]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/vm/vm_reserv.c
Fix two compliation problems on non-amd64 architectures.
[FreeBSD/FreeBSD.git] / sys / vm / vm_reserv.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2002-2006 Rice University
5  * Copyright (c) 2007-2011 Alan L. Cox <alc@cs.rice.edu>
6  * All rights reserved.
7  *
8  * This software was developed for the FreeBSD Project by Alan L. Cox,
9  * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
24  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
27  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
30  * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 /*
35  *      Superpage reservation management module
36  *
37  * Any external functions defined by this module are only to be used by the
38  * virtual memory system.
39  */
40
41 #include <sys/cdefs.h>
42 __FBSDID("$FreeBSD$");
43
44 #include "opt_vm.h"
45
46 #include <sys/param.h>
47 #include <sys/kernel.h>
48 #include <sys/lock.h>
49 #include <sys/malloc.h>
50 #include <sys/mutex.h>
51 #include <sys/queue.h>
52 #include <sys/rwlock.h>
53 #include <sys/sbuf.h>
54 #include <sys/sysctl.h>
55 #include <sys/systm.h>
56 #include <sys/counter.h>
57 #include <sys/ktr.h>
58 #include <sys/vmmeter.h>
59 #include <sys/smp.h>
60
61 #include <vm/vm.h>
62 #include <vm/vm_param.h>
63 #include <vm/vm_object.h>
64 #include <vm/vm_page.h>
65 #include <vm/vm_pageout.h>
66 #include <vm/vm_phys.h>
67 #include <vm/vm_pagequeue.h>
68 #include <vm/vm_radix.h>
69 #include <vm/vm_reserv.h>
70
71 /*
72  * The reservation system supports the speculative allocation of large physical
73  * pages ("superpages").  Speculative allocation enables the fully automatic
74  * utilization of superpages by the virtual memory system.  In other words, no
75  * programmatic directives are required to use superpages.
76  */
77
78 #if VM_NRESERVLEVEL > 0
79
80 /*
81  * The number of small pages that are contained in a level 0 reservation
82  */
83 #define VM_LEVEL_0_NPAGES       (1 << VM_LEVEL_0_ORDER)
84
85 /*
86  * The number of bits by which a physical address is shifted to obtain the
87  * reservation number
88  */
89 #define VM_LEVEL_0_SHIFT        (VM_LEVEL_0_ORDER + PAGE_SHIFT)
90
91 /*
92  * The size of a level 0 reservation in bytes
93  */
94 #define VM_LEVEL_0_SIZE         (1 << VM_LEVEL_0_SHIFT)
95
96 /*
97  * Computes the index of the small page underlying the given (object, pindex)
98  * within the reservation's array of small pages.
99  */
100 #define VM_RESERV_INDEX(object, pindex) \
101     (((object)->pg_color + (pindex)) & (VM_LEVEL_0_NPAGES - 1))
102
103 /*
104  * The size of a population map entry
105  */
106 typedef u_long          popmap_t;
107
108 /*
109  * The number of bits in a population map entry
110  */
111 #define NBPOPMAP        (NBBY * sizeof(popmap_t))
112
113 /*
114  * The number of population map entries in a reservation
115  */
116 #define NPOPMAP         howmany(VM_LEVEL_0_NPAGES, NBPOPMAP)
117
118 /*
119  * Clear a bit in the population map.
120  */
121 static __inline void
122 popmap_clear(popmap_t popmap[], int i)
123 {
124
125         popmap[i / NBPOPMAP] &= ~(1UL << (i % NBPOPMAP));
126 }
127
128 /*
129  * Set a bit in the population map.
130  */
131 static __inline void
132 popmap_set(popmap_t popmap[], int i)
133 {
134
135         popmap[i / NBPOPMAP] |= 1UL << (i % NBPOPMAP);
136 }
137
138 /*
139  * Is a bit in the population map clear?
140  */
141 static __inline boolean_t
142 popmap_is_clear(popmap_t popmap[], int i)
143 {
144
145         return ((popmap[i / NBPOPMAP] & (1UL << (i % NBPOPMAP))) == 0);
146 }
147
148 /*
149  * Is a bit in the population map set?
150  */
151 static __inline boolean_t
152 popmap_is_set(popmap_t popmap[], int i)
153 {
154
155         return ((popmap[i / NBPOPMAP] & (1UL << (i % NBPOPMAP))) != 0);
156 }
157
158 /*
159  * The reservation structure
160  *
161  * A reservation structure is constructed whenever a large physical page is
162  * speculatively allocated to an object.  The reservation provides the small
163  * physical pages for the range [pindex, pindex + VM_LEVEL_0_NPAGES) of offsets
164  * within that object.  The reservation's "popcnt" tracks the number of these
165  * small physical pages that are in use at any given time.  When and if the
166  * reservation is not fully utilized, it appears in the queue of partially
167  * populated reservations.  The reservation always appears on the containing
168  * object's list of reservations.
169  *
170  * A partially populated reservation can be broken and reclaimed at any time.
171  *
172  * r - vm_reserv_lock
173  * d - vm_reserv_domain_lock
174  * o - vm_reserv_object_lock
175  * c - constant after boot
176  */
177 struct vm_reserv {
178         struct mtx      lock;                   /* reservation lock. */
179         TAILQ_ENTRY(vm_reserv) partpopq;        /* (d) per-domain queue. */
180         LIST_ENTRY(vm_reserv) objq;             /* (o, r) object queue */
181         vm_object_t     object;                 /* (o, r) containing object */
182         vm_pindex_t     pindex;                 /* (o, r) offset in object */
183         vm_page_t       pages;                  /* (c) first page  */
184         uint16_t        domain;                 /* (c) NUMA domain. */
185         uint16_t        popcnt;                 /* (r) # of pages in use */
186         char            inpartpopq;             /* (d) */
187         popmap_t        popmap[NPOPMAP];        /* (r) bit vector, used pages */
188 };
189
190 #define vm_reserv_lockptr(rv)           (&(rv)->lock)
191 #define vm_reserv_assert_locked(rv)                                     \
192             mtx_assert(vm_reserv_lockptr(rv), MA_OWNED)
193 #define vm_reserv_lock(rv)              mtx_lock(vm_reserv_lockptr(rv))
194 #define vm_reserv_trylock(rv)           mtx_trylock(vm_reserv_lockptr(rv))
195 #define vm_reserv_unlock(rv)            mtx_unlock(vm_reserv_lockptr(rv))
196
197 static struct mtx_padalign vm_reserv_domain_locks[MAXMEMDOM];
198
199 #define vm_reserv_domain_lockptr(d)     &vm_reserv_domain_locks[(d)]
200 #define vm_reserv_domain_lock(d)        mtx_lock(vm_reserv_domain_lockptr(d))
201 #define vm_reserv_domain_unlock(d)      mtx_unlock(vm_reserv_domain_lockptr(d))
202
203 /*
204  * The reservation array
205  *
206  * This array is analoguous in function to vm_page_array.  It differs in the
207  * respect that it may contain a greater number of useful reservation
208  * structures than there are (physical) superpages.  These "invalid"
209  * reservation structures exist to trade-off space for time in the
210  * implementation of vm_reserv_from_page().  Invalid reservation structures are
211  * distinguishable from "valid" reservation structures by inspecting the
212  * reservation's "pages" field.  Invalid reservation structures have a NULL
213  * "pages" field.
