)
1326                                 lo = ffsl(~rv->popmap[i]);
1327                         if (i == NPOPMAP)
1328                                 break;
1329                         /* Convert from ffsl() to ordinary bit numbering. */
1330                         lo--;
1331                         next_free = NBPOPMAP * i + lo;
1332                         pa = VM_PAGE_TO_PHYS(&rv->pages[next_free]);
1333                         KASSERT(pa >= low,
1334                             ("vm_reserv_reclaim_contig: pa is too low"));
1335                         if (pa + size > high) {
1336                                 /* The rest of this reservation is too high. */
1337                                 break;
1338                         } else if ((pa & (alignment - 1)) != 0 ||
1339                             ((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0) {
1340                                 /*
1341                                  * The current page doesn't meet the alignment
1342                                  * and/or boundary requirements.  Continue
1343                                  * searching this reservation until the rest
1344                                  * of its free pages are either excluded or
1345                                  * exhausted.
1346                                  */
1347                                 hi = lo + 1;
1348                                 if (hi >= NBPOPMAP) {
1349                                         hi = 0;
1350                                         i++;
1351                                 }
1352                                 continue;
1353                         }
1354                         /* Find the next used page. */
1355                         hi = ffsl(rv->popmap[i] & ~((1UL << lo) - 1));
1356                         while (hi == 0 && ++i < NPOPMAP) {
1357                                 if ((NBPOPMAP * i - next_free) * PAGE_SIZE >=
1358                                     size) {
1359                                         vm_reserv_reclaim(rv);
1360                                         vm_reserv_unlock(rv);
1361                                         return (TRUE);
1362                                 }
1363                                 hi = ffsl(rv->popmap[i]);
1364                         }
1365                         /* Convert from ffsl() to ordinary bit numbering. */
1366                         if (i != NPOPMAP)
1367                                 hi--;
1368                         if ((NBPOPMAP * i + hi - next_free) * PAGE_SIZE >=
1369                             size) {
1370                                 vm_reserv_reclaim(rv);
1371                                 vm_reserv_unlock(rv);
1372                                 return (TRUE);
1373                         }
1374                 } while (i < NPOPMAP);
1375                 vm_reserv_unlock(rv);
1376                 vm_reserv_domain_lock(domain);
1377                 if (rvn != NULL && !rvn->inpartpopq)
1378                         goto again;
1379         }
1380         vm_reserv_domain_unlock(domain);
1381         return (FALSE);
1382 }
1383
1384 /*
1385  * Transfers the reservation underlying the given page to a new object.
1386  *
1387  * The object must be locked.
1388  */
1389 void
1390 vm_reserv_rename(vm_page_t m, vm_object_t new_object, vm_object_t old_object,
1391     vm_pindex_t old_object_offset)
1392 {
1393         vm_reserv_t rv;
1394
1395         VM_OBJECT_ASSERT_WLOCKED(new_object);
1396         rv = vm_reserv_from_page(m);
1397         if (rv->object == old_object) {
1398                 vm_reserv_lock(rv);
1399                 CTR6(KTR_VM,
1400                     "%s: rv %p object %p new %p popcnt %d inpartpop %d",
1401                     __FUNCTION__, rv, rv->object, new_object, rv->popcnt,
1402                     rv->inpartpopq);
1403                 if (rv->object == old_object) {
1404                         vm_reserv_object_lock(old_object);
1405                         rv->object = NULL;
1406                         LIST_REMOVE(rv, objq);
1407                         vm_reserv_object_unlock(old_object);
1408                         vm_reserv_object_lock(new_object);
1409                         rv->object = new_object;
1410                         rv->pindex -= old_object_offset;
1411                         LIST_INSERT_HEAD(&new_object->rvq, rv, objq);
1412                         vm_reserv_object_unlock(new_object);
1413                 }
1414                 vm_reserv_unlock(rv);
1415         }
1416 }
1417
1418 /*
1419  * Returns the size (in bytes) of a reservation of the specified level.
1420  */
1421 int
1422 vm_reserv_size(int level)
1423 {
1424
1425         switch (level) {
1426         case 0:
1427                 return (VM_LEVEL_0_SIZE);
1428         case -1:
1429                 return (PAGE_SIZE);
1430         default:
1431                 return (0);
1432         }
1433 }
1434
1435 /*
1436  * Allocates the virtual and physical memory required by the reservation
1437  * management system's data structures, in particular, the reservation array.
1438  */
1439 vm_paddr_t
1440 vm_reserv_startup(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t high_water)
1441 {
1442         vm_paddr_t new_end;
1443         size_t size;
1444
1445         /*
1446          * Calculate the size (in bytes) of the reservation array.  Round up
1447          * from "high_water" because every small page is mapped to an element
1448          * in the reservation array based on its physical address.  Thus, the
1449          * number of elements in the reservation array can be greater than the
1450          * number of superpages. 
1451          */
1452         size = howmany(high_water, VM_LEVEL_0_SIZE) * sizeof(struct vm_reserv);
1453
1454         /*
1455          * Allocate and map the physical memory for the reservation array.  The
1456          * next available virtual address is returned by reference.
1457          */
1458         new_end = end - round_page(size);
1459         vm_reserv_array = (void *)(uintptr_t)pmap_map(vaddr, new_end, end,
1460             VM_PROT_READ | VM_PROT_WRITE);
1461         bzero(vm_reserv_array, size);
1462
1463         /*
1464          * Return the next available physical address.
1465          */
1466         return (new_end);
1467 }
1468
1469 /*
1470  * Initializes the reservation management system.  Specifically, initializes
1471  * the reservation counters.
1472  */
1473 static void
1474 vm_reserv_counter_init(void *unused)
1475 {
1476
1477         vm_reserv_freed = counter_u64_alloc(M_WAITOK); 
1478         vm_reserv_broken = counter_u64_alloc(M_WAITOK); 
1479         vm_reserv_reclaimed = counter_u64_alloc(M_WAITOK); 
1480 }
1481 SYSINIT(vm_reserv_counter_init, SI_SUB_CPU, SI_ORDER_ANY,
1482     vm_reserv_counter_init, NULL);
1483
1484 /*
1485  * Returns the superpage containing the given page.
1486  */
1487 vm_page_t
1488 vm_reserv_to_superpage(vm_page_t m)
1489 {
1490         vm_reserv_t rv;
1491
1492         VM_OBJECT_ASSERT_LOCKED(m->object);
1493         rv = vm_reserv_from_page(m);
1494         if (rv->object == m->object && rv->popcnt == VM_LEVEL_0_NPAGES)
1495                 m = rv->pages;
1496         else
1497                 m = NULL;
1498
1499         return (m);
1500 }
1501
1502 #endif  /* VM_NRESERVLEVEL > 0 */