214  *
215  * vm_reserv_from_page() maps a small (physical) page to an element of this
216  * array by computing a physical reservation number from the page's physical
217  * address.  The physical reservation number is used as the array index.
218  *
219  * An "active" reservation is a valid reservation structure that has a non-NULL
220  * "object" field and a non-zero "popcnt" field.  In other words, every active
221  * reservation belongs to a particular object.  Moreover, every active
222  * reservation has an entry in the containing object's list of reservations.  
223  */
224 static vm_reserv_t vm_reserv_array;
225
226 /*
227  * The partially populated reservation queue
228  *
229  * This queue enables the fast recovery of an unused free small page from a
230  * partially populated reservation.  The reservation at the head of this queue
231  * is the least recently changed, partially populated reservation.
232  *
233  * Access to this queue is synchronized by the free page queue lock.
234  */
235 static TAILQ_HEAD(, vm_reserv) vm_rvq_partpop[MAXMEMDOM];
236
237 static SYSCTL_NODE(_vm, OID_AUTO, reserv, CTLFLAG_RD, 0, "Reservation Info");
238
239 static counter_u64_t vm_reserv_broken = EARLY_COUNTER;
240 SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, broken, CTLFLAG_RD,
241     &vm_reserv_broken, "Cumulative number of broken reservations");
242
243 static counter_u64_t vm_reserv_freed = EARLY_COUNTER;
244 SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, freed, CTLFLAG_RD,
245     &vm_reserv_freed, "Cumulative number of freed reservations");
246
247 static int sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS);
248
249 SYSCTL_PROC(_vm_reserv, OID_AUTO, fullpop, CTLTYPE_INT | CTLFLAG_RD, NULL, 0,
250     sysctl_vm_reserv_fullpop, "I", "Current number of full reservations");
251
252 static int sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS);
253
254 SYSCTL_OID(_vm_reserv, OID_AUTO, partpopq, CTLTYPE_STRING | CTLFLAG_RD, NULL, 0,
255     sysctl_vm_reserv_partpopq, "A", "Partially populated reservation queues");
256
257 static counter_u64_t vm_reserv_reclaimed = EARLY_COUNTER;
258 SYSCTL_COUNTER_U64(_vm_reserv, OID_AUTO, reclaimed, CTLFLAG_RD,
259     &vm_reserv_reclaimed, "Cumulative number of reclaimed reservations");
260
261 /*
262  * The object lock pool is used to synchronize the rvq.  We can not use a
263  * pool mutex because it is required before malloc works.
264  *
265  * The "hash" function could be made faster without divide and modulo.
266  */
267 #define VM_RESERV_OBJ_LOCK_COUNT        MAXCPU
268
269 struct mtx_padalign vm_reserv_object_mtx[VM_RESERV_OBJ_LOCK_COUNT];
270
271 #define vm_reserv_object_lock_idx(object)                       \
272             (((uintptr_t)object / sizeof(*object)) % VM_RESERV_OBJ_LOCK_COUNT)
273 #define vm_reserv_object_lock_ptr(object)                       \
274             &vm_reserv_object_mtx[vm_reserv_object_lock_idx((object))]
275 #define vm_reserv_object_lock(object)                           \
276             mtx_lock(vm_reserv_object_lock_ptr((object)))
277 #define vm_reserv_object_unlock(object)                         \
278             mtx_unlock(vm_reserv_object_lock_ptr((object)))
279
280 static void             vm_reserv_break(vm_reserv_t rv);
281 static void             vm_reserv_depopulate(vm_reserv_t rv, int index);
282 static vm_reserv_t      vm_reserv_from_page(vm_page_t m);
283 static boolean_t        vm_reserv_has_pindex(vm_reserv_t rv,
284                             vm_pindex_t pindex);
285 static void             vm_reserv_populate(vm_reserv_t rv, int index);
286 static void             vm_reserv_reclaim(vm_reserv_t rv);
287
288 /*
289  * Returns the current number of full reservations.
290  *
291  * Since the number of full reservations is computed without acquiring the
292  * free page queue lock, the returned value may be inexact.
293  */
294 static int
295 sysctl_vm_reserv_fullpop(SYSCTL_HANDLER_ARGS)
296 {
297         vm_paddr_t paddr;
298         struct vm_phys_seg *seg;
299         vm_reserv_t rv;
300         int fullpop, segind;
301
302         fullpop = 0;
303         for (segind = 0; segind < vm_phys_nsegs; segind++) {
304                 seg = &vm_phys_segs[segind];
305                 paddr = roundup2(seg->start, VM_LEVEL_0_SIZE);
306                 while (paddr + VM_LEVEL_0_SIZE <= seg->end) {
307                         rv = &vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT];
308                         fullpop += rv->popcnt == VM_LEVEL_0_NPAGES;
309                         paddr += VM_LEVEL_0_SIZE;
310                 }
311         }
312         return (sysctl_handle_int(oidp, &fullpop, 0, req));
313 }
314
315 /*
316  * Describes the current state of the partially populated reservation queue.
317  */
318 static int
319 sysctl_vm_reserv_partpopq(SYSCTL_HANDLER_ARGS)
320 {
321         struct sbuf sbuf;
322         vm_reserv_t rv;
323         int counter, error, domain, level, unused_pages;
324
325         error = sysctl_wire_old_buffer(req, 0);
326         if (error != 0)
327                 return (error);
328         sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
329         sbuf_printf(&sbuf, "\nDOMAIN    LEVEL     SIZE  NUMBER\n\n");
330         for (domain = 0; domain < vm_ndomains; domain++) {
331                 for (level = -1; level <= VM_NRESERVLEVEL - 2; level++) {
332                         counter = 0;
333                         unused_pages = 0;
334                         vm_reserv_domain_lock(domain);
335                         TAILQ_FOREACH(rv, &vm_rvq_partpop[domain], partpopq) {
336                                 counter++;
337                                 unused_pages += VM_LEVEL_0_NPAGES - rv->popcnt;
338                         }
339                         vm_reserv_domain_unlock(domain);
340                         sbuf_printf(&sbuf, "%6d, %7d, %6dK, %6d\n",
341                             domain, level,
342                             unused_pages * ((int)PAGE_SIZE / 1024), counter);
343                 }
344         }
345         error = sbuf_finish(&sbuf);
346         sbuf_delete(&sbuf);
347         return (error);
348 }
349
350 /*
351  * Remove a reservation from the object's objq.
352  */
353 static void
354 vm_reserv_remove(vm_reserv_t rv)
355 {
356         vm_object_t object;
357
358         vm_reserv_assert_locked(rv);
359         CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
360             __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
361         KASSERT(rv->object != NULL,
362             ("vm_reserv_remove: reserv %p is free", rv));
363         KASSERT(!rv->inpartpopq,
364             ("vm_reserv_remove: reserv %p's inpartpopq is TRUE", rv));
365         object = rv->object;
366         vm_reserv_object_lock(object);
367         LIST_REMOVE(rv, objq);
368         rv->object = NULL;
369         vm_reserv_object_unlock(object);
370 }
371
372 /*
373  * Insert a new reservation into the object's objq.
374  */
375 static void
376 vm_reserv_insert(vm_reserv_t rv, vm_object_t object, vm_pindex_t pindex)
377 {
378         int i;
379
380         vm_reserv_assert_locked(rv);
381         CTR6(KTR_VM,
382             "%s: rv %p(%p) object %p new %p popcnt %d",
383             __FUNCTION__, rv, rv->pages, rv->object, object,
384            rv->popcnt);
385         KASSERT(rv->object == NULL,
386             ("vm_reserv_insert: reserv %p isn't free", rv));
387         KASSERT(rv->popcnt == 0,
388             ("vm_reserv_insert: reserv %p's popcnt is corrupted", rv));
389         KASSERT(!rv->inpartpopq,
390             ("vm_reserv_insert: reserv %p's inpartpopq is TRUE", rv));
391         for (i = 0; i < NPOPMAP; i++)
392                 KASSERT(rv->popmap[i] == 0,
393                     ("vm_reserv_insert: reserv %p's popmap is corrupted", rv));
394         vm_reserv_object_lock(object);
395         rv->pindex = pindex;
396         rv->object = object;
397         LIST_INSERT_HEAD(&object->rvq, rv, objq);
398         vm_reserv_object_unlock(object);
399 }
400
401 /*
402  * Reduces the given reservation's population count.  If the population count
403  * becomes zero, the reservation is destroyed.  Additionally, moves the
404  * reservation to the tail of the partially populated reservation queue if the
405  * population count is non-zero.
406  */
407 static void
408 vm_reserv_depopulate(vm_reserv_t rv, int index)
409 {
410         struct vm_domain *vmd;
411
412         vm_reserv_assert_locked(rv);
413         CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
414             __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
415         KASSERT(rv->object != NULL,
416             ("vm_reserv_depopulate: reserv %p is free", rv));
417         KASSERT(popmap_is_set(rv->popmap, index),
418             ("vm_reserv_depopulate: reserv %p's popmap[%d] is clear", rv,
419             index));
420         KASSERT(rv->popcnt > 0,
421             ("vm_reserv_depopulate: reserv %p's popcnt is corrupted", rv));
422         KASSERT(rv->domain < vm_ndomains,
423             ("vm_reserv_depopulate: reserv %p's domain is corrupted %d",
424             rv, rv->domain));
425         if (rv->popcnt == VM_LEVEL_0_NPAGES) {
426                 KASSERT(rv->pages->psind == 1,
427                     ("vm_reserv_depopulate: reserv %p is already demoted",
428                     rv));
429                 rv->pages->psind = 0;
430         }
431         popmap_clear(rv->popmap, index);
432         rv->popcnt--;
433         vm_reserv_domain_lock(rv->domain);
434         if (rv->inpartpopq) {
435                 TAILQ_REMOVE(&vm_rvq_partpop[rv->domain], rv, partpopq);
436                 rv->inpartpopq = FALSE;
437         }
438         if (rv->popcnt != 0) {
439                 rv->inpartpopq = TRUE;
440                 TAILQ_INSERT_TAIL(&vm_rvq_partpop[rv->domain], rv, partpopq);
441         }
442         vm_reserv_domain_unlock(rv->domain);
443         vmd = VM_DOMAIN(rv->domain);
444         if (rv->popcnt == 0) {
445                 vm_reserv_remove(rv);
446                 vm_domain_free_lock(vmd);
447                 vm_phys_free_pages(rv->pages, VM_LEVEL_0_ORDER);
448                 vm_domain_free_unlock(vmd);
449                 counter_u64_add(vm_reserv_freed, 1);
450         }
451         vm_domain_freecnt_inc(vmd, 1);
452 }
453
454 /*
455  * Returns the reservation to which the given page might belong.
456  */
457 static __inline vm_reserv_t
458 vm_reserv_from_page(vm_page_t m)
459 {
460
461         return (&vm_reserv_array[VM_PAGE_TO_PHYS(m) >> VM_LEVEL_0_SHIFT]);
462 }
463
464 /*
465  * Returns an existing reservation or NULL and initialized successor pointer.
466  */
467 static vm_reserv_t
468 vm_reserv_from_object(vm_object_t object, vm_pindex_t pindex,
469     vm_page_t mpred, vm_page_t *msuccp)
470 {
471         vm_reserv_t rv;
472         vm_page_t msucc;
473
474         msucc = NULL;
475         if (mpred != NULL) {
476                 KASSERT(mpred->object == object,
477                     ("vm_reserv_from_object: object doesn't contain mpred"));
478                 KASSERT(mpred->pindex < pindex,
479                     ("vm_reserv_from_object: mpred doesn't precede pindex"));
480                 rv = vm_reserv_from_page(mpred);
481                 if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
482                         goto found;
483                 msucc = TAILQ_NEXT(mpred, listq);
484         } else
485                 msucc = TAILQ_FIRST(&object->memq);
486         if (msucc != NULL) {
487                 KASSERT(msucc->pindex > pindex,
488                     ("vm_reserv_from_object: msucc doesn't succeed pindex"));
489                 rv = vm_reserv_from_page(msucc);
490                 if (rv->object == object && vm_reserv_has_pindex(rv, pindex))
491                         goto found;
492         }
493         rv = NULL;
494
495 found:
496         *msuccp = msucc;
497
498         return (rv);
499 }
500
501 /*
502  * Returns TRUE if the given reservation contains the given page index and
503  * FALSE otherwise.
504  */
505 static __inline boolean_t
506 vm_reserv_has_pindex(vm_reserv_t rv, vm_pindex_t pindex)
507 {
508
509         return (((pindex - rv->pindex) & ~(VM_LEVEL_0_NPAGES - 1)) == 0);
510 }
511
512 /*
513  * Increases the given reservation's population count.  Moves the reservation
514  * to the tail of the partially populated reservation queue.
515  *
516  * The free page queue must be locked.
517  */
518 static void
519 vm_reserv_populate(vm_reserv_t rv, int index)
520 {
521
522         vm_reserv_assert_locked(rv);
523         CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
524             __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
525         KASSERT(rv->object != NULL,
526             ("vm_reserv_populate: reserv %p is free", rv));
527         KASSERT(popmap_is_clear(rv->popmap, index),
528             ("vm_reserv_populate: reserv %p's popmap[%d] is set", rv,
529             index));
530         KASSERT(rv->popcnt < VM_LEVEL_0_NPAGES,
531             ("vm_reserv_populate: reserv %p is already full", rv));
532         KASSERT(rv->pages->psind == 0,
533             ("vm_reserv_populate: reserv %p is already promoted", rv));
534         KASSERT(rv->domain < vm_ndomains,
535             ("vm_reserv_populate: reserv %p's domain is corrupted %d",
536             rv, rv->domain));
537         popmap_set(rv->popmap, index);
538         rv->popcnt++;
539         vm_reserv_domain_lock(rv->domain);
540         if (rv->inpartpopq) {
541                 TAILQ_REMOVE(&vm_rvq_partpop[rv->domain], rv, partpopq);
542                 rv->inpartpopq = FALSE;
543         }
544         if (rv->popcnt < VM_LEVEL_0_NPAGES) {
545                 rv->inpartpopq = TRUE;
546                 TAILQ_INSERT_TAIL(&vm_rvq_partpop[rv->domain], rv, partpopq);
547         } else {
548                 KASSERT(rv->pages->psind == 0,
549                     ("vm_reserv_populate: reserv %p is already promoted",
550                     rv));
551                 rv->pages->psind = 1;
552         }
553         vm_reserv_domain_unlock(rv->domain);
554 }
555
556 /*
557  * Attempts to allocate a contiguous set of physical pages from existing
558  * reservations.  See vm_reserv_alloc_contig() for a description of the
559  * function's parameters.
560  *
561  * The page "mpred" must immediately precede the offset "pindex" within the
562  * specified object.
563  *
564  * The object must be locked.
565  */
566 vm_page_t
567 vm_reserv_extend_contig(int req, vm_object_t object, vm_pindex_t pindex,
568     int domain, u_long npages, vm_paddr_t low, vm_paddr_t high,
569     u_long alignment, vm_paddr_t boundary, vm_page_t mpred)
570 {
571         struct vm_domain *vmd;
572         vm_paddr_t pa, size;
573         vm_page_t m, msucc;
574         vm_reserv_t rv;
575         int i, index;
576
577         VM_OBJECT_ASSERT_WLOCKED(object);
578         KASSERT(npages != 0, ("vm_reserv_alloc_contig: npages is 0"));
579
580         /*
581          * Is a reservation fundamentally impossible?
582          */
583         if (pindex < VM_RESERV_INDEX(object, pindex) ||
584             pindex + npages > object->size || object->resident_page_count == 0)
585                 return (NULL);
586
587         /*
588          * All reservations of a particular size have the same alignment.
589          * Assuming that the first page is allocated from a reservation, the
590          * least significant bits of its physical address can be determined
591          * from its offset from the beginning of the reservation and the size
592          * of the reservation.
593          *
594          * Could the specified index within a reservation of the smallest
595          * possible size satisfy the alignment and boundary requirements?
596          */
597         pa = VM_RESERV_INDEX(object, pindex) << PAGE_SHIFT;
598         if ((pa & (alignment - 1)) != 0)
599                 return (NULL);
600         size = npages << PAGE_SHIFT;
601         if (((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0)
602                 return (NULL);
603
604         /*
605          * Look for an existing reservation.
606          */
607         rv = vm_reserv_from_object(object, pindex, mpred, &msucc);
608         if (rv == NULL)
609                 return (NULL);
610         KASSERT(object != kernel_object || rv->domain == domain,
611             ("vm_reserv_extend_contig: Domain mismatch from reservation."));
612         index = VM_RESERV_INDEX(object, pindex);
613         /* Does the allocation fit within the reservation? */
614         if (index + npages > VM_LEVEL_0_NPAGES)
615                 return (NULL);
616         domain = rv->domain;
617         vmd = VM_DOMAIN(domain);
618         vm_reserv_lock(rv);
619         if (rv->object != object)
620                 goto out;
621         m = &rv->pages[index];
622         pa = VM_PAGE_TO_PHYS(m);
623         if (pa < low || pa + size > high || (pa & (alignment - 1)) != 0 ||
624             ((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0)
625                 goto out;
626         /* Handle vm_page_rename(m, new_object, ...). */
627         for (i = 0; i < npages; i++) {
628                 if (popmap_is_set(rv->popmap, index + i))
629                         goto out;
630         }
631         if (!vm_domain_allocate(vmd, req, npages))
632                 goto out;
633         for (i = 0; i < npages; i++)
634                 vm_reserv_populate(rv, index + i);
635         vm_reserv_unlock(rv);
636         return (m);
637
638 out:
639         vm_reserv_unlock(rv);
640         return (NULL);
641 }
642
643 /*
644  * Allocates a contiguous set of physical pages of the given size "npages"
645  * from newly created reservations.  All of the physical pages
646  * must be at or above the given physical address "low" and below the given
647  * physical address "high".  The given value "alignment" determines the
648  * alignment of the first physical page in the set.  If the given value
649  * "boundary" is non-zero, then the set of physical pages cannot cross any
650  * physical address boundary that is a multiple of that value.  Both
651  * "alignment" and "boundary" must be a power of two.
652  *
653  * Callers should first invoke vm_reserv_extend_contig() to attempt an
654  * allocation from existing reservations.
655  *
656  * The page "mpred" must immediately precede the offset "pindex" within the
657  * specified object.
658  *
659  * The object and free page queue must be locked.
660  */
661 vm_page_t
662 vm_reserv_alloc_contig(int req, vm_object_t object, vm_pindex_t pindex, int domain,
663     u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
664     vm_paddr_t boundary, vm_page_t mpred)
665 {
666         struct vm_domain *vmd;
667         vm_paddr_t pa, size;
668         vm_page_t m, m_ret, msucc;
669         vm_pindex_t first, leftcap, rightcap;
670         vm_reserv_t rv;
671         u_long allocpages, maxpages, minpages;
672         int i, index, n;
673
674         VM_OBJECT_ASSERT_WLOCKED(object);
675         KASSERT(npages != 0, ("vm_reserv_alloc_contig: npages is 0"));
676
677         /*
678          * Is a reservation fundamentally impossible?
679          */
680         if (pindex < VM_RESERV_INDEX(object, pindex) ||
681             pindex + npages > object->size)
682                 return (NULL);
683
684         /*
685          * All reservations of a particular size have the same alignment.
686          * Assuming that the first page is allocated from a reservation, the
687          * least significant bits of its physical address can be determined
688          * from its offset from the beginning of the reservation and the size
689          * of the reservation.
690          *
691          * Could the specified index within a reservation of the smallest
692          * possible size satisfy the alignment and boundary requirements?
693          */
694         pa = VM_RESERV_INDEX(object, pindex) << PAGE_SHIFT;
695         if ((pa & (alignment - 1)) != 0)
696                 return (NULL);
697         size = npages << PAGE_SHIFT;
698         if (((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0)
699                 return (NULL);
700
701         /*
702          * Callers should've extended an existing reservation prior to
703          * calling this function.  If a reservation exists it is
704          * incompatible with the allocation.
705          */
706         rv = vm_reserv_from_object(object, pindex, mpred, &msucc);
707         if (rv != NULL)
708                 return (NULL);
709
710         /*
711          * Could at least one reservation fit between the first index to the
712          * left that can be used ("leftcap") and the first index to the right
713          * that cannot be used ("rightcap")?
714          *
715          * We must synchronize with the reserv object lock to protect the
716          * pindex/object of the resulting reservations against rename while
717          * we are inspecting.
718          */
719         first = pindex - VM_RESERV_INDEX(object, pindex);
720         minpages = VM_RESERV_INDEX(object, pindex) + npages;
721         maxpages = roundup2(minpages, VM_LEVEL_0_NPAGES);
722         allocpages = maxpages;
723         vm_reserv_object_lock(object);
724         if (mpred != NULL) {
725                 if ((rv = vm_reserv_from_page(mpred))->object != object)
726                         leftcap = mpred->pindex + 1;
727                 else
728                         leftcap = rv->pindex + VM_LEVEL_0_NPAGES;
729                 if (leftcap > first) {
730                         vm_reserv_object_unlock(object);
731                         return (NULL);
732                 }
733         }
734         if (msucc != NULL) {
735                 if ((rv = vm_reserv_from_page(msucc))->object != object)
736                         rightcap = msucc->pindex;
737                 else
738                         rightcap = rv->pindex;
739                 if (first + maxpages > rightcap) {
740                         if (maxpages == VM_LEVEL_0_NPAGES) {
741                                 vm_reserv_object_unlock(object);
742                                 return (NULL);
743                         }
744
745                         /*
746                          * At least one reservation will fit between "leftcap"
747                          * and "rightcap".  However, a reservation for the
748                          * last of the requested pages will not fit.  Reduce
749                          * the size of the upcoming allocation accordingly.
750                          */
751                         allocpages = minpages;
752                 }
753         }
754         vm_reserv_object_unlock(object);
755
756         /*
757          * Would the last new reservation extend past the end of the object?
758          */
759         if (first + maxpages > object->size) {
760                 /*
761                  * Don't allocate the last new reservation if the object is a
762                  * vnode or backed by another object that is a vnode. 
763                  */
764                 if (object->type == OBJT_VNODE ||
765                     (object->backing_object != NULL &&
766                     object->backing_object->type == OBJT_VNODE)) {
767                         if (maxpages == VM_LEVEL_0_NPAGES)
768                                 return (NULL);
769                         allocpages = minpages;
770                 }
771                 /* Speculate that the object may grow. */
772         }
773
774         /*
775          * Allocate the physical pages.  The alignment and boundary specified
776          * for this allocation may be different from the alignment and
777          * boundary specified for the requested pages.  For instance, the
778          * specified index may not be the first page within the first new
779          * reservation.
780          */
781         m = NULL;
782         vmd = VM_DOMAIN(domain);
783         if (vm_domain_allocate(vmd, req, npages)) {
784                 vm_domain_free_lock(vmd);
785                 m = vm_phys_alloc_contig(domain, allocpages, low, high,
786                     ulmax(alignment, VM_LEVEL_0_SIZE),
787                     boundary > VM_LEVEL_0_SIZE ? boundary : 0);
788                 vm_domain_free_unlock(vmd);
789                 if (m == NULL) {
790                         vm_domain_freecnt_inc(vmd, npages);
791                         return (NULL);
792                 }
793         } else
794                 return (NULL);
795         KASSERT(vm_phys_domain(m) == domain,
796             ("vm_reserv_alloc_contig: Page domain does not match requested."));
797
798         /*
799          * The allocated physical pages always begin at a reservation
800          * boundary, but they do not always end at a reservation boundary.
801          * Initialize every reservation that is completely covered by the
802          * allocated physical pages.
803          */
804         m_ret = NULL;
805         index = VM_RESERV_INDEX(object, pindex);
806         do {
807                 rv = vm_reserv_from_page(m);
808                 KASSERT(rv->pages == m,
809                     ("vm_reserv_alloc_contig: reserv %p's pages is corrupted",
810                     rv));
811                 vm_reserv_lock(rv);
812                 vm_reserv_insert(rv, object, first);
813                 n = ulmin(VM_LEVEL_0_NPAGES - index, npages);
814                 for (i = 0; i < n; i++)
815                         vm_reserv_populate(rv, index + i);
816                 npages -= n;
817                 if (m_ret == NULL) {
818                         m_ret = &rv->pages[index];
819                         index = 0;
820                 }
821                 vm_reserv_unlock(rv);
822                 m += VM_LEVEL_0_NPAGES;
823                 first += VM_LEVEL_0_NPAGES;
824                 allocpages -= VM_LEVEL_0_NPAGES;
825         } while (allocpages >= VM_LEVEL_0_NPAGES);
826         return (m_ret);
827 }
828
829 /*
830  * Attempts to extend an existing reservation and allocate the page to the
831  * object.
832  *
833  * The page "mpred" must immediately precede the offset "pindex" within the
834  * specified object.
835  *
836  * The object must be locked.
837  */
838 vm_page_t
839 vm_reserv_extend(int req, vm_object_t object, vm_pindex_t pindex, int domain,
840     vm_page_t mpred)
841 {
842         struct vm_domain *vmd;
843         vm_page_t m, msucc;
844         vm_reserv_t rv;
845         int index;
846
847         VM_OBJECT_ASSERT_WLOCKED(object);
848
849         /*
850          * Could a reservation currently exist?
851          */
852         if (pindex < VM_RESERV_INDEX(object, pindex) ||
853             pindex >= object->size || object->resident_page_count == 0)
854                 return (NULL);
855
856         /*
857          * Look for an existing reservation.
858          */
859         rv = vm_reserv_from_object(object, pindex, mpred, &msucc);
860         if (rv == NULL)
861                 return (NULL);
862
863         KASSERT(object != kernel_object || rv->domain == domain,
864             ("vm_reserv_extend: Domain mismatch from reservation."));
865         domain = rv->domain;
866         vmd = VM_DOMAIN(domain);
867         index = VM_RESERV_INDEX(object, pindex);
868         m = &rv->pages[index];
869         vm_reserv_lock(rv);
870         /* Handle reclaim race. */
871         if (rv->object != object ||
872             /* Handle vm_page_rename(m, new_object, ...). */
873             popmap_is_set(rv->popmap, index)) {
874                 m = NULL;
875                 goto out;
876         }
877         if (vm_domain_allocate(vmd, req, 1) == 0)
878                 m = NULL;
879         else
880                 vm_reserv_populate(rv, index);
881 out:
882         vm_reserv_unlock(rv);
883
884         return (m);
885 }
886
887 /*
888  * Attempts to allocate a new reservation for the object, and allocates a
889  * page from that reservation.  Callers should first invoke vm_reserv_extend()
890  * to attempt an allocation from an existing reservation.
891  *
892  * The page "mpred" must immediately precede the offset "pindex" within the
893  * specified object.
894  *
895  * The object and free page queue must be locked.
896  */
897 vm_page_t
898 vm_reserv_alloc_page(int req, vm_object_t object, vm_pindex_t pindex, int domain,
899     vm_page_t mpred)
900 {
901         struct vm_domain *vmd;
902         vm_page_t m, msucc;
903         vm_pindex_t first, leftcap, rightcap;
904         vm_reserv_t rv;
905         int index;
906
907         VM_OBJECT_ASSERT_WLOCKED(object);
908
909         /*
910          * Is a reservation fundamentally impossible?
911          */
912         if (pindex < VM_RESERV_INDEX(object, pindex) ||
913             pindex >= object->size)
914                 return (NULL);
915
916         /*
917          * Callers should've extended an existing reservation prior to
918          * calling this function.  If a reservation exists it is
919          * incompatible with the allocation.
920          */
921         rv = vm_reserv_from_object(object, pindex, mpred, &msucc);
922         if (rv != NULL)
923                 return (NULL);
924
925         /*
926          * Could a reservation fit between the first index to the left that
927          * can be used and the first index to the right that cannot be used?
928          *
929          * We must synchronize with the reserv object lock to protect the
930          * pindex/object of the resulting reservations against rename while
931          * we are inspecting.
932          */
933         first = pindex - VM_RESERV_INDEX(object, pindex);
934         vm_reserv_object_lock(object);
935         if (mpred != NULL) {
936                 if ((rv = vm_reserv_from_page(mpred))->object != object)
937                         leftcap = mpred->pindex + 1;
938                 else
939                         leftcap = rv->pindex + VM_LEVEL_0_NPAGES;
940                 if (leftcap > first) {
941                         vm_reserv_object_unlock(object);
942                         return (NULL);
943                 }
944         }
945         if (msucc != NULL) {
946                 if ((rv = vm_reserv_from_page(msucc))->object != object)
947                         rightcap = msucc->pindex;
948                 else
949                         rightcap = rv->pindex;
950                 if (first + VM_LEVEL_0_NPAGES > rightcap) {
951                         vm_reserv_object_unlock(object);
952                         return (NULL);
953                 }
954         }
955         vm_reserv_object_unlock(object);
956
957         /*
958          * Would a new reservation extend past the end of the object? 
959          */
960         if (first + VM_LEVEL_0_NPAGES > object->size) {
961                 /*
962                  * Don't allocate a new reservation if the object is a vnode or
963                  * backed by another object that is a vnode. 
964                  */
965                 if (object->type == OBJT_VNODE ||
966                     (object->backing_object != NULL &&
967                     object->backing_object->type == OBJT_VNODE))
968                         return (NULL);
969                 /* Speculate that the object may grow. */
970         }
971
972         /*
973          * Allocate and populate the new reservation.
974          */
975         m = NULL;
976         vmd = VM_DOMAIN(domain);
977         if (vm_domain_allocate(vmd, req, 1)) {
978                 vm_domain_free_lock(vmd);
979                 m = vm_phys_alloc_pages(domain, VM_FREEPOOL_DEFAULT,
980                     VM_LEVEL_0_ORDER);
981                 vm_domain_free_unlock(vmd);
982                 if (m == NULL) {
983                         vm_domain_freecnt_inc(vmd, 1);
984                         return (NULL);
985                 }
986         } else
987                 return (NULL);
988         rv = vm_reserv_from_page(m);
989         vm_reserv_lock(rv);
990         KASSERT(rv->pages == m,
991             ("vm_reserv_alloc_page: reserv %p's pages is corrupted", rv));
992         vm_reserv_insert(rv, object, first);
993         index = VM_RESERV_INDEX(object, pindex);
994         vm_reserv_populate(rv, index);
995         vm_reserv_unlock(rv);
996
997         return (&rv->pages[index]);
998 }
999
1000 /*
1001  * Breaks the given reservation.  All free pages in the reservation
1002  * are returned to the physical memory allocator.  The reservation's
1003  * population count and map are reset to their initial state.
1004  *
1005  * The given reservation must not be in the partially populated reservation
1006  * queue.  The free page queue lock must be held.
1007  */
1008 static void
1009 vm_reserv_break(vm_reserv_t rv)
1010 {
1011         int begin_zeroes, hi, i, lo;
1012
1013         vm_reserv_assert_locked(rv);
1014         CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
1015             __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
1016         vm_reserv_remove(rv);
1017         rv->pages->psind = 0;
1018         i = hi = 0;
1019         do {
1020                 /* Find the next 0 bit.  Any previous 0 bits are < "hi". */
1021                 lo = ffsl(~(((1UL << hi) - 1) | rv->popmap[i]));
1022                 if (lo == 0) {
1023                         /* Redundantly clears bits < "hi". */
1024                         rv->popmap[i] = 0;
1025                         rv->popcnt -= NBPOPMAP - hi;
1026                         while (++i < NPOPMAP) {
1027                                 lo = ffsl(~rv->popmap[i]);
1028                                 if (lo == 0) {
1029                                         rv->popmap[i] = 0;
1030                                         rv->popcnt -= NBPOPMAP;
1031                                 } else
1032                                         break;
1033                         }
1034                         if (i == NPOPMAP)
1035                                 break;
1036                         hi = 0;
1037                 }
1038                 KASSERT(lo > 0, ("vm_reserv_break: lo is %d", lo));
1039                 /* Convert from ffsl() to ordinary bit numbering. */
1040                 lo--;
1041                 if (lo > 0) {
1042                         /* Redundantly clears bits < "hi". */
1043                         rv->popmap[i] &= ~((1UL << lo) - 1);
1044                         rv->popcnt -= lo - hi;
1045                 }
1046                 begin_zeroes = NBPOPMAP * i + lo;
1047                 /* Find the next 1 bit. */
1048                 do
1049                         hi = ffsl(rv->popmap[i]);
1050                 while (hi == 0 && ++i < NPOPMAP);
1051                 if (i != NPOPMAP)
1052                         /* Convert from ffsl() to ordinary bit numbering. */
1053                         hi--;
1054                 vm_domain_free_lock(VM_DOMAIN(rv->domain));
1055                 vm_phys_free_contig(&rv->pages[begin_zeroes], NBPOPMAP * i +
1056                     hi - begin_zeroes);
1057                 vm_domain_free_unlock(VM_DOMAIN(rv->domain));
1058         } while (i < NPOPMAP);
1059         KASSERT(rv->popcnt == 0,
1060             ("vm_reserv_break: reserv %p's popcnt is corrupted", rv));
1061         counter_u64_add(vm_reserv_broken, 1);
1062 }
1063
1064 /*
1065  * Breaks all reservations belonging to the given object.
1066  */
1067 void
1068 vm_reserv_break_all(vm_object_t object)
1069 {
1070         vm_reserv_t rv;
1071
1072         /*
1073          * This access of object->rvq is unsynchronized so that the
1074          * object rvq lock can nest after the domain_free lock.  We
1075          * must check for races in the results.  However, the object
1076          * lock prevents new additions, so we are guaranteed that when
1077          * it returns NULL the object is properly empty.
1078          */
1079         while ((rv = LIST_FIRST(&object->rvq)) != NULL) {
1080                 vm_reserv_lock(rv);
1081                 /* Reclaim race. */
1082                 if (rv->object != object) {
1083                         vm_reserv_unlock(rv);
1084                         continue;
1085                 }
1086                 vm_reserv_domain_lock(rv->domain);
1087                 if (rv->inpartpopq) {
1088                         TAILQ_REMOVE(&vm_rvq_partpop[rv->domain], rv, partpopq);
1089                         rv->inpartpopq = FALSE;
1090                 }
1091                 vm_reserv_domain_unlock(rv->domain);
1092                 vm_reserv_break(rv);
1093                 vm_reserv_unlock(rv);
1094         }
1095 }
1096
1097 /*
1098  * Frees the given page if it belongs to a reservation.  Returns TRUE if the
1099  * page is freed and FALSE otherwise.
1100  *
1101  * The free page queue lock must be held.
1102  */
1103 boolean_t
1104 vm_reserv_free_page(vm_page_t m)
1105 {
1106         vm_reserv_t rv;
1107         boolean_t ret;
1108
1109         rv = vm_reserv_from_page(m);
1110         if (rv->object == NULL)
1111                 return (FALSE);
1112         vm_reserv_lock(rv);
1113         /* Re-validate after lock. */
1114         if (rv->object != NULL) {
1115                 vm_reserv_depopulate(rv, m - rv->pages);
1116                 ret = TRUE;
1117         } else
1118                 ret = FALSE;
1119         vm_reserv_unlock(rv);
1120
1121         return (ret);
1122 }
1123
1124 /*
1125  * Initializes the reservation management system.  Specifically, initializes
1126  * the reservation array.
1127  *
1128  * Requires that vm_page_array and first_page are initialized!
1129  */
1130 void
1131 vm_reserv_init(void)
1132 {
1133         vm_paddr_t paddr;
1134         struct vm_phys_seg *seg;
1135         struct vm_reserv *rv;
1136         int i, segind;
1137
1138         /*
1139          * Initialize the reservation array.  Specifically, initialize the
1140          * "pages" field for every element that has an underlying superpage.
1141          */
1142         for (segind = 0; segind < vm_phys_nsegs; segind++) {
1143                 seg = &vm_phys_segs[segind];
1144                 paddr = roundup2(seg->start, VM_LEVEL_0_SIZE);
1145                 while (paddr + VM_LEVEL_0_SIZE <= seg->end) {
1146                         rv = &vm_reserv_array[paddr >> VM_LEVEL_0_SHIFT];
1147                         rv->pages = PHYS_TO_VM_PAGE(paddr);
1148                         rv->domain = seg->domain;
1149                         mtx_init(&rv->lock, "vm reserv", NULL, MTX_DEF);
1150                         paddr += VM_LEVEL_0_SIZE;
1151                 }
1152         }
1153         for (i = 0; i < MAXMEMDOM; i++) {
1154                 mtx_init(&vm_reserv_domain_locks[i], "VM reserv domain", NULL,
1155                     MTX_DEF);
1156                 TAILQ_INIT(&vm_rvq_partpop[i]);
1157         }
1158
1159         for (i = 0; i < VM_RESERV_OBJ_LOCK_COUNT; i++)
1160                 mtx_init(&vm_reserv_object_mtx[i], "resv obj lock", NULL,
1161                     MTX_DEF);
1162 }
1163
1164 /*
1165  * Returns true if the given page belongs to a reservation and that page is
1166  * free.  Otherwise, returns false.
1167  */
1168 bool
1169 vm_reserv_is_page_free(vm_page_t m)
1170 {
1171         vm_reserv_t rv;
1172
1173         rv = vm_reserv_from_page(m);
1174         if (rv->object == NULL)
1175                 return (false);
1176         return (popmap_is_clear(rv->popmap, m - rv->pages));
1177 }
1178
1179 /*
1180  * If the given page belongs to a reservation, returns the level of that
1181  * reservation.  Otherwise, returns -1.
1182  */
1183 int
1184 vm_reserv_level(vm_page_t m)
1185 {
1186         vm_reserv_t rv;
1187
1188         rv = vm_reserv_from_page(m);
1189         return (rv->object != NULL ? 0 : -1);
1190 }
1191
1192 /*
1193  * Returns a reservation level if the given page belongs to a fully populated
1194  * reservation and -1 otherwise.
1195  */
1196 int
1197 vm_reserv_level_iffullpop(vm_page_t m)
1198 {
1199         vm_reserv_t rv;
1200
1201         rv = vm_reserv_from_page(m);
1202         return (rv->popcnt == VM_LEVEL_0_NPAGES ? 0 : -1);
1203 }
1204
1205 /*
1206  * Breaks the given partially populated reservation, releasing its free pages
1207  * to the physical memory allocator.
1208  *
1209  * The free page queue lock must be held.
1210  */
1211 static void
1212 vm_reserv_reclaim(vm_reserv_t rv)
1213 {
1214
1215         vm_reserv_assert_locked(rv);
1216         CTR5(KTR_VM, "%s: rv %p object %p popcnt %d inpartpop %d",
1217             __FUNCTION__, rv, rv->object, rv->popcnt, rv->inpartpopq);
1218         vm_reserv_domain_lock(rv->domain);
1219         KASSERT(rv->inpartpopq,
1220             ("vm_reserv_reclaim: reserv %p's inpartpopq is FALSE", rv));
1221         KASSERT(rv->domain < vm_ndomains,
1222             ("vm_reserv_reclaim: reserv %p's domain is corrupted %d",
1223             rv, rv->domain));
1224         TAILQ_REMOVE(&vm_rvq_partpop[rv->domain], rv, partpopq);
1225         rv->inpartpopq = FALSE;
1226         vm_reserv_domain_unlock(rv->domain);
1227         vm_reserv_break(rv);
1228         counter_u64_add(vm_reserv_reclaimed, 1);
1229 }
1230
1231 /*
1232  * Breaks the reservation at the head of the partially populated reservation
1233  * queue, releasing its free pages to the physical memory allocator.  Returns
1234  * TRUE if a reservation is broken and FALSE otherwise.
1235  *
1236  * The free page queue lock must be held.
1237  */
1238 boolean_t
1239 vm_reserv_reclaim_inactive(int domain)
1240 {
1241         vm_reserv_t rv;
1242
1243         while ((rv = TAILQ_FIRST(&vm_rvq_partpop[domain])) != NULL) {
1244                 vm_reserv_lock(rv);
1245                 if (rv != TAILQ_FIRST(&vm_rvq_partpop[domain])) {
1246                         vm_reserv_unlock(rv);
1247                         continue;
1248                 }
1249                 vm_reserv_reclaim(rv);
1250                 vm_reserv_unlock(rv);
1251                 return (TRUE);
1252         }
1253         return (FALSE);
1254 }
1255
1256 /*
1257  * Searches the partially populated reservation queue for the least recently
1258  * changed reservation with free pages that satisfy the given request for
1259  * contiguous physical memory.  If a satisfactory reservation is found, it is
1260  * broken.  Returns TRUE if a reservation is broken and FALSE otherwise.
1261  *
1262  * The free page queue lock must be held.
1263  */
1264 boolean_t
1265 vm_reserv_reclaim_contig(int domain, u_long npages, vm_paddr_t low,
1266     vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
1267 {
1268         vm_paddr_t pa, size;
1269         vm_reserv_t rv, rvn;
1270         int hi, i, lo, low_index, next_free;
1271
1272         if (npages > VM_LEVEL_0_NPAGES - 1)
1273                 return (FALSE);
1274         size = npages << PAGE_SHIFT;
1275         vm_reserv_domain_lock(domain);
1276 again:
1277         for (rv = TAILQ_FIRST(&vm_rvq_partpop[domain]); rv != NULL; rv = rvn) {
1278                 rvn = TAILQ_NEXT(rv, partpopq);
1279                 pa = VM_PAGE_TO_PHYS(&rv->pages[VM_LEVEL_0_NPAGES - 1]);
1280                 if (pa + PAGE_SIZE - size < low) {
1281                         /* This entire reservation is too low; go to next. */
1282                         continue;
1283                 }
1284                 pa = VM_PAGE_TO_PHYS(&rv->pages[0]);
1285                 if (pa + size > high) {
1286                         /* This entire reservation is too high; go to next. */
1287                         continue;
1288                 }
1289                 if (vm_reserv_trylock(rv) == 0) {
1290                         vm_reserv_domain_unlock(domain);
1291                         vm_reserv_lock(rv);
1292                         if (!rv->inpartpopq) {
1293                                 vm_reserv_domain_lock(domain);
1294                                 if (!rvn->inpartpopq)
1295                                         goto again;
1296                                 continue;
1297                         }
1298                 } else
1299                         vm_reserv_domain_unlock(domain);
1300                 if (pa < low) {
1301                         /* Start the search for free pages at "low". */
1302                         low_index = (low + PAGE_MASK - pa) >> PAGE_SHIFT;
1303                         i = low_index / NBPOPMAP;
1304                         hi = low_index % NBPOPMAP;
1305                 } else
1306                         i = hi = 0;
1307                 do {
1308                         /* Find the next free page. */
1309                         lo = ffsl(~(((1UL << hi) - 1) | rv->popmap[i]));
1310                         while (lo == 0 && ++i < NPOPMAP)
1311                                 lo = ffsl(~rv->popmap[i]);
1312                         if (i == NPOPMAP)
1313                                 break;
1314                         /* Convert from ffsl() to ordinary bit numbering. */
1315                         lo--;
1316                         next_free = NBPOPMAP * i + lo;
1317                         pa = VM_PAGE_TO_PHYS(&rv->pages[next_free]);
1318                         KASSERT(pa >= low,
1319                             ("vm_reserv_reclaim_contig: pa is too low"));
1320                         if (pa + size > high) {
1321                                 /* The rest of this reservation is too high. */
1322                                 break;
1323                         } else if ((pa & (alignment - 1)) != 0 ||
1324                             ((pa ^ (pa + size - 1)) & ~(boundary - 1)) != 0) {
1325                                 /*
1326                                  * The current page doesn't meet the alignment
1327                                  * and/or boundary requirements.  Continue
1328                                  * searching this reservation until the rest
1329                                  * of its free pages are either excluded or
1330                                  * exhausted.
1331                                  */
1332                                 hi = lo + 1;
1333                                 if (hi >= NBPOPMAP) {
1334                                         hi = 0;
1335                                         i++;
1336                                 }
1337                                 continue;
1338                         }
1339                         /* Find the next used page. */
1340                         hi = ffsl(rv->popmap[i] & ~((1UL << lo) - 1));
1341                         while (hi == 0 && ++i < NPOPMAP) {
1342                                 if ((NBPOPMAP * i - next_free) * PAGE_SIZE >=
1343                                     size) {
1344                                         vm_reserv_reclaim(rv);
1345                                         vm_reserv_unlock(rv);
1346                                         return (TRUE);
1347                                 }
1348                                 hi = ffsl(rv->popmap[i]);
1349                         }
1350                         /* Convert from ffsl() to ordinary bit numbering. */
1351                         if (i != NPOPMAP)
1352                                 hi--;
1353                         if ((NBPOPMAP * i + hi - next_free) * PAGE_SIZE >=
1354                             size) {
1355                                 vm_reserv_reclaim(rv);
1356                                 vm_reserv_unlock(rv);
1357                                 return (TRUE);
1358                         }
1359                 } while (i < NPOPMAP);
1360                 vm_reserv_unlock(rv);
1361                 vm_reserv_domain_lock(domain);
1362                 if (rvn != NULL && !rvn->inpartpopq)
1363                         goto again;
1364         }
1365         vm_reserv_domain_unlock(domain);
1366         return (FALSE);
1367 }
1368
1369 /*
1370  * Transfers the reservation underlying the given page to a new object.
1371  *
1372  * The object must be locked.
1373  */
1374 void
1375 vm_reserv_rename(vm_page_t m, vm_object_t new_object, vm_object_t old_object,
1376     vm_pindex_t old_object_offset)
1377 {
1378         vm_reserv_t rv;
1379
1380         VM_OBJECT_ASSERT_WLOCKED(new_object);
1381         rv = vm_reserv_from_page(m);
1382         if (rv->object == old_object) {
1383                 vm_reserv_lock(rv);
1384                 CTR6(KTR_VM,
1385                     "%s: rv %p object %p new %p popcnt %d inpartpop %d",
1386                     __FUNCTION__, rv, rv->object, new_object, rv->popcnt,
1387                     rv->inpartpopq);
1388                 if (rv->object == old_object) {
1389                         vm_reserv_object_lock(old_object);
1390                         rv->object = NULL;
1391                         LIST_REMOVE(rv, objq);
1392                         vm_reserv_object_unlock(old_object);
1393                         vm_reserv_object_lock(new_object);
1394                         rv->object = new_object;
1395                         rv->pindex -= old_object_offset;
1396                         LIST_INSERT_HEAD(&new_object->rvq, rv, objq);
1397                         vm_reserv_object_unlock(new_object);
1398                 }
1399                 vm_reserv_unlock(rv);
1400         }
1401 }
1402
1403 /*
1404  * Returns the size (in bytes) of a reservation of the specified level.
1405  */
1406 int
1407 vm_reserv_size(int level)
1408 {
1409
1410         switch (level) {
1411         case 0:
1412                 return (VM_LEVEL_0_SIZE);
1413         case -1:
1414                 return (PAGE_SIZE);
1415         default:
1416                 return (0);
1417         }
1418 }
1419
1420 /*
1421  * Allocates the virtual and physical memory required by the reservation
1422  * management system's data structures, in particular, the reservation array.
1423  */
1424 vm_paddr_t
1425 vm_reserv_startup(vm_offset_t *vaddr, vm_paddr_t end, vm_paddr_t high_water)
1426 {
1427         vm_paddr_t new_end;
1428         size_t size;
1429
1430         /*
1431          * Calculate the size (in bytes) of the reservation array.  Round up
1432          * from "high_water" because every small page is mapped to an element
1433          * in the reservation array based on its physical address.  Thus, the
1434          * number of elements in the reservation array can be greater than the
1435          * number of superpages. 
1436          */
1437         size = howmany(high_water, VM_LEVEL_0_SIZE) * sizeof(struct vm_reserv);
1438
1439         /*
1440          * Allocate and map the physical memory for the reservation array.  The
1441          * next available virtual address is returned by reference.
1442          */
1443         new_end = end - round_page(size);
1444         vm_reserv_array = (void *)(uintptr_t)pmap_map(vaddr, new_end, end,
1445             VM_PROT_READ | VM_PROT_WRITE);
1446         bzero(vm_reserv_array, size);
1447
1448         /*
1449          * Return the next available physical address.
1450          */
1451         return (new_end);
1452 }
1453
1454 /*
1455  * Initializes the reservation management system.  Specifically, initializes
1456  * the reservation counters.
1457  */
1458 static void
1459 vm_reserv_counter_init(void *unused)
1460 {
1461
1462         vm_reserv_freed = counter_u64_alloc(M_WAITOK); 
1463         vm_reserv_broken = counter_u64_alloc(M_WAITOK); 
1464         vm_reserv_reclaimed = counter_u64_alloc(M_WAITOK); 
1465 }
1466 SYSINIT(vm_reserv_counter_init, SI_SUB_CPU, SI_ORDER_ANY,
1467     vm_reserv_counter_init, NULL);
1468
1469 /*
1470  * Returns the superpage containing the given page.
1471  */
1472 vm_page_t
1473 vm_reserv_to_superpage(vm_page_t m)
1474 {
1475         vm_reserv_t rv;
1476
1477         VM_OBJECT_ASSERT_LOCKED(m->object);
1478         rv = vm_reserv_from_page(m);
1479         if (rv->object == m->object && rv->popcnt == VM_LEVEL_0_NPAGES)
1480                 m = rv->pages;
1481         else
1482                 m = NULL;
1483
1484         return (m);
1485 }
1486
1487 #endif  /* VM_NRESERVLEVEL > 0 